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Perceptual Learning and Recognition of Random Acoustic 
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ABSTRACT
The human auditory system is capable of learning unstructured 
acoustic patterns that occur repeatedly. While most previous stu
dies on perceptual learning focused on seamless pattern repeti
tions, our study included several presentation formats, which are 
more typical for memory tasks (involving temporal delays or irrele
vant information between pattern presentations), and probed 
active recognition of learned patterns more directly. We adapted 
an established implicit learning paradigm and presented three 
groups of listeners with the same acoustic patterns in different 
presentation formats, i.e., either back-to-back, separated by 
a silent interval or by a masker sound. Participants additionally 
completed an unexpected memory test after the learning phase. 
We found substantial learning in all groups, measured indirectly via 
the increased sensitivity in a perceptual task for patterns that 
occurred repeatedly (compared to patterns that occurred only 
once) and more directly via above-chance recognition performance 
in the memory test. Pattern learning and recognition were robust 
across presentation formats. Therefore, we propose that similar 
mechanisms might underlie memory formation for initially unfami
liar sounds in everyday listening situations. Moreover, memories for 
unstructured acoustic patterns that were acquired implicitly 
through perceptual learning enable subsequent active recognition.

ARTICLE HISTORY 
Received 17 December 2021  
Accepted 20 May 2022 

KEYWORDS 
Perceptual learning; auditory 
memory; acoustic patterns

Introduction

Listeners make use of their memories of previously heard patterns in the acoustic signal, 
to meet the challenges of orientation in and interaction with complex auditory environ
ments (Bregman, 1990; Winkler et al., 2009). Rapid recognition of sounds that are 
familiar helps to channel limited processing resources on components of the auditory 
input that are unfamiliar and potential carriers of novel, relevant information. Previous 
exposure also enhances the sensitivity to certain stimulus features that are not retained in 
detail upon first hearing (McDermott et al., 2013) and improves sound source segrega
tion (Woods & McDermott, 2018). Thus, memories of sounds that have been heard 
before may facilitate and sharpen auditory perception, especially of largely unstructured 
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and spectro-temporally complex acoustic stimuli. Said memory representations are 
assumed to be established through unsupervised perceptual learning, i.e., an increase in 
perceptual capacity as a result of growing experience with the stimulus material (Gibson, 
1969; Gilbert et al., 2001) – even in the absence of an explicit memory task. That is, 
repeated exposure to certain sounds improves the efficiency of perception and, for 
instance, facilitates discrimination of these sounds with regard to different stimulus 
features such as duration, frequency, or intensity (Wright & Zhang, 2009).

There is compelling evidence that human listeners are capable of learning even 
random, unstructured acoustic patterns, such as white noise, from repeated exposure 
(see below). However, most previous studies investigated unsupervised acoustic pattern 
learning by presenting seamless, often periodic, pattern repetitions within a continuous 
sound and measured learning indirectly as a performance improvement in a repetition 
detection task. In the current study, we created an experimental learning context that 
more closely resembles the demands of everyday listening situations in which patterns 
repeat in variable formats, including temporal delays or irrelevant information between 
occurrences. In addition, we included a more direct measure of active pattern recognition 
after learning.

The Implicit Noise-Learning Paradigm as a Tool to Study Auditory Perceptual 
Learning

Previous research has often used white noise to study perceptual learning of unfamiliar 
and meaningless, but spectro-temporally complex acoustic patterns (e.g., Agus & 
Pressnitzer, 2013, 2021; Agus et al., 2010; Andrillon et al., 2015, 2017; Goossens, 2008; 
Guttman & Julesz, 1963; Kaernbach, 2004; Luo et al., 2013; Viswanathan et al., 2016; 
Warren et al., 2001). White noise is perceived as a homogeneous sound devoid of 
acoustic features that are commonly used to describe and distinguish sounds 
(Kaernbach, 2004), such as characteristic pitch (contours), transients or amplitude 
modulations. Its use as stimulus material offers a particular advantage such that it avoids 
confounding influences of higher-level categorical or semantic processing on sensory- 
driven learning. Due to the absence of salient physical cues in the signal, different noise 
samples are (on average) perceptually highly similar and can only be memorized and 
distinguished based on subtle acoustic idiosyncrasies that they contain by chance. Agus 
et al. (2010) introduced the so-called noise-learning paradigm to probe the implicit 
formation of memories for specific white noise tokens that are presented repeatedly to 
listeners. They asked participants to detect repetitions in noises that either consisted of 
two seamless presentations of a 500-ms segment (repetition) or of 1000 ms of random 
noise (no repetition). In addition to the repetitions within trials and unbeknownst to the 
participants, one specific stimulus (which contained a repetition) reoccurred across trials 
during an experimental block, while all other stimuli were presented only once. Hit rate 
in the periodicity detection task gradually increased over the course of the block for the 
repeatedly presented “reference repeated noise” in comparison to the “repeated noises” 
that occurred just once, suggesting that listeners formed memories of the reference 
repeated noise, which in turn facilitated the detection of repetitions (Agus et al., 2010). 
Learning was characterized as implicit, automatic, fast, resilient to interference, long- 
lasting and robust against temporal and spectral transformations: substantial learning 
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was observed after only a few occurrences of the reference noise, without any explicit 
instruction or even knowledge about the repetition across trials, despite the presentation 
of irrelevant noises in between, and performance advantages persisted in a re-test after 
two weeks and for time-compressed or time-reversed versions of the reference noise. 
Interestingly, learning differed between blocks and reference noises and appeared to 
occur either fast and (almost) perfectly or not at all (Agus et al., 2010).

The same paradigm was used in several subsequent studies (Agus & Pressnitzer, 2013, 
2021; Andrillon et al., 2015, 2017; Luo et al., 2013; Song & Luo, 2017; Viswanathan et al., 
2016), which replicated robust learning effects for specific white noise tokens and 
extended the findings by Agus et al. (2010). In particular, these studies lent further 
evidence that perceptual learning happens automatically in the absence of attention to 
the repeating stimuli, as it was also observed while participants performed a distractor 
task (Andrillon et al., 2015) and even during certain sleep phases (Andrillon et al., 2017). 
Moreover, electroencephalography (Andrillon et al., 2015, 2017), magnetoencephalogra
phy (Luo et al., 2013) and functional magnetic resonance imaging (Kumar et al., 2014) 
studies identified characteristic neural responses to learned reference noises (or noise- 
like patterns in the study by Kumar et al. (2014)) that accompanied learning-related 
behavioral changes.

Toward a Model of Perceptual Learning in More Naturalistic Listening Situations

While research on white noise learning has provided valuable insights into the 
remarkable learning capacity of the human auditory system by challenging it to the 
extreme, several further studies attempted to generalize these findings to varying 
learning contexts and establish their relevance for everyday learning. To this end, 
these studies manipulated different contextual factors, such as the acoustic properties 
of the stimulus material, the temporal regularity, and the frequency of occurrence of 
the to-be-learned reference patterns, to approximate the demands of naturalistic 
listening situations.

First, there is consistent evidence that perceptual learning of repeatedly presented 
sounds takes place across a variety of different acoustic patterns besides white noise, 
including temporal patterns of clicks (Kang et al., 2017, 2018, 2021), sequences of tone 
pips (Bianco et al., 2020; Herrmann et al., 2021) and “tone clouds” consisting of 
overlapping, temporally jittered tones of different frequencies (Agus & Pressnitzer, 
2021; Kumar et al., 2014). In particular, Agus and Pressnitzer (2021) recently demon
strated that the learning effect is robust and similar in size across tone clouds of varying 
spectro-temporal complexity, while increased stimulus complexity was only associated 
with an increase in general task difficulty (i.e., repetition detection became more 
difficult).

Second, recent studies have shown that although a temporally regular occurrence of 
repetitions may facilitate learning, the absence of such a regularity does not (fully) 
prevent the formation of memories for repeatedly presented acoustic patterns (Dauer 
et al., 2021; Hodapp & Grimm, 2021).

Finally, Bianco et al. (2020) demonstrated that learning of specific sequential patterns 
in rapid tone pip sequences occurred even when the pattern was only repeated much less 
frequently than in previous studies, i.e., on average every three minutes. Strikingly, 
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performance benefits for learned patterns were still observable seven weeks after learning, 
which indicated that perceptual learning in fact supports the formation of long-term 
memory representations of random auditory patterns (Bianco et al., 2020).

Taken together, these results, along with the above-mentioned automaticity of learn
ing through repeated exposure, strongly suggest that such mechanisms are likely candi
dates to underlie learning and memory formation in naturalistic everyday listening 
situations.

The Present Study

One aspect of the learning context that has received little consideration so far is how the 
acoustic patterns, which are to be learned through repeated exposure, are presented. In 
most previous studies that applied the noise-learning paradigm (or variants thereof), 
participants had to detect pattern repetitions that were embedded in a continuous 
stimulus (and occurred either immediately back-to-back or interspersed within 
a homogeneous noise or tonal stimulus). The detection of such within-trial pattern 
repetitions relies on a successful memory comparison itself, and the respective internal 
representations prepare the ground for higher-order learning of reference patterns that 
reoccur across multiple trials. The percept associated with pattern repetitions embedded 
in a continuous sound is known to arise rapidly and automatically (e.g., Andrillon et al., 
2015, 2017; Barascud et al., 2016; Chait, 2020). This automatic emergence of a salient 
(periodic) perceptual event from the unstructured, varying background might be 
a critical prerequisite for long-term learning. Yet, in naturalistic listening situations (as 
well as in typical memory tasks in the field of cognitive psychology) it is likely that 
a recurring pattern would not necessarily repeat seamlessly within one sound, but instead 
in variable formats that often include a gap between recurring sound events, i.e., some 
temporal delay or even irrelevant auditory input between presentations. The discrimina
tion of two patterns presented as separate sounds involves more cognitive (instead of 
rather perceptual) resources as it requires listeners to rely on distinct memory represen
tations of the patterns that do not automatically emerge from the stimulation.

The present study set out to investigate perceptual learning across different presenta
tion formats of the reference pattern. To this end, three groups of listeners were 
presented with to-be-learned reference patterns either back-to-back, with a silent interval 
or with a masker sound between them. As stimuli we used random acoustic patterns that 
were generated from white noise, but transformed so that they matched statistical 
properties of natural sounds (see, McDermott et al., 2011). That way, we could make 
sure that the sounds were novel and unfamiliar to the participants, yet comparable to 
naturalistic auditory input in terms of their spectro-temporal complexity and acoustic 
structure. It is important to note that, despite matching the statistical properties of 
natural sounds, our artificially generated sounds still differed from naturalistic everyday 
sounds in terms of phenomenological properties, i.e., they sounded artificial. However, 
increasing ecological validity of the stimulus material by using recordings of natural 
sounds would come at the expense of precise acoustic control between stimuli, which 
might introduce variance with respect to the memorability of specific sounds. Moreover, 
listeners’ familiarity with specific items or their semantic categories might vary for 
everyday sounds, while all artificially generated items are equally unfamiliar to them. 
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We therefore decided to use artificial stimulus material that is carefully controlled and, 
albeit not fully ecologically valid, closer to naturalistic sounds than the stimuli used in 
previous research.

Our main goal was to show perceptual learning of random acoustic patterns across 
different presentation formats, particularly in the absence of immediate (within-sound) 
repetition, i.e., when the reference patterns are presented with a silent interval or 
a masker sound between them. Substantial memory formation across presentation 
formats would point toward a relevance of such learning mechanisms for everyday 
listening situations.

Additionally, we wanted to explore whether and how perceptual learning of acoustic 
patterns is modulated by the presentation format. The size of the learning effect as well 
as certain aspects of learning (such as the number of presentations of the reference 
pattern required for performance changes to occur) were compared between the three 
groups of participants who learned the same reference patterns in different presenta
tion formats.

Finally, we aimed to measure learning of specific reference patterns more directly than 
in previous research. Specifically, we wanted to test whether repeated exposure to 
a certain reference pattern allows active recognition of that pattern in a subsequent 
unexpected memory test, beyond the implicit performance benefits in the perceptual task 
that is used during the learning phase. Participants were asked to complete a short two- 
alternative forced-choice recognition task at the end of the experiment in which they 
decided in every trial which out of two sounds they had already heard before. Above- 
chance recognition of previously learned acoustic patterns would point toward the 
formation of robust memory representations, which do not only enhance perceptual 
sensitivity, but can become at least to some degree actively accessible. A positive associa
tion between indirect and direct markers of learning would suggest that both learning- 
related performance benefits in a perceptual task and active recognition of learned 
patterns rely on the same memory representations.

Materials and Methods

Participants

A total of 74 healthy participants took part in the study, two of whom had to be excluded 
due to technical issues (no responses were stored for a whole experimental block).1 The 
remaining 72 participants (57 of them female, 15 male) who formed the final sample were 
between 18 and 54 years old (M = 22.86 years, SD = 5.91 years). Four of them were left- 
handed, the remaining 68 were right-handed (as assessed with the short form of the 
Edinburgh Handedness Inventory; Oldfield, 1971). All participants reported normal 
hearing, normal or corrected-to-normal vision and no history of any neurological or 
psychiatric disorder. They were naïve regarding the purpose of the study, gave informed 
consent (by ticking a box in the online form in order to be allowed to proceed to the 
actual experiment) and received course credits for their participation. The study was 
conducted at a German university and most participants were psychology undergraduate 
students. All experimental procedures were in accordance with the Declaration of 
Helsinki and the study was approved by a local ethics committee.
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Stimuli

So-called correlated noise, i.e., randomly generated acoustic patterns that shared statis
tical properties with natural sounds, served as auditory stimulus material. This type of 
sounds has been used previously to study auditory perception and is described in detail 
elsewhere (McDermott et al., 2011). Stimuli with a duration of 500 ms, including 10-ms 
onset and offset ramps (half-Hanning windows), were created using the Gaussian Sound 
Synthesis Toolbox (http://mcdermottlab.mit.edu/Gaussian_Sound_Code_for_ 
Distribution_v1.1) in Matlab (version R2021a; The MathWorks Inc., USA). 
A generative model was used to transform randomly generated white noise tokens into 
correlated noise stimuli that had a certain correlative structure, such that temporally and 
spectrally adjacent sampling points in the spectrogram shared similar (correlated) spec
tral energy values. The strength of the correlative relationship decreased with increasing 
temporal and spectral distance between sampling points. Constants for this decrease per 
time or frequency window were chosen such that they matched the correlative structure 
of natural sounds (e.g., speech stimuli, environmental sounds; as reported in detail by 
McDermott et al., 2011). Specifically, the strength of the correlation decreased with 
−0.065 per time window (20 ms) along the temporal dimension and with −0.075 per 
frequency window (0.196 octaves) along the spectral dimension. In order to avoid 
discriminability of the patterns solely based on their loudness, time-varying acoustic 
loudness was determined using the acousticLoudness function in Matlab (version 
R2021a), and amplitudes were adjusted such that the N5 percentile (i.e., the loudness 
below which were 95% of the sampling points) was within a range of 35 ± 0.1 sones for all 
sounds. Audio files with example trials can be found in the online supplemental material 
(https://osf.io/b93h4/?view_only=dca54eec50304f6fa377c50c01821e45).

Procedure

The study was conducted as an online experiment. Thus, participants used their own 
computer (which was required to have a physical keyboard) and headphones (con
nected via a jack plug and (where applicable) with disabled noise canceling function). 
A custom-built program was compiled using the free JavaScript library jsPsych (de 
Leeuw, 2015; https://www.jspsych.org) to control stimulus presentation and response 
registration via the browser (Google Chrome, Mozilla Firefox or Microsoft Edge). The 
experiment was hosted on a lab-internal server using JATOS (Lange et al., 2015; https:// 
www.jatos.org).

Before the actual experiment, participants received instructions with regard to volume 
settings and their task. After adjusting the volume to an individually comfortable level, 
they had the chance to familiarize themselves with the task. During a short training block, 
which consisted of 10 trials, feedback was provided after every trial (correct/incorrect), 
whereas in the actual experiment they received feedback (percentage of correct 
responses) only at the end of each block.

The actual experiment consisted of a “learning phase” and a “test phase.” Importantly, 
participants were not informed about the subsequent test phase in the beginning of the 
experiment. Instructions were only provided for the task that was to be performed during 
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the learning phase, along with the information that other two short auditory tasks (the 
test phase and a headphone screening test; see below) would follow the three experi
mental blocks. The experimental design is illustrated in Figure 1.

Learning Phase
During the learning phase, we used modified versions of the noise-learning paradigm 
that was originally introduced by Agus et al. (2010). In every trial, participants were asked 
to compare two 500 ms noise patterns and indicate via button press whether the same 
specific noise pattern was repeated (and presented twice) or two different noise patterns 
were presented. Both cases occurred with the same probability of 50%. Unbeknownst to 
the listeners, within each experimental block, one noise pattern was presented repeatedly 
while all other noise patterns were presented only once throughout the experiment. This 
so-called “reference noise” occurred in half of the trials that contained a repetition of 
a specific noise pattern. Thus, in 50% of all trials two different noise patterns were 
presented (“noise”/N), in 25% the same noise pattern was repeated within the trial 
(“repeated noise”/RN), and in 25% the same noise pattern was not only repeated within 
the trial, but also across trials within a block (“reference repeated noise”/RefRN). A gradual 
increase of task performance over the course of the block in the RefRN, but not in the RN 

Figure 1. Experimental design. All participants completed a learning phase with three blocks, followed 
by an unexpected test phase. Presentation format during the learning phase was manipulated across 
three separate groups of participants. In each block during the learning phase, one specific acoustic 
pattern (RefRN) reoccurred unbeknownst to the participants and was expected to be learned through 
repeated exposure.
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condition (as reported by previous studies, e.g., Agus et al., 2010; Viswanathan et al., 
2016) would be interpreted as an (indirect) indicator of learning of the reference noise. 
All participants completed three blocks, i.e., they were presented with three different 
reference noises throughout the experiment.

In addition to the manipulation of the trial type (N, RN, RefRN), three groups of 
participants (n = 24 per group) differed with regard to how the two noise patterns within 
a trial, which were supposed to be compared, were presented. This required slight 
adaptations of the task and the trial structure between groups.

In group A, patterns were presented back-to-back, i.e., the two 500-ms patterns were 
seamlessly concatenated into one 1000-ms sound without a gap between them, thus 
following the original presentation format used by Agus et al. (2010). During sound 
presentation, a fixation cross was displayed on the screen. The listeners’ task was to 
decide whether the sound contained a repetition or not, i.e., whether the first half of the 
sound was identical to the second half. They gave their response by pressing either key 
“S” (“repetition”) or “L” (“no repetition”) on the keyboard of their computer. Response 
options along with the corresponding key were presented on the screen after the end of 
the sound until the participant pressed a button or the maximal response interval of 
2000 ms expired. The next sound was presented after a silent inter-trial interval of 
500 ms.

In group B, patterns were presented with a silent interval of 1000 ms between them. 
Participants were asked to indicate in every trial whether the two sounds were the same 
or different by pressing either key “S” (“same”) or “L” (“different”). The rest of the trial 
structure including maximal response and inter-trial interval was analogous to group A.

In group C, patterns were presented with a 500-ms masker sound between them, with 
the three sounds separated by inter-sound intervals of 400 ms. As masker sounds, we 
used correlated noise stimuli that were generated (individually for each trial) according 
to the same procedures as the two sounds that were to be compared. Listeners had to 
decide whether the first and the last sound were the same or different. They again gave 
their response by pressing either key “S” (“same”) or “L” (“different”). The rest of the trial 
structure including maximal response and inter-trial interval was analogous to group 
A and B.

Within a group, each participant was presented with different reference noises, but 
the same pool of reference noises was used across groups to avoid random variability 
in performance due to salient acoustic features that randomly occurred in specific 
patterns, but not in others. N and RN trials were formed from 500-ms segments that 
were drawn from the same pool of noise segments in individually randomized combi
nations and order for each participant, such that each individual heard each segment in 
exactly one trial throughout the experiment (once if it was part of an N trial, twice if it 
was part of an RN trial). The pool of 500-ms noise segments used for group A and 
B was extended by additional segments for group C due to the higher number of trials 
in this group and the use of an additional masker sound in each trial. Each of the three 
blocks consisted of 100 trials in group A and B and of 160 trials in group C. As we 
wanted to keep the online experiment duration as short as possible and previous 
studies (e.g., Agus et al., 2010) had shown fast learning of the reference noise within 
the first 10 to 15 presentations, we restricted the number of RefRN trials per block to 25 
in group A and B. For the presentation format with a masker sound in group C, we 
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decided to present 40 RefRN trials per block, as there were no estimates from the 
literature with regard to the number of presentations necessary for learning under such 
a condition, yet we expected that learning might occur with a somewhat slower time 
course.

Test Phase
During the test phase, the procedure was the same for all three groups. In each trial, 
participants heard two stimuli that were separated by 1500 ms of silence, one of which 
was a reference noise that had been presented before during one of the experimental 
blocks. They were asked to indicate in a two-alternative forced-choice recognition task 
which of the two sounds they have already heard before during the three blocks. An 
above-chance performance in this recognition task would be interpreted as a (more 
direct) indicator that robust memories of the reference noises were formed during the 
learning phase. Listeners were instructed that this memory test was very difficult, but 
that previous studies had shown that participants performed surprisingly well if they 
just relied on their “gut feeling.” They again gave their response by pressing either key 
“S” (“first sound”) or “L” (“second sound”). The rest of the trial structure including 
maximal response and inter-trial interval was analogous to the learning phase. Each 
reference noise was presented eight times during the test phase in a fixed order, such 
that the reference noises occurred in the same order as in the three blocks during the 
learning phase and this order (RefRN1, RefRN2, RefRN3) was repeated eight times. 
This restriction served to avoid that the same reference noise (i.e., target) occurred in 
two immediately consecutive trials. As non-targets we used three filler noises (Fill1, 
Fill2, Fill3) that were assigned to trials pseudo-randomly with the restriction that the 
same stimulus must not occur in two immediately succeeding trials. That way, we made 
sure that participants could not base their responses solely on item repetition within 
the test phase, because both targets (i.e., reference noises) and non-targets (i.e., filler 
noises) repeated and each stimulus occurred equally often (i.e., eight times). The 
position of the reference noise within the trial was counterbalanced such that it was 
never presented in the same position in more than three trials in a row. No feedback 
was provided at the end of the test phase.

The test phase was succeeded by a headphone screening test (Milne et al., 2021) based 
on the dichotic Huggins Pitch percept (Cramer & Huggins, 1958; see also, Akeroyd et al., 
2001; Chait et al., 2006). This illusionary pitch phenomenon should only occur during 
dichotic presentation of the auditory signal via headphones, but not via loudspeakers 
(Milne et al., 2021). Stimulus generation as well as the structure of the test block followed 
the procedures described by Milne et al. (2021).

Finally, participants were asked to report their experiences during the experiment in 
a short questionnaire. This gave us the chance to assess potential problems that may have 
occurred and would usually become apparent when talking to the participants in person 
in the lab. In this questionnaire, participants were also asked to rate the perceived 
difficulty of the task during the learning phase (on a scale ranging from 1 = “not difficult 
at all,” to 5 = “very difficult”) and the subjective confidence with regard to their responses 
(on a scale ranging from 1 = “not confident at all” to 5 = “very confident”). The total 
duration of the online experiment was around 25 minutes for group A, 30 minutes for 
group B and 40 minutes for group C.
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Data Analysis and Statistical Inference

Data analysis was mainly done in RStudio (version 4.0.2; RStudio Inc., USA), except for 
the cluster-based permutation tests, which were computed in Matlab (version R2021a; 
The MathWorks Inc., USA).

Learning Phase
Groupwise Analysis. Data from the learning phase were first analyzed separately within 
each group. Performance in the respective perceptual task was evaluated within the 
framework of signal detection theory, which is widely used to quantify and disentangle 
response accuracy and response bias in perceptual categorization tasks (Macmillan, 
2001). For each participant, the sensitivity index d’ was computed from hit rates and 
false alarm rates for RefRN and RN condition, respectively, applying the so-called log- 
linear transformation (Hautus & Lee, 2006) to avoid infinite values of d’ in the case of 
extreme hit or false alarm rates. One-sided paired t-tests were used to test whether the 
performance was higher in the RefRN compared the RN condition, which would indicate 
that learning of repeatedly presented reference noises took place. Statistical significance 
was defined by the standard .05 alpha criterion and Cohen’s d was reported as a measure 
of effect size. In addition to the frequentist tests, we conducted complementary Bayesian 
t-tests and computed Bayes Factors (BF10) using the package “BayesFactor” in RStudio 
(Morey & Rouder, 2011; Morey et al., 2018; Rouder et al., 2009). In accordance with 
widely used conventions (Lee & Wagenmakers, 2014), BF10 > 3 was considered moderate 
evidence for the alternative hypothesis and BF10 < 0.33 was considered moderate 
evidence for the null hypothesis, while values in between were deemed inconclusive. 
BF10 > 10 or BF10 < 0.1 were interpreted as strong evidence for the alternative or null 
hypothesis.

To illustrate changes in performance over the course of the block, hit rates and false 
alarm rates were averaged across listeners at each position within the block (for hit rates: 
1 to 25 in group A and B, and 1 to 40 in group C; for false alarm rates: 1 to 50 in group 
A and B, and 1 to 80 in group C). Trajectories of hit rates in the RefRN and RN condition 
and false alarm rates were estimated and plotted by fitting a local regression (loess curve) 
with the formula y ~ x.

Comparison Between Groups. In a second step, data from the learning phase were 
compared between groups to explore whether perceptual learning was modulated by 
the presentation format, which differed between groups. In order to use an equal number 
of trials across groups, only the first 25 RefRN and RN trials (and the first 50 N trials) were 
included for group C. Difference scores were computed for each participant by subtract
ing d’ in the RN condition from the RefRN condition as a measure of the size of the 
learning effect across the whole block. We compared these d’ differences between groups 
by means of a one-way (non-repeated measures) ANOVA with the three-level factor 
Presentation Format (back-to-back, silent interval, masker sound) using the package “ez” 
(Lawrence, 2016). Greenhouse-Geisser correction was applied to correct for non- 
sphericity (as indicated by a significant Mauchly’s test with p < .05). A significant effect 
of Presentation Format was followed up with pairwise two-sided independent-sample 
tests between the three groups. P-values of these post-hoc t-tests were adjusted based on 
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the false discovery rate (Benjamini & Hochberg, 1995). A complementary Bayesian 
ANOVA was computed, again using the package “BayesFactors” (Morey et al., 2018; 
Rouder et al., 2012).

To shed further light on the more subtle influences of the presentation format on 
certain aspects of learning, we subsequently compared the time course of the learning effect 
as well as the proportion of (near-) perfectly learned reference noises between groups.

For the analysis of time courses, differences in hit rate between RefRN and RN 
condition were computed for each listener at each occurrence (1 to 25) of RefRN and 
RN trials within the block. These differences were compared between the three groups 
using pairwise Mann-Whitney U-tests. We chose the non-parametric equivalent of 
independent-sample t-tests because within-subject averages were calculated from just 
three blocks, thus could only adopt a very limited number of values. Tests were 
computed for each of the 25 trial positions within the block, which resulted in 
a time series of U-values. We used a cluster-based permutation approach to control 
for multiple comparisons and identify clusters of significant differences between 
groups at adjacent positions. To this end, clusters of at least two adjacent positions 
with p < .05 were identified and the sum of U-values was calculated within each cluster. 
To define the threshold for significance, assignment of trials to the groups was 
permuted and the maximum of the cluster-level summed U-values were extracted 
from each of 1000 random permutations. The resulting random distribution of cluster 
U-values was then used to determine the cluster threshold for statistical significance 
at p = .05.

For the analysis of the proportion of (near-) perfectly learned reference noises, average 
hit rates were computed for the last ten RefRN trials (i.e., after most of the learning has 
presumably already taken place) within each block and each participant. Based on these 
hit rate scores, blocks were categorized either as learned (when performance reached 
a near-perfect level of at least 90% hit rate) or non-learned (when performance remained 
below 90%). Pairwise chi-squared tests were used to compare the proportion of learned 
and non-learned reference noises (corresponding to the number of blocks) between the 
three groups. For illustration purposes, trajectories of hit rates over the course of the 
block were plotted for each group only for the blocks in which a near-perfect perfor
mance was reached after learning.

Test Phase
Because the number of trials differed between groups during the learning phase, data 
from the test phase was analyzed separately within each group only. Active recognition 
performance, i.e., the percentage of correct responses during the test phase, was com
puted for each listener as a more direct measure of learning. To assess whether partici
pants recognized previously learned patterns above-chance, performance was then tested 
against 50% chance level by means of a one-sided one-sample t-test in each group. Again, 
corresponding Bayesian t-tests were calculated to complement the frequentist analysis. 
Finally, we tested a potential association between the indirect and more direct measure of 
learning. Specifically, Spearman’s rank correlations (Shapiro-Wilk normality tests 
revealed violations of the assumption of normality: W’s < 0.79, uncorrected p’s < .001) 
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between the mean hit rate in the last ten RefRN trials of the learning phase and the 
percentage of correct responses during the test phase were computed in each group and 
correlation coefficients were tested against zero.

Results

The headphone screening test revealed that 19 (out of 72) participants, did not pass 
a moderate criterion of at least five (out of six) correct responses (corresponding to 
a result obtained with a probability of only 1.78% if listeners were just guessing). Please 
note that there was an unexpected high number of missing responses in the headphone 
screening test. This suggests that, instead of responding incorrectly, participants might 
have failed to respond within a 2000-ms time window, or that there might have been 
technical problems (in recording the participant’s response) in some trials. Thus, the test 
might overestimate the number of individuals identified as not passing the test. 
Therefore, we conducted all reported analyses twice, once including data from all 
participants irrespective of their headphone screening test result, and once including 
only data from the 53 participants who did pass the test. As both procedures yielded the 
same pattern of results, we decided to report data from all 72 participants for the sake of 
statistical power as well as an equal number of listeners in each group.

Learning Phase

Groupwise Analysis: Significant Learning Effect in Each Group
Groupwise performance during the learning phase (in terms of the sensitivity index d’) is 
depicted in Figure 2. An additional figure that shows hit rates and false alarm rates 
separately is included in the online supplemental material (https://osf.io/b93h4/?view_ 
only=dca54eec50304f6fa377c50c01821e45). On average, participants across all groups 
performed above chance in both RN and RefRN trials, which indicated that they were able 
to successfully solve the respective task (i.e., detect repetitions within sounds or discri
minate two sounds). Crucially, we observed substantial learning of reference noises for all 
three presentation formats, as reflected in a higher sensitivity in the RefRN compared to 
the RN condition (back-to-back: t(23) = 5.55, p < .001, d = 1.13, BF10 = 3641.32; silent 
interval: t(23) = 3.76, p = .001, d = 0.77, BF10 = 69.48; masker sound: t(23) = 2.59, p = .008, 
d = 0.36, BF10 = 6.41).

As visible in the middle row of Figure 2, hit rate increased over the course of the block 
in the RefRN condition for all groups. In the RN condition, the time course of the 
performance was less consistent across groups: While the hit rate seemed to decrease 
rather early in the back-to-back group, it slightly increased along with performance in the 
RefRN condition in the silent interval and masker sound groups in the beginning of the 
block, possibly reflecting an unspecific improvement as a result of growing experience 
with the task. Nevertheless, hit rate remained higher throughout the whole block and the 
performance increase was larger in the RefRN than in the RN condition, which resulted in 
a divergence of the two curves in all groups (albeit only after a different number of trials 
in each group). False alarm rates were largely unchanged over the course of the block and 
only showed a slight decrease in the back-to-back group (see lower row of Figure 2).
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Comparison Between Groups: Differences in Certain Aspects of Learning
Overall, performance appeared to be weaker, i.e., d’ was smaller, in group C compared to the 
other two groups, suggesting that the presence of a masker sound between two correlated 
noise tokens that were to be compared increased the task difficulty. In fact, listeners reported 
an increased perceived task difficulty (F(2, 69) = 6.15, p = .003, partial η2 = .15, BF10 = 11.48; 
A vs. B: t(46) = −0.13, adjusted p = .883, d = 0.04, BF10 = 0.29; A vs. C: t(46) = −3.26, adjusted 
p = .006, d = 0.94, BF10 = 16.87; B vs. C: t(46) = −3.28, adjusted p = .006, d = 0.95, BF10 = 17.66) 
and a reduced subjective confidence with regard to their responses (F(2, 69) = 6.56, p = .002, 
partial η2 = .16, BF10 = 15.41; A vs. B: t(46) = 0.32, adjusted p = .730, d = 0.09, BF10 = 0.30; A vs. 
C: t(46) = 3.37, adjusted p = .005, d = 0.97, BF10 = 21.94; B vs. C: t(46) = 3.15, adjusted p = .007, 
d = 0.91, BF10 = 13.05).

Figure 2. Groupwise performance in the learning phase. Upper row: Mean sensitivity index d’ in RefRN 
and RN condition. Single data points correspond to individual participants. Middle row: Mean hit rate 
in RefRN and RN condition at each position within the block. Curves correspond to local regressions 
(loess curves) with the formula y ~ x. Shaded areas indicate the 95% confidence interval. Lower row: 
Mean false alarm rate at each position within the block.
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The comparison of d’ difference scores (RefRN minus RN) between groups revealed 
that the size of the learning effect for reference noises differed significantly between 
presentation formats (see, Figure 3(a)). Concretely, the ANOVA yielded a significant 
main effect of Presentation Format (F(2, 69) = 5.36, p = .007, partial η2 = .13, BF10 = 6.51). 
Post-hoc contrasts showed that the learning effect was larger in the back-to-back group 
than in both the silent interval (t(46) = 2.58, adjusted p = .017, d = 0.74, BF10 = 3.93) and 
the masker sound (t(46) = 2.77, adjusted p = .010, d = 0.80, BF10 = 5.73) group, while it did 
not differ between the latter two (t(46) = 0.48, adjusted p = .668, d = 0.14, BF10 = 0.32). 
This difference in the size of the learning effect is likely accounted for by differences in the 
time course of the learning effect and in the proportion of (near-) perfectly learned 
reference noises between groups.

As shown in Figure 3(b), learning had a distinct time course within the block for the 
different presentation formats. While all curves overlapped at the beginning and converged 
toward the end, they clearly diverged in the middle of the block. Specifically, the curve 
began to rise earlier, after just about five presentations of the reference noise, in the back-to- 
back group, while the increase occurred only after about 15 to 20 trials in the silent interval 

Figure 3. Performance differences between groups in the learning phase. a: Mean difference in 
sensitivity index d’ of RefRN minus RN condition. Single data points correspond to individual 
participants. b: Mean difference hit rate of RefRN minus RN condition at each position within the 
block. Curves correspond to local regressions (loess curves) with the formula y ~ x. Shaded areas 
indicate the 95% confidence interval. Horizontal bars indicate a significant difference between the 
back-to-back and the silent interval group (dark gray) and between the back-to-back and the masker 
sound group (light gray) as revealed by pairwise cluster-based permutation tests (no clusters of 
significant differences were found between the silent interval and the masker sound group). c: 
Distribution of hit rates in the last ten RefRN trials of each block. d: Mean hit rate in RefRN condition 
at each position within the block for blocks in which a hit rate of at least 90% is reached in the last ten 
RefRN trials.
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and the masker sound group. Cluster-based permutation tests supported this observation 
and revealed significant clusters of differences in the time courses between the back-to-back 
group and both the silent interval (zcluster = 5.62, pcluster = .002) and the masker sound group 
(zcluster = 2.43, pcluster = .046). No significant cluster of differences was found between the 
silent interval and the masker sound group (zcluster = 2.16, pcluster = .103).

Figure 3(c) shows the proportion of blocks in which a certain performance was 
reached within the last ten RefRN trials of the block. Near-perfect performance (i.e., 
a hit rate of at least 90%) was reached in more than 75% of the blocks in the back-to-back 
and the silent interval group, while this was only the case for about 50% of the blocks in 
the masker sound group. Chi-squared tests supported that the proportion of learned 
reference noises (with near-perfect performance toward the end of the block) was 
significantly smaller in the masker sound group compared to both the back-to-back (X2 

(1) = 14.97, p < .001) and the silent interval group (X2(1) = 8.56, p = .003), while there was 
no significant difference between the latter two (X2(1) = 0.66, p = .417). In Figure 3(d), the 
time course of learning is depicted selectively for the blocks in which the reference noise 
was successfully learned. While the performance was initially lower in the masker sound 
group compared to the other two, a steeper rise of the RefRN hit rate throughout the first 
15 presentations of the reference noise in this group resulted in an approximation of all 
curves toward the end of the block (at ceiling performance).

Test Phase

In addition to performance changes during the learning phase as an indirect correlate of 
learning, we measured learning more directly via the active recognition performance 
after learning (see, Figure 4(a)). During the unexpected test phase, listeners recognized 
previously learned reference noises in 58.33% of the trials in the back-to-back group, in 
60.07% in the silent interval group and in 63.54% in the masker sound group. Albeit far 
from perfect, recognition performance was significantly above chance level (i.e., 50%) in 
all groups (back-to-back: t(23) = 2.58, p = .008, d = 0.53, BF10 = 6.22; silent interval: t 
(23) = 3.25, p = .002, d = 0.66, BF10 = 23.25; masker sound: t(23) = 4.58, p < .001, d = 0.93, 
BF10 = 416.13).

As shown in Figure 4(b), the hit rate in the last ten RefRN trials of the learning phase 
was positively associated with the percentage of correct responses during the test phase 
across all groups (back-to-back: r = .463, p = .023; silent interval: r = .227, p = .286; masker 
sound: r = .438, p = .032). This correlation suggests that listeners who showed a higher 
task performance for the reference noises at the end of the learning phase tended to 
recognize the learned reference noises better during the subsequent test phase. It may be 
plausible to assume that the rather little inter-individual variability in hit rate in the silent 
interval group (relative to the other two groups) led to a decrease of the correlation 
coefficient in this group, which fell short of statistical significance.

Discussion

The main goal of the present behavioral study was to test whether perceptual 
learning of random acoustic patterns occurs across different presentation formats, 
i.e., not only when patterns are repeated immediately within the same sound, but 
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also when they are presented as two separate sounds with a silent interval or 
a masker sound in between – as it might happen in naturalistic listening situations. 
To this end, we asked three groups of listeners to compare random acoustic patterns 
that were presented either back-to-back, with a silent interval or with a masker 
sound between them, while certain to-be-learned reference patterns occurred repeat
edly without participants’ knowledge about the repetitions. Another goal was to test 
whether memories that were built up implicitly through perceptual learning enable 
subsequent recognition of previously learned patterns. Thus, an unexpected two- 
alternative forced-choice memory test at the end of the experiment probed partici
pants’ active recognition performance of the reference patterns as a more direct 
measure of memory formation.

Our data showed that performance during the learning phase increased over the 
course of the block for reference patterns that were presented repeatedly in com
parison to patterns that were presented only once. Crucially, substantial learning of 
reference patterns was found across all three groups, i.e., across different presenta
tion formats. Subsequent exploration of differences between the groups revealed that 
the presentation format had subtle influences on certain aspects of learning. 
Concretely, back-to-back repetition seemed to decrease the number of presentations 
that are necessary for a reference pattern to be learned, while the presence of 
a masker sound seemed to reduce the proportion of (near-) perfectly learned 
reference patterns. Finally, listeners were able to actively recognize reference pat
terns above chance in the test phase, regardless of the presentation format of the 
stimuli during the learning phase, and performance during learning and test phase 
were positively associated.

Figure 4. Groupwise performance in the test phase. Upper row: Mean percentage of correct responses 
in the memory test. Single data points correspond to individual participants. Lower row: Correlations 
between the hit rate in the last ten RefRN of each block in the learning phase and the percentage of 
correct responses in the test phase. Single data points correspond to individual participants. Shaded 
areas indicate the 95% confidence interval.
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Robust Learning and Recognition of Acoustic Patterns across Presentation 
Formats

Our results from the learning phase replicate and extend previous findings on perceptual 
learning of different types of random acoustic patterns, including white noise (Agus et al., 
2010; Andrillon et al., 2015; Luo et al., 2013; Song & Luo, 2017; Viswanathan et al., 2016), 
temporal patterns of clicks (Kang et al., 2017, 2018, 2021), sequences of tone pips (Bianco 
et al., 2020; Herrmann et al., 2021) and “tone clouds” (Agus & Pressnitzer, 2021; Kumar 
et al., 2014). In particular the data from the back-to-back group are consistent with earlier 
studies that also involved immediate (within-sound) repetitions of the to-be-learned 
reference patterns and reported sensitivity increases for the recurring patterns (relative 
to patterns that were presented only once), along with characteristic neural responses 
(Andrillon et al., 2015; Luo et al., 2013). Importantly, perceptual learning of reference 
patterns was not restricted to the back-to-back presentation format, but also occurred in 
the groups in which reference patterns were presented with a silent interval or a masker 
sound between them. One previous study has already suggested that immediate repeti
tion of the reference pattern is not a prerequisite for learning, as indirectly inferred from 
the observation that trials that contained the reference noise were disproportionally likely 
to be misclassified as containing a repetition if they actually did not (Agus & Pressnitzer, 
2013). Another study showed an increase in repetition detection performance for refer
ence patterns in random tone pip sequences even if the repetitions within the sequence 
were non-adjacent, although not to the same extent as for adjacent repetitions (Bianco 
et al., 2020; Experiment 2). The performance increase for reference patterns that we 
found across presentation formats supports these findings and lends further evidence for 
learning without back-to-back repetition. Moreover, the current study reports learning of 
stimulus material that was random and meaningless to the listeners, but more similar to 
naturalistic sounds in terms of spectro-temporal complexity and statistical properties 
than stimuli used in previous studies. Together, this points toward a flexible learning 
mechanism that may be relevant for perceptual learning in naturalistic listening situa
tions in which specific acoustic patterns repeat in variable formats that do not necessarily 
involve immediate repetition. In line with previous interpretations (e.g., Agus et al., 
2010), we assume that repeated exposure to an initially unfamiliar reference pattern leads 
to the formation of a memory representation, which in turn improves perceptual 
sensitivity. Our study suggests that such memory representations can also be built up 
in contexts in which the repeating pattern occurs in isolation and its percept does not 
automatically emerge through back-to-back repetition within a continuous sound. 
Nevertheless, it should be noted that the experimental learning contexts created in the 
current study remain dissimilar from real-life listening situations and our variation of the 
presentation format constitutes only one possible step toward ecologically valid auditory 
learning contexts. To further increase ecological validity, future studies may, for instance, 
incorporate temporally varying, unpredictable intervals between pattern repetitions, 
non-identical pattern repetitions and interference from concurrent irrelevant sound 
streams, which are all natural characteristics of complex auditory environments.

Remarkably, implicit learning of reference pattern did not only increase the sensitivity 
in a perceptual task, but also resulted in above-chance recognition of the learned patterns 
in a subsequent memory test. This suggests that memories for the reference noises were 
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successfully established during the learning phase and could be (at least to some degree) 
actively accessed in a recognition task several minutes after learning. Unlike the mod
ification of behavior during the learning phase, which is assumed to happen automati
cally on a rather perceptual level, the memory test requires more cognitive effort, a more 
deliberate access to memory representations and an active selection of the recognized 
pattern. The procedure of the unexpected test phase was similar to a recent study, which 
showed substantial recognition of (less acoustically well-controlled) environmental 
sounds that had been encoded incidentally while participants performed a visual dis
tractor task (Hutmacher & Kuhbandner, 2020). To the best of our knowledge, the current 
study is the first auditory perceptual learning study that captured an additional, more 
direct measure of recognition of learned patterns besides performance changes as an 
indirect measure. The positive association between the direct and indirect measures of 
learning and recognition suggests that the same memory representations, which are 
formed through repeated exposure, may underlie performance in both tasks.

Influences of the Presentation Format on Certain Aspects of Learning

Averaged over the whole duration of all blocks, the learning effect appeared to be larger 
in the group with back-to-back presentation compared to the groups in which reference 
patterns were presented with a silent interval or a masker sound between them. This 
difference between groups is likely driven by two aspects of learning, that is the time 
course of the learning effect and the proportion of (near-) perfectly learned reference 
patterns. Specifically, fewer presentations were necessary in the back-to-back group 
before performance notably diverged between reference patterns and patterns that 
occurred only once. The earlier divergence of the two performance curves consequently 
resulted in a larger difference when averaging over the whole block. This observation is in 
line with the idea that immediate (and/or periodic) repetition of a particular sound 
segment increases sensitivity to subtle acoustic features and makes them more memor
able, which was put forward earlier (Agus et al., 2010; Andrillon et al., 2015; McDermott 
et al., 2013). Based on this assumption, it is plausible to assume that back-to-back 
presentation of the patterns does not only facilitate the task overall, but also improves, 
more precisely speeds up, learning. In addition to these differences with regard to the 
time course of learning, the proportion of (near-) perfectly learned reference noises was 
decreased in the group in which a masker sound was inserted between presentations of 
the reference noise. Besides increasing task difficulty in general, the presence of a masker 
sound, presumably, also reduced the capacity to memorize specific patterns (such that, 
for example, only some patterns were learned, which, coincidentally, contained 
a perceptually salient feature). Yet, for the reference patterns for which a (near-) perfect 
performance was reached toward the end of the block, the learning curve was similar 
across all groups, consistent with the earlier finding that patterns are either learned 
perfectly or not at all (Agus et al., 2010).

The focus of the current study was the specific learning effect for certain reference 
patterns, defined, in accordance with the literature (e.g., Agus et al., 2010), as the increase 
in perceptual sensitivity for these repeatedly presented patterns (RefRN) compared to 
other patterns that were presented only once (RN). Beyond that, we observed perfor
mance differences between groups that affected both the RefRN and the RN condition 
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and likely reflect more general effects of the different presentation formats. Performance 
was overall decreased (i.e., sensitivity and hit rates were decreased, while false alarm rates 
were increased) in the masker sound group, which is in line with participants’ reports of 
enhanced perceived task difficulty and reduced subjective confidence. Perhaps counter
intuitively, overall performance was not decreased in the silent interval compared to the 
back-to-back condition although the time delay between the pattern presentations could 
have enhanced sensory memory demands because auditory information needed to be 
retained for a longer period of time. Instead, the silent gap between the two patterns 
could also act as a cue for the onset of the second pattern, which is less salient when 
patterns are presented back-to-back, and ameliorate the potential negative effects of the 
longer retention interval (for related results, see, Goossens et al., 2009). Moreover, in the 
silent interval and in the masker sound group, hit rates showed an increase in the first half 
of the block not only in the RefRN, but also in the RN condition, which can possibly be 
attributed to an unspecific improvement due to growing experience with the task. This 
trajectory is reminiscent of the course of learning-dependent performance changes 
shown in a previous study (Woods & McDermott, 2018; Experiment 5). In contrast, in 
the back-to-back condition, hit rates only increased in the RefRN condition, but decreased 
in the RN condition. This inverse pattern of performance changes between conditions is 
consistent with what was found in earlier studies and has been related to balancing the 
two response options once the decision became easier in trials that included the learned 
reference pattern (Agus & Pressnitzer, 2021; Agus et al., 2010). It is plausible to assume 
that an unspecific experience-related improvement would also occur in the RN condition 
in the back-to-back group, but is superposed by the counteractive performance decrease 
as a consequence of specific learning of the reference pattern, which occurs earlier when 
the presentation format involves immediate repetitions.

In the test phase, we did not compare recognition performance statistically between 
groups due to an unequal number of trials in the preceding learning phase. This methodo
logical limitation precludes a clear conclusion as to whether or not the presentation format 
during the learning phase modulates listeners’ ability to actively recognize learned patterns in 
a subsequent memory test. Thus, this question cannot be answered based on the current data 
and would require additional experiments. However, it is important to note that neither 
a significant difference between groups nor the absence of a significant difference could be 
interpreted straightforwardly even if the number of trials during the learning phase was equal. 
Any effects could not be attributed to our manipulation of the presentation format during the 
learning phase alone, because groups also differed with respect to changes in the presentation 
format from learning to test phase, which might have biased test performance as well. 
Nevertheless, our study provides an important proof of concept with regard to active 
recognition of implicitly learned acoustic patterns: Recognition performance was above 
chance in all groups, which suggests that at the end of the learning phase sufficiently robust 
memories of the reference patterns were formed across presentation formats.

Conclusions

In summary, the key finding of the current study is that substantial learning and 
subsequent active recognition occurred across presentation formats, despite subtle dif
ferences with regard to certain aspects of learning. This points toward robust learning 
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mechanisms that would be suited to underlie auditory memory formation in everyday 
listening situations in which the recurrences of a certain acoustic pattern are not 
necessarily seamless, but often separated by a time delay or irrelevant auditory input.

Note

1. Prior to our main study, we conducted a pilot study to ensure the feasibility of applying the 
noise learning paradigm in an online setting. This pilot study was a replication of the main 
experiment of Agus et al. (2010) on learning of white noise with the modification that it was 
run as an online experiment with a reduced number of trials per block (120 instead of 200) 
to shorten the experiment duration. In a group of 24 participants, we found a significant 
learning effect (RefRN vs. RN difference) with an effect size that was smaller than in the 
original study (d = 0.64 vs. d = 1.12). According to sample size calculations, with 24 
participants per group, a within-group effect of at least a size of d = 0.62 can be detected 
with a power of .90 (with a one-sided paired t-test at the standard .05 alpha error prob
ability). Therefore, we planned our study with 24 participants per group to be able to detect 
an effect in the size of the learning effect observed in our pilot study.
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