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We present IMRPhenomTPHM, a phenomenological model for the gravitational wave signals emitted
by the coalescence of quasi-circular precessing binary black holes systems. The model is based on the
“twisting up” approximation, which maps non-precessing signals to precessing ones in terms of a time
dependent rotation described by three Euler angles, and which has been utilized in several frequency
domain waveform models that have become standard tools in gravitational wave data analysis [1–5].
Our model is however constructed in the time domain, which allows several improvements over the
frequency domain models: we do not use the stationary phase approximation, we employ a simple
approximation for the precessing Euler angles for the ringdown signal, and we implement a new
method for computing the Euler angles through the evolution of the spin dynamics of the system,
which is more accurate and also computationally efficient.

I. INTRODUCTION

A number of complementary strategies have been de-
veloped to model the gravitational wave (GW) signal of
coalescing compact binaries (CBC), giving rise to sev-
eral families of waveform models which are routinely used
for GW data analysis. Most notably these include two
families of effective-one-body (EOB) descriptions, SEOB
[6–8], and TEOBResumS [9–11], reduced order methods
for parameter space interpolation of numerical relativ-
ity (NR) data sets commonly referred to as NRSurrogate
models [12–14], and the IMRPhenom family [1–5, 15–21],
which is based on piecewise closed-form phenomenolog-
ical models, which are particularly computationally effi-
cient due to the closed form expressions.

These models are continuously being improved with
the goal to minimize systematic errors when estimating
the source parameters of detected GW events with the
methods of Bayesian inference [22, 23], while reducing
at the same time the computational cost of such anal-
yses. Such improvements are particularly urgent due to
the advances in sensitivity of the international network of
advanced GW detectors, and the corresponding increase
in the number of detected sources. The Advanced LIGO
detectors [24] and Advanced Virgo detector [25] have al-
ready provided two catalogs of GW transients (GWTC-1
[26] and GWTC-2 [27]), which include a total of 50 CBC
signals, and a significantly higher number of events is
expected for the upcoming O4 observation run [28].

For the sub-space of quasi-circular binary black hole
(BBH) coalescence without spin precession, waveform
models have reached a certain level of maturity: The
waveform modelling programs mentioned above have all
provided models that are calibrated to NR simulations
and include several subdominant harmonics of the sig-
nal, resulting in very good agreement in the region of
parameter space where NR simulations are available, see
e.g. [29, 30]. Interesting questions remain, e.g. concern-

ing high mass ratios or spins close to the Kerr limit, and
models are expected to be further improved, in partic-
ular as more high quality NR simulations become avail-
able for large mass ratios and spins. When adding pre-
cessing spins such a level of maturity has not yet been
reached. Not only is the morphology of waveforms much
more complicated, but also the larger parameter space is
by far not as well sampled by NR waveforms. Different
modelling programs have made different types of com-
promises: NR surrogate models have been constructed
to interpolate NR data sets, but are restricted in cov-
erage of mass ratio, spin magnitudes and length of the
waveform [14]. The EOB and phenomenological wave-
form programs have taken a complementary path, using
approximations to model precession without calibration
to numerical waveforms. This is in principle less accu-
rate, but allows the construction of models that can be
used for large parts of the parameter space and without
limitations on the length of waveforms.

The crucial approximation that allows to construct
precessing waveform models that are not calibrated to
NR is based on the fact that at least during the inspiral
the precessing motion is much slower than the orbital mo-
tion, so in consequence the precessing motion contributes
relatively little to the loss of energy due to gravitational
radiation, and therefore contributes relatively little to the
phasing of the inspiral. The main effect of precession is
then an amplitude modulation as the orbital plane pre-
cesses and radiates GWs predominantly in the direction
orthogonal to the orbital plane. These arguments can be
extended to a drastic simplification of the waveform, by
describing it not in an inertial frame, as is appropriate
for observation, but rather in a co-precessing non-inertial
frame, where the waveform is close to a non-precessing
one. One can then construct an approximate precessing
waveform in the following way, which is often referred to
as “twisting up” a non-precessing signal: An appropri-
ate non-precessing waveform is rotated into the inertial
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frame with a time-dependent rotation, described by three
Euler angles (or alternatively quaternions). In order to
account for the change of final spin due to precession,
the ringdown of the non-precessing waveform also needs
to be modified. A standard way to obtain the Euler an-
gles is from post-Newtonian equations, which could be
solved directly as time evolution equations, or approxi-
mated further in terms of analytic solutions, utilizing or-
bital averaging [31] or the multiple scale analysis (MSA)
[32]. These ideas have been developed in a series of pa-
pers [33–37] that have resulted in a number of frequency
domain precessing IMRPhenom waveform models [1–5]
which have become standard tools in GW data analysis.
A recent discussion of the approximations used and their
shortcomings has been given in [38].

For data analysis methods based on matched filtering,
it is particularly convenient and computationally efficient
to use waveform models in the frequency domain. In the
context of phenomenological waveforms in the frequency
domain, the twisting-up approach does however cause
several problems: First, in order to obtain closed form
expressions for the “twisted” spherical harmonic modes
in the frequency domain, the stationary phase approxi-
mation has been employed, which is not well suited for
the merger and ringdown. Second, it has not yet been
achieved to obtain a closed form ansatz that computes
the Euler angles during ringdown from known informa-
tion about the quasi-normal modes of the final Kerr black
hole, which is straightforward in the time domain [39].
Somewhat surprisingly, it has turned out that precessing
IMRPhenom waveform models in the frequency domain
are still rather accurate, and they have proven essential
tools for GW data analysis. For high-mass systems like
GW190521 [40, 41], where only the merger and ringdown
can be observed, these shortcomings are however essen-
tial.

In this work we will therefore treat precession in
the time domain. As a starting point we take a non-
precessing multimode NR-calibrated model we have con-
structed recently, IMRPhenomTHM [20], and we will gener-
alize it to the precessing IMRPhenomTPHM model employ-
ing the “twisting up” procedure. We will then discuss
the gain in accuracy of describing the merger and ring-
down, and new directions of waveform modelling which
our approach opens up. A key element is that as an al-
ternative to closed form expressions for the Euler angles
we can also apply a fast numerical time integration of the
post-Newtonian spin evolution equations, which we hope
to develop further in the future.

The paper is organized as follows. In Sec. II we dis-
cuss the model construction, in Sec. III we evaluate the
accuracy and computational efficiency of the model, and
we conclude in Sec. IV.

II. MODEL CONSTRUCTION

A. Notation and conventions

Quasi-circular BBH systems can be described by eight
intrinsic parameters: the individual masses mi and in-
dividual dimensionless spin vectors χi = Si/m

2
i of each

black hole component. The total mass of the system
M = m1 + m2 is a scale parameter and can be used to
define geometric units G = c = M = 1. We define the
mass ratio q = m2/m1 ≥ 1 and the symmetric mass ratio
η = q/(1+q)2. We denote dimensionless component spin
vectors by χi, dimensionful spins by Si = m2

i χi and the
orbital angular momentum by L.

The emitted GW signal in a direction (Θ,Φ) on the
celestial sphere of the source can be expressed in a polar-
ization basis in terms of two independent polarizations,
or decomposed in a basis of spherical harmonics of spin
weight −2:

h(t;λ,Θ,Φ) = h+(t;λ,Θ,Φ)− ih×(t;λ,Θ,Φ)

=
∑
l

l∑
m=−l

hlm(t;λ)−2Ylm(Θ,Φ),
(1)

which disentangles the extrinsic orientation parameters
(Θ,Φ) from the intrinsic parameters λ = {q,χ1,χ2}.

For non-precessing systems, the spherical harmonic
modes are naturally defined with respect to an axis that
is orthogonal to the preserved orbital plane. In the pres-
ence of spin precession the orbital plane also precesses.
There is then no natural definition of a frame in which
to define the spherical harmonic modes, and indeed the
complexity of their morphology depends greatly on the
definition of the (inertial) frame.

A particularly simple form of the GW signal can be
achieved when the axis of the inertial reference frame is
aligned with the total angular momentum of the system

J(t) = L(t) + S1(t) + S2(t), (2)

at some given reference time ẑ = Ĵ(tref). We will refer to
such a reference frame as the J -frame. The direction of J
is approximately constant, but under certain conditions
can flip, which is known as “transitional precession” [42].

Another type of frame that is commonly employed
chooses the orbital angular momentum L as the axis.
We can consider L as a time-dependent quantity, giving
rise to a non-inertial frame, or define an inertial frame in
terms of a reference time, where L(tref) = L0. We will
refer to these choices as the L-frame or L0-frame. The L-
frame has the advantage that the spin components paral-
lel and orthogonal to L are approximately preserved, see
e.g. the discussion in [36]. For this reason the frames as-
sociated to the orbital angular momentum are preferred
when defining the spin vectors for initial data sets in NR
– the spins will then typically change little over time.
Due to the precession of L around the total angular mo-
mentum J this simplicity is however paid for in a more
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complex morphology of the spherical harmonic modes in
the L0 frame.

An alternative to tying the frame axis to L is to use
instead the Newtonian angular momentum LN, which
points in the direction of the instantaneous angular fre-
quency vector. We will implement our “twisting up” ap-
proach to modelling precessing by mapping the preserved
axis of the non-precessing system to the time-dependent
LN of the precessing system.

At some reference time tref we then define a Cartesian
coordinate system with the axes

ẑ = L̂N(tref), x̂ = r1(tref)− r2(tref), (3)

as the direction between the larger and the smaller black
hole at that reference time, and ŷ constructed orthonor-
mally to the other two following the right-hand-side rule.
In this frame, the angles that specify the position in the
source sky-sphere are commonly called inclination ι and
reference orbital phase φref . In order to simplify our no-
tation we will refer to this frame as L0-frame, neglecting
the differences between LN and L.

B. “Twisting-up” approximation

We will construct our precessing waveform models in
terms of rotating the spherical harmonic modes of non-
precessing systems into the inertial precessing systems
as discussed above. This time-dependent rotation can
be characterized by three Euler angles (α, β, γ) describ-
ing the 3D rotation between both frames, and then the
relation between the modes can be expressed as [43]:

hIlm(t) = Dlmm′(α, β, γ)hcop
lm′(t) (4)

whereD`mm′ are the Wigner D-matrices. Our conventions
for the Euler angles and D-matrices are consistent with
those used in [5], where we also provide further details
on the D-matrices.

The Euler angles can be expressed in the inertial ref-
erence frame {x̂, ŷ, ẑ} defined by eq. (3) as:

α = arctan(L̂y/L̂x), (5a)

cosβ = ẑ · L̂ = L̂z, (5b)

γ̇ = −α̇ cosβ . (5c)

As discussed in Sec. I we will approximate the spheri-
cal harmonic modes of the precessing waveform in a co-
precessing frame by the modes of the corresponding non-
precessing (“AS” for “aligned spin”) system:

hcoprec
lm (t; q,χ1,χ2) ≈ hAS

lm(t; q, χ1l, χ2l). (6)

Here we will employ this approximation to map the non-
precessing modes from the NR-calibrated model IMR-
PhenomTHM [20] into the precessing inertial modes of
the IMRPhenomTPHM model, and we set

hTPHM
lm (t) = Dlmm′(α, β, γ)hTHM

lm′ (t) . (7)

In our construction, the spherical harmonic modes re-
sulting from eq. (7) are given in the inertial J -frame,
since in this frame the morphology of the Euler angles
is simplified. In order to construct the GW polarization
time series, which are the measurable quantities at the
detectors, we first rotate the spherical harmonic modes
to the L0-frame with a global time-independent rotation,

hL0

lm(t) = Dlmm′(−γref ,−βref ,−αref)h
J
lm′(t) (8)

since in this frame the polarizations can be constructed
as

h+(t)− ih×(t) =
∑
l

l∑
m=−l

hL0

lm(t)−2Ylm(ι, φref). (9)

C. Co-precessing modes

The IMRPhenomTHM model employed in eq. (7) is a non-
precessing phenomenological multimode model [20] that
has been calibrated to 531 non-precessing BBH NR sim-
ulations. In our approximation, as discussed above, we
neglect the contribution of the spin components within
the orbital plane to the frequency evolution, likewise the
evolution of the projection χiL = χi(t) · L̂(t) is not taken
into account for describing the frequency evolution of the
precessing system. This approximation has been used in
all models from the IMRPhenom family to date. See [38]
for a further discussion of the approximations used in the
“twisting” approximation.

The GW multipoles h`m are also described by the
IMRPhenomTHM model as piece-wise expressions defined
on a three-region partition of the time domain: inspi-
ral, merger and ringdown, as described in [20], and simi-
lar to the decomposition used in the construction of the
IMRPhenomX frequency-domain models [5, 18]. We then
modify the ringdown region to account for the final spin
of the actual precessing system, which differs in general
from the non-precessing case, see our detailed discussion
in [5]. The ringdown ansatz of IMRPhenomTHM is based on
the phenomenological analytical proposal of [44], which
employs the quasinormal mode frequencies of the rem-
nant black hole. In IMRPhenomTHM we describe the mode
frequencies and amplitudes as

ω̄lm(t) = ωlm(t)− ωRD
1lm

= c1
c2(c3e

−c2t + 2c4e
−2c2t)

1 + c3e−c2t + c4e−2c2 t
,

(10)

|h̄lm(t)| = eα1lm(t−tpeak
lm )|hlm|

= d1 tanh[d2(t− tpeak
lm ) + d3] + d4 .

(11)

These expressions depend explicitly on the ground-state
damping frequency α1lm and ringdown frequency ωRD

1lm of
each mode, and also some of the coefficients (see equa-
tions 31-32 of [20]) depend on the damping frequency of
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the first overtone α2lm. Damping and ringdown frequen-
cies are functions of the final spin of the remnant black
hole, so for the precessing situation we evaluate them
with our prediction of the precessing final spin, which we
discuss below at the end of Sec. II E.

D. Description of inspiral-plunge precessing Euler
angles

For IMRPhenomXPHM, the corresponding frequency-
domain model, two alternative closed-form expressions
for the Euler angles have been used [5]. Here we inherit
these prescriptions, but we add an additional option, to
numerically evolve the spin precession equations.

1. Numerical evolution of the spin precession equations

When the individual spins S1,2 are misaligned with
respect to the orbital angular momentum L, both the
spins and the orbital angular momenta directions evolve
in time, producing a precessional motion of the orbital
plane. Under the assumption of conserved direction of
the total angular momentum J , and neglecting radiation
reaction, the evolution equations for the precessing spins
and the orbital angular momentum can be obtained in
Post-Newtonian (PN) theory to a given order in the PN
expansion parameter v:

dL̂

dt
= ΩL̂(v(t), q,S1,S2)× L̂, (12a)

dS1

dt
= Ω1(v(t), q,S1,S2)× S1, (12b)

dS2

dt
= Ω2(v(t), q,S1,S2)× S2. (12c)

Note that these equations are subject to the constraint:

L̇ = −Ṡ1 − Ṡ2. (13)

Radiation reaction can be introduced by letting the
PN parameter v(t) = (φ̇orb(t))1/3 evolve in time, which
implies another ordinary differential equation (ODE) to
be solved for v̇, which in general will depend on the time-
dependent individual spin vectors. In this work however,
we approximate the spin evolution by inheriting the evo-
lution of v(t) from the non-precessing analytical orbital
frequency from the IMRPhenomT model [20, 21], which is
defined as half of the wave frequency of the l = 2, m = 2
non-precessing mode:

φTorb(t) = φT22(t)/2. (14)

This has several advantages: first, the description of
the orbital frequency of IMRPhenomT has been calibrated
against a set of 531 NR waveforms in the late inspiral and
merger along with 63 intermediate-mass-ratio waveforms
from the adiabatic solution of the Teukolsky equation.

Thus, while we neglect precession effects as is consistent
with our “twisting-up” approximation, v(t) remains reg-
ular up to the coalescence time across parameter space.
Second, this avoids solving an extra ODE for v̇(t), which
is typically the most expensive ODE in the system, ac-
celerating substantially the numerical integration of our
system of ODEs. In the future we plan to revisit this
construction and investigate how to best incorporate in-
formation about the evolution of the individual spins and
about the spin projections perpendicular to the orbital
angular momentum.

For the implementation of the PN spin evolution equa-
tions (12) we rely on the SpinTaylor insfrastructure [45]
in the LALSimulation module of the LALSuite frame-
work for GW data analysis [46]. This implementation
includes corrections in the spin equations up to next-
to-next-to-next-to-next-to-leading order (N4LO), includ-
ing both instantaneous terms and orbit averaged terms.
The implementation of the evolution equations in [45]
returns the evolution equation for the Newtonian orbital
angular momentum direction L̂N(t), which up to next-to-

leading order NLO agrees with L̂(t). However at higher

order, linear terms in L contaminate L̂(t), causing the
directions to differ. Although physically it would be de-
sirable to enable these terms, in the implementation of
this model is was decided to disable them, since technical
problems were observed in the rotated modes when en-
abling these contributions. We will revisit this decision
after further investigation in the future.

Solving the equations (12) we obtain the evolution of

L̂(t), and from eq. (5) the Euler angles defined in eqs. (5),
which “twist” the co-precessing modes into the inertial
precessing modes.

2. Analytical expressions: Next-to-next-to-leading order
effective single-spin and double-spin multiscale analysis

Besides the default implementation of the precess-
ing Euler angles discussed in the previous subsection,
the model inherits the analytical options included in
IMRPhenomXP and IMRPhenomXPHM: the next-to-next-to-
leading order (NNLO) effective single-spin approxima-
tion [31, 47] and the double-spin multiscale analysis
(MSA) approximation [32]. We briefly outline here the
main features of both descriptions.

The NNLO effective single-spin description is based
on the introduction of the triad {n,λ, `}, where n is
the unit separation vector between both black holes, ` is
the direction of the unit vector normal to the instanta-
neous orbital plane and λ completes the triad following
the right hand rule λ = ` × n. The evolution equations



5

for the Euler angles in the single-spin case are:

dα

dt
= − ω̄

sinβ

Jn√
J2
n + J2

λ

, (15a)

dβ

dt
= ω̄

Jλ√
J2
n + J2

λ

, (15b)

where Jn,λ are the components of the total angular mo-
mentum J = L+S1 in this triad. These equations can be
solved analytically to next-to-next-to-leading order in the
spin-orbit coupling [47] (and then γ could be obtained an-
alytically from eq. 5c), assuming a single spinning black
hole, where the spin degrees of freedom of the full prob-
lem are mapped to an effective single spin aligned with
the direction of the orbital angular momentum

χeff =
m1χ1,L +m2χ2,L

m1 +m2
, (16)

and a precessing spin parameter

χp =
1

A1m2
1

max(A1S
⊥
1 , A2S

⊥
2 ), (17)

where A1 = (2+2/3q) and A2 = (2+3q/2), that captures
the averaged total in-plane spin and is an approximately
conserved quantity. This description was employed in the
IMRPhenomP and IMRPhenomPv2 models [2, 36] and
it is also available in the IMRPhenomXP and IMRPhe-
nomXPHM models as an alternative option [5].

The MSA double-spin description exploits the natu-
ral separation among different timescales intervening in
the evolution of a precessing binary systems: the orbital
timescale torb, the precession timescale tprec and the ra-
diation reaction timescale tRR, which during most of the
evolution satisfy

torb � tprec � tRR . (18)

Based on this separation of timescales, radiation reaction
effects can be included as a perturbation on a closed-
form solution for the conservative case [48], where the
precessing angle α(t) can be split into two contributions:

α(t) = α−1(t) + α0(t), (19)

where α−1(t) is the leading-order term averaged over the
precession timescale (which is fast compared with the
radiation-reaction timescale) and then integrated over
radiation reaction, while the term α0(t) is a first order
correction that includes information about the relative
orientation between the individual spins (and hence it
incorporates double-spin information).

The implementation of these analytical approxima-
tions into the model relies on the existing infrastruc-
ture for the IMRPhenomXP and IMRPhenomXPHM models
[5], although there is an important difference: for the
present model, the analytical expressions for the angles
are evaluated employing the non-precessing analytical or-
bital frequency of IMRPhenomT (see eq. (14) and related

discussion in previous section), instead of the Fourier fre-
quency as in the Fourier domain models. This, together
with the fact that the model construction is native in the
time domain, allows us to dispense with the stationary
phase approximation (SPA) employed for twisting up the
modes in the Fourier domain models, which can enhance
the validity of the description in the strong field regime.

We introduce several additional options for the treat-
ment of the NNLO and MSA analytical approximations.
First, our implementation allows to replace the analyt-
ical evaluation of the third Euler angle γ(t) by the nu-
merical evaluation of the minimal rotation condition (eq.
5c), once the other two Euler angles α(t) and β(t) have
been computed. This is motivated by the realization that
the MSA approximation does not correctly satisfy the
aligned-spin limit, i.e. models twisted up with this de-
scription do not reproduce the underlying non-precessing
model in the limit of vanishing in-plane spins. We traced
this problem to the fact that the expression for the third
Euler angle, which is obtained by applying the MSA ex-
pansion to the minimal rotation condition, does not sat-
isfy this condition in this regime. (And probably it does
not satisfy it in general.) With this addition, the model
is able to reproduce the underlying non-precessing model
in the aligned-spin limit. See Fig.1 for an illustrative ex-
ample.

Second, both the NNLO and the MSA approximations
lose accuracy before merger due to the breakdown of the
underlying PN approximation. In particular, the merger
time predicted by the PN approximations will generally
be different from the merger time predicted by the non-
precessing model, creating some tension. In order to
smooth the behavior in the strong-field regime, we im-
plement an option for substituting the angle description
by a linear continuation from the minimum energy cir-
cular orbit (MECO) time (which sets the boundary of
validity of the underlying adiabatic approximation of the
PN Taylor approximants [49]) to the peak time:

αcoal(t) = α(tMECO) + tα̇(tMECO), (20a)

βcoal(t) = β(tMECO) + tβ̇(tMECO). (20b)

It is evident that this treatment does not contain ac-
tual physical information about the behavior during the
strong field regime. But in any case, the complicated
angle morphology in this region does not correctly repre-
sent the behavior, so we substitute our ignorance about
the behavior in this regime by a simpler well-behaved de-
scription. The actual usage of these options in the code
is explained in Appendix A.

E. Merger-ringdown treatment of precessing Euler
angles

The previous descriptions of the precessing Euler an-
gles apply up to the coalescence time, which we determine
according to the IMRPhenomT model as the peak time of
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FIG. 1. Recovery of the non-precessing limit with analytical
MSA description of the Euler angles for the BBH configura-
tion q = 3, χ1,z=-0.5, χ2,x = 10−3 (first two pannels). Top:
departure of the analytical third Euler angle from the minimal
rotation condition. Middle: Plus-polarization amplitude for
the non-precessing model IMRPhenomTHM, for the precessing
extension with full analytical MSA, and when computing the
third Euler angle from the minimal rotation condition. Bot-
tom: Match recovery of the non-precessing model for small
perturbations of the non-precessing case.

the l = 2, m = 2 dominant mode. After this time the or-
bital frequency is not well defined, as the orbiting binary
components have merged into a remnant black hole. For
the post-merger description of the Euler angles, we rely,
as discussed in [21], on the realization that the ringdown
signal exhibits an effective precessional motion [39]. An
analytical approximation to this behavior can be derived
in the limit of small opening angles, taking the leading
contribution of the twisting-up formula considering only
the twisting of the l = 2, |m| = 2 co-precessing modes:

hP2m ' e−imαe−i2γd2
2m(β)hcoprec

22 . (21)

We then compute the complex ratio between the inertial
m = 2 and m = 1 modes as

hP22/h
P
21 ' −

1

2
e−iα tan(β/2). (22)

Expressing the modes in the ringdown as a superposition
of QNM states and considering only the leading ground
state we obtain

hRD
2m ' H0e

−ωdamp
12m eiω

RD
12m . (23)

Employing eq. (22), the leading contribution to the Eu-
ler angles α and β (and then γ employing the minimal
rotation condition) during the ringdown then becomes

αRD(t) ' (ωRD
122 − ωRD

121)t+ αRD
0 , (24a)

βRD(t) ' −2 arctan
(

2e(ωdamp
121 −ω

damp
122 )t

)
+ βRD

0 . (24b)

While the expression for αRD(t) qualitatively reproduces
the NR behavior even for situations where the open-
ing angle cannot be considered small (see for example
Fig. 2 top panel), further investigation to understand
the caveats of βRD(t) is needed. For the current imple-
mentation of the model it was thus decided to implement
only the constant value at the merger time. This will be
revisited in future upgrades of the model.

FIG. 2. Comparison of the different Euler angle implemen-
tations with a challenging NR simulation, SXS:BBH:0165 (the
worst case in the study detailed below in Sec. III A). Top:
comparison of the precessing angle α(t). Bottom: compari-
son of the plus polarization for edge-on inclination.

For evaluating the quasinormal frequencies ω
RD/damp
nlm

employed in the previous expression, and also in the con-
struction of the co-precessing ringdown modes amplitude
from eq. (11) and frequency from eq. (10), a prediction
for the final spin χf = Sf/M

2
f of the remnant black hole

is needed. In this model we approximate the final spin
of the remnant black hole of the precessing system ap-
plying a simple augmentation of the non-precessing final
spin based on vector addition of the orbital angular mo-
mentum and the component spins, and using approxima-
tions consistent with our twisting procedure, as in done
in other models like IMRPhenomXP and IMRPhenomXPHM.
As discussed in detail in Sec. IV.D of [5] we approximate
the magnitude of the final spin as

χP,augmented
f =

√
χ2

f,AS + S2
⊥/M

4, (25)
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where χf,AS corresponds to the dimensionless final spin
of the equivalent non-precessing configuration (the one
employed in the evaluation of the non-precessing modes
for approximating the co-precessing modes) and S⊥ mea-
sures the in-plane spin contribution. For the non-
precessing final spin, we employ the same formula as in
the non-precessing model IMRPhenomTHM, based on a hier-
archical data-driven fit of available NR data [50]. For the
estimation of S⊥, we allow the same options discussed in
[5], but the default description is based on the evaluation
of the evolved individual spins at the merger time, from
the evolution of eq. (12):

S⊥ =
√
|S1,⊥(tmerger) + S2,⊥(tmerger)|2, (26)

where Si,⊥(tmerger) are the projections of the individual

spins perpendicular to L̂ at the coalescence time. Also, in
this option the non-precessing final spin fit is evaluated
employing the parallel spin components to L̂ from the
evolved spins at the coalescence time.

Eq. (25) only predicts the magnitude of the final spin.
In order to define the direction of the final spin we pro-
ceed again as discussed in Sec. IV.D in [5], tracking the
direction of the orbital angular momentum with respect
to the orbital plane.

III. MODEL PERFORMANCE

In this section we validate the accuracy and com-
putational efficiency of the model. We compare with
NR waveforms and other state-of-the-art precessing mul-
timode waveform models based on the mismatch be-
tween waveforms, recover the parameters of injected syn-
thetic signals corresponding to NR simulations, and ap-
ply Bayesian inference to observed GW events and com-
pare with results for these events from the literature.

As discussed in Appendix A, the LALSuite [46] im-
plementation of our model supports several options re-
garding the choice of approximation for the Euler angle
prescription and for the final spin approximation. These
options are selected with parameters that take integer
values, which we will refer to as PV for precession version
and FS for final spin.

A. Comparison with Numerical Relativity

1. Mismatch comparison with LVCNR catalog

For checking the agreement between the model and
NR waveforms, which are the best source of information
that we have about coalescing BBH signals in the strong-
field regime, we follow the standard practice of computing
the mismatch between waveforms. Taking the standard
definition of the inner product in the space of waveforms

(see e.g. [51]),

〈h1, h2〉 = 4<
∫ fmax

fmin

h̃1(f) h̃∗2(f)

Sn(f)
, (27)

where Sn(f) is the one-sided power spectral-density
(PSD) of the detector noise, the match M(h1, h2) is de-
fined as the normalized inner product maximized over
relative time and phase shifts between the given set of
waveforms:

M(h1, h2) = max
t0,φ0

〈h1, h2〉√
〈h1, h1〉

√
〈h2, h2〉

. (28)

The mismatch MM(h1, h2) is defined as the deviation
of the match from unity,

MM(h1, h2) = 1−M(h1, h2). (29)

For the results presented in this paper, we employ the
Zero-Detuned-High-Power PSD [52], which models the
advanced LIGO [24] design sensitivity.

As done in [5], we analytically optimize over the tem-
plate polarization angle, following [53], and numerically
optimize over reference phase and rigid rotations of the
in-plane spins at the reference frequency. In order to
perform the numerical optimization we use the dual an-
nealing algorithm as implemented in the SciPy Python
package [54]. We then compute the SNR-weighted match
Mw [55]

Mw =

(∑
iM3

i 〈hi,NR, hi,NR〉3/2∑
i 〈hi,NR, hi,NR〉3/2

)1/3

, (30)

where the subscript i refers to different choices of polar-
ization and reference phase of the source.

We have computed mismatches for IMRPhenomTPHM
against 99 precessing SXS waveforms [56, 57], picking
for each binary configuration the highest resolution avail-
able in the lvcnr catalog [58]. As a lower cutoff for the
match integration, we took the minimum between 20 Hz
and the starting frequency of each NR waveform and an
upper cutoff at 2048 Hz. We repeated the calculation for
three representative inclinations between the orbital an-
gular momentum and the line of sight (0, π/3, π/2) and
total masses ranging from 50 M� to 350 M�.

In Fig. 3 we show results for two different versions
of the model, PV = 223 which corresponds to the ana-
lytical MSA implementation, and PV = 300 which is the
default numerical evolution implementation explained in
Sec. II D 1. We observe that the majority of cases have
mismatches between 0.001 and 0.01, and in general re-
sults improve for higher total mass, with a good portion
of cases below a mismatch of 0.001 for face-on inclination.
The only outlier in the comparison is SXS:BBH:0165, a
very short (6.5 orbits) simulation with challenging pa-
rameters (q = 6, χeff = −0.43, χp = 0.8). We do observe,
however, that the default version of the model consid-
erably improves on the MSA-based twisted-up version
(which is more similar to IMRPhenomXPHM), especially for
zero inclination.
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FIG. 3. Mismatch comparison against 99 precessing BBH
simulations from LVCNR catalog, for different inclinations, as
a function of total mass. Dotted black line: 0.03 mismatch.
Dashed black line: 0.05 mismatch.

2. NR injection recovery

The main target of application of our waveform model
is the inference of the source parameters, in particular us-
ing Bayesian inference methods to determine the poste-
rior distribution p(θ|d) for the parameters θ that charac-
terize a binary, given some data d. From Bayes’ theorem,

we have

p(θ|d) =
L(d|θ)π(θ)

Z
, (31)

where L(d|θ) is the Gaussian noise likelihood [22, 59, 60],
π(θ) the prior distribution for θ and Z the evidence

Z =

∫
dθL(d|θ)π(θ). (32)

Before testing the model performance on real data from
the detectors, it is useful to study how well the model
can recover a synthetic signal where we know the param-
eter values that it should recover. To this end, we have
injected synthetic signals into zero noise (i.e., the noise
realization corresponding to the average value for Gaus-
sian noise), employing two precessing NR simulations,
SXS:BBH:0143 and SXS:BBH:0062. As for our studies
of mismatches above, to compute the likelihood function
we employ the Zero-Detuned-High-Power PSD [52]. We
test different versions of the model and inject the signal
at different total mass values (thus changing the num-
ber of observable cycles in band). For the analysis here
we use the nested sampling algorithm dynesty [61] as
implemented in Bilby [62] and Parallel Bilby [63].

We have selected fixed extrinsic parameters for each
injection. In Table I we list the parameters for each in-
jection and the recovered median values with 90% con-
fidence interval error estimates. In Fig. 4 we show the
recovered posterior distributions for the main intrinsic
parameters of both signals injected with a total mass
of 100M�. We compare the analytical MSA version of
the Euler angles (PV=223) with the new numerical in-
tegration implementation (PV=300). For SXS:BBH:0143
recovery is better with the default numerical implementa-
tion. For SXS:BBH:0062 and most parameters the small
deviations between the median value of the distribution
and the actual injected values are similar for both ver-
sions, with however a better recovery of the precessing
spin parameter χp for version PV=300. In Fig. 5 we show
the recovery of the component masses for the different
total injected masses, employing the default version of
the model. It can be seen that the injected values for the
component masses lie inside the 90% confidence intervals
for all cases, while there is a degradation of the maximum
likelihood prediction as the total mass increases and the
observable cycles in the detector are fewer. In general,
from the results reported in Table I, it can be seen that
the parameter recovery for SXS:BBH:0143 is good for all
parameters and masses, while for SXS:BBH:0062 there
is some parameter bias at MT = 200 , 300M� injections,
where several source parameters are not recovered within
the 90% confidence limits. For the next LIGO-Virgo ob-
servation run, O4, where SNR values as large as the ones
injected here can be expected, indeed further improve-
ments in the model are foreseen.

One should however be cautious to derive general con-
clusions about inherent systematic biases from only a few
points in the high-dimensional parameter space of CBCs.
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FIG. 4. Recovered posterior distributions for the key intrinsic parameters at injected mass MT = 100M�, comparing the
IMRPhenomTPHM standard version (PV=300) and the version with MSA Euler angles (PV=223). Top: SXS:BBH:0143. Bottom:
SXS:BBH:0062. Mc is the chirp mass.

SXS:BBH:0143 SXS:BBH:0062

Mtot/M� 100(99.78+1.81
−1.77) 200(196.98+8.55

−8.01) 300(292.66+18.0
−17.33) 100(101.72+5.78

−5.1 ) 200(220.59+17.45
−17.45) 300(335.31+25.33

−26.86)

Mc/M� 40.88(40.71+0.76
−0.75) 81.76(79.76+4.74

−4.79) 122.64(116.78+10.0
−12.39) 30.58(30.84+1.05

−0.99) 61.17(82.69+11.4
−13.95) 91.75(125.57+17.22

−22.51)

q 0.52(0.52+0.04
−0.04) 0.5+0.07

−0.07 0.47+0.11
−0.12 0.2(0.2+0.03

−0.02) 0.36+0.16
−0.12 0.36+0.15

−0.12

χeff 0.25 (0.26+0.04
−0.04) 0.23+0.08

−0.08 0.24+0.13
−0.14 -0.18(−0.15+0.09

−0.09) −0.21+0.16
−0.19 −0.19+0.19

−0.26

χp 0.21 (0.19+0.12
−0.08) 0.25+0.15

−0.12 0.26+0.18
−0.14 0.45(0.41+0.1

−0.09) 0.37+0.26
−0.2 0.33+0.33

−0.21

θJN 0.82 (0.84+0.12
−0.12) 0.81+0.19

−0.18 0.78+0.23
−0.22 0.2(0.28+0.13

−0.13) 0.52+0.54
−0.31 0.53+2.01

−0.31

φref 1.5 (0.95+0.43
−0.43) 3.89+0.45

−0.46 3.31+0.52
−0.64 0(0.86+5.24

−0.7 ) 3.46+0.53
−0.56 1.34+4.78

−1.19

ψ 0.33 (0.31+0.14
−0.14) 0.38+0.31

−0.23 0.35+2.44
−0.25 0.33(1.8+0.41

−0.41) 1.15+0.44
−0.48 1.37+0.52

−0.47

α 1.375 (1.38+0.01
−0.01) 1.38+0.04

−0.04 1.38+0.07
−0.08 1.375(1.38+0.03

−0.04) 1.38+0.06
−0.08 1.39+0.11

−0.12

δ -1.21 (−1.21+0.01
−0.01) −1.21+0.04

−0.03 −1.21+0.07
−0.06 -1.21(−1.21+0.03

−0.03) −1.21+0.06
−0.07 −1.22+0.09

−0.28

ρN
mf 60 (57.45+0.04

−0.06) 35 (33.11+0.08
−0.11) 25(23.29+0.11

−0.16) 32(30.0+0.08
−0.11) 25(23.3+0.11

−0.16) 25(22.82+0.11
−0.15)

TABLE I. Injected parameters and recovered parameters (median and 90% confidence intervals) for the set of injections
employed for testing the model performance. All angle values are given in radians. ρN

mf is the network signal-to-noise ratio
(SNR).

For a given set of intrinsic parameters, a representative
subset of extrinsic parameters would have to be selected
to perform a systematic analysis, which becomes pro-
hibitively costly with current codes if a significant portion
of the intrinsic parameter space has to be studied. Fur-
ther studies towards understanding waveform modelling
caveats for preparing the next, more precise, observing
runs of the detectors will require the combination of full
parameter estimation with cheaper techniques like fitting
factor estimates and Fisher matrix approaches. We leave
the development of these studies for future work. A fur-
ther issue is that for high total mass, when the available

information from the inspiral is smaller and only a few
cycles are present in band, degeneracies between the ex-
trinsic parameters and combinations of the intrinsic pa-
rameters can complicate the analysis, as we discuss in de-
tail in our re-analysis of the high mass event GW190521
[64].
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FIG. 5. Component mass posterior inference for different total mass injections, recovered with the standard version of
IMRPhenomTPHM (PV=300). First panel: SXS:BBH:0143. Second panel: SXS:BBH:0062. Diamonds indicate the injected val-
ues and stars the maximum likelihood values.

B. Comparison with other state-of-the-art
precessing multimode waveform models

We also compute matches for IMRPhenomTPHM
against a number of other state-of-the-art wave-
form models (SEOBNRv4PHM [8], NRSur7dq4 [14] and
IMRPhenomXPHM [5]), on two sets of 30000 random con-
figurations, chosen so that the first set lies within the
training region for NRSur7dq4 (i.e. q ≤ 4 and spins
isotropically distributed with the constraint a1,2 ≤ 0.8)
while the second set encompasses a wider region of pa-
rameter space, allowing mass ratios up to q = 20 as well
as nearly maximally-spinning black holes (a1,2 ≤ 0.99).
We generate the random samples only once and then re-
peat the match calculation on different pairs of models
to ensure a fair comparison. The upper panel of Fig.
6 shows that the bulk of the mismatch distribution be-
tween IMRPhenomTPHM and SEOBNRv4PHM or NRSur7dq4
lies around 10−3; the median of the distribution (marked
by a dashed line) is shifted towards slightly higher val-
ues in the comparison against IMRPhenomXPHM, which also
shows a broader tail towards poor matches. In the middle
(bottom) panel of the same figure, we compare the perfor-
mance of different IMRPhenomTPHM configurations against
SEOBNRv4PHM (NRSur7dq4) over the extrapolated (train-
ing) region. Versions incorporating a numerical evolution
of the spin dynamics (green and red curves) are in closer
agreement with SEOBNRv4PHM, while we do not observe
significant differences among versions when comparing to
NRSur7dq4. In Fig. 7, we show instead the distribution
of matches against other time-domain models as a func-
tion of the primary spin magnitude and mass ratio. This

plot allows to trace the origin of the tail of low matches
observed in the preceding histograms: the largest differ-
ences between different waveform models are correlated
with very unequal masses and highly positive/negative
spins. This is expected since, due to the limited availabil-
ity of numerical waveforms in this region, extrapolation
effects are likely to prevail.

C. Parameter estimation on GW190412

After analysing the performance of the model com-
pared with precessing waveforms from other state-of-
the-art waveform models and NR waveforms, in partic-
ular the correct parameter recovery of synthetic injected
signals, we now examine the performance of the model
analysing a real BBH event, GW190412 [29], which also
has been recently re-analysed with the 4th generation of
Phenom waveform models, including the non-precessing
version of our model, IMRPhenomTHM, in [30] (see also a
recent analysis of this event, employing the NR surro-
gate model NRSur7dq4, as well as the phenomenological
models IMRPhenomXPHM and IMRPhenomPv3HM, in [65]).

As done in [30], we employ v2 of the strain data [66]
for GW190412 released through the Gravitational Wave
Open Science Center (GWOSC) [67, 68], with a default
sampling rate of 16384 Hz, for consistency with the of-
ficial LVC study. This version has non-linear subtrac-
tion [69] of 60 Hz power lines applied to it. We also use
the PSDs [70, 71] and calibration uncertainties [72] in-
cluded in v11 of the posterior sample release [73] for this
event. We analyse 8 s of strain data from each of the Han-
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FIG. 6. Mismatch comparison with other state-of-the-art
precessing multimode waveform models. Top: Mismatch
distribution of the default version of IMRPhenomTPHM (nu-
merical evolution of spin equations) against different mod-
els (SEOBNRv4PHM: blue, NRSur7dq4: orange, IMRPhenomXPHM:
green). Middle: Mismatch distribution of different versions of
the model with respect to SEOBNRv4PHM. Bottom: Mismatch
distribution of different versions of the model with respect
to NRSur7dq4 (in its training region, see main text for more
details). Dashed vertical lines: median value of each distri-
bution.

FIG. 7. Two-dimensional distribution of matches when
comparing the default version of IMRPhenomTPHMwith
SEOBNRv4PHM and NRSur7dq4, as a function of the primary
spin magnitude and mass ratio. In both cases, matches de-
grade for very unequal-mass systems with a1 & 0.6.

ford, Livingston and Virgo detectors around the trigger
time of the event, as reported in GraceDB [74].

In Fig. 8 we compare the results for two versions of
IMRPhenomTPHM, analytical MSA angles (PV = 223) and
the default numerical implementation (PV = 300), with
the results for the model SEOBNRv4PHM released with the
LVC publication [29, 73] and the preferred results for the
standard version of the model IMRPhenomXPHM from the
recent re-analysis in [30] (we note that the results for
SEOBNRv4PHM were obtained with a different parameter
estimation pipeline, RIFT [75] and without employing
marginalization over detector uncertainty). Recovery of
the parameters is quite consistent with the previous pub-
lished results. Mass ratio is constrained, according to the
90% confidence intervals, to more unequal values than
the results for IMRPhenomXPHM, more in accordance with
the results from SEOBNRv4PHM. In a similar way, both
versions of the model have support for higher values of
the effective precessing spin parameter χp, while χeff is
the parameter showing greater difference between both
versions: PV=300 agrees better with SEOBNRv4PHM and
PV=223 agrees better with IMRPhenomXPHM. In Table II
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FIG. 8. Inferred posterior distributions for the parameters of the BBH event GW190412, comparing our new IMRPhenomTPHM

results with those for SEOBNRv4PHM from [29, 73] and IMRPhenomXPHM from [30]. Stars indicate the maximum likelihood value
for each run.

we report the median and 90% confidence intervals for
the main parameters recovered with version PV=300 FS=4,
showing that all values are consistent with previous pub-
lished results.

FIG. 9. Network matched filter SNR comparison between the
different results for the event GW190412.

In Fig. 9 we compare the network matched filter
SNR for the different models. We can observe that both
IMRPhenomTPHM model versions are able to recover higher
values of SNR than the equivalent IMRPhenomXPHM run,
though the width of the distribution (for the chirp mass
in this case) is wider than for SEOBNRv4PHM. In terms
of the Bayes factor for the different runs, we can see in
Table III that both IMRPhenomTPHM versions are slightly
preferred with respect to IMRPhenomXPHM, in agreement
with the SNR results. In terms of comparison with a non-
precessing approximant, we employ the published run for
IMRPhenomTHM from [30] and we find moderate support
for the precessing hypothesis.

In addition to the analysis of this event, the model
has been employed in a re-analysis [76] of the more mas-
sive events from the GWTC-1 catalog [26]. Contrary
to our results for GW190412, for several events in our
re-analysis results of GWTC-1 the IMRPhenomTHM and
IMRPhenomTPHM models recover slightly smaller SNRs

and Bayes factors than the corresponding frequency-
domain models IMRPhenomXHM and IMRPhenomXPHM.
The notable exceptions are the most massive event,
GW170729, and GW190814, which shows mild support
for precession. A likely explanation for this behavior is
that, while the description of precession is in general more
accurate with the default version of IMRPhenomTPHM,
due to the numerical integration of the precession equa-
tions and the improved treatment of the merger-ringdown
regime, the underlying non-precessing description is in
general still less accurate than the IMRPhenomX* coun-
terpart, especially in the description of the orbital fre-
quency evolution. This trade-off complicates to some ex-
tent the analysis of the improvements brought by this
new model for smaller masses, and we plan to upgrade
the non-precessing description towards the employment
of the model in the future planned observation run O4.
We have also re-analysed [64] the very massive event
GW190521 [77, 78]. In this case we find that as expected
IMRPhenomTPHM not only provides a better fit to the data
than IMRPhenomXPHM, but also shows a much more con-
sistent behavior when varying the options for precession
approximation and final spin (PV and FS).

D. Benchmarks

In the previous sections we have tested the accuracy of
the model with respect to the predictions of other state-
of-the-art waveform models as well as NR simulations,
showing also consistent parameter recovery for synthetic
and real GW signals. Another important aspect to test
is the computational efficiency of the model, since typical
parameter estimation runs involve of the order of 108 or
more waveform evaluations, so that a model that can
be useful for systematic studies of events or for studies of
parameter estimation methods has to be computationally
efficient.

In Fig. 10, we show the average evaluation time
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TABLE II. Inferred parameter values for GW190412 and their 90% credible intervals, obtained using precessing models including
higher multipoles. Columns 2–4 correspond to the results from the LVC analyses [29], the fifth column gives the results from
the precessing higher-modes model IMRPhenomXPHM reported in [30], and the last column provides the results obtained with our
model, for the default version run.

parameter SEOBNRv4PHM IMRPhenomPv3HM LVC Combined IMRPhenomXPHM IMRPhenomTPHM

ms
1/M� 31.7+3.6

−3.5 28.1+4.8
−4.3 29.7+5.0

−5.3 30.0+5.2
−4.3 30.9+3.5

−3.2

ms
2/M� 8.0+0.9

−0.7 8.8+1.5
−1.1 8.4+1.8

−1.0 8.4+1.3
−1.1 8.2+0.8

−0.7

M s/M� 39.7+3.0
−2.7 36.9+3.7

−2.9 38.1+4.0
−3.7 38.4+4.2

−3.2 39.1+2.8
−2.5

Ms/M� 13.3+0.3
−0.3 13.2+0.5

−0.3 13.3+0.4
−0.3 13.3+0.5

−0.4 13.3+0.3
−0.3

q 0.25+0.06
−0.04 0.31+0.12

−0.07 0.28+0.13
−0.06 0.28+0.09

−0.07 0.27+0.06
−0.05

χeff 0.28+0.06
−0.08 0.22+0.08

−0.11 0.25+0.08
−0.11 0.25+0.1

−0.1 0.27+0.07
−0.07

χp 0.31+0.14
−0.15 0.31+0.24

−0.17 0.30+0.19
−0.15 0.23+0.20

−0.13 0.28+0.15
−0.13

χ1 0.46+0.12
−0.15 0.41+0.22

−0.24 0.43+0.16
−0.26 0.39+0.16

−0.17 0.44+0.14
−0.15

DL/Mpc 740+120
−130 740+150

−190 730+140
−170 734+161

−187 723+112
−124

z 0.15+0.02
−0.02 0.15+0.03

−0.04 0.15+0.03
−0.03 0.15+0.03

−0.04 0.15+0.02
−0.02

θ̂JN 0.71+0.23
−0.21 0.71+0.39

−0.27 0.73+0.34
−0.24 0.75+0.36

−0.28 0.75+0.26
−0.21

ρH 9.5+0.1
−0.2 9.5+0.2

−0.3 9.5+0.1
−0.3 9.4+0.2

−0.3 9.5+0.1
−0.2

ρL 16.2+0.1
−0.2 16.1+0.2

−0.3 16.2+0.1
−0.3 16.1+0.2

−0.3 16.2+0.1
−0.2

ρV 3.7+0.2
−0.5 3.6+0.3

−1.0 3.6+0.3
−1.0 3.6+0.3

−0.8 3.8+0.3
−0.5

ρHLV 19.1+0.2
−0.2 19.0+0.2

−0.3 19.1+0.1
−0.3 18.9+0.2

−0.3 19.0+0.2
−0.2

TPHM vs XPHM TPHM vs THM

TPHM PV=223 3.02± 1.2 2.93± 1.2

TPHM PV=300 2.78± 1.2 2.69± 1.2

TABLE III. Comparison of Bayes factor between the different
IMRPhenomTPHM runs with the IMRPhenomXPHM results and the
non-precessing IMRPhenomTHM results from [30].

for the polarizations, computed as in eq. (9), compar-
ing current precessing multimode waveform models. In
the top panel, we show the results for a fixed sampling
rate of 4096 Hz (or, equivalently, a fixed time spacing
of 1/4096 seconds) varying the total mass of the sys-
tem (and hence the waveform length) for a fixed band-
width between 20 Hz and 2048 Hz. In the bottom panel,
we show the results fixing the total mass of the system
to 100M� and varying the sampling rate from 2048 Hz
to 16182 Hz. Results have been obtained on a Skylake
node with a clock speed of 2401 MHz of the CIT clus-
ter. From this, we can extract the conclusion than for
masses greater than 50M� and for typical sampling rates

at these masses (2048 Hz, 4096 Hz), the IMRPhenomTPHM
model has the second fastest evaluation time from the
analysed set, only after IMRPhenomXPHM, where extra op-
timizations have been applied, such as the implementa-
tion of the multibanding technique [79].

We also show results for lowering the starting wave-
form generation frequency, regulated by the amp-order
parameter:

fstart =
2fmin

2 + amp-order
, (33)

where fstart is the frequency for starting the waveform
generation and fmin is the starting frequency for the
noise-weighted inner product in eq. (27). This is required
for consistently including all the subdominant mode con-
tent in band once the waveforms are Fourier-transformed
to compute noise-weighted inner products, due to the
frequency scaling φ̇lm ≈ (m/2)φ̇22 of the subdominant
harmonics frequencies. For example, in order to have
all modes in band up to m = 4 at fmin, one needs to
set amp-order = 2. This translates into an increased
waveform length. While we can see that increasing the
waveform length has a big impact at low masses, we can
see that differences are reduced at high masses, which is
the preferred applicability regime of this model.
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Besides waveform evaluation time, it is useful to ex-
amine the mean likelihood evaluation time, since this is
a key value for parameter estimation applications: on
top of the waveform evaluation cost, this number incor-
porates the cost of conditioning and Fourier-transforming
the polarizations. In Table IV we can see the mean likeli-
hood evaluation time for several models, split into differ-
ent mass bins and for different durations of the analyzed
data segments. We can see that while at low masses (from
10M� to 60M�) the model is five times more expen-
sive than the reference model IMRPhenomXPHM (the
same being true for the comparison of dominant-mode
models between IMRPhenomTP and IMRPhenomXP),
at high mass the difference is approximately only a fac-
tor 2, which is quite remarkable taking into account that
IMRPhenomTPHM needs a numerical Fourier transform
before being applied in the likelihood evaluation. Notice-
ably, the model is almost two orders of magnitude faster
than the time-domain model SEOBNRv4PHM.

FIG. 10. Average evaluation time for the polarizations of dif-
ferent precessing multimode waveform models. Top: Average
evaluation time at fixed sampling rate as a function of the
total mass of the system. Bottom: Average evaluation time
at fixed total mass as a function of the sampling rate.

IV. CONCLUSIONS

In this paper we have presented a precessing time
domain model for the GW signal of coalescing black
holes, IMRPhenomTPHM, which can be considered to
be a time-domain companion to the IMRPhenomXPHM
frequency-domain model. Working in the time do-
main allows several improvements over the accuracy of
IMRPhenomXPHM: The inspiral description is more ac-

curate thanks to the numerical integration of the post-
Newtonian spin evolution in eq. (12). The merger is im-
proved by only modifying the non-precessing waveforms,
which we take from our IMRPhenomTHM model, in the
ringdown to adapt to the precessing final spin value. In
the time domain this is straightforward by only modify-
ing the ringdown portion of the waveform, however this
cannot be cleanly translated to the frequency domain,
due to the “smearing” effect of the Fourier transform.
Furthermore we have included an additional option to
the analytical description of the Euler angles to smooth
the behavior at merger, substituting our ignorance about
the actual plunge dynamics by a well-behaved simpler de-
scription, from the MECO time to the coalescence time.
Finally, in the ringdown we can ensure a consistent be-
havior with black-hole-perturbation theory by determin-
ing the Euler angles from the QNM frequencies. Our
approach opens up several avenues for further improve-
ments of the model. One natural avenue is full calibration
to numerical relativity precessing simulations, which we
expect to be simpler in the time domain. Another new
possibility is to analytically tune the information that en-
ters the numerical evolution of the spin equations (12),
e.g. by incorporating the in-plane spin components in
the phasing of the co-precessing modes.

The main application that we foresee for this new
model in GW data analysis are high-mass events, where
the additional accuracy in treating precession can play
a crucial role in the recovery of the source parameters.
Indeed, in two accompanying papers [64, 76] we find that
for the two high-mass events GW170729 and in particular
GW190521 IMRPhenomTPHM matches the data better
than IMRPhenomXPHM, and should be considered as
improving over the observational results obtained with
IMRPhenomXPHM.

In the future we plan to improve both the frequency-
domain and time-domain IMRPhenom models, and cali-
brate them to precessing NR simulations. Beyond quasi-
circular systems we also expect that the development of
eccentric waveform models, and in particular precessing
eccentric ones, will benefit from the insights gained both
from the frequency and time domain strategies. Finally,
we note that part of the original motivation for time-
domain models was to serve as an alternative baseline
to develop tests of general relativity, such as inspiral-
merger-ringdown or parameterized tests [80–82]. To this
end, different phenomenological parameterizations of fre-
quency and time-domain models will help to assess the
robustness of such tests. Moreover, we note that a time-
domain treatment guarantees a cleaner separation be-
tween the ringdown and the inspiral/merger regimes,
while this is not possible in the frequency domain due
to smearing effect of the Fourier transform.
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[Mmin,Mmax] ∆T IMRPhenomTP IMRPhenomXP SEOBNRv4P IMRPhenomTPHM IMRPhenomXPHM SEOBNRv4PHM NRSur7dq4

[60,100]
4 s 15.0 7.0 2006.0 55.0 24.2 4563.2 30.4

8 s 14.7 13.9 1968.2 55.8 39.6 4717.7 30.7

[10,60]
4 s 73.9 14.7 4614.6 271.6 54.2 4729.6 -

8 s 75.5 29.2 4672.2 267.3 84.8 5051.3 -

TABLE IV. Mean likelihood evaluation time in milliseconds for several precessing models including higher-order modes for equal-
mass signals. The numbers represent averages over two different total mass ranges [Mmin,Mmax] = {[10, 60], [60, 100]}M� and
random spin orientations and magnitudes. The first column indicates the total mass range in which the models are evaluated
and the second one specifies the data analysis segment length in seconds used for the calculations.
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sitats del Govern de les Illes Balears i Fons Social
Europeu, Comunitat Autonoma de les Illes Balears
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Appendix A: Usage of the LALSimulation
implementation

The IMRPhenomTPHM model has been implemented as
C code in the LALSimulation package of the LALSuite
[46] software framework for GW data analysis. Time-
domain polarizations can be called through the standard
interface SimInspiralChooseTDWaveform. Also spher-
ical harmonic modes in the L0-frame satisfying LAL
conventions can be called through the LALSimulation
SimInspiralChooseTDModes function.

For selecting the specific description of the precess-
ing Euler angles detailed in Sec. II D and II E, the user
can specify the parameters PhenomXPrecVersion (PV),
in a three or five digit format. The first three digits
correspond to the core specification of the Euler angles
description: 102 for NNLO, 223 for MSA and 300 for nu-
merical evolution of the spin precession equations (alter-
native versions of NNLO and MSA can also be specified,
see Table III of Appendix F in [5]). For the analytical
descriptions, the fourth digit selects the merger-ringdown
treatment: 0 corresponds to disabling the ringdown an-
gle approximation from eq. (24), 1 to enabling it, and 2
to enabling it with the addition of the linear continua-
tion from MECO time to coalescence time in eq. (20).
The fifth digit corresponds to the treatment of the third
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Euler angle: 0 corresponds to the analytical expression
and 1 to numerical evaluation. Our default implementa-
tion with PV = 300 does not include additional options,
and it always enables the ringdown angles approxima-
tion described in eq. (24). See Table V for a summary of
available options.

The final spin description can be selected via the pa-
rameter PhenomXFinalSpinMod (FS). Available options

inherited from the IMRPhenomXP/PHM implementation are
described in Table V of Appendix F in [5]. In this model
we have incorporated a new default option, described in
Sec. II E, where the individual spins are evaluated at coa-
lescence time from the evolution of eq. (12). This option
is the default and can also be explicitly specified with op-
tion FS = 4, but it is only available with PV = 300 since it
requires the numerical evolution of the individual spins.
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PV Explanation

10200/22300 NNLO/MSA analytical expressions evaluated for the whole waveform.

10210/22310 NNLO/MSA analytical expressions evaluated until time tc.

Attach ringdown angles with approximation from eq. (12).

10211/22311 NNLO/MSA analytical expressions evaluated until time tc. Attach ringdown angles with approximation from eq. (12).

Euler angle γ substituted by numerical evaluation of the minimal rotation condition.

10221/22321 NNLO/MSA analytical expressions evaluated until the MECO time. Linear continuation performed until time tc.

Attach ringdown angles with approximation of eqs. (12). Euler angle γ computed numerically.

102/223 Equivalent to 10210/22310.

300 Numerical evolution of L̂(t) for obtaining Euler angles until time tc.

Attach ringdown angles approximation of eqs. (12).

TABLE V. Options in the LALSuite implementation to change between different descriptions of the Euler angles. The coales-
cence time is denoted by tc.
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