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Quantum many-body systems in thermal equilibrium

Alvaro M. Alhambral *

I Max-Planck-Institut fiir Quantenoptik, Hans-Kopfermann-Strafe 1, D-85748 Garching, Germany

The thermal or equilibrium ensemble is one of the most ubiquitous states of matter. For
models comprised of many locally interacting quantum particles, it describes a wide range
of physical situations, relevant to condensed matter physics, high energy physics, quantum
chemistry and quantum computing, among others. We give a pedagogical overview of
some of the most important universal features about the physics and complexity of these
states, which have the locality of the Hamiltonian at its core. We focus on mathematically
rigorous statements, many of them inspired by ideas and tools from quantum information
theory. These include bounds on their correlations, the form of the subsystems, various
statistical properties, and the performance of classical and quantum algorithms. We
also include a summary of a few of the most important technical tools, as well as some
self-contained proofs.

Parts of these notes were the basis for a lecture series within the “Quantum Thermo-
dynamics Summer School 2021” during August 2021 in Les Diablerets, Switzerland.
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I. INTRODUCTION

We are currently at the dawn of the age of synthetic quantum matter. Increasingly better ex-
periments on a variety of quantum platforms are improving in size and controllability at un-
precedented rates, aided by the current impulse of quantum information science and technology.
This gives very good prospects to the exploration of the physics of complex quantum many body
systems. Our aspiration to better understand these systems is very well motivated from a scien-
tific perspective, but also potentially from the industrial one: unlocking the potential of complex
quantum systems may bring surprising advances to the engineering of new materials or chemical
compounds in the future. It may also yield computational tools with unprecedented capabilities
for a still unknown range of applications.

Many of the most commonly studied materials and current experimental platforms are de-
scribed by an arrangement of quantum particles in some sort of lattice configuration. Due to
the spatial decay of electromagnetic forces, each of these particles only interacts appreciably with
their immediate vicinity, which causes the interactions between them to be local.



In these notes, we focus on the properties of these important systems when at thermal equi-
librium, so that they are accurately described by the so-called thermal or Gibbs state. We review
and explain some of their most important universal properties, covered from a mathematical per-
spective. That is, we focus on statements that can be proven about states of the Gibbs form

e -
ps = ==Y e PE)E, (1)

VA A l

where H = Y, Ej|E;)(E)| is the Hamiltonian, j is the inverse temperature and Z = Tr[e ##] is the
partition function. The Hamiltonian describes the interaction between the IV particles, which will
be restricted the interactions to be short-ranged or local. A “local Hamiltonian” is a Hermitian
operator H in the finite-dimensional Hilbert space of N d-dimensional particles (C%)®V. Tt is
defined as a sum of terms

H=Y hal, 2)

each of which has support (i.e. acts non-trivially) on at most k particles, and bounded strength,
such that max; ||h;|| = h (for a definition of the operator norm || - || see Sec. Il A below). In what
follows we just write the terms as h; for simplicity. These constitute the individual interactions,
which are typically arranged in a lattice of a small dimension. A simple example is e.g. the
transverse-field Ising model in one dimension with open boundary conditions

N—-1
HIsing = Z (JO']XO';{H + AO'JZ) + AO']%[ 3)
j=1

Here, k = 2 and the interactions are arranged on a 1D chain.

The idea of a local Hamiltonian is very general, and involves many different models describing
a wide range of situations, of interest for many fields of physics, chemistry and computer science.
The only thing they have in common is the locality of the interactions. We thus aim to understand
mathematically how this fact alone constrains both the physics and the computational complexity,
when combined with thermal fluctuations.

The thermal states of these general local Hamiltonians are interesting for a wide variety of
reasons, some of which are:

¢ Itis one of the most ubiquitous states of quantum matter: typical experiments happen at
finite temperature, where the quantum system at hand is weakly coupled to some external
radiation field that drives it to the thermal state.

¢ The thermal state is also important when studying not just systems with an external bath,
but also in the evolution of isolated quantum systems, even when their global state is pure:
in very generic cases, these end up being “their own bath”, and the individual subsystems
thermalize to the Gibbs ensemble [1, 2].

¢ From a general condensed matter/material science standpoint, we are very interested in
numerous questions about the physics at finite temperature: How are conserved quantities
(e.g. charge, energy) propagated in a state close to equilibrium? How does the system
respond to small or large perturbations away from equilibrium?

¢ Systems at thermal equilibrium (both quantum and classical) display interesting phase
transitions in certain (low) temperature regimes (e.g. classical Ising model in 2D). It is thus
relevant to study what are their universal properties both in and away from the critical
points.



® They are also important from the point of view of quantum phases of matter and topolog-
ical order: it has been widely established that thermal states of local models in dimension
D — 1 appear in the entanglement spectrum of D- dimensional ground states [3]. As such,
understanding their structure should also help us in elucidating the low energy correlations
of many interesting systems.

¢ These states are also important for computation. For instance, being able to sample from
the thermal distribution of local models is a typical subroutine for certain classical and
quantum algorithms [4-7]. They are also a very naturally occurring data structure in both
classical and quantum machine learning [8-12] (often under the name of Boltzmann ma-
chines).

¢ Itis known from quantum computational complexity that the low energy subspace of local
Hamiltonians is able to encode the solution to very hard computational problems: finding
the ground state energy is QMA complete [13]. Thus, it is widely believed that even a
quantum computer should not be able to do it in polynomial time. This then at least also
applies to the thermal state at very low temperature, and motivates the study of how the
complexity changes as the temperature rises [14, 15].

There are many different specific aspects that one could explore, but here we focus on the
following, which we believe to be of particular importance:

* The correlations between the particles at different parts of the lattice, and how they are
distributed depending on its geometry.

¢ The form of the subsystems that a thermal state can take, and how are they related to few-
particle Gibbs states.

¢ The statistical physics properties of these systems at equilibrium, including Jaynes” princi-
ple, concentration bounds and equivalence of ensembles.

¢ The efficiency of classical and quantum algorithms for the generation and manipulation of
thermal states, and the computation of expectation values and partition functions.

The general topic of these notes, and the particular results explained here, are a small part of
the exciting past, present and future efforts to understand the physics and complexity of quantum
many-body systems. We hope to contribute to the understanding and cross-fertilization of the
many different angles that the quantum many-body problem can take. See also e.g. [1, 16] for
previous references with partially overlapping content.

A. Scope and content

Throughout these notes, we cover statements that have a precise mathematical formulation,
many of them motivated by a quantum information theoretic perspective. This notably includes
a short exposition of a few key technical tools in Sec. III. These have not previously appeared
together, but rather separately explained in the literature with various levels of detail, depending
on the context and usage. We hope that this encourages new, potentially unexpected, applications
thereof.

Along the sections with the actual physical and computational results, we write the proofs of
some of the simpler or more important ones explained throughout. This includes at least one



main result per section, which should serve as a pedagogical example. For the rest, some of
which have more detailed or involved derivations, we refer the reader to the original works cited
along the text. One of our main hopes is that after reading these notes even the more technical
works will be more easily accessible to a wider range of researchers. Because of this, rather than
the traditional Theorem-Proof structure of most mathematical physics writing, we have chosen
a more streamlined style for the presentation which allows for more physical explanations and
intuitions of the steps. This will hopefully contribute to a wider readability.

There are no new results in these notes, and the proofs are either the same or slightly simplified
versions of previous ones in the literature. The relevant references are included, but this does not
mean that all of the previous relevant ones are listed here: we are certainly missing to mention a
very large body of work. This includes many relevant papers on mathematical physics, but also a
lot of important physics literature that covers these topics from perspectives that are beyond our
scope: based on numerical methods, theory work on experimental implementations, as well as all
experimental results.

II. MATHEMATICAL PRELIMINARIES AND NOTATION

A. Operator norms

A basic but very important mathematical tool in this context are the Schatten p-norms for
operators, as well as the different inequalities between them. These norms are maps from the
space of operators to R, as M — ||M]||,, that obey the following properties:

* Homogeneous: If « is a scalar, ||aM ||, = |a|||M]|, .
* Positive: ||M||, > 0.

* Definite: ||M||, =0 <= M =0.

* Triangle inequality: || M + N||, < [|M]||, + || N|p-

For a given operator M with singular values {\M} and p € [1,00), they are defined as
1

1
M|, = Te[|M|P]7 = ( ) 4
The more important ones are the operator norm ||M|| = || M||o = max; |A\}M|, the Hilbert-Schmidt
2-norm || M||s = Tr[M MT]'/? and the 1-norm or trace norm
| M| = max Tr[MN] 5)

Thus |[Tr[M]| < ||M]]1, with equality for positive operators. For quantum states, Tr[p] = |[|p||1 = 1.

Typically we measure the “strength” of an observable with the operator norm, and the close-
ness of two quantum states with the trace norm ||p — ol|;, since it is related to the probability of
distinguishing them under measurements. The 2-norm, on the other hand, is often the easiest one
to compute in practice. Also note the very important Holder’s inequality

IMNlp < [[M]lg, [Nl (6)

which holds for 119 = qT + & L (e. g p=q = 1,0 = 00). A particularly useful corollary is the

Cauchy-Schwarz inequahty, when @1=¢=2andp=1,
ITe[MTN]|? < Te[M M Te[NNT]. 7)



B. Information-theoretic quantities

Let us define the von Neumann entropy of a quantum state p [17]

S(p) = =Tr[plog(p)], 8

which, roughly speaking, quantifies the uncertainty we have about the particular state. It is
bounded by 0 < S(p) < logd. The lower bound is obtained by choosing p pure, and the up-
per bound by the identity p = I/d. Another important quantity is the Umegaki relative entropy

D(plo) = Tr[p(log p — log o)], )

which is a measure of distinguishability of quantum states. It obeys Pinsker’s inequality
1 2
D(P|‘7)Z§HP—JH1’ (10)

which relates the relative entropy with the 1-norm. It is strictly positive for p # o, and vanishes
otherwise. It is also closely related to the non-equilibrium free energy

D(plpp) = BTx[pH] — S(p) +1og Z = BFp(p) + log Z, (11)

which also shows that the equilibrium free energy is Fj(pz) = —3 ! log Z.

From these quantities we can also define the quantum mutual information, which, given a
bipartite state p*” on subsystems A and B, with Trp[p??] = pa, Tra[p?P] = pP, quantifies the
correlations between A and B as

I(A: B), = S(p") + S(p") = S(p*") = D(p*P|p* @ p7). (12)

For instance, it is zero if and only if p*” = pA ® pB. For all these three functions we can also define
their corresponding Rényi generalizations. See [18, 19] for details.
A further, perhaps more refined quantity is the conditional mutual information (CMI), defined as

I(A: C|B), =S(p"") + S(p"°) = S(p"*P°) = S(p") (13)
—I(A:BC), —I(A: B),. (14)

This perhaps less known quantity is behind many non-trivial statements in quantum information
theory (see Section 11.7 in [20] for more details). In a nutshell, it measures how much A and
C share correlations that are not mediated by B. That is, if this quantity is small, most of the
correlations between A and C' (which may be weak) are in reality correlations between A and B
and B and C'.

C. Lattice notation

In what follows we need some technical definitions regarding the properties of the Hamilto-
nian and the lattice. The lattice is a hypergraph which we denote by A = {V, E'} with vertex set V'
and hyperedges E. To each vertex we associate a Hilbert space of dimension d, C?. The number
of particles is N = |V, and the number of hyperedges is |E|. We can separate the vertices into
subregions, such as A4, and we denote with 94 € A4 the sites at the boundary of that region
(that is, with at least one hyperedge connecting to \A4), of which there are |04]. For simplicity,
we often refer to regions as A, B, .. instead of A4, Ap,.... We also need the notion of “distance”



between two regions, dist(A, B), defined as the smallest number of overlapping hyperedges that
connect a vertex of A with a vertex of B.

To define the Hamiltonian, we associate local interactions to hyperedges, such that H =
> icp hi. For an operator h;, the set of vertices on which it has non-trivial support is supp(h;).
We have already specified that each h; is such that |supp(h;)| < k (that is, the hyperedges have
size at most k), so that for constant k, N o< |E|. We also note that that ||/;|| < h and introduce the
following quantity

J=max Y |[hil, (15)

zeV
i:xesupp(h;)

that is, J upper bounds the norm of the interactions that act on an individual vertex.

D. Asymptotic notation

The so-called asymptotic or Bachmann-Landau notation notation succinctly describes the
asymptotic behaviour of a function when the argument grows large. It is typically used when in a
particular expression there are constant factors that we are happy to omit, that are unnecessarily
cumbersome, or when we only have partial knowledge of the asymptotic behaviour. We say that
, given a function f(N) > 0:

e f(N) = O(g(NN)) if there are constants M, Ny > 0 such that VN > Ny, f(N) < Mg(N).

e f(N) = O(g(N)) is similar to O(g(N)) but with possible additional poly-logarithmic fac-
tors, so that instead VN > Ny, f(IN) < Mg(N)polylog(g(V)).

* f(N)=o0(g(N) if for every ¢ > 0 there exists a Ny > 0 such that VN > Ny, f(N) < eg(N).
o f(N)=Q(g(N)) if there are constants M, Ny > 0 such that VN > Ny, f(N) > Mg(N).

These are the most commonly used symbols of this notation, all of which appear below.

III. AN OVERVIEW OF TECHNICAL TOOLS

When studying quantum thermal states from a mathematical point of view, what we often
need is some way of simplifying the operator e=##, in a way that makes the particular problem
at hand mathematically tractable. This is usually achieved by expressing the relevant function of
e~ P in simpler terms. Potential issues that complicate this are:

1. The exponential of a local operator is not a local operator, due to the high order terms in the
expansion, and could in principle be arbitrarily complicated.

2. The individual elements in the Hamiltonian Eq. (2) do not commute with each other. Thus
we cannot divide the exponential of the Hamiltonian into smaller pieces by iterating simple

identities like e~ A(H1+H2) L —BH1,~BHs

The locality of the Hamiltonian helps make these two problems often not as serious as they
could be in general situations. There is a number of tools to deal with this, and we now describe
some of the most relevant ones. Below, we explain how the cluster expansion in Sec. III A helps
with issue 1, while there are at least two different techniques in Sec. III B and III C that help us
with issue 2.



A. Connected cluster expansion

This is a powerful set of ideas whose origins can be traced back to a wide set of the classic
(and classical) literature on mathematical physics and statistical mechanics (see e.g. [21]). It has
traditionally been used to prove the analyticity of the partition function at high temperatures, as
well as the existence of computationally efficient approximation schemes to it. To illustrate the
main ideas, we outline the main steps needed to prove those results, following e.g. [22] and [23].
These works are recent, but this is a decades-old and very studied tool. See [22] in particular for
the reference to several important classic works.

Let us start with the logarithm of the partition function in any dimension log Z = log Tr[e ##],
and consider its Taylor expansion around 3 = 0

Bm
logZ=>_ — K. (16)
m
One can then ask: what is the radius of convergence of this Taylor series? More precisely, we
would like to know whether there is some 5* such that for 0 < 8 < 5* we have that:
¢ The function log Z is analytic.

¢ The m-th derivative at 8 = 0 is such that

‘dm log Z

o2 = Vol < N 357" a7

for some constant (.

¢ The truncated Taylor series gives a good approximation as

(8/8*)M+D

=N

(18)

M Bm
log Z — Z — K
m=0

The results we now describe prove these through an analysis of the individual terms in the
expansion, which can be written in terms of the so-called connected clusters. A cluster is a multiset
(that is, a set counting multiplicities) of Hamiltonian terms h; (or alternatively, of hyperedges
{i € E}), which can appear more than once. A given cluster W has size |W| equal to the number
of elements in the multiset (counting multiplicities u}V, so that [W| = > {iew? 1WV). Moreover, W
is connected if the hypergraph with hyperedges ¢ € W is connected. Let us define the set of all
clusters of size at most m with C,,, and the set of all connected clusters as G,,,.

Now, let us define the Hamiltonian with auxiliary variables {\;} as H(\) = >, A\;h;. We use
this to introduce the cluster derivative

ow=]1 (ai)uzw

7

(19)

A=0

Here, the subscript A = 0 means to set \; = 0 for all 7 after taking the derivatives. It is not hard to
see that we can write

BT Km(X) = Y DwlogTrle #HMV], (20)
WeC,

where now the moments K, depend on the {\;}.



Moreover, if W ¢ G,,,, we have W = W; U W3 where W1, W3 are non-overlapping clusters. Let

us define hw,, hw, as the Hamiltonian terms in those clusters, so that [hw,, hw,] = 0. We then
have

Dy log Tr[e PHN] = Dy log Tr[e A hwi M) +hw, (1)) (21)

= Dy log Tr[e W1 V] - Dy log Tr[e w2 (V] (22)

=0. (23)

This means we can write the moments in terms of connected clusters only

BT Km(A) = Y DwlogTr[e #HWV], (24)
\USI9™

To relate this back to the original moments, we simply need to set all of the \; = 1, as K, (1) = K.

The fact that only connected clusters contribute is an important simplification, since it reduces
their number dramatically. Then, a way to show the convergence of the series (see [23, 24]) is to
prove the following;:

* The number of connected clusters of size m is bounded by C;Nc¢T* for some constant c;
[25, 26].

¢ The size of each cluster derivative for a cluster of size |W| = m is at most
Dw log Tr[e PN < (Bey)™m! (25)

for some constant ¢y [23, 24].

The constants here can usually be taken to be simple functions of the lattice parameters &, J, h and
of some property of the interaction graph (e.g. in [23] it is the degree of the dual graph). These
facts together imply that |K,,,| < cic2 = (8*)7! ~ O(1), so that the partition function is analytic
for § < B* and that it is well approximated by its Taylor series. Other, more direct and general
proofs also exist in the literature (see in particular [27] and other following works), which also
give results of the form of Eq. (18) for some (5*) ~ O(1).

The next step is to prove that the individual Taylor terms can be computed efficiently. This
requires two separate steps:

* The set of all clusters of size m can be enumerated in time poly(/N) x exp(O(m)) [23, 28]
* Each cluster derivative can be computed exactly in time poly (V) x exp(O(m)) [22, 23].

We can thus add all the contributions from the different derivatives to obtain K, in time
poly(N) x exp(O(m)). This, together with Eq. (18), implies that by calculating up to a de-
gree M = O (log(N/e) x log(8*/5)) there exists an e-close additive approximation to log Z that
can be computed in time poly(N,e™1).

It is not an accident that this only works for high enough temperatures. We do not expect to be
able to prove many general statements at all temperatures, due to the presence of thermal phase
transitions (such as the one of the classical 2D Ising model), and to the fact that the ground state
energy is computationally hard to estimate [13]. Let us note, however, that there are specific mod-
els in the literature for which the convergence can be guaranteed for larger ranges of temperatures
(see e.g. [29] and references therein). See Sec. VII B for more details.

The log-partition function is the most common quantity to calculate with this method. This
same technique also allows for e.g. the computation of expectation values such as Tr[h;e ? /Z]



10

by differentiating by an extra \; in the cluster derivative. It can be also applied to other similar
objects. A good example are characteristic functions of the form Tr[e®4e~#H /Z] for some local ob-
servable A, which allows for the derivation of probability theory statements, as explained further
in Sec. VIB.

B. Thermal locality estimates

We now show the first method to decompose the thermal state into a product of smaller opera-
tors, despite the non-commutativity, which is related to the idea of operator growth. Consider an
operator A with local support on some small region on the lattice. For simplicity, let us consider
that this region is such that |[supp(4)| < k.

An interesting quantity to study is the operator evolved in Euclidean or imaginary time /3
under the Hamiltonian H,

A(iB) = e PH AePH (26)

This is in analogy with the Heisenberg-picture operator A(t) = e~ #H AeiH, which can be under-
stood in terms of the well-known Lieb-Robinson bounds [30], that state that the support of A(t)
is mostly confined to a linear lightcone. In many situations, one will want to choose A here to be
one of the h; operators.

It then makes sense to ask the following question: what is the locality of the Euclidean-evolved
operator A(i3)? Perhaps surprisingly, this can be dramatically different to the real-time case: there
is no general linear growth with the inverse temperature 3, but a much wilder dependence on it.
The main difference is that e ®H is a unitary matrix, while ¢ PH is not. This means that results
that exploit unitarity, such as the aforementioned Lieb-Robinson bounds, do not apply straight-
forwardly. Our best way forward seems then to analyze A(if3) in terms of nested commutators

AiB) =Y (_Tf!)m[H, (H, oo [H, AL = Y 57Con(4). 27)
m=0 m=0

It is easy to see that the m-th term in this expansion has support on a connected region whose fur-
thermost point is a distance m away from A. The question then becomes: how does this expansion
in terms of 5 converge?

It can be shown that, for general interaction graphs, [21, 31]

|Cm (A)]| < K| AJ[(2TR)"™. (28)

This statement is very much related to the bound on the number of connected clusters in Sec. III A
above, since only connected clusters contribute to the nested commutators. Eq. (28) implies that
as long as 8 < (2Jk), the expansion can be controlled as a geometric series, from which we obtain

1

14GH)I < MIAllT 5577 9)
M
. n (28711
14068) = 32 8 Cnl < HIAIS = (30)

Given that the m-th nested commutator can have support on at most k xm sites, the latter equation
means that A(if3) is, roughly speaking, localized within the subset of vertices a distance at most
kxmaway from supp(A). It is known that in general one cannot extend this result to temperatures
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lower than 5 ~ O(1), since there exists an example of a 2D lattice in which the terms in the nested
commutators in Eq. (27) add up constructively, in a way that the norm of A(i3) diverges [32].

On the other hand, it has been known for some time [33] that when the lattice is a one-
dimensional chain, the nested commutators grow more slowly, so that this type of convergence
happens for all temperatures. For simplicity, we show explicitly the result for £ = 2 combining
[34] and [32], which is

1AGB)|| < [|Allf(8,T) exp(f(B,])) (31)
M

1A(B) = > B C(A)]| < 15]|Alle”MF M > (8, J). (32)
m=0

Here, we have defined f(3,.J) = 163.J exp(1 + 83J) and ¢(8,J) = exp(240e?8.J) — 1 [35]. The
intuitive reason for these is that the geometric bound of Eq. (28) can be improved in this case as
[32] (again, for k = 2)

240eJ  \"
71) > (33)

'm(A)|| < 15||A4
Gl < 15l14] (20

Notice that, because of the logarithm, the series in Eq. (27) is not geometric, and converges for all
B. For further explanations of these points see also [36].

So far, we have described how does A(i3) approximate its Taylor expansion. An alterna-
tive approximation commonly considered is to the operator e #7am Ae#Ham, where Hy,,
Zsupp(hi)e A, h; and A,, is some region of the full lattice A. One can then consider how the
norm

|A(iB) — e PHam AePHan|| (34)

decays with m in terms of how A,, is defined (typically, some hyper-sphere of the lattice). The
analysis and convergence turn out to be almost the same as the one for the moments C,,,(A) above.
The reason is that the difference between Z%:o B™Cy(A) and e PHam AePHAm are essentially the
higher order terms in 3 of the latter, which are also suppressed. See e.g. [34] for a detailed analysis
of the 1D case or e.g. Lemma 20 in [37] for a proof in higher dimensions.

One of the main reasons why both of these approximations are interesting is that they are
related to the following propagator

By = e PHAABH — o v dsem s Aert (35)
where T denotes the usual time-ordered integral. This is such that, for 8 < (2Jk) !
e PUHFA) — By eBH (36)

This operator can be analyzed through a usual Dyson series in terms of powers of e~ TH perH
From this it can be shown that £ 4 has bounded norm as it follows from Eq. (29) and (35) that

5 L L\
< “HAH ) = (e :
124l <o ([ asllemac 1) = (1357 ) @7

In Appendix A we also show that it is approximately localized in the same way as e =% Ae* is.
This means that there exist an operator F4 (/) with support restricted to a distance at most [ away
from A such that for 8 < (2Jk)~!

(25Jk)l+1

FEys—F < A .
1Ea = Ba() < A AI T2 5

(38)
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Also, notice that if [H, A] = 0, then E4 = e~ BA With the right choice of H, A, the operator £ 4 can
thus be thought of as a “transfer operator”.
Alternatively, one can also define the following operator

E) = e BH+A) BH BA (39)

with the difference that H, A are now treated on equal footing. In this case, E, is just the mul-
tiplicative error term in the first order Trotter product formula, which can be similarly analyzed
through the expansion of A(if3) (see the thorough analysis of Trotter errors in [38] for more de-
tails). These Trotter errors are most commonly analyzed in the context of digital quantum simu-
lation [39], for which it is often convenient to go to higher orders in the decomposition.

We finish this subsection outlining a result in 1D related to this discussion, which follows from
bounds on the quantity in Eq. (34). It appeared first in [33], and it features in Sections V A1 and
VII A. Let us define Ef4 = ¢ PUHIHA) BH where H 1 are the interaction terms a distance at most [
away from supp(A). It can be shown that

|Eall < C (40)
/

Eq—EBY| <y T — 41
1~ E4l| < o (a1)
where C1,C; and ¢ > 1 are constants depending on k, J, 5 which we do not show explicitly for
simplicity, although notice that C; will be essentially the exponential of Eq. (31) . The proof is
similar to that of Appendix A, together with a bound on Eq. (34). We refer the reader to e.g.
[33, 34] for further details in 1D, and a similar discussion also applies in higher dimensions and

high temperatures.

C. Quantum belief propagation

An idea related to the previous locality estimates appeared first [40], and has more recently
featured in several results [12, 37, 41-44]. It also allows us to decompose the thermal state as
a product of smaller, localized operators, which makes certain calculations more tractable. This
is part of a celebrated series of works including the decay of correlations for gapped ground
states [45] or the area law of entanglement in one dimension [46] which show how Lieb-Robinson
bounds (a dynamical statement) can be used to prove static properties about ground and thermal
states. See [47, 48] for overviews.

We follow the presentation from [41, 42] (see also [49]). The idea is to consider the “perturbed”
Hamiltonian H(s) = H + sA and the following derivative

deleH(S) /8 _ s
S S L A CY) “2

where, if H(s) =), Ei(s)]i(s))(i(s)| is the energy eigenbasis,

© ) (A)y; = (i(s)|Alj(5)) f3 (Eils) — Ej(s)), )

where fs(w) = % With fz(t) = %Tlog (zx:gi) the Fourier transform of fs(w) (see

Appendix B of [12]), we can also write

Qg(s)(A) _ / dt f5(£)etH) AitH ), (44)
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Since ||e "H () ActH)|| = || 4], @g(s)(A) has bounded operator norm, and can also be approxi-
mated by a localized operator by using Lieb-Robinson bounds, which reads

[[Mc, e Npe™]|| < ef| Mc||||Np|| min{|C], | D] e (=), (45)

where M¢, Np are operators on regions C, D on the lattice, separated by distance dist(C, D).
We now integrate Eq. (42) between s = 0 and s = 1 to obtain

e BH+A) _ OAe*ﬁHOT 7 (46)

where

B (a)

On = Te 2 Jods®5 (47)

Similarly to Eq. (35) above (see Appendix A), this operator has a bounded norm, and also is very
close to a localized one. More precisely, we have that

10| < €3 Jo dsll®F VOl _ Zilall (48)

and also, that there exists an operator Of4 defined as

O = Te~ ' Jo s ), (49)

with (I)?l(s) (A) defined as the Hamiltonian terms of H (s) with support on a ball of radius [ cen-
tered at supp(A). This is such that

/ A _ cl/l
||O _OA”< BH H (1+<) HAHG 1+CU£. (50)

These bounds can be compared to Eq. (40) and (41), which are of a very similar nature. There are,
however, two important differences between O 4 and E4 in Eq. (35) above:

¢ Since it is based on the Lieb-Robinson bound, the operator O 4 is well-behaved in all lattices
and at all temperatures, in the sense that it has a bounded norm and is approximately
localized. This is as opposed to E 4, which is likely a large operator in high dimensions and
low temperatures.

e On the other hand, to recover e #(+4) from =% we require left and right multiplication
with Oy, OL, as opposed to Eq. (36), which may be problematic in some applications. In
particular, we should not expect it to be a key ingredient in proving results that do not
hold at all temperatures such as the decay of correlations or the analyticity of the partition
function.

D. Selected trace inequalities

In the past two subsections we have explored how to analyze perturbations to the Hamiltonian
in the Gibbs operator e #(#+4) via E,4 and O 4. When considering traces, simpler identities hold.
We exemplify this with two with very elementary implications and proofs, which can be found in
(at least) [50]. The first one is about the stability of partition functions. Let H;, H, be Hermitian
operators. Then we have

|log Tr[e" +72] — log Tr[e""]| < || Ha||- (51)
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The proof is just as follows:

Tr[Haell1+tHz)

1 1
d
H{+H H _ Hi+tH:
|10gTr[e 1 2] _ logTI'[e 1]| — ‘/0 —dt log Tr [e 1 2} dt‘ < /0 Tr[€H1+tH2]

dt < [[Ha,
(52)

where in the last inequality we have simply used H 6lder’s inequality Eq. (6) with ¢; = 1, ¢2 = 0.
If we take e.g. Hy = —(H, Hy = —jA, this implies that changing the Hamiltonian by A changes
the log-partition function at most by || A||.

The second is a similar result that holds for expectation values of positive operators. Let Hy, Ho
be as before, and let C' > 0. Then

1 1/2
|log Tr[Ce™ 2] —log Tr[Ce™]| < / dt / ds||e™ s HtHe) fry es(HuttHz) )| (53)
0 —1/2

The proof can be found in Appendix A. This norm can then be bounded with the results from
Sec. III B, to scale as o ||Hz||. The resulting expression can for instance be used for analyzing
characteristic functions of observables F by taking C' = e*F for a € R [50].

More generally, in the practice of mathematical quantum physics, whether it is from the many
body, the QI, or any other perspective, many important proof ingredients take the form of in-
equalities, either between operators, traces, or norms (such as those already mentioned in Sec.
ITA). There are too many to give a reasonably complete overview here but we refer the reader to
e.g. [51, 52].

IV. CORRELATIONS

One of the more important questions when studying many body systems is: how and how
much are the different parts correlated? Intuitively, the stronger these correlations, and the longer
their range, the more complex a state is - the reason being that we cannot think of the large system
as a collection of simpler, weakly correlated parts. The obvious extreme example is that of an
uncorrelated gas, in which the particles do not interact and have independent distributions.

For thermal states with local interactions, we can expect that locality will make the state far
from generic, in a way that constraints its complexity. Intuitively, it should cause the correlations
to be “localized”, meaning that particles are only correlated with their vicinity as given by the
lattice geometry. For a rough intuition, consider the first terms of the Taylor series

2
_BH _ LB B
¢ _]1—52 hi+ 5 thh]—l—... (54)
? 2y

That is, at very high temperatures we approach the trivial uncorrelated state oc I and the leading
order term includes only k-local couplings, with only higher order terms coupling far away parti-
cles. We thus expect that the correlations between particles will generally be weaker i) the higher
the temperature and ¢i) the larger their distance on the interaction graph.

One of the main motivation is that, as we will see in later sections, the situations in which
the correlations are weaker or short range roughly correspond to those in which there are better
algorithms for the description of thermal states. This is perhaps most clearly the case in the context
of tensor network methods. We now proceed to describe (and even prove) the more important
ways in which these correlations are constrained.
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A. Correlations between neighbouring regions: Thermal area law

One of the more important statements about correlations in quantum many-body systems is
the area law. This roughly states that a measure of correlations between two adjacent regions is
upper-bounded by a number proportional to the size of their mutual boundary.

Traditionally, this has been mostly studied in the context of ground states, which are pure.
There, the measure of correlations is the entanglement entropy, or some Rényi version of it. In
that context, an area law for the entanglement entropy is believed to hold for all ground states of
models with a gap [53]. This can be proven in 1D [46, 54] and in some cases in 2D [55]. The interest
in it is largely due to its relation to other phenomena, such as phase transitions [56], the decay of
long-range correlations [57] or the effectiveness of certain tensor network algorithms [58, 59].

For thermal states, a very general area law can be shown to hold for systems in any dimension,
at all temperatures. We now give a short proof of this statement, and then discuss its significance
(see [60] for the original reference). In this case, since it is a mixed state, an appropriate measure
of correlations is the mutual information in Eq. (12).

Let us partition our interaction graph into two subsets of particles A, B, with a thermal state
péB . We start with the very simple thermodynamic observation that the free energy F' of the
thermal state is lower than that of any other state (this follows from Eq. (11)), and in particular

Fa(ps"”) < Fa(py ® pf)- (55)
Writing out the free energy explicitly as F(p) = Tr[pH] — 371 S(p) and rearranging yields
S(ps @ p§) = S(ps") < B (Te[Hpg @ pg)] — Te[Hp5")) (56)

Given that the entropy is additive S(p® o) = S(p) + S(o) notice that the LHS is exactly the mutual
information I(A : B) pAB from Eq. (12). Since the Hamiltonian is local, we can write it as

H=Hy+ Hp + Hy, (57)

where H 4, Hp have support only on A, B respectively, and H; is the interaction between them
(with support on both). By definition, the expectation values of H4 and Hp coincide on both
states Tr[(Ha + Hg)pj © p5] = Tr[(Ha + Hp)pj?], so that

B(Te[Hpg @ p5) — Te[HpgP]) = B (Te[Hipf © p5) — Te[H;p53P)) . (58)

Now we can use a few of the operator inequalities from Section IT A to obtain

Te[H;pf © pf| — Te[Hipg®) < ||Hi(pf ® pf — p5®)I11 (59)
< ||H{l| x |15 ® pf — p5 Pl (60)
< ||H{|l x (|15 @ p5 I + llp5 ) = 2||H||. (61)

Putting Eq. (56) and (59) together we have the final result

I(A: B),am < 26|/ H| (62)

This is the area law for the mutual information of a thermal state: it implies that the strength
of the correlations of systems A, B cannot depend on their size, but that it grows at most as their
common boundary. For a local Hamiltonian, we have that

||Hr|| < 2kh|0aB|, (63)
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A Jap B

Figure 1: The correlations between regions A and B grow at most as their mutual boundary d45.

where |04p| is the number of particles at the boundary of regions A, B, as defined by the inter-
action graph. Notice that with |045| we do not mean the size of the boundary of systems A, B
together, but the number of elements of 04 that are connected to dp by hyperedges. We show
this schematically in Fig. 1. This is to be contrasted with the most general upper bound on the
mutual information, which is I(A : B) < min{log(da),log(dp)} (since logd o |A| this would be
a “volume law” instead).

What this strongly suggests (although it does not quite prove) is that the correlations between
A and B are localized around the mutual boundary, and that the bulks of A and B are mostly
uncorrelated. That is, the only relevant information about A that B contains is about the region of
A that is near their boundary.

This statement, as can be seen from the proof, holds for all temperatures and all interaction
graphs, which is likely as general as it can be. The drawback of that generality, however, is that it
will be unable to signal important phenomena that happens only at specific temperature ranges,
such as thermal phase transitions, or an efficient classical or quantum simulability. Other more
specific versions of the thermal area law in the literature may have more potential in this regard.
It can be shown for a wide range of settings for different measures of correlations, such as the
entanglement negativity [61], and Renyi generalizations of the mutual information [19], which
follow from the locality estimates in Sec. III B.

Let us finish by noting that the temperature dependence of Eq. (62) can be improved to O(3%/?)
[37]. This can be proven with a variety of techniques, including those of Sec. III B and Sec. IIIC,
as well as methods originated in the study of ground states [54]. This dependence is not far from
optimal, since there exists a 1D model for which the scaling of the MI is at least O(5'/%) at low
temperatures [62].

This idea also suggests that the scaling of the mutual information with /3 in the low temperature
regime is related to the computational complexity of the ground space of the models. However,
many important physical models have a very different temperature dependence, such as log(5+1)
[63, 64]. Classical systems, on the other hand, have an upper bound that is independent of the
temperature, as I(A : B)pg‘B < |0aB|logd [60].

B. Decay of long-range correlations

An important statement about thermal states is that often their spatially separated parts are
very weakly correlated. Let C, D be regions such that their distance is dist(C, D) (see Fig. 2). We
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dist(C,D)

C | - o D

Figure 2: Regions C, D in the lattice are separated by a distance dist(C, D). The mutual
information between these two regions typically decays exponentially with their distance.

focus on certain measure of correlations evaluated at the marginals on these regions Tr\ (cpy[pg] =
pgD . For instance, taking the mutual information, we expect that in general

I(C: D)pgD < f(dist(C, D)), (64)

where f is some rapidly decaying function. In fact, it is most often the case that (1) < K|9¢||dple~"/¢,
where K > 0 is some constant, d¢,p is the size of the boundary of each region, and ¢ is the ther-
mal correlation length that depends on the temperature and other parameters, but not on [ or the
system’s size. This can be proven in the two following scenarios:

¢ For any k-local interaction graph above a threshold temperature 3 < 5*, where 5* depends
on parameters of the Hamiltonian (but not on its size) . This has been proven through the
cluster expansion technique outlined in Sec. III A [37, 65, 66].

¢ For 1D systems at all temperatures [67]. This has been proven using the locality estimates
from III B, and in particular the properties of the operator £ 4 in Eq. 36.

The proofs are slightly involved and beyond the scope of these notes, so we refer the reader to the
original references.

A more commonly stated but weaker condition is the decay of the connected two-point corre-
lators. This usually takes the form

|Tr[psMc ® Np| — Tr[pgMc|Tr[ps Np]|

< K|0c||0p|e”dsUEDI/E, (65)
[[Mc||||Mpl|

where here M¢ and Np have support on regions C, D, respectively. This follows simply from
the decay of the mutual information and Pinsker’s inequality applied to the marginal on regions
C,D.

This general property of correlation decay has been shown, at least in some cases, to be equiva-
lent to the analiticity of the partition function [44], although the close connection between the two
is better understood classically [68] . Both these properties in turn are related to the absence of
phase thermal phase transitions, which implies no long-range order. At those phase transitions,
the correlation function diverges and the partition function becomes non-analytic. Since there
are known phase transitions at finite temperature (e.g. 2D classical Ising model), the exponential
decay does not hold for all thermal states at all temperatures.
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B
)
A

Figure 3: In this configuration, the region B shields A from C, such that the minimum distance
between A and C'is given by the shortest path from A to C' through B. The CMI I(A : C|B)
decays exponentially with that distance.

The decay of correlations is an important fact. It shows that the different parts of the system
behave almost completely independently. A state with this property should then share many
large-scale features with an uncorrelated gas, in which the particles are not interacting at all. As
such, this property has as a wealth of related physical consequences. For instance, it is associ-
ated with basic statistical physics facts covered in Sec. VI, in particular the validity of the central
limit theorem and related results on concentration properties of thermal states [69, 70] and the
phenomenon of equivalence of ensembles [69, 71, 72]. It also features in the proof of local indistin-
guishabiliy in Sec. VA1.

C. Arefined correlation decay: Conditional mutual information

In our discussion of the thermal area law in Sec. IV A, we mentioned that the bound by itself
does not quite imply that the correlations in a system are localized, in the sense that a particu-
lar subsystem is only appreciably correlated with its vicinity. There is, however, a significantly
stronger statement about correlations that does imply it in a clear way.

This is the property of being an approximate quantum Markov state [73], which is defined in
terms of the decay of the CMI in Eq. (13). For this property, we need to consider three regions
A, B,C such that B shields A from C. A simple example of this is given in Fig. 3, with an
illustration of the 1D case in Fig. 4 .

Since this quantifies how many of the correlations between A and C are not mediated through
B, we thus expect that it becomes small as the size of B grows, and A, C' are further apart. This is
perhaps the strongest sense in which correlations can be localized. For instance, the decay of the
mutual information at long distances already follows from the statement from [74], by choosing
B = @ to be the empty set, so that I(A : C|B) = I(A : C) . The following two results are known

¢ In one dimension, by choosing A, B, C' to be adjacent regions (see Fig. 4), [42] shows that

I(A: C|B),, < c1|Ble=2V1Bl, (66)
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Figure 4: In this chain, the middle region B shields A from C, and their distance is related to the
size of B.

The key technique to show this is the quantum belief propagation from Sec. III C, but the
locality bounds from Sec. III B are also sufficient.

¢ In larger dimensions, and at high temperatures [74] 5 < 3%, (see Fig. 3)

—ko xdist(A,C)
B ) (67)

B
This is shown by using the connected cluster expansion in Sec. III A, applied to the CMI
instead of the log-partition function.

I(A:C|B),, < kimin{|0A], |0C|} <

For 1D, the converse is also true: any state with a sufficiently fast decaying CMI approximates the
thermal state of some local Hamiltonian [42]. Also in 1D it is expected that the decay is e (5] as
opposed to Eq. (66), which may be important for certain applications [42, 43, 75].

The significance of a fast decay of the CMI is highlighted by some further quantum information
tools, in particular, the idea of the Petz map [76, 77]. An important result in this regard states that,
given a tripartite state p = pABC  there exists a CPTP map N (-)p—pc (that is, acting on B, and
with output on BC) such that [78, 79]

I(A:C|B), = 2||p*"° = N (p*") el (68)

The map N usually goes under the name of recovery map. See [80] for an overview of this topic
and the proof techniques involved.

When applied to thermal states, the fast decay of the CMI thus guarantees that the state on
A, B, C can be reconstructed from p4p by acting locally on B (and importantly, not on A), such
that 7y ® Rp_pc(p??) ~ pABC, with Rp_, o some CP map taking only B as input. This gives
a way of sequentially preparing the whole thermal state from its smaller components, which can
potentially be used e.g. for quantum algorithms (see Sec. VII).

The results described here can be seen as the quantum analogues of a much stronger statement
that holds for classical probability distributions: the Hammersley-Clifford theorem [81]. This says
that a classical Gibbs state of a local Hamiltonian with interaction graph A is also a so-called
Markov random field defined in terms of the graph A. This means that for classical Hamiltonians,
the CMI as defined here is always zero. In Sec. VIII we will see that a similar result also holds for
commuting quantum Hamiltonians.

V. LOCALITY OF TEMPERATURE

In the previous section we focused the correlations between different parts. Now, we move
the spotlight to features of individual subsystems. That is, if we divide the system into A and its
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compliment \ A4, what does Tr\ 4[ps] look like? In the rest of the section we drop the subscript /3
for simplicity of notation.

We can illustrate the situation with the trivial case: if the particles are non-interacting, it holds
that the marginal on A is the thermal state of H4 which is the Hamiltonian that acts only on
subsystem A. That is

e BHA

ZaA

Pt =Tryalp] = (69)
However, this only holds because the sites are independent. The question is: how does Eq. (69)
change when we introduce local (and potentially strong) interactions? Can we identify the state
of a subsystem with some thermal state? How different is it from %? This general question
sometimes goes under the name of locality of temperature [65].

There are (to the author’s knowledge) two different but related answers to this: the idea of local
indistinguishability and also the notion of Hamiltonian of mean force. We now explain both of them,
elaborate on their significance, and also give a proof of the simplest instance of the first (in 1D).
These results largely simplify the study of local properties of thermal states, in that they show
how local properties are largely independent of the bulk and can be calculated just by computing
a small subsystem [65, 82].

A. Local indistinguishability

Given the discussion in the previous section on the decay of correlations, we expect that the
state of a local subsystem does not depend much on the parts that are far away enough from it. A
possible way to phrase this is that the local marginal p4 is indistinguishable from the marginal of
a much smaller thermal state, with a Hamiltonian that acts only in the vicinity of A. We now make
this intuition precise. Let us refer to the partition in Fig. 3 or Fig. 4, and write the Hamiltonian
with the following terms:

H=Hy+Husp+ Hp+ Hpc + He. (70)
We now have the full thermal state p, as well as a thermal state supported on A, B defined as

—B(Ha+Hp+Hap)

e

p’ = —F ! (71)
AB

that is, without the terms in H that have support in C' (note that C' may comprise most of
the system). One can also think of this as the marginal of the thermal state p'® @ p§ =
e BHap+HC) /7, 1 7 in which we have removed the interactions Hpc between AB and C'. Notice
that pi'P # pAP due to the presence of Hpc. This is, however, just a small local term.

The main idea is that if B is large enough, these two states are almost indistinguishable on A.
Let us assume that the connected correlations from Eq. (65) decay with function f(dist(C, D)).
Then, the following upper bound holds for some constant K > 0 [43]

_ cdist(4,0)
ITepelp] — Tralpy Pl < K|ddc| <f (dist(A4,C)) +e s ) : (72)

The first term in the RHS comes from the decay of correlations assumption. The second comes
from using the QBP technique in Sec. IIIC. The exponential decay of this quantity thus holds
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Figure 5: Choice of regions for the proof in Sec. V A1, and depiction of the distance / on which
the operator EL, acts within B.

whenever both the correlations decay fast enough, and Lieb-Robinson bounds hold. An alterna-
tive proof for high temperatures using the cluster expansion can also be found in [65].

A straightforward consequence of this is that we do not need to know the whole state to com-
pute local quantities. If we care about some kind of local order parameter, or want to compute
currents or else between some part and its surroundings, we can calculate them without having
to diagonalize a huge matrix of size exp(/N), but rather just focus on a much smaller region. This
has various implications for the construction of classical and quantum algorithms, as we describe
in Sec. VIL

1. Proofin 1D

We now show the full proof of this result in the case of one dimension. The more general
one, however, is essentially the same and can be found in [43]. It uses previously mentioned
results, and shares some steps and ideas that appear in other perhaps more fundamental questions
including, for instance, the proof of the absence of phase transitions in 1D [33, 44] or of decay of
correlations [33, 67]. It will also be a key ingredient in the algorithm of Sec. VII A. We believe
these reasons make it of pedagogical interest.

We focus on the restricted setting of a chain, that we divide into three parts A, B, C, such that
B is in the middle and A is a small subsystem at the end of the chain, as in Fig. 5. The aim is a
small upper bound on

| Trpelp] — Tepleg Bl = (R ITe[Na(p — pi'Z @ p§)]I, (73)

where N4 has support on A only, and the equality comes from the definition of the 1-norm. Now,
let us define the following two operators

. Egc — BHLHHp+Hpo) o ~BHE+HE) where HL and HlC are the terms of Hg and H that are
a distance at least / from the boundary terms Hpc.

The second one El is the same as Epc but restricting the terms that appear in the exponents to
be in the vicinity of Hpc. The parameter [ is free, so we can choose to our convenience. We refer
now to the result from [33] in Eq. 40 and 41, from which it follows that

[|[Epc|| < Ch (74)
! g
Epc—E < Cyr—rr 7
H BC BC”—CQ(Z+1)' (5)
That is, the operator Epc has bounded norm and, since we can approximate it by E% with some
[ < dist(A, C), its support on region A is super-exponentially suppressed in [ (due to the factorial,
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which always dominates over ¢'). In what follows, we choose I = | B|/2. Notice that by definition

AB C _ Z E
Po O PG5 = Zipzc PEBC
Let us define N} to be the operator that optimizes the RHS of Eq. (73). With the triangle
inequality we can write

* * Z *
ITe[NA(p — pi? @ p§)]| < [Te[NA(p — mpEﬁec)] + | Tt [Ni(—pE5c — 52 @ p§)]

ZABZC

(76)

Let us now upper-bound these two terms independently. The second can be bounded with
Eq. (75) and Holder’s inequality applied twice.

« 4 . Z
Tr[N} ZnnZe pEse — 6P @ p§)]| = TT[NAKZCP(E%C — Epc)] (77)
A
< N* EL. — E 78
_ZABZC” Allllellh]|Epe — Epcl| (78)
g+
(79)

T ZapZc % 02(1 +l)'

Given Eq. (51), max{ ZA§ZC , %} < efllHsell which is a constant that only depends on 3, k, J.
Thus, this second term is super-exponentially suppressed in |B|.
For the first term, we require the decay of correlations property Eq. (65) (which, as explained

above, always holds in 1D). Since [ = |B|/2,

_1B] _1B]
T[NApElc] — THINipTelpEc]| < Ke % || Bl < 2KCie 2 | (80)

where for the last inequality we used ||E || < ||Egc|| + ||Ese — Ecl| < 201, which holds for
sufficiently large I. We can now write

|B]|
+2KCe = (81)

<

* Z *
Tr[N4p] — mTT[NAP]Tr[PEfBC]

. Z
Tr[N,(p — mP)EfBC]

Z _1B|
< (1 - Tr[pEgC]> +2KChe” 2, (82)
ZapZc
where we used the triangle inequality in the first line, and Holder’s inequality Tr[ N} p] < ||N}|| <
1 to get to the second. Finally, we can use Eq. (75) again after another application of Holder’s

inequality

1+l
[TelpEc] — TrlpEcll < |1Esc — Bpell < Cog sy (83)
and since Tr[pEpc| = ZAleC < ePllHEcll we obtain
Z gt _1B
Tr[N4(p — =———pE! < CpePllBell 4 L o e 84
I'[ A(p ZABZCp BC)] = Gge (1+l)' + 1€ ( )

This finishes the proof. Putting everything together, we see that we have upper-bounded our
target quantity in Eq. (73) by a small number related to the error term in the decay of correlations
and Araki’s result. Without writing the constants explicitly, and just on the leading exponential
error, the final result is stated as

I Teselp] — Tea[pgF]| < e BD, (35)
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where Q(z) is defined in Sec. II D.

For simplicity, we have only dealt with the case of a 1D chain, where A is at the end of it. To
generalize the proof, one just needs to define an analogous partition ABC' in higher dimensions
(see Fig. 3 for 2D) and then remove all the different interaction terms from Hpc one by one. Here,
we have done it with the operator Epc, but this can also be done with the (suitably defined) QBP
operator O 4 from Sec. III C, and the result Eq. (72) is basically unchanged.

B. Hamiltonian of mean force

We have seen that the marginal on A is close to that of a smaller thermal state of the same
Hamiltonian. Inspired by the non-interacting case, we can also think of a different potential fea-
ture of p4: is it the thermal state of some Hamiltonian on A, different from H 4? This is obviously
the case, since we can always define

Hy = 5_1logTr\A[e_6H]. (86)

This is the so-called Hamiltonian of mean force [83]. The relevant non-trivial question is: how
does this Hamiltonian compare to the “bare” Hamiltonian H 4, which disregards the interactions
of A with the rest of the system? Also, is the resulting H 4 local in some way? That is, we would
like to understand the norm and locality of the operator ® 4 = Hy— Ha.

This turns out to be a difficult problem, which is related to the quantum Markov property
and the decay of the conditional mutual information from Sec. IV C. We now briefly describe
a known result for high temperatures from [74], whose proof involves involves the connected
cluster expansion applied to Eq. (86).

Since the interactions are local, it makes sense that, if the size of A is much larger than the
number of nearest neightbours &, most of the weight of ® 4 is localized around its boundary with
the rest of the system, of size |0 A|. The precise question is: can we approximate ® 4 with another
operator ®, that only has support on sites a distance / away from the boundary? Theorem 2 in
[74] shows that, for any temperature 5 above a threshold one 5* > 0, one can define a @lA such
that

*\l/k
ool < 5 o ®)
S

That is, ® 4 can be exponentially well approximated with an operator localized around the bound-
ary. See Fig. 6 for an illustration.

In many of the previously discussed results, such as the decay of correlations, we saw that they
hold either in one dimension or at high temperatures. A similar result is expected to hold in 1D,
but this is a so far open problem. See [84] for a recent overview on this topic for a different set of
models, and its implications.

VI. STATISTICAL PROPERTIES

We now explain and prove some important statisical features of thermal states. These are
central statements of the field of statistical physics and characterize the ensembles involved: the
thermal (or canonical) and the microcanonical, as well as the grand canonical or others, when
relevant. In contrast to the results of other sections, all those shown here (as well as their proofs)
apply equally to classical models.
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dA

Figure 6: Illustration of the regions of the Hamiltonian of mean force. The correction term ® 4 is
exponentially well approximated by (I>f4, which has support on the region 9 A only.

A. Jaynes’ maximum entropy principle

A well-known property that uniquely characterizes thermal states is the so-called maximum
entropy principle. This specifies that of all the states with a given energy (or the expectation value
of some other quantity) they are the state of largest possible entropy. To see this, let us choose
p # pp such that Tr[pH] = Tr[pgH]. Then,

S(ps) — S(p) = Tr[plog p] + BTr[psH] +log Z (88)
= Tr[plog p| + BTr[pH] + log Z (89)

= Tr[plog p] — Tr[plog pg] (90)

= D(pllpg) > 0. (91)

Notice that these steps are unchanged if instead of considering just the Hamiltonian H we take
into account a higher number of charges (); with their chemical potentials x;, and the state
exp(—>_; uiQ;5)/Trlexp(— 32, 1;Q;)]-

This simple principle is often interpreted as follows: if there is some state of which we only
have partial information (in this case, its average energy), it is very often a good guess to assume
it is the thermal state of that energy. Since it is the state with maximum entropy (which we can
associate with “maximum ignorance”), its choice makes the fewest assumptions about the struc-
ture of the actual state at hand. This idea is often applied in fields like statistical inference and
optimization problems in which one might only, including certain quantum algorithms [4-7]. It
can also be seen as a variational definition that uniquely singles out thermal states. This allows

for the application of this principle in different types of algorithms for finding or characterizing
them [12, 85].
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B. Measurement statistics and concentration bounds

In Sec. IV we saw how in many instances of thermal states, the different subsystems do not
necessarily have strong correlations. This has a number of consequences, and we now explore
an important one that shows that their large-scale statistical properties resemble those of non-
interacting/statistically independent systems. These are concentration bounds, akin to the (perhaps
more widely known) central limit theorem. The setting is as follows: let us consider a k-local
observable A =}, A;, such that A; has support on at most k sites. The best example is certainly

the energy, but also other properties like magnetization ) _ ajZ .

The expectation value of any such observable can be thought of as a macroscopic property of
the system (such as the average magnetization of the material). While we expect that there will
be thermal fluctuations around that average value, our intuition from thermodynamics tells us
that any such large-scale property should have a definite value, almost free of fluctuations. This
is due to one of the most basic ideas from probability theory: the measurement statistics of sums
of independent random variables greatly concentrate around the average. The main conclusion
is that if we measure an observable A on a thermal state, the outcome will be very close to the
average (A)z with overwhelmingly large probability. That is, the distribution

Pas(e) = Trlpd(e — A)] (92)

which is the probability of obtaining outcome x when measuring A, is highly peaked around the
average (A)g = Tr[pgA]. This has important implications for the validity of thermodynamic de-
scriptions of these systems, in that averaged macroscopic quantities characterize the large system
of many particles whose properties we do not know with any certainty.

In the theory of probability, there are various types of concentration bounds. Their proofs most
often involve constraining the characteristic function (e*4)3, where A may be real or imaginary.
An important one that we now describe is the Chernoff-Hoeffding inequality. In this case it reads

2
Paglo = (A3 > 9) < 2ex (=17, )

where A = 3 ; |[4;]]. This then says that if 62 > cA, the probability of measuring A to be away
from (A) 3 by at least 0 is exceedingly small. The most common proof technique is via a bound on
the characteristic function of the form

log<eT(A_<A>ﬁ)>5 < er?A, (94)

for some constant c. From this it follows that

Pag(z —(A)g > 6) = / Tr[pd(z — A)] = / Tr[pe™ (A {8) e~ T(A={A8) 5 (1 — A)]
m—<A>g>5 x—(A>B>5
(95)
< eiTéTr[pgeT(A%A)B)] < exp (—7'5 + CT2A) . (96)

One can follow the same steps for the range (A)s — « > 6. Then, choosing 7 = §/(2cA) yields Eq.
(93).

This result can be very easily shown for independent random variables or for independent
spins. For interacting spins, Eq. (94) was shown in [24] with the cluster expansion technique from
Sec. IIl A, which holds for all dimensions and all temperatures 3 < *. The main result from [70]
proves a slightly weaker version of Eq. (93) with a different technique, only assuming the decay
of correlations from Sec. IV B.
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A related important type of concentration bound is given by large deviation theory. This is the
branch of probability theory concerned with understanding the likelihood of very rare events, and
has a long history as one of the most important mathematical frameworks for studying statistical
physics. For instance it gives a way of describing the equilibrium properties of large ensembles (as
is also the case here), or for predicting the long-time behaviour of non-equilibrium processes such
as Brownian motion. See [86] for an excellent overview of the main results and their consequences
for classical systems.

The basic idea is that given any set of measurement outcomes A, we would like to identify
whether there always exists a rate function I 4 such that

. 10gPA75(1’ €A -
M N =La. ©7)

If this is the case, the dominant behaviour of P4 g(z € A) is essentially a decaying exponential
Pyg(z e A) ~ e~ Nlato(N) unless I 4 = 0. This means that, in the thermodynamic limit, the mea-
surement statistics of A are extremely peaked around the points where the rate function vanishes
I,4=0.

This is slightly stronger than the Chernoff-Hoeffding inequality, in that it can in principle give
an exact expression of the probability distribution for large enough N. However, we do not al-
ways know how large an N is “enough”, and for finite NV, it often does not give an expression as
explicit as Eq. (93).

Again, the proof strategy most often involves the characteristic function. In particular, the
Gartner-Ellis theorem states that a sufficient condition is that the function

1 TA

exists and is differentiable. This has been shown using the cluster expansion in [87] for 1-local
observables, and upper bounds on the rate for general observables have been shown using the
locality estimates from Sec. III B in [50, 88]. The full large deviation principle was shown in 1D in
[89]. An alternative proof can be found in [90].

There are various other interesting statements coming from probability theory that apply in
this type of setting. Another interesting one is the Berry-Esseen theorem [69], which can be
thought of as a refinement of the central limit theorem for finite sample size (which in this case
is the system size V). The proof, which only assumes the decay of correlation property, can be
found in [91].

C. Equivalence of ensembles

We now prove an important statement in the study of statistical physics, which goes back all
the way to Boltzmann and Gibbs. In large systems, the average macroscopic properties of both
the thermal or canonical state, and of the microcanonical ensemble, are essentially the same. This
means that both canonical and ergodic averages coincide in the thermodynamic limit, and shows
that the particular ensemble used for calculations does not matter much.

There are various similar statements in the literature [24, 69, 71, 72, 92-94], but the proof that
we now show follows that of [24, 71, 72] and relies on the concentration results from the previous
section. Let us define the extensive observable A = 3. A; (such as e.g. the total magnetization

Z;V ajZ ) with thermal/canonical average (A)g which for simplicity we will set to (4)3 = 0, while
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the microcanonical average is

1
<A>E,A = m Z <Ej|A|Ej>> (99)
E;e(E-AE)

where E is the energy and A the width of the microcanonical window (which might depend
on N), and |E}) is the energy eigenstate of energy F;. Dy(F,A) is a normalization constant
counting the number of eigenstates within the window. This motivates the following probability
distribution

1
Ppa(x) = Dn(E. D) E]E(;A’E) 6(z — (E;]A[E))), (100)

which gives the probability of measuring + = (F;|A|E;) when sampling eigenstates from the
microcanonical ensemble.

First, we need to determine what is the energy that corresponds to temperature 3 and thus
characterizes the microcanonical ensemble. Given the temperature /3, the microcanonical energy
Ey is such that

Ey(A, B) = argmax Dy (E, A)e PE. (101)

Assuming that the width is significantly different than the energy scales of the system, A < (H)z
(which is most typically the case), this roughly implies that Ej is the energy of the microstates
{|E;)} that have the dominant weight in the canonical ensemble (when the density of states is
weighted by the factor e~PE). We have written the dependence on 3, A explicitly in Eq. (101), but
let us now drop them for simplicity of notation.

We start by upper bounding the m-th (even) moment of Py a(x)

oo
1
x™P, T) =———— E E;|A|EH™ 102

1
Sm > UEIA™ED] = (A™) By A, (103)
NAZ0 2 Boe(Bo—A Eo)

where we we used the convexity of " with m even. The bound can easily be expressed in terms
of a canonical average as, since A™ is positive,

1 eBEO
< >E07A DN(EO,A) Z < ]‘ ‘ .7> — DN(EO,A) Z € J< ]’ ’ ]>
E;je(Eo—A,Eo) E;€(Eo—A,Eo)

(104)
eBEo Z eBEo
< — “PENEj|A™ E)) = (A™)5. 1
= Dn(Eo, A) Z e "H(E;|A™ES) DN(EO,A)< )8 (105)
E;e(—00,00)
The factor % can now be upper bounded using the definition of the microcanonical

ensemble and the concentration bound. Let us define the following modified partition function
Z =Y\, py<s¢ P I we also set § = KN'/? with K = O (1) it follows from Eq. (93) that

NI N\

2
=1—Pyp(lz— (H)g| >26) =1 —2exp (—42]]\,) >1/2. (106)
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Now divide the energy range in the sum in equal parts of width A* = min{A, 37!}, such that the
largest energy of each interval is E,, so that £, ;1 = E, + A* and

~ * * 25
7 < > Dn(E, AN)e A < P8 (A* + 2) max Dy (E,, A%)e B (107)
|E,, Eoe\gmm
N1/2
K' Dy (Ep, A)e™ "o, (108)

A*

with K’ = O(1), where the last inequality follows from the fact that Dy (Ep, A) is monotonic on

A. We thus have [* 2™ Pg a(z) < K’ NAIZQ (A™) 5. To finish this part of the proof we thus bound
(A™) 5. It was shown in [24, 72] that the concentration inequality Eq. (93) implies that

(A™)5 < (4cA)™* (%)v (109)

For completeness, we reproduce the proof in Appendix A.
We are now in a position to bound the tail of Pg a(x) as

x 1 x
Pga(r > x0) = / Pga(z)de < xm/ z" Py A() (110)
y) 0 —00
NY2 [4cA m/2 m NY2 [ 4mcA m/2
<K' — — ' < K’ . 111
() S ()

Thus, choosing m = | 4(1% 1]. and repeating for z < —x, leads to (let us now bring back the

average (A) 3 explicitly, previously taken to be zero)

,N1/2 x(Z)
Ppa(lz = (Al = 20) < 2eK'——exp | =277 ) - (112)

We are almost done. We now bound the difference between canonical and microcanonical as

ESCIE> Gl [ Poste— (e = (apds (13
< x4+ 2APg A(lx — (A)s| > 20), (114)

and so choosing x¢ = V' 8ceAlog(4AeK’ NAIIQ ), the fact that A oc N yields, for some constant K”,

K" log NO/2

A*
——— (115)

HA s — ()] <
so that the difference vanishes in the thermodynamic limit. Notice that A* = min{A, 371}, so that
in principle even rather low temperatures and very small (up to exponentially small) microcanon-
ical windows are allowed. This is the final result. It states that average properties are essentially
the same, provided the condition Eq. (101) holds, and that the width A is not too small. The
fact that it can be up to exponentially small in system size is rather strong, and related to weak
statements of the eigenstate thermalization hypothesis (see [72, 95]).
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VII. ALGORITHMS AND COMPLEXITY OF THERMAL STATES

When addressing specific problems in many-body physics, we would most often like to un-
derstand whether they are fundamentally complex or not, in the precise sense established by
theoretical computer science. This can typically done in two complementary ways:

¢ By showing that there exists an algorithm with a provable performance and run-time. Ad-
ditionally, it is interesting if the algorithm can be explicitly constructed, and implemented
in practice.

* By establishing that a problem, or a set of them, belong to or are complete or hard for a
certain complexity class.

This applies to both classical and quantum computation, and their respective complexity classes.

Problems related to quantum thermal states can also be studied under this light. The relevant
ones include most notably include the estimation of the partition function, or the generation of
either approximations to the thermal states (in quantum computers) or their classical representa-
tions (in classical computers).

As an illustrative example of what can be proven, we start with a simple explicit algorithm
that approximates the quantum partition functions in 1D in polynomial time [96]. We then briefly
review some other important known results about the hardness of approximating partition func-
tions. The rest of the section includes an explanation of the current best tensor network results,
which are provably efficient in a wide range of situations, and a short review of quantum algo-
rithms for preparing thermal states.

A. An efficient classical algorithm for the 1D partition function

Using some of the results from the previous sections, we now show that, assuming that 8 =
O(1), we can efficiently approximate the partition function in 1D. This is done with an algorithm
with runtime poly(N,e~!) that outputs Z’/, where

|log Z' —log Z| < O (e). (116)

This section follows the result and proof strategy from [96], with some minor modifications.

In one dimension, let us consider the partial Hamiltonian H; = 23;11 hi, which includes the
first j — 1 interaction terms as counted from the left, starting from the leftmost h;. Then, define
the partial partition function

Z; = Tr[e PHM)) = Te[O), e PHIO] | = Tr[e 1) 4y, (117)

where Oy, is the quantum belief propagation from Sec. IlI C and A; = O,T” Op,. Now, rewriting Eq.
(117) notice the simple iterative relation

Zi = Zi 1 Tr[p;i A, (118)
where p; = e AH; /Z;—1. Thus we can write

5]
Z = d" [ [ Te[piAil, (119)
=1
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where Z = Zp and dN = Zy. The key now is to use results from Sec. Il C to approximate A;, and
local indistinguishability from Sec. V A 1. Let Al = (Oﬁli)TOﬁli, so that

|14; — Al = ||4; — O} O}, + O} 0}, — Al (120)
< 2/|Op,|||On; — O}, || (121)

_ 1
< OB 1renl (122)

where in the first line we used the triangle inequality and in the second we used both Eq. (48)
and (50). Now, let us label by A;« to be the rightmost region of the chain of length [* in which
H;,1 has support. Choose I* € R so that A\ has support in the right side of Ay« and define
pgl*) — eiﬁHAl* /TreiﬁHAl* , Where HAZ* = Zsupp(hz)EAl* h‘l‘
The expectation value can be approximated as
Trlpi Ay] — Te[p{™"") A}]

i

< [Tlpidi] - Telp,AY]

+ )Tr[,oiAé*] — Te[p®) Al (123)

<1 Ai = AV ||+ [JAY || |[Troa,. (o] = Tragoag 0] (124)

This follows from the triangle inequality. The partial trace \A;- is over the support of p; excluding
Aj+. Eq. (124) now has a form that we can upper bound. Since || AY|| < [|4;— AL ||+ A;]] < OB,
we can use Eq. (122) to bound the first term, and Eq. (85) with |B| = [* to bound the second. With
these, we conclude that there exists constants ¢, c; depending on all the constants involved (i.e.
B,h,J, k,c, v)such that

‘Tr[piAi] — Te[p{#) Al]| < cremet”. (125)

The key feature of Tr[pEQl*)Aé*] is that it is an expectation value of an operator whose form we

known explicitly, as per Eq. (49), evaluated in a thermal state of size 2/*. This can be computed
exactly (or rather, with a subleading error) in a time exp (O(1*)). Let us now choose a precision
/N in Eq. (125), so that I* = O (log N/e™!). This way, we have
|E| L) |E| .
/ = N N * = _— =

Z'=d il_[lTr[pZ Al ZZ-Hl (1 + NTr[mAd) Z(140/(e)). (126)
The last equation comes from the fact that N oc |E| and that all eigenvalues of A; are O(1), as
per the definition in Eq. (47). The algorithm thus consists of exactly calculating the numbers
{Tr [pEQl*)Ai*]} exactly, and then multiplying them, so that

llog Z' —log Z| < O (e). (127)

Since there are |E| o< N terms in Z’, and each takes time poly(N x 1), the final runtime is
poly(N,e71), as desired.

B. Hardness of approximating partition functions

In the previous section we have seen how the partition function can be approximated in 1D
in the sense of Eq. (116) as long as the temperature is 5 = O(1). Moreover, through the cluster
expansion we briefly explained in Sec. III A how it can be approximated for any local model as
long as 5 < (3*, where 3* is some fixed constant.
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On the other hand, in the limit of 5 — oo, the log-partition function equals the energy of the
ground state. For classical models, approximating this to a certain precision is an NP-complete
problem. For local quantum Hamiltonians, it is QMA hard. This means that there should be no
efficient classical or quantum algorithm to approximate log-partition functions for low enough
temperatures, both for classical and quantum models. In fact, it is known that the classical prob-
lem is only slightly harder than NP [97] [98], and that it is at least # P hard if complex interactions
are allowed [99]. For the quantum case, the exact complexity class to which this belongs or is
complete for is not yet clear (see [100] for more details and results).

There is, however, the expectation that for certain classes of interesting models we can still
compute the partition function efficiently, even with classical algorithms and at very low temper-
atures. Beyond the cluster expansion, a prominent technique are Quantum Monte Carlo methods,
which are however restricted to Hamiltonians without he so-called “sign problem” (often referred
to as stoquastic [101]). These allow for a sampling procedure that approximates the log-partition
function. In some restricted cases this also comes with guarantees of fast convergence [102-104].

Other results on particular classes of models recently studied are e.g. those of [100] a class of
dense Hamiltionians was shown to have an efficient algorithm, while in [29] a class of quantum
models close to classical ones was shown to have a convergent cluster expansion even at low tem-
peratures. There also exists quantum algorithms for approximating general partition functions
[100, 105] in the sense of Eq. (116), with exponential run-time ~ +/d~ /Z, as well as other related
algorithms with a slightly weaker notion of approximation [106, 107].

Another relevant angle of this problem, explored in [44] and a number of works in the clas-
sical literature, is the direct connection of the (classical) hardness of approximating the partition
function with the physics of phase transitions. The idea is based on an important result for the
classical Ising model [68], and can be summarized as: a physical phase transition in the system
may come together with a computational phase transition in which approximating log Z becomes
fundamentally harder. It has been shown that in quite a general setting [44], the analiticity of the
log-partition functione implies the existence of an efficient algorithm, akin to what was explained
in Sec. III A. There are important open questions, however. For instance we may expect that away
from a phase transition, whenever the correlations decay exponentially, the partition function will
be analytic and can be approximated efficiently.

C. Tensor network methods

Tensor network (TN) techniques are perhaps the most successful way of classically computing
physical properties of quantum systems in 1D, and sometimes 2D. This success not only comes
from the amount of numerical results obtained with them through the years, but also from the fact
that we have theoretical guarantees for the performance of many TN algorithms. This includes
most notably the regime of low energy physics [46, 58, 108-110] and, as we now review, that of
finite temperature too. A detailed explanation of TN is beyond the scope of these notes, so we
encourage the reader to first check the numerous introductory reviews on the subject e.g. [111-
114].

The aim is to obtain a TN representation M, of the object e ## such that ||e=# — Mp||; < eZ,
which then allows us to compute all thermal expectation values up to error ¢ as per Eq. (5).
The index D labels the bond dimension which, roughly speaking, quantifies the complexity of
representing Mp. A TN of bond dimension D requires a memory o n x D? to be stored. In a
nutshell, the approximation operator Mp should be made out of a sum or low-depth product of
operators with smaller support i.e. of size at most o< log D. This is graphically described for 1D in
Fig. 7.
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Figure 7: Schematically, the way to prove that a 1D thermal state is a tensor network is by
decomposing it as a product of smaller operators. It then follows from standard methods that the
bond dimension of the tensor network representation is related to the size of those operators.

Let us first briefly cover the best currently known result for 1D chains [37], in which the ap-
proximation is with the so-called Matrix Product Operators (MPO) [115]. The algorithm from
the previous section gives us a hint of how this can be done: adding piece by piece from right
to left, aided by the results from Sec. IIIB. We thus have to decompose e # as a product of
smaller operators, in a way that the locality estimates results can be leveraged. To do this, first
define ¥; = efflie=PHi+1 We then have that e P = ¢~ [1;—1 ¥;. Each operator ¥; can then
be approximated by a localized operator \Ilé with support in a region of length [ as in Eq. (41),
exponentially well in I. There are oc N of those operators, and the error of each approximation
can be shown to contribute additively. Thus, choosing [ « log N/e gives the desired e-good ap-
proximation to e,

The bond dimension can be straightforwardly assumed to be D < Ol = poly(N,e~1). This is
already computationally efficient. However, as shown in [37], one can instead define an operator
\ilé in which the exponential functions are approximated by their Taylor series. In that case, we can
put forward results about the bond dimension required to represent polynomials of Hamiltonians

[54]. This leads to an improvement of the bond dimension to D < OV — exp ((7)(\ /log(N/ 5)))

This is sub-linear in system size, much more computationally efficient. This algorithm is in fact
not very far from some that have been implemented in practice [116].

In higher dimensions, the best-known method is a variation of the cluster expansion proposed
in [117]. There, the expansion is treated in a slightly different way, to approximate the exponential
e PH rather than the log-partition function as in Sec. III A. Instead of counting the number of
individual clusters of at most size m, one has to consider arbitrary products [ [,y hi = h(W) of
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terms h; from a multiset W of size ||, that can be divided into connected clusters. Let us label the
multisets W = {h;} in which the biggest cluster has size M to be C;. That this is consistent with
the cluster expansion can be seen from taking the exponential of Eq. (16) given the expression in
terms of clusters of the powers in Eq. (20).

The following result was proven in detail in [65]. It reads

_R)IWI (M
||e=PH — Z ( /f;) " hW)lh <Z (eNl(—ﬂb)(m - 1) ’ (128)

|
wWeCy ‘ ’

where b(3) < 1forall g < g* = O(1). In [118] the sum over clusters on the RHS of Eq. (128) was
shown to be a tensor network (in fact, a so-called PEPO) of bond dimension ¢?™). Thus, by set-
ting the RHS to be ¢, we achieve a TN approximation to e~## with bond dimension poly(V, e~ 1).
This only holds for inverse temperatures below *, but the result can be extended to arbitrary
temperatures simply by taking powers of the operator. This means the bond dimension grows

as D < exp <(9 (ﬁ log BTN» (see [118] for the details). This scheme has recently been numerically

implemented in practice [119].

These results show that there are in principle efficient TN representations for all dimensions
and all temperatures 5 = O(1). An important caveat is that in dimensions higher than one, a TN
representation is not enough to be able to extract numerical data efficiently. This is because the
contraction of TN can be a computationally demanding task by itself [120, 121]. Finally, let us note
that by using the local indistinguishability from Sec. V A (or even without it in 1D [122]) it can be
shown that a much smaller bond dimension is needed to simulate local properties [82] .

D. Quantum algorithms for preparing thermal states

One of the most promising applications of quantum computers is the generation of exotic
states of matter in complex many-body models. The expectation is that this should allows us to
discover a potentially wide variety of physics, and also serve as a subroutine in certain quantum
algorithms, such as those performing optimization tasks.

Because of this, a question that has been very much explored lately is that of how to pre-
pare thermal states of local Hamiltonians with a quantum computer. This could be either a fully
fledged fault-tolerant one or, by other means more suitable for the so-called NISQ (Noisy Inter-
mediate Scale Quantum) devices, such as variational ones. In the following we review some of
the currently existing ones, and also explain the ideas that highlighting the complexity of the
problem. We mostly focus on those that have some provable performance guarantees (regard-
less of whether they are efficient or not). There are many others we will not cover (such as e.g.
[123-125] and others), many of which often rely on some level of heuristic arguments. These may
nonetheless be more efficient in many physically relevant settings.

General considerations

We have very strong evidence pointing that preparing thermal states is, in its most general
setting, not an easy task. The results on QMA hardness of the local Hamiltonian problem [13]
show that there are vanishingly small temperatures (scaling quickly with system size) at which
the preparation of pg is QMA complete. That is, not even a quantum computer can do it efficiently
[126]. This is the case even for 1D systems [127].

There are also compelling reasons to believe that this will be the case even at slightly higher
temperatures: it has been conjectured that there exists local models for which all states below a



34

certain energy density cannot be efficiently prepared with a quantum computer [15]. The current
best results along these lines are [128, 129], which show that there exist Hamiltonians for which
the low energy thermal states (that is, with vanishingly small temperature) have a provably large
circuit complexity lower bound. This takes the form of alower bound in the number of elementary
gates required to generate it. Stronger results also hold if one restricts the models and circuits
to obey certain symmetries [130]. It is then no surprise that the most general algorithms with
a provable performance have a super polynomial (in fact, exponential) circuit complexity, even
already at 5 ~ O(1).

These points only imply that the most general algorithms will not be efficient. However, we
expect that large interesting classes of models and settings will be much easier. The locality of
the model, and some of its consequences from the previous sections, should simplify this task in
many important settings.

Algorithms based on purifications

These algorithms work for general Hamiltonians, and could potentially be run in a fully fault
tolerant quantum computer, capable of applying any quantum circuit without large errors. They
are based on constructing the following purification

1pg) = é S PR Bi) 4, (129)
[

where the second subsystem A is made of auxiliary particles such that, upon tracing out, yield
Trallps)(pgll = ps. The way to do this is by first preparing a state i) with |pg) as a component
such that

9= 3 108) + - (130)

The main idea is to start with a maximally entangled state between the target system and some
auxiliary qubits, and then find a scheme that implements a unitary that acts as U oc e #/2 + ....
This can be done efficiently, for instance, with the phase estimation algorithm [105, 131, 132] or
with more recent quantum simulation ideas, such as the technique based on sums of unitaries
[133] (which leads to a better error dependence in many cases of interest). To obtain |pg) with
high precision, one must then apply amplitude amplification of the state |¢). The gate complexity
of this, however, grows with \V. This growth can be up to \/d" /Z, which sets the leading (almost)
exponential gate cost of the algorithm. In one dimension, one can instead implement this same
algorithm connecting subsequent segments of the chain, which can reduce the gate complexity
to a polynomial ~ N9, Recent progress shows that the phase estimation and amplitude am-
plification steps in these schemes can instead be replaced by random circuits with post-selection
[134], making them more amenable to current technologies. For commuting Hamiltonians, a pu-
rification in the form of a tensor network state (a PEPS) can be very efficiently prepared through
an adiabatic algorithm [135]. See also the recent [136], which produces a purification of a thermal
state oc e#H1 starting from that of another Hamiltonian Hy, and is efficient when ||Hy — Hi || is
not too large.

Quantum Metropolis Sampling

Another class is based on the adaptation of the very well known classical Monte Carlo al-
gorithm of Metropolis sampling [137, 138]. This is based on a stochastic update of the energy
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eigenstates at each iteration, where the probability of accepting is related to the Gibbs weight,
eventually converging to the thermal distribution. The first quantum version was devised in
[139], which involved highly non-local updates that rendered it likely very inefficient. This prob-
lem was dealt with in [140], with a scheme based on the phase estimation algorithm to detect the
energy changes, plus random local circuits that constituted the stochastic updates. A later version
of this algorithm is [141], in which the stochastic updates are accepted or not according to a quan-
tum algorithm speeding up classical Markov processes [142]. A simpler algorithm, with a similar
performance, can also be found in [134]. In all these, the convergence to the thermal distribution
is guaranteed by the property of detailed balance. However, it is not clear theoretically under
what conditions do these converge fast (or slow) to that thermal distribution - it could be that the
runtime is exponential, even in reasonably simple instances. A fast runtime is only guaranteed
by proving a lower bound on the gap of the associated Markov chain, which is typically a rather
hard problem, even for classical Monte Carlo schemes. See [143] for recent progress along these
lines in models that obey the Eigenstate Thermalization Hypothesis [144, 145].

Variational algorithms

A currently very thoroughly studied class of mixed classical-quantum algorithms is based on
the variational principle. The rough idea is as follows. The quantum computer is given some
initial instructions through a number of parameters, and outputs a solution to a problem in the
form of a quantum state, that can then be evaluated with a “cost function”. A good cost function
is minimized at the exact solution, and its magnitude measures the distance to it. The classical
part of the algorithm is an optimizer that uses this data to variationally find the set of instructions
that minimize the cost function.

The potential advantage of this kind of method is that much of the hard computational work
is placed on the classical computer: it has to perform an optimization algorithm, such as gradient
descent. The quantum part only needs to execute a potentially small set of operations, such as
e.g. alternating dynamics of two Hamiltonians for different times, as in the well-known QAOA
algorithm [146]. The efficiency of the scheme thus relies on two crucial facts:

e Itis possible to efficiently approximate the cost function with the quantum computer.

¢ The classical optimizer converges quickly to the global minimum, and e.g. does not get
stuck in local minima or very flat regions.

Typically this kind of algorithm is aimed at finding ground states or low energy states of quantum
systems, in which case the cost function is simply the energy, which is an expectation value that
can in principle be evaluated easily. For thermal states, however, we need a different cost function.
This is given by the free energy at inverse temperature ( defined as F3(p) = STr[H p]—S(p), which,
as shown in Eq. (11), is minimized by pg.

An important difficulty is that, due to the logarithm, the free energy is not a linear function
of the state, and cannot be computed straightforwardly. This can be dealt with by devising a
quantum algorithm able to efficiently approximate the entropy. The most natural way to do this
is through a series expansion to approximate the entropy, as is done in [147]. A similar option is
to change the cost function altogether to an approximation whose minimum yields an approxi-
mation to pg, as in [148].

The second problem, of the efficiency of the classical optimizer, has to do with the smoothness
of the cost function and its sensitivity to small changes. The computational cost of computing
these gradients have been studied [147], but there are so far no rigorous theoretical guarantees of
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the cases in which such algorithm converges quickly. There is the possibility that one may often
encounter the problem of “barren plateaus” in the optimization, which may render it inefficient
[149]. However, it may well be that the structure put into the problem by the locality of the
Hamiltonian may often be enough to circumvent this issue [150].

Efficient algorithms from physical features

Perhaps the main caveat of most of the aforementioned algorithms is that they are constructed
for very general Hamiltonians. Thus, at least a priori, they do not make a very clear use of the
physical features that we expect could simplify the problem, such as locality or any one of its con-
sequences. It should be possible, however, to have provably more efficient algorithms in which
relevant physical properties appear.

This is the case for the algorithm in [43], whose efficiency depends on two such factors: the
speed of decay of CMI from Sec. IV C, and the error in the local indistinguishability from Sec. V A.
The algorithm uses iterations of the recovery map that appeared in Eq. (68), which are guaranteed
to yield a low error if the CMI decays quickly enough. The main idea is that one can construct
local decoupled parts of the thermal state independently, and then join them together to make
up the whole pg via subsequent applications of the recovery map. The local indistinguishability
guarantees that the local parts used in the recovery are also accurate parts of the whole thermal
state the algorithm constructs. The results on the exponential decay of correlations from Sec.
IV B and of exponential decay in CMI from Sec. IV C thus guarantee that there exists efficient
algorithms for 1D systems and for local models at a high enough temperature 5 < 3*. A potential
issue with this algorithm is that it requires the implementation of the recovery map, for which we
do not always have explicit expressions [80]. It is encouraging, however, that quantum algorithms
for one such recovery map, the Petz map, have appeared in the literature [151].

An alternative route along these lines is to find out under which conditions the dissipative
dynamics (that is, when the system is coupled weakly to some external bath) associated to a
Gibbs state converge quickly. Then, tools to engineer dissipative dynamics can be in principle
implemented in a quantum computer [152, 153]. The challenge is to find under which conditions
these dynamics have a fast convergence or mixing rate. There are some exceptions [143, 154], but
rigorous results along these lines are so far mostly limited to commuting Hamiltonians, as we
explain in Sec. VIII.

VIII. COMMUTING HAMILTONIANS

There is a much simpler and yet physically relevant class of Hamiltonians that merits pointing
them out specifically: those in which all the {h;} commute with each other. This includes many
interesting models for quantum many-body physics and quantum computation. Perhaps most
notably, it includes all stabilizer Hamiltonians, including the toric code and other widely studied
examples, as well as many other models describing various topological phases of matter.

Notice that these are not the same as classical Hamiltonians: even if we can diagonalize all the
h; simultaneously, the energy eigenbasis will in general be highly entangled. In contrast, classical
Hamiltonians have a product eigenbasis. At the same time, we have

e BUH=h:) _ o=BH oBhi _ Bhi/2—BH fhi/2 (131)

so the tools in Sec. III B and III C are unnecessary. This means that many of the results described
above take much simpler forms and easier proofs, as we now briefly explain.
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Let us divide the lattice into two complementary regions D, F, with boundary dpg, so that
H = Hp + Hp + Hy, with supp(Hy) € Opg. Notice that

Trgle PH] = e PHO T [eAHEHHD] (132)

Clearly Trp[e#(Hs+H1)] has support on the region D N dpx only. This means that the local indis-
tinguishability from V A holds with no error by choosing A = D, B = ENdpg, C = E\ B, so that
dist(A, C) is roughly the width of the boundary. A similar exact result applies to the Hamiltonian
of mean force. We now briefly show the proof, which is elementary and can be found in [155]. If
we define e #® = Trg[e PHE+HHD)] we see that

-1
5 log(Trgle PH]) = ol + Hp + @, (133)

where « is some constant, and @ is localized in D U 0pg and has bounded norm, as
Hp +Hg —hlope| < H < Hp+ Hg + h|0pE| (134)
implies that

¢~ PMOpE|~B(Hp+HE) < e PH < 6ﬂthE|e—/3(HD-i-HE)7 (135)

which upon tracing E out and multiplying by e##P, implies that ||®|| < 2h|0pg|.

It should also be no surprise then that the Markov property of Sec. IV C also holds exactly.
This means that if we define regions A, B, C such that A, C are shielded by region B, we have that
I(A : C|B) = 0[156, 157]. In fact, a converse statement holds (vanishing CMI implies the state
is a thermal state of a local Hamiltonian) when the interaction graph A is triangle-free [158]. As
mentioned in Sec. IV C, this is the quantum equivalent of the Hammersley-Clifford theorem [81].

All these exact results strongly suggest that algorithms such as those described in Sec. VII are
much more efficient in this setting. For instance, it is immediate from a repeated application of
Eq. (131) that the thermal states can be expressed exactly as tensor networks with constant bond
dimension D < ¢©®) . There also exists quantum algorithms for commuting Hamiltonians that are
significantly more efficient than the general ones in Sec. VIID [135]. Also, further concentration
inequalities akin to Eq. (93) have been shown specifically for commuting Hamiltonians [159].

Due to their additional simplicity, there are also a number of ideas that have so far only been
proven for these Hamiltonians. A noteworthy example are results on dissipative evolutions that
map any given initial state to the thermal state. These processes are essentially Markovian ther-
malizations described by Lindblad equations, which model the interaction of a large quantum
state with an external heat bath with which the coupling is weak, such that

d _

0 = L(p) = ~ilH, ] + ZajLapLL o {LaLl o}, (136)

2

where L, are the “jump” operators and « indexes the energy gaps of H. The interesting cases are
those for which pg is the unique fixed point, or the unique state such that £(p3) = 0. The best
known example are the Davies generators [160]. See e.g. [161, 162] for introductory references on
these equations and their derivation.

When the Hamiltonian is commuting, the individual operators L, can in fact be taken to be
local, and one can ask: what is the time it takes for such local dissipative evolution e**(p) to
approach the Gibbs state? In particular, how does this time depend on system size? This can be
tackled with ideas that previously appeared in the classical literature, in particular, the analysis
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of the spectral gap and the log-Sobolev constant of £. A bound on the spectral gap was proven
assuming the decay of correlations in [163], and for specific models in [164-167]. This shows that
it takes a polynomial time to thermalize. On the other hand, a bound on the so-called log-Sobolev
contant [168] implies that instead it takes a time logarithmic in the system size to thermalize. This
was recently proven for 1D chains [169, 170] and in [171, 172] for other models of dissipation.
These results show that the dissipative processes at hand can also be seen as an efficient quantum
algorithms preparing thermal states, since in principle they can be simulated efficiently with a
quantum computer [152].

IX. CONCLUSIONS AND OPEN QUESTIONS

It may appear at first that studying thermal states of general complex quantum models is a
very challenging task. We hope to have illustrated the fact that this is not always the case: for a
large array of situations involving local Hamiltonians many non-trivial analytical statements can
be made. These are both about universal physical features of the models at hand, but also about
the computational complexity of the problems the physics poses. The connections found motivate
a timely research program, largely inspired by quantum information theory: to understand the
links between fundamental physical features and their computational complexity.

In the present context, much of the technical difficulty lies in workign with with the matrix
exponential of any such a Hamiltonian, in which typically the individual terms do not commute.
As seen in Sec. III, however, we have a number of mathematical tools to deal with these in many
physically relevant regimes.

We have covered a number of statements in different areas and summarized many of the exist-
ing results on the topic. However, plenty of relevant questions are still open. We now summarize
some of them, which we believe to be of particular physical or technical interest:

¢ The cluster expansion has been used to prove statements at high temperatures such as the
exponential decay of the CMI, or the locality of the Hamiltonian of mean force. Is there an
analogous technique that holds for 1D models at all temperatures, that allows us to prove
those statements?

¢ There is a well developed mathematical theory narrowing down general conditions under
which the cluster expansion converges. This follows from mathematical physics works
such as [27]. This has a number of important consequences regarding decay of correlations
[66], approximations to the partition function [22] or quantum algorithms [74]. It would
be interesting to have a more detailed physical understanding of when this convergence
happens, and narrow it down in as many regimes and classes of models as possible.

¢ We have only focused on local Hamiltonians with short-range interactions. A number of
recent studies have developed the theory of Lieb-Robinson bounds for systems with long-
range interactions, decaying with some power of the distance in the lattice [173-176]. The
cluster expansion results of [24, 74] also hold in this regime. It would be interesting so study
how this and other discussions of Sec. III change in this setting, and what do these imply
for the thermal properties of long-range interacting systems.

¢ In Sec. IV we did not differentiate between classical and quantum correlations, which is
likely an important distinction in this context. Can we make general statements about how
quantum correlations (as measured by standard entanglement quantifiers) are more fragile
at finite temperatures than classical ones? An important result in this direction is that of
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[177], showing a decay of a certain kind of quantum correlations at all temperatures, based
on Lieb-Robinson bounds. Related to this is the area law for the entanglement negativity
shown in [61], using inequalities akin to those of Sec. III D.

It has been conjectured [42, 43] that the current known bounds on the conditional mutual
information are not optimal, and that this quantity does in fact decay exponentially at all
temperatures. This has only so far been shown at high temperatures, when the cluster ex-
pansion converges [74]. We currently lack enough numerical or analytical evidence hinting
towards this decay. However, if proven true, it would have interesting implications for
various classical and quantum algorithms at low temperatures.

The ideas of Sec. V, and in particular the Hamiltonian of mean force, have in the past
few years features in the study of thermodynamic quantities for strongly coupled systems
[83, 178-181]. Many existing results on this topic focus on simpler models than those con-
sidered here, such as individual spins coupled to quadratic baths [84, 182]. It would be in-
teresting to understand whether the results from Sec. V have non-trivial consequences for
the equilibrium and non-equilibrium thermodynamics of strongly coupled spin systems,
such as those found in [183].

The current theoretical results for tensor network descriptions of thermal states give reason-
ably good bounds on the bond dimension [37, 65, 118]. It would be interesting, however,
to know whether the tensor networks in dimensions higher than one [65, 118] can be con-
tracted efficiently to calculate expectation values, perhaps in cases for which the Gibbs state
has exponential clustering of correlations (see [184] for a similar idea for ground states). A
complementary relevant question is to fully understand whether the set of density opera-
tors represented by tensor networks in 1D is contained within the set of thermal states of
local Hamiltonians [185].

With the advent of quantum computing, there are multiple ongoing efforts aiming to find
more efficient quantum algorithms for thermal sampling and partition functions. As we
have seen in sec. VIID, many of the existing ones are designed for very general situations,
and as such have performance bounds that will often be too conservative. Some existing
schemes do make use of relevant physical features to simplify them [43, 132, 135, 143], but it
seems that there is still plenty of room for exploring the kinds of regimes in which explicit
and efficient algorithms can be proven. Since preparing thermal states is presumably an
easier task than a general quantum computation (at least in certain regimes), it may be
possible to tailor them to the limited capabilities of near-term noisy devices [134].

Recently a number of works have narrowed down the sample and computational complex-
ity of the problem of thermal state tomography [12, 23, 155, 186]. The basic question is:
can we learn the Hamiltonian from a small number of simple (local) measurements of few
copies of e=# /7?2 Optimal sample and computational complexity bounds exists in the
high temperature regime, in which the cluster expansion applies [23], but beyond that our
theoretical understanding is not complete (for instance, in 1D). This problem has a num-
ber of applications, including the verification of quantum computation in which thermal
sampling is involved [4-7], or the characterization of many-body entanglement [187, 188].
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Appendix A: Miscellaneous proofs
Locality of operator E 4

In Sec. III B we defined the operator
EA e e_B(H""A)eﬁH — Te— fO/B dSe_SHAeSH

which is the solution of the differential equation

O = —EaA(if),

with A(i3) = e PH AePH. We can also define the localized generator

l

AliB) =Y BC(A),

m=0
and also the corresponding operator E 4(() as the solution of

dEA(l)
dp

Now from the Trotter-Suzuki decomposition

— —EA()AB).

we have that

L-1 . . 8
Es—Ex() = ngréo 2 <Al(¢BL])§ - A(iﬁLj)/j) = /0 Al(is) — A(is)ds,

so by the triangle inequality and Eq. (30),

(26Jk)l+1

B
1Ba - Ea)]] < /0 14'Gis) = AGis)]|ds < BRIIAIIT=5 27

(A1)

(A2)

(A3)

(A4)

(A5)

(A6)

(A7)

(A8)
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Proof of Eq. (53)

This can also be found in [50]. Let F'(¢) be a differentiable and bounded operator. DuHamel’s
identity states that

d rey _ / b AF ) 1 wyre)
FrA ; due i ¢ . (A9)

Then we have that

Tr (f()l duCeu(Hl+tH2)H2€(17u)(H1+tH2))

d Hi+tHo\ __
G log Tr (Ce )= Tr (Celi ity (A10)
- (6 Hitiiy o Mt fol due(u—1/2)(H1+tH2)H26(1/2—u)(H1+tH2)>
= T (e Hl—;tHQ Ce ngtHz ) (A11)
1
< ’ / due(u— /D) g (1/2—u) (Hr-+t12) (A12)
0
This follows from Holder’s inequality Eq. (6) and the positivity of C'. Finally,
1
|logTr[CeH1+H2] - logTr[CeHlH = ‘/ %logTr [CeHlthH?] dt' (A13)
0
1 1/2
< / dt / ds||e*(FtH2) o= sttt (A14)
0 ~1/2

where the last step follows from the triangle inequality, Eq. (A12) and the change of variable
u—1/2=s.

Proof of Eq. (109)

This can also be found in [72]. Let p(z) be an arbitrary probability distribution with [~ zp(z)dz =
a, and the condition that p(x) be Lebesgue integrable. We aim to bound

| la-amp@de = [l sta s apda = [Tl oo+ o) s oz a)ds (A1)

[l
- 0 dl’

where in the last step we used the fundamental theorem of calculus. This can now be integrated
by parts as

_ /0 h xm% ! /w,azxp@f)dxf] dz (A17)

=— (:Cm/ p(z’)dx’) —l—/ mxk_l/ p(z")dx'dz
|2/ —a|>x 0 0 |a'—a|>x

(o) ’1:2 _
< / mat19e " wads = (4cA)™/? (T)!, (A18)
0

/ p(x')dx] dz, (Al6)
|2/ —a|>x

2
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where in the second line the first term vanishes by definition, and in the third line we used the
concentration bound Eq. (93).
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