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A Langevin equation for stochastic climate models with 
periodic feedback and forcing variance 

By A. RUIZ DE ELVIRA, Max-Planck Institut fur Meteorologie, Hamburg, F.R. Germany’ and 
PETER LEMKE, Geophysical Fluid Dynamics Program, Princeton University, Princeton, New Jersey, 

U S A .  and Max-Planck-Institut fur  Meteorologie, Hamburg, F.R. Germany 

(Manuscript received October 2; in final form November 30, 1981) 

ABSTRACT 

The concept of stochastic climate models developed by Hasselmann is generalized to include 
periodic feedback coefficients and random forcing with periodic variance, in order to take into 
account the seasonal variability of the mean atmosphere-ice-ocean interaction and of the 
atmospheric noise. Our results show marked departures from the original model, seen as 
seasonal modulations of the amplitudes of the covariances both with respect to seasonal and to 
lag times. 

1. Introduction 

In a recent publication, Hasselmann (1976) has 
considered a stochastic model of climatic vari- 
ability in which the slow changes of climate were 
interpreted as the continuous response of climatic 
variables to random excitations by “weather” 
disturbances. Later, this model was applied to a 
very simple climatic system (Frankignoul and 
Hasselmann, 1977) consisting of the upper layer of 
the ocean, driven by random fluxes of heat and 
momentum across the air-sea interface. The inter- 
est was centered in the features and orders of 
magnitude of the sea-surface temperature (SST) 
variability in the time-scale range of months to a 
few years. Lemke (1977) used a similar approach 
to estimate climate variability on longer time-scales 
( 10’-104 years) with a stochastically forced energy 
balanced climate model. 

Stochastic models were also fitted (in the least 
squares sense) to observed SST anomalies 
(Reynolds, 1978; Herterich and Hasselmann, 
1982) and to sea-ice anomalies (Lemke et al., 
1980), thereby achieving a statistical verification 

~~ 
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as well as yielding information on the statistics 
of the atmospheric forcing and on the determin- 
istic feedback governing parts of the climate 
system. Essentially, in these studies it is assumed 
that for small excursions about an equilibrium state 
the evolution of a climate variable y( t )  is governed 
by a Langevin-type equation 

i ( t )  = -v(t)Y(t) + w, (1.1) 

where w(t) is a stationary Gaussian, delta corre- 
lated, stochastic process representing the “weather” 
disturbances. The function u(t)  describes the resist- 
ance of y( t )  to changes produced by the forcing. 
The variable y( t )  may be associated with climate 
variables such as SST anomalies, ice coverage, etc. 
Typical time-scales for y( t )  are of the order of 
several months to several years or longer, while 
for w(t) they are of the order of a few days. 

In all models hitherto discussed, the feedback 
v( t )  and the variance of the stochastic forcing 
w(t) were approximated by constants determined 
by physical considerations or from data fitting. 
However, the mean atmosphere-ice-ocean inter- 
action represented by o(t)  and also the variance of 
the atmospheric noise will in many cases be 
seasonally variable. Therefore, we present here a 
generalization of the initial stationary stochastic 
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model by including periodic modulations of the 
feedback coefficient and stochastic forcing. 

This paper will be mainly concerned with the 
statistical properties of the one-dimensional process 
(1.1) since they can be readily compared with those 
estimated from observed climatic time series. In 
order to determine the relative importance of the 
seasonal dependence in the feedback and forcing 
terms, the covariance function and the variance 
spectrum are derived from (1.1) for three different 
models. The general model (denoted by the super- 
script 111) includes a seasonal varying feedback 
coefficient as well as a seasonal varying forcing. 
Model 11 includes a periodicity only in the feed- 
back coefficient and model I only in the forcing 
variance. For comparison reasons we will also use 
model 0. In this model both the feedback coefficient 
and the forcing variance are constant (Hasselmann, 
1 9 76). 

In this theoretical study we investigate only the 
mathematical models. A comparison with climatic 
data will be the subject of a subsequent publi- 
cation. 

2. The model covariance 

The governing equation is given by 

3x0 = -@ 3- 8, COS(0, f + 4)) y(t)  + w(t), (2.1) 
where w, denotes the (usually annual) angular 
frequency and / the phase of the feedback modu- 
lation. 

Eq. (2.1) is a first-order ordinary inhomogeneous 
linear differential equation with time dependent 
coefficients. For t > -a its solution is given as the 
response to the forcing w(t) by 

y(t)  = e x p k p t  - asin(w,t + 4)) 
x j:,dsw(s)exp{ps + asin(w,s + / ) I  (2.2) 

The covariance function C(t,r) of the climate 
with a = p,/w,. 

variable y( t )  is defined as 

C(t, 5) = (At + d y ( 0 )  - (y ( t  + r))Cv(t)), (2.3) 

where the angular brackets (. . .) denote ensemble 
averages over a set of realizations of the “weather” 
variables represented by the forcing w(r). 

Inserting the expression (2.2) into (2.3) we find 
for the covariance function 

C(t, r )  = exp{-P(t + r )  - asin(w,(t + r )  + 4) 
- fit - asin(w, t + 4)) jy: d r  
x (w(r) w(s))  expf 
+ ps + asin(w,s + (a)}. 

& 
+ asin(w, r + 4) 

(2.4) 

The assumption of cyclo-stationary delta correlated 
random forcing allows us to write 

(2.5) (w(r> w(t-1) = D(s) 6(r - s) 

D(s) = Do + D, COS(W, s + y), 

and consequently 

C(t, r )  = exp{-p(t + r )  - asin(w,(t + r )  + 4) 

with 

(2.6) 

- 8t - asin(w, t + /)I l:m ds 

x exp(2Cs + 2asin(w,s + / ) I  ~ ( s ) ,  (2.7) 

where z = min(t + r, t). 
The integration of eq. (2.7) can be performed 

expanding exp{2asin(w,s + /)I into a Bessel 
series: 

exp{2asin(was + 4)) = Jn(2ia) 
m 

n=-m 

x exp{-in(w,s + / ) I .  (2.8) 

Introducing the variable transformation s + s + z,  
we obtain 

J?m dsexp{2/3(s + z) + 2asin(w,(s + z )  + /)I 
m 

x D(s + z )  = exp { 2pz 1 

x exp{-ip((w, z + $11 fm 
x D(s + z)exp{2ps- ipw,s} = exp(2PzI 

x 1 JJ2ia) exp{-ip(o,z + /)} 

x (a + bcos(w,z + y )  + csin(w,z + y)), 

Jp( 2ia) 
p = - m  

m 

p=-m 

(2.9) 

where 

u = Do/(2p - ipw,) 

b=Dl(2p-ipw,)l((2p- ipw,)* + w:> (2.10) 

c = D ,  ~ , / ( ( 2 p  - ipw,)* + mi). 
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A LANGEVIN EQUATION FOR STOCHASTIC CLIMATE MODELS 315 

Therefore the covariance function for the complete 
model 111 can be represented by the series 

CIII(t, r )  = exp(-pr - asin(w,(t + r )  + 4) 
- asin(w,t + 4)) 

x 1 Jp(2ia)exp{-ip(w,t + ( ) } ( a  + b 

x cos(w, t + y )  + c sin(w, t + y)); 

=exp{pr-asin(w,(t+ r ) +  d)-asin(w,t+ 4)) 

x 2: JP(2ia)expi-ip(o,(t + r )  + 4)) 

x (a + bcos(w,(t + r )  + y )  + csin(w,(t + r)  

m 

P= -m 

r 2 0 

m 

p=-m 

+ Y ) ) ;  r < O .  (2.1 1) 

The covariance function for model 11 (only 
periodic feedback) can be obtained from eq. (2.1 1) 
by setting D,, and consequently b and c equal to 
zero 

C"(t, r )  = D,exp(-pr - asin(w,(f + r)  + 4) 
m 

x asin(w, t + #)I  

x exp{-ip(w, t + 4)1/(2p- ipw,); r 0 
= D,exp{ps- asin(w,(t + r )  + 4) 

- asin(w,t + 4)) 2' Jp(2ia) 

x exp{-ip(w,(t + r )  + 4)1/(2P- ipw,); 

Jp(2ia) 
p=--00 

m 

p=-m 

r<O. 
(2.12) 

The covariance function for model I follows from 
eq. (2.11) by setting a= 0 and noting that 

JJO) = 1 forp  = 0 
= 0 otherwise; 

sin(w,t+ y )  ; r>O I w, Dl 
4 p  + w: 

+- 

cos(w,(t + z) + y )  

sin(w,(t + r )  + y)  r ( 0 .  (2.13) 1 wa D' 
4p + w; 

+- 

To exhibit the features of the three models we 
must introduce numerical values into the above 
formulae. We may think of y( t )  as representing a 
dimensionless zonal averaged SST anomaly. For 
this case we have chosen p=O.222 month-', 
(see Frankignoul and Hasselrnann, 1977), and 
w, = (2n/12) month-', corresponding to the 
seasonal cycle. We have also chosen P, =0.8 
month-' to represent the case of a strong periodic 
modulation of the feedback coefficient. In all three 
models the form of the covariance function depends 
on the phases 4 and y. We have chosen to present 
the covariance functions with the same phase for 
all three models, and we have arbitrarily taken 
4 = y = 0. As the forcing has been supposed to be 
normalized, we have taken Do= 1. D ,  should be 
smaller than Do for any physical model. We have 
chosen it to be 0.5. 

With this set of values we present in Figs. 1 and 
2 a plot of the covariance functions C(t , r )  for 
two different seasonal times and for the four 
models. We observe first a marked variation in 
the amplitude with the seasonal time f ,  which goes 
in opposite directions for models I and 11. We also 
observe a marked variation of the form of the 
covariances with respect to model 0, with new 
peaks for time-lags around 6 and 12 months. We 
observe in the figures that the response of the 
model climatic variable y( t )  to the periodic forcing 
is out-of-phase, with respect to seasonal time t ,  
with the response to a non-periodic forcing when 
the system has a periodic feedback. In this case 
it is evident that model 111 must show a be- 
haviour intermediate between that of models I 
and 11. 

In Figs. 3-5 we have plotted the time-lag ( r )  
dependence of the first three coefficients of a 
Fourier series expansion of the covariance 
functions C(t, r )  for the models I, I1 and 111 

C(t, r )  = ao(r) + a,(r) cos(w, t )  
(2.14) 

For comparison, a plot of ao(r) for model 0 is 
also presented. 

We observe in Fig. 3 that only for model I1 is 
an appreciable deviation from model 0 obtained, 
and that this deviation has a small hump for a 
time-lag of about 12 months. In Figs. 4 and 5 
we observe that the most pronounced seasonal 
dependence is obtained for time-lags around, but 
not equal to zero, while again for r= 12 months 

+ b,(r) sin(w, t )  + . . .. 
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1.0 

1.: 

Conrmnr.r Yodel 0 - 
YDdd I -- 
Medl1 n --- 
Yodel m -..- 

Medl1 0 - 
-.I n --- 

I2 I I 

Fig. I .  Covariance functions C(f ,7)  of the response of 
the stochastically forced climate models 0, I, 11, 111. 
Seasonal time is r = 2 months. The y-axis units are 
arbitrary. 

1 I- 
CWXtonc.. I2 I '2 rlnnU1l 

Fig. 3. First Fourier coefficient a,(s) of the Fourier 
series expansion of the covariance functions for 
model 0 and 11. Models I and 111 Fourier coefficients 
are indistinguishable from that of Model 0. The y-axis 
units are arbitrary. 

M d i l  0 - 
rndll  I -- 
M C d l l I I  
-1 m -..- 

I 
Fig. 4 .  Second Fourier coefficient a,(?) of the Fourier 

models I, 11,111. The coefficient for Model 0 is identically 
zero. The y-axis units are the same as in Fig. 3. 

Fie. 2. Covariance functions C(G 7) of the response of 
the stochasticdly forced 
time is r = 8 months. The y-axis units are the same as 
in Fig. 1. 

series expansion of the covariance functions for the three O' I' 'I' 'I1* 

we obtain a small variation. We also observe here 
that models I and I1 show effects in opposite 
directions. 

3. The model spectrum 

spectrum P(w', o) of the cyclo-stationary process 

y(r) may be defined by the covariance matrix of 
the Fourier components y(w), where 

y ( f )  = I-, dwy(w) exp(iwt), 

or as the Fourier transform of the covariance 

Since the process y( t )  is non-stationary, the 

(3.1) 
m 

In analogy with the stationary case, the function C ( f ,  r). 

Tellus 34 (1982). 4 
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F u i m  co.ocm.Us Y I I X  -- 
Y d d H  -- 
e l m  -..- 

Fig. 5. Third Fourier coefficient b,(r) of the Fourier 
series expansion of the covariance functions for the three 
models I, 11, 111. The coefficient for Model 0 is identically 
zero. The y-axis units are the same as in Fig. 3. 

covariance matrix of the Fourier components is 
non-diagonal, and the spectrum P(w', o) depends 
on two frequency coordinates, a continuous 
frequency w, corresponding to the time-lag 
variable r of C(r,r), and a discrete frequency 
w' = qua, corresponding to the periodic depend- 
ence of C(t,r) on the seasonal time t .  This co- 
variance matrix is given by 

W 

(Y'(W)Y(W + w ' ) >  = 1 P(o ' ,w)  &w' - qw,), 
q = - w  

(3.2) 
where 

P(w',w) = (2/T,) I," dt d r  

x C(t ,  r)exp{-i(w't + o r ) ) ;  T, = (2n/w,). 

(3.3) 

Using the expression (2.7) we find 

P(w', W )  = (2/T,) 1," dt d r  

x exp{-i(w' I + wr)} exp(-p(t + 5 )  

- asin(w,(t + r )  + #)] exp{-Bt - a 
x sin(w,t + #)I (',dsexp{2ps + 2a 

x sin(w, s + #)) D(s). (3.4) 

The last integral in (3.4) is the same as in eq. 
(2.7) and is therefore given by (2.9). 

After expanding exp(-asin(w,(t + 7) + #)I and 

expi-asin(w,t + 4)) into a Bessel series, the 
spectrum for model 111 can be written as 

W 

P1"(w', w )  = (2/Ta) 1 A m n p ( a )  
m . n , p = - w  

'00 
x exp{i#(m + n - p ) }  J," dt . ( L W  d r  

x exp{iw,(mt + n(t + 5) -pz)J 

x exp{-iw't - i w )  exp(p(2z - 2t - 5 ) )  

x (a + bcos(w,z + y)  + csin(w,z + y)), (3.5) 

Amnp(a) = Jm(ia)Jn(ia)Jp(2ia), (3.6) 

and a, b and c are given again by eq. (2.10). 

(3.5) (denoted by H) can be written as 

H = I," d t [ f W  drq,=f+,) + I,, dr,,=,,I. 

Using the Euler formula for the sine and cosine 
terms in (3.5) we can determine H. We obtain for 
the spectral matrix the final expression 

Since z = minft + 7,t), the double integration in 

(3.7) 
W 

W 

P Y w ' ,  w )  = n 2' AmnP(a) 
m . n . p = - w  

x exp{i#(m + n - p ) )  

20,  d q , m + n - p  

C/3 - iw + iw,(n - p ) )  ( p  + iw - inw, I 

D,  ~ X P  ( i ~  1 dq, m + n - p +  1 

x [  

+ 
I / ? - i w + i w , ( n - ( p -  I ) ) ] (p+iw-inw,t  

1 Dl ~ X P  { - - i ~  d q ,  m + n - p -  I + 
( p  - iw + iw,(n - ( p  + 1)) t (/3 + iw - inw, I 

(3.8) 

where dq,k are Kronecker deltas. 

(3.8) by setting D, = 0 
The spectrum for model 11 is calculated from eq. 

Tellus 34 (1982), 4 



318 A. RUIZ DE ELVIRA AND P. LEMKE 

Similarly, the spectral matrix for model I is derived 
from eq. (3.8) with a =  0 and noting that 

A,,(a) = 1 for rn = n = p  = 0, 
= 0 otherwise: 

200 Pyw’, w )  = ~ 

p” + w =  q,o 

d, expbyl 
{ P  - i(w - wall { P  + iw 1 

ED, exp{-iyl 

{ P - i ( w + w , ) l { P + i w l  

+ - 47-1 

+ 4, I’ (3.10) 

We note that for a= 0 and D ,  = 0 the spectrum 
(3.10) is reduced to the well-known red-shaped 
form given by Hasselmann (1976). 

The effect of a periodic forcing is most easily 
seen if we substitute Pf(w’,  w )  into eq. (3.2) 

W 

(y*(w)y(w + w ’ ) )  = 1 PYw’, w )  S ( 0 ’  - qw,) 
q=-w 

nD, exp(iy1 + - 27% 
p” + w 2  { P -  i (w-  w,) l{P + iwl 

-- 

x S(w’ - ma), 

Thus we observe that each line input at frequency 
w is split into two-sided infinite bands with 
separation w, (Fig. 6). 

With the expression (3.13) fory(w) we can write 
for the spectrum of model I1 

(Y*((o)Y(w + w ’ ) )  
W 

= D W P w ( ~ + p w a , w ’  + qo,,), (3.16) 
p . q = - w  

where D, = Cz C, and 

Pw(w’,  w )  = (w*(w)  w(w + w ’ ) ) .  

the first three coefficients of the expansion 

(3.17) 

In Figs. 7-11 we present the cudependence of 

P(w’, w )  = ao(w) + a,(@) cos(w, t) + b , ( o )  
x cos(w, t )  + . . . (3.18) 

for all three models. 

Fig. 6 .  Frequency response to a delta-shaped input in the 
frequency domain (Model 11). 

., , ., 

(3.1 1) 1 Sprc‘rum 
R e  no I W )  

Model 0- 

In this case the response is split into side bands at Model II --- 
frequencies w + w, and w - w,. 

In order to interpret the effect of a periodic 
feedback coefficient, another perhaps more evident 
way of considering the spectrum P’l(w’, w )  can be 
obtained from eq. (2.2) if we first calculate the 
Fourier transform \ 
y(w) = .f:mdty(t)exp{-iwt\. (3.12) 

As is shown in the Appendix, we can write lo’-- 

W 

y(w)= ,I C,w(w--Pw,), (3.13) 
p = - w  

where 

, 
Fig. 7. Spectrum of the response of the stochastically 
forced climate models. Fourier transform of the first 

00 1 Fourier coefficient, a,(w). The transforms for models I 
and 111 are indistinguishable from that of model 0. The 
y-axis units are arbitrary. 

and 

C, = 1 JP+Aia)Jn(W . 
n=-m P + i(w + (P + n) w.1 

Tellus 34 (1982), 4 
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Spectrum 
Re A1 I W I  

Model I-- 

Model iX -..- -' A -&In--- 

-..- i - .. 
I " " '  ' ' "'I" 

l I / y e a r l  f l  Il/monlhl 
w IHertrl 

Fig. 8.  Spectrum of the response of the stochastically 
forced climate models. Real part of the Fourier 
transform of the second Fourier coefficient, a,(w). The 
y-axis units are the same as in Fig. 7. 

Fig. 9. Spectrum of the response of the stochastically 
forced climate models. Imaginary part of the Fourier 
transform of the second Fourier coefficient, u,(w).  The 
y-axis units are the same as in Fig. 7. 

The marked peaks around frequencies corre- 
sponding to periods of 12 months to be seen in 
these figures again show the periodic features of the 
three models, the effects of model I and model I1 
being again reversed in sign. 

Tellus 34 (1982). 4 

I Spectrum 
I 

3 4  

Re bl IWI 
Model I -- 

\ Model II --- - 
\- Model m--- 

-1- 

- 5- 

-6- 

-1- /- 

Fig. 10. Spectrum of the response of the stochastically 
forced climate models. Real part of the Fourier 
transform of the third Fourier coefficient, b,(w). The y- 
axis units are the same as in Fig. 7. 

Spectrum 

I m  bl I W I  Model I - - 
Model II --- 
Modd m -..- 

Fig. 11. Spectrum of the response of the stochastically 
forced climate models. Imaginary part of the Fourier 
transform of the third Fourier coefficient, b,(w). The 
y-axis units are the same as in Fig. 7. 

4. Conclusions 

We have analyzed here three complementary 
generalizations of the stochastic climate model 
proposed by Hasselmann (1976). Model I 
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included a forcing term with periodic variance, 
while retaining a constant feedback coefficient. 
Model I1 included only a periodically varying feed- 
back coefficient, while in model 111 both pericdi- 
cally varying terms were included. 

We have analyzed the covariances between the 
responses at different times, and the spectrum 
for all three models. Our results show marked 
departures from those of the original model, seen 
as strong seasonal modulations in the amplitudes 
of the covariances both with respect to seasonal 
and lag-times. 

We have observed that the effects of periodic 
feedback and of periodic modulated noise can be 
considered to be out-of-phase with respect to 
seasonal time. Consequently, model 111, which 
includes both modulations presents results inter- 
mediate between those of model I and model 11. 

To determine which of these models should be 
favoured, all three models can be fitted to climatic 
data by the well-known least-squares method 
(Linnik, 1961; Muller et al, 1978; Lemke et al., 
1980). This determination will be the subject of a 
subsequent publication. 
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6. Appendix 
We want to show here that it is possible 

to write the response y(w) in terms of a series of 
the Fourier transforms of the input noise w(f). 
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