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Metrology experiments can be limited by the noise pro-
duced by the laser involved via small fluctuations in the
laser’s power or frequency. Typically, active power sta-
bilization schemes consisting of an in-loop sensor and
a feedback control loop are employed. Those schemes
are fundamentally limited by shot noise coupling at
the in-loop sensor. In this letter we propose to use the
optical spring effect to passively stabilize the classical
power fluctuations of a laser beam. In a proof of princi-
ple experiment, we show that the relative power noise
of the laser is stabilized from approximately 2 × 10−5

Hz−1/2 to a minimum value of 1.6 × 10−7 Hz−1/2, cor-
responding to the power noise reduction by a factor
of 125. The bandwidth at which stabilization occurs
ranges from 400 Hz to 100 kHz. The work reported in
this letter further paves the way for high power laser
stability techniques which could be implemented in op-
tomechanical experiments and in gravitational wave de-
tectors. © 2022 Optical Society of America

http://dx.doi.org/10.1364/ao.XX.XXXXXX

1. INTRODUCTION

Laser power stabilization is important for many modern experi-
ments, since power fluctuations can limit their sensitivity[1, 2].
Currently, interferometric gravitational wave detectors require
the most stringent power stability levels, where a relative power
noise (RPN) of roughly 2× 10−9 Hz−1/2 is required at 10 Hz by
the Advanced LIGO detectors [3]. A third generation of gravi-
tational wave detectors is currently being planned, which will
most likely require even higher power stability. So far strict
requirements at low frequencies were mostly achieved using
active power stabilization schemes, where an in-loop photode-
tector is used in conjunction with a feedback control loop. Those
schemes are usually limited by noise sources coupling in the in-
loop detector, and often require a large power detection which
can exceed the power threshold of the in-loop sensors [4]. Re-

cently, an alternative technique was demonstrated in which the
full beam power of the laser and its fluctuations are sensed via a
Michelson interferometer with a movable mirror [5]. In this Let-
ter, we propose to use a movable mirror in a Fabry-Perot cavity
with a strong optical spring. The technique demonstrated in this
paper is passive, and thus does not require a power sensor. We
show here that this technique can provide large suppressions of
classical power fluctuations such as to produce a beam in trans-
mission of the cavity which is shot noise limited. In [5], a transfer
and a sensing beam are used with a single movable cantilever
mirror, in order to demonstrate active power stabilization from
1 Hz to 10 kHz. Here, we instead use a Fabry-Perot cavity with
a strong optical spring to passively stabilize the power fluctua-
tions transmitted by the cavity. Unlike other power stabilization
techniques employing optical cavities [6], the experiment pro-
posed here provides power noise reduction below the cavity
pole. This is an advantage, since it dispenses the use of long and
high finesse cavities for stabilization at low frequencies.

We first start with a cavity comprised of a movable end mirror
pumped with a laser (see Figure 1). By detuning the cavity
away from its resonance, an optical spring [7] is formed, whose
dynamic response reduces power fluctuations in transmission of
the cavity. To show that an optical spring can passively stabilize
the power fluctuations of a laser we first start with the equation
of motion of the movable mirror:

mẍ = Frad + Fres + Fext, (1)

where Frad is the force on the mirror due to radiation pressure,
Fres is the restorative spring force, Fext is any external force, such
as thermal noise, and m is the mass of the mirror. Eq 1 in the
frequency domain then becomes:

− mΩ2 x̃ =
2P̃circ

c
− kx̃ + F̃ext. (2)

where c is the speed of light, k is the spring constant correspond-
ing to the restorative mechanical spring force of the movable
mirror, and Pcirc is the circulating power in the cavity.

The power fluctuations (∆Pcirc) inside the cavity are depen-
dent on the motion of the movable mirror and on the change
of the maximally circulating power (∆Pmax) at resonance in the
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cavity, which in turn depends on the fluctuations of the injected
laser power. These fluctuations can be written as:

∆Pcirc =
dPcirc

dx
∆x +

dPcirc
dPmax

∆Pmax. (3)

The circulating power in the cavity can be written in terms of
the detuning (δ, in units of linewidth) and the maximum power
circulating in the cavity (Pmax) as [7]:

Pcirc(δ) =
Pmax

1 + δ2 . (4)

Additionally, the position of the movable mirror can be written
in terms of the detuning as [7]:

x =
δλA
8π

, (5)

where λ is the wavelength of light and A, the total losses of the
mirrors, including their transmissivity, in which A = 0 is two
perfectly reflective mirrors. Given the equations for power in
terms of detuning (Eq 4) and position in terms of detuning (Eq
5), it is useful to rewrite Eq 3 as:

∆Pcirc =
dPcirc

dδ

dδ

dx
∆x +

dPcirc
dPmax

∆Pmax. (6)

Plugging in respective derivatives into Eq 6 yields:

∆Pcirc = − 16πPmaxδ

λA(1 + δ2)2 ∆x +
∆Pmax

1 + δ2 . (7)

Solving Eq. 2 for ∆x to use in Eq 7 yields:

∆Pcirc =
Kos∆Pcirc

m(Ω2 − Ω2
fund)

+
∆Pmax

1 + δ2 +
cKos∆Fext

2m(Ω2 − Ω2
fund)

, (8)

where we have dropped the tilde notation and made the substi-
tution for the optical spring constant Kos: [8]

Kos =
32πPmaxδ

λAc(1 + δ2)2 . (9)

Note that this equation for the optical spring constant assumes
that the response of the cavity is sufficiently slow such that it may
be regarded as instantaneous. Solving Eq 8 for the intracavity
power fluctuations yields,

∆Pcirc =
∆Pmax

1 + δ2

(
Ω2 − Ω2

fund
Ω2 − Ω2

os − Ω2
fund

)

− c
2

∆Fext

(
Ω2

os
Ω2 − Ω2

os − Ω2
fund

)
,

(10)

where Ωfund is the resonance frequency of the fundamental
mode of the cantilever mirror and Ωos is the optical spring fre-
quency, where both are defined as:

Kos = mΩ2
os and k = mΩ2

fund. (11)

An independent calculation of Eq 10 can be found in [9].
For frequencies much smaller than the cavity pole, the con-

nection between power fluctuations at the cavity input (∆Pin)
and the intracavity power fluctuations on resonance is ∆Pmax =
PB ∗ ∆Pin, where PB is the power buildup of the cavity. Hence,
as seen from Eq 10, for frequencies much less than the optical
spring resonance frequency (Ω � Ωos) and much greater than
the fundamental mode of the cantilever mirror (Ω � Ωfund), the
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Fig. 1. Simplified experimental setup of the passive laser
power stabilization scheme via an optical spring. PDL is used
solely stabilize the optical spring above 100 kHz and not for
active power stabilization.

power fluctuations in the cavity are reduced compared to the
injected field’s power fluctuations by a factor of ( Ω

Ωos
)2. We can

also see that the external force, Fext, imprints power fluctuations
on the laser beam and will limit the stability achievable by this
scheme. We have chosen an entirely classical derivation due
to the fact that quantum radiation pressure effects are evaded
when measuring the amplitude quadrature in transmission of
the cavity [10].

The schematic of the experiment used to demonstrate this
power fluctuation reduction is shown in Figure 1. It consists of
an optomechanical cavity kept at cryogenic temperatures (∼ 30
K). The cavity is pumped with a 1064 nm Nd:YAG nonplanar
ring oscillator (NPRO) laser and is housed in a vacuum chamber
kept at 10−8 torr. The movable mirror used in this setup is a can-
tilever mirror [7] with a mass of 50 nanograms, a fundamental
frequency of 876 Hz, and a quality factor of around 25400. We
note here that this quality factor is much larger than in previous
experiments (16000) [10, 11] due to the reduced temperature and
pressure of the cryogenically cooled cavity. The input mirror in
the cavity is a 0.5 inch diameter, rigidly mounted mirror with a
radius of curvature of 1 cm. The cavity is just under 1 cm long,
with a pole greater than 100kHz. Inside the vacuum chamber
there is a vibration isolation platform which all the optics are
mounted to, reducing seismic vibrations above 100 Hz.

The requirement to keep a system like this stable is a posi-
tive optical spring constant and a positive damping coefficient
[12, 13] which is not the case for our system. To keep the config-
uration of the cavity stable we employ a feedback loop actuating
on an amplitude modulator (AM2 in Fig 1). This ensures the
cavity stays at a constant detuning during a measurement. This
feedback loop uses a photodetector (PDL in Fig 1) in transmis-
sion of the cavity as the in-loop sensor and applies relevant
correction signals to AM2 only for frequencies close to the opti-
cal spring frequency (i.e. above 100 kHz for the red curve in Fig
2). This feedback loop does not provide any power stabilization
of the injected beam. Another photodetector in transmission
of the cavity is used to monitor the power noise of the trans-
mitted beam, labeled PDM. Additional details describing the
experimental setup can be found in [11, 14].

In order to demonstrate the power stabilization we inject
white noise into the amplitude modulator before the cavity, AM1,
at a voltage yielding a baseline relative power fluctuations of
around 2× 10−5 Hz−1/2. This is done to demonstrate that a large
noise suppression is possible, since the free running relative
power noise of the laser is at roughly 4 × 10−6Hz−1/2 without
the noise injection.
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Fig. 2. Amplitude spectral density measurements showing reduction of classic power noise. White noise is added to the
free running laser noise to bring the overall noise level up to approximately 2 × 10−5 Hz−1/2. The blue curve represents
a cavity detuning of 3.6 linewidths and the red curve a detuning 1.5 linewidths. The large features at 3.7 kHz, 15.5 kHz
and 28.5 kHz are the coupling from the Yaw, Pitch, and Side-to-Side modes respectively of the cantilever mirror.

2. RESULTS

Figure 2 shows the results of the laser power stabilization for
different optical spring strengths. The blue and red curves repre-
sent the cavity locked at a detuning corresponding to an optical
spring frequency of 53 ± 2 kHz and 150 ± 3 kHz respectively.
These optical spring frequencies correspond to a power trans-
mitted by the cavity and incident on PDM of 15.2 and 70 µW
respectively. Additionally, the input power for both these mea-
surements is 6.5mW. The black curve represents the sum of the
free running laser noise and the intentionally imprinted white
noise, which is measured at a photodetector just after AM1, not
pictured in Fig 1. As seen from Fig 2, the injected noise is sup-
pressed by a greater amount with a stronger optical spring, as
expected from Eq 10. The maximum suppression of the stronger
optical spring measurement occurs at 7900 Hz with a stabilized
noise level of 1.6 × 10−7 Hz−1/2. This corresponds to the optical
spring suppressing the injected noise by a factor of 125. The blue
curve measured for a cavity detuning of 3.6 linewidths has a
steeper feature below 10 kHz due to being thermal noise limited,
whereas the red curve (1.5 linewidths detuned) is mainly shot
noise limited. Above 10kHz, both curves are limited by the noise
suppression provided by the optical spring.

Figure 3 compares the highest power noise suppression mea-
surement (red curve) with an uncorrelated sum of fundamen-
tal limits of this experiment (blue curve) and the power noise
suppression by the optical spring. These fundamental limits
are comprised of relative shot noise and thermal noise of the
cantilever mirror added in quadrature. The total limit for the
relative power noise detected by PDM can be obtained by divid-
ing Eq. 10 by the mean circulating power Pcirc, since, below the
cavity pole, the classical RPN transmitted by the cavity (RPNM)
should be the same as the classical RPN inside the cavity. Hence,
the amplitude spectral density (ASD) of the RPN at PDM is:

RPNM
2 = RPNin

2

(
Ω2 − Ω2

fund
Ω2 − Ω2

os − Ω2
fund

)2

−
(

cFext,ASD

2Pcirc

)2
(

Ω2
os

Ω2 − Ω2
os − Ω2

fund

)2

+
2hc

λPM
,

(12)

where RPNin and Fext,ASD are the ASD of the RPN at the input
of the cavity, and of the external force. The first term in Eq 12

represents the power noise suppression by the optical spring.
The third term in Eq 12 is the relative shot noise of the measured
power on PDM, where h is Planck’s constant, and PM is the
mean power transmitted by the cavity and detected on PDM.
This relative shot noise level is additionally corroborated by
measuring the shot noise of the photodetector experimentally.
Both by experimental methods and the relative shot noise term
in Eq 12 the average shot noise level was determined to be
7.3 × 10−8 Hz−1/2 and is depicted by the brown curve in Fig
3. The next part in the fundamental limits curve is the thermal
noise term contribution:

RPNtn =

(
Ω2 − Ω2

fund
Ω2 − Ω2

os − Ω2
fund

)
cΩfund

Pcirc

√
kbTm
QΩ

, (13)

where Ωfund is the fundamental resonance frequency of the
cantilever mirror, Q is the structural quality factor of the movable
mirror, T is the temperature, and kb is the Boltzmann constant.
This equation was calculated by substituting Fext in Eq 12 by the
thermal noise force considering structural damping [15] and is
the minimum relative power noise in transmission of the cavity,
limited by thermal noise of the movable mirror. This quantity is
a similar result as obtained in [5, 16], but here with a dependence
on the intracavity power. This is an advantage for this scheme
since a trade off of using a mirror with high spring constant can
be made by increasing the intracavity power.

Because the laser beam is not perfectly centered on the mov-
able mirror, we see a coupling of the cantilever modes, pitch
(3.7kHz), yaw (15.5kHz), and side-to-side (28.5 kHz), in our
measurement. If the beam was perfectly aligned these features
would not be observed. In order to account for this in our funda-
mental limits we use a modeling code that uses the two photon
formalism [17] that accounts for the centering of the beam when
calculating thermal noise. The result for the thermal noise model
in this experiment is shown by the lilac curve in Figure 3. The
temperature recorded for these measurements refers to the upper
limit of the temperature of the cavity. This is because the cryo-
stat introduces mechanical vibrations strong enough to interfere
with the locking capabilities of the cavity. For this reason, the
cryostat compressor is turned off and the cavity slowly warms
as the measurement is performed. Generally, by the time a mea-
surement is finished the cavity is at 30K.

The final contribution to the total limit is the residual input
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Fig. 3. 70 µW power noise spectrum post cavity measurement with its associated fundamental noise limitations, which
includes relative shot noise, the calculated (modeled) RPN, and projected suppression of the cavity. The circulating
power corresponding to 70 µW of transmitted power is 250 mW.

noise limited by the suppression by the optical spring. This is
calculated by taking the injected noise and multiplying by the
suppression term (first term) in Eq 12. For the parameters of
the stronger optical spring measurement, the optical spring has
the potential to provide a power noise suppression of approxi-
mately 3 × 104 at 10 Hz. This factor is quite large and thermal or
quantum noise typically limit the performance at low frequency.

Given these parameters, we find the total noise budget agrees
with the measured spectrum for most frequencies. At low fre-
quencies, the experiment is limited by seismic noise, hence the
additional noise in the measurement with respect to the blue
curve in Figure 3. In theory, it is possible to lock a Fabry-Perot
cavity like this one without the use of feedback, instead using a
large, positively detuned carrier beam and a small, negatively
detuned sub-carrier beam [12, 13]. This has been tested to show
the stability of the double optical spring effect, but not yet on its
ability to stabilize the power of the laser. In this regime however,
it would be possible to lock the cavity and have the power stabi-
lized without the use of feedback anywhere.

In order to achieve a lower RPN and a larger power in trans-
mission of the cavity, the input power, and therefore the circulat-
ing power, needs to be increased. This reduces the contribution
from thermal noise and shot noise, as shown in Eq. 12. In this
experiment, the circulating power of 250 mW was limited by
the damage threshold of the micro-oscillators. However, the
suspended mirrors described in [18], as well as [19], utilize pa-
rameters that could provide a total RPN close to the needs of
current gravitational wave detectors. With a 5-mg suspended
mirror having a resonance on the order of 10 Hz, Q of 1× 105, an
intracavity power of 200 W, and a temperature of 20K, we find
that the RPN for such a system would be 1.4 × 10−9Hz−1/2 at
10 Hz and 4.4 × 10−10Hz−1/2 at 100 Hz. These parameters are
realizable and would give the RPN levels necessary for aLIGO.
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