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INFINITE FAMILIES OF CRANK FUNCTIONS, STANTON-TYPE

CONJECTURES, AND UNIMODALITY

KATHRIN BRINGMANN, KEVIN GOMEZ, LARRY ROLEN, AND ZACK TRIPP

Abstract. Dyson’s rank function and the Andrews–Garvan crank function fa-
mously give combinatorial witnesses for Ramanujan’s partition function congru-
ences modulo 5, 7, and 11. While these functions can be used to show that the
corresponding sets of partitions split into 5, 7, or 11 equally sized sets, one may
ask how to make the resulting bijections between partitions organized by rank or
crank combinatorially explicit. Stanton recently made conjectures which aim to
uncover a deeper combinatorial structure along these lines, where it turns out that
minor modifications of the rank and crank are required. Here, we prove two of these
conjectures. We also provide abstract criteria for quotients of polynomials by cer-
tain cyclotomic polynomials to have non-negative coefficients based on unimodality
and symmetry. Furthermore, we extend Stanton’s conjecture to an infinite family
of cranks. This suggests further applications to other combinatorial objects. We
also discuss numerical evidence for our conjectures, connections with other analytic
conjectures such as the distribution of partition ranks.

1. Introduction and statement of results

1.1. Partition congruences and invariants. Let p(n) be the integer partition
function, which counts the number of non-increasing sequences of positive integers
that sum to n ∈ N0. Ramanujan discovered the following three congruences for the
partition function p(n)

p(5n+ 4) ≡ 0 (mod 5) , p(7n+ 5) ≡ 0 (mod 7) , p(11n+ 6) ≡ 0 (mod 11) ,

and gave q-series proofs of the first two congruences [26]. Based on an unpublished
manuscript of Ramanujan, Hardy found proofs of all three [27]. Additionally, Ra-
manujan conjectured that these were the only congruences of the form p(ℓn + β) ≡
0 (mod ℓ) for a prime ℓ, which was later proved by Ahlgren and Boylan [2]. Since
this time, there has been significant study of other congruences for the partition
function [1, 7, 23, 25, 29].
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In order to give a combinatorial explanation for Ramanujan’s congruences, Dyson
[15] defined the rank of a partition to be its largest part minus its number of parts
and conjectured that partitions of 5n+ 4 (resp. 7n + 5) can be split into 5 (resp. 7)
sets of equal size by considering the rank modulo 5 (resp. 7). This equidistribution of
the rank modulo 5 and 7 was later proved by Atkin and Swinnerton-Dyer [8]. Dyson
also conjectured the existence of a partition statistic he called the crank of a partition
that was equistributed modulo 11. Andrews and Garvan [6] found such a statistic
which is equidistributed modulo 5, 7, and 11. For a partition λ, we let ℓ(λ) be the
largest part of λ, ω(λ) be the number of 1’s in λ, and µ(λ) be the number of parts of
λ larger than ω(λ). The crank of λ is then defined as

crank(λ) :=

{
ℓ(λ) if ω(λ) = 0,

µ(λ)− ω(λ) if ω(λ) > 0.

In addition to giving a combinatorial explanation for Ramanujan’s congruences, the
rank and the crank give interesting examples in the theory of modular and mock
modular forms. The first author and Ono [11] showed that the rank generating
function (2.1) is essentially a mock Jacobi form, while the crank generating function
(2.2) is essentially a meromorphic Jacobi form. Specializing the rank (resp. crank)
generating function in the elliptic variable z to a torsion point gives a mock modular
(resp. modular) form.

1.2. Cranks for colored partitions. Since the discovery of Ramanujan’s congru-
ences, many papers have studied similar congruences for other partition related func-
tions [3, 4, 24]. One such example is the k-colored partition function pk(n) defined as
the number of partitions of n into k-colors or by the generating function

∞∑

n=0

pk(n)q
n :=

( ∞∑

n=0

p(n)qn

)k

=

∞∏

n=1

1

(1− qn)k
.

Boylan [9] and Dawsey and Wagner [13] have proved a number of congruences for pk(n)
using the theory of CM forms and have given partial progress towards classifying all
such congruences. Boylan classified all congruences of the form pk(ℓn+β) ≡ 0 (mod ℓ)
for a prime ℓ and k ≤ 47 odd and found that all but three such congruences were
explained by the following result or by other well-known families of congruences.

Theorem 1.1 ([9, 13]). Let k + h = ℓt for a prime ℓ and positive integers h and t,
and let δk,ℓ ∈ Z be such that 24δk,ℓ ≡ k (mod ℓ). Then we have the Ramanujan-type
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congruence

pk(ℓn+ δk,ℓ) ≡ 0 (mod ℓ)

if any of the following hold:

(1) We have h ∈ {4, 8, 14} and ℓ ≡ 2 (mod 3).
(2) We have h ∈ {6, 10} and ℓ ≡ 3 (mod 4).
(3) We have h = 26 and ℓ ≡ 11 (mod 12).

Analogous to the rank and crank for p(n), various statistics for k-colored partitions
have been given. Hammond and Lewis [21] defined the birank for 2-colored partitions
to explain congruences modulo 5, while Andrews [5] gave a combinatorial interpreta-
tion of a certain 2-color congruence using the ordinary crank. Garvan [18] was later
able to provide extensions of both of these results in order to explain a certain infinite
family of congruences for k-colored partitions. More recently, Wagner, the third, and
the fourth author [28] have found two infinite families of cranks that together explain
most known congruences for k-colored partitions. The generating function for these
cranks are defined by certain products of the ordinary crank generating function. The
shape of the crank (see (2.3)) is defined in such a way in order to utilize the theory
of theta blocks set forth by Gritsenko, Skoruppa, and Zagier [20]. In [28], cranks of
this form were multiplied by 1 = θR

θR
for a given theta block θR depending on the con-

gruence in order to apply a set of sum-to-product identities known as the Macdonald
identities to the numerator and denominator separately. This allowed the authors to
prove equidistribution in an infinite family of cases.

1.3. Stanton’s Conjectures. While the rank and crank distribute partitions into
congruence classes of equal size in order to explain Ramanujan’s congruences, there
is no known direct map between these equinumerous classes. The search for such a
map led to a conjecture of Stanton. In order to state this conjecture, we need to
modify the Laurent polynomials rankn(ζ) and crankn(ζ), which are defined in (2.1)
and (2.2), respectively.

Definition. For n ∈ N0, the modified rank and modified crank are defined by

rank∗
ℓ,n(ζ) := rankℓn+β(ζ) + ζℓn+β−2 − ζℓn+β−1 + ζ2−ℓn−β − ζ1−ℓn−β, (1.1)

crank∗
ℓ,n(ζ) := crankℓn+β(ζ) + ζℓn+β−ℓ − ζℓn+β + ζℓ−ℓn−β − ζ−ℓn−β, (1.2)

where β := ℓ− ℓ2−1
24

.
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Remark. Note that these modifications only change the definition of rank and crank
for the partitions n and 1+ . . .+1. For instance, in the case of rank, this assigns the
partition n the value n− 2, although the classical rank assigns it the value n− 1.

We see in Lemma 2.1 below that the explanation of Ramanujan’s congruences for
p(n) by ranks and cranks is equivalent to the divisibility of rank and crank poly-
nomials by cyclotomic polynomials. Stanton found that the quotients of these rank
and crank polynomials by cyclotomic polynomials do not have positive coefficients.
The modifications are designed to fix positivity, with the eventual goal of uncovering
new combinatorial structure of what these positive coefficients count. Such an inter-
pretation would hopefully yield a map between the congruence classes for the rank
and crank. As we see in Lemma 3.1 below, this positivity is related to unimodality
of coefficients. Stanton’s modifications essentially fix this unimodality and maintain
divisibility by cyclotomic polynomials.

We are now able to state Stanton’s conjecture, which was given in his unpublished
notes. Here and throughout the paper, Φℓ(ζ) := 1 + ζ + . . . + ζℓ−1 denotes the ℓ-th

cyclotomic polynomial and ζℓ := e
2πi
ℓ .

Conjecture 1.2 (Stanton). Let n ∈ N0.

(1) The following are Laurent polynomials with non-negative coefficients:

rank∗5,n(ζ)

Φ5(ζ)
and

rank∗7,n(ζ)

Φ7(ζ)
.

(2) The following is a Laurent polynomial with positive coefficients:

crank5n+4(ζ)

Φ5(ζ2)
.

(3) The following are Laurent polynomials with non-negative coefficients:

crank∗5,n(ζ)

Φ5(ζ)
,

crank∗7,n(ζ)

Φ7(ζ)
, and

crank∗11,n(ζ)

Φ11(ζ)
.

Remark. In Conjecture 1.2 (2), Stanton used the term “positive” instead of “non-
negative”. However, given that the authors found that all examples of the given
Laurent polynomial in this case have 0’s between positive coefficients, we assume
that “Laurent polynomial with positive coefficients” was meant to be the same as
“Laurent polynomial with non-negative coefficients”.
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Stanton also stated a related conjecture of Garvan for the 5-core crank [19] that
cannot be proven by the methods we give here due to the fact that the 5-core crank
does not appear to be unimodal. A Laurent polynomial f(ζ) =

∑N

m=−M amζ
m is said

to be unimodal if there exists k ∈ Z such that am ≤ am+1 for m ≤ k and am ≥ am+1

for m > k. Our key to proving Conjecture 1.2 is to use the fact that the modified
rank and crank given in Conjecture 1.2 are unimodal.

1.4. Results. It turns out that the modification Stanton gives for the crank along
with known inequalities for the crank are sufficient to prove the following.

Theorem 1.3. Parts (2) and (3) of Conjecture 1.2 are true.

The analogous inequalities for rank are not known, and the authors are unaware of a
reference in the literature for such a conjecture, which we give here.

Conjecture 1.4. We have N(m,n) ≥ N(m+ 1, n) for 0 ≤ m ≤ n− 2 and n ≥ 39.

Unfortunately, Conjecture 1.4 appears to be out of reach with current methods,
though there is strong computational evidence and partial progress towards it. The
claim is known to be true for n sufficiently large, and for fixed m, this can be made
explicit. Additionally, Dousse and Mertens [14] used methods of Dousse and the first

author [10] to show that for |m| ≤
√
n log(n)

π
√
6

, we have as n → ∞,

N(m,n) =
γ

4
sech2

(γm
2

)
p(n)

(
1 +O

(
γ

1
2 |m|

1
3

))
,

where γ := π√
6n

. Note that sech is decreasing, so this gives the claim asymptotically.

If we assume Conjecture 1.4, we are able to prove another part of Conjecture 1.2.

Theorem 1.5. Conjecture 1.4 implies part (1) of Conjecture 1.2.

It is natural to ask whether Stanton’s conjectures are part of a broader phenome-
non. Searching for an extension of them may also shed light on their combinatorial
interpretation. Recently, in [28], Wagner and two of the authors gave a procedure
for generating infinite families of crank-type functions which “explain” most known
congruences for the family of k-colored partitions. Thus, it is natural to ask whether
a deeper phenomenon like Stanton’s conjecture also holds in these cases. Numerically,
the authors found that these functions do not typically satisfy Stanton-type conjec-
tures. Moreover, the authors were unable to find simple modifications like Stanton
found for rank and crank which “fixed” positivity of the quotients by cyclotomic poly-
nomials. However, the method for producing such functions in [28] is flexible, and
the crank-type functions produced are not unique.
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This paper suggests new families of crank-type functions Ak(z; τ) and Bk(z; τ) (see
(2.4) for the definition), produced using the same machinery. These still explain most
congruences of the colored partitions. The proof is sketched in Section 3.4. These in-
variants appear to satisfy Stanton-type conjectures without any modifications, which
suggests that they may be more natural to consider than the original crank-type func-
tions in [28], and that Stanton’s conjecture appears to be a very general phenomenon
deserving an explanation.

Along these lines, extensive numerical evidence suggests the following.

Conjecture 1.6. For all n ≥ 15, (resp. 24) and all k ≥ 7, [qn]Ak(z; τ) (resp.
[qn]Bk(z; τ)) are unimodal Laurent polynomials.

Similar to Conjecture 1.4, proving this seems to require delicate analytic techniques
that are currently out of reach. Assuming this conjecture, we have the following.

Theorem 1.7. Assume Conjecture 1.6 is true.

(1) If ℓn + δk,ℓ ≥ 15 and pk(ℓn+ δk,ℓ) ≡ 0 (mod ℓ) is a Ramanujan-type congruence
coming from Theorem 1.1 with h /∈ {14, 26} if k is odd and h 6= 26 if k is even,
then [

qℓn+δk,ℓ
]
Ak(z; τ)

Φℓ(ζ)

is a Laurent polynomial with non-negative coefficients.
(2) If ℓn + δk,ℓ ≥ 24 and pk(ℓn+ δk,ℓ) ≡ 0 (mod ℓ) is a Ramanujan-type congruence

coming from Theorem 1.1 with h /∈ {4, 8, 10, 26} and k ≥ 7 is odd, then
[
qℓn+δk,ℓ

]
Bk(z; τ)

Φℓ(ζ)

is a Laurent polynomial with non-negative coefficients.

Remark. Throughout this paper, we are studying the n-th Fourier coefficient (in τ)
for a fixed n of objects with modularity properties. Traditionally, it has been more
common to study the n-th Fourier coefficient (in z) for a fixed m instead; see e.g. [12].

The paper is organized as follows. In Section 2, we provide a lemma illustrating the
connection between divisibility and equidistribution, along with known results about
crank equalities and inequalities. We then provide proofs in Section 3 of a lemma, our
main theorem, and its corollaries. Finally, Section 4 provides computational evidence
related to Conjecture 1.6 and directions for future research.
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2. Preliminaries

We begin by formally defining terms used in the introduction. We let N(r, t;n)
(resp. M(r, t;n)) be the number of partitions of n with rank (resp. crank) congruent
to r (mod t). The equidistribution of the rank modulo 5 and 7 is equivalent to

N(0, 5; 5n+ 4) = N(1, 5; 5n+ 4) = · · · = N(4, 5; 5n+ 4),

N(0, 7; 7n+ 5) = N(1, 7; 7n+ 5) = · · · = N(6, 7; 7n+ 5).

Equidistribution of the crank modulo 5, 7, and 11 may be written similarly in terms of
M(r, t;n). Additionally, we let N(m,n) (resp. M(m,n)) be the number of partitions
of n with rank m (resp. crank m). Letting ζ := e2πiz and q := e2πiτ , [8] showed that
we have the two-parameter generating function

R(z; τ) :=
∑

m∈Z
n≥0

N(m,n)ζmqn =:
∞∑

n=0

rankn(ζ)q
n

=

∞∑

n=0

qn
2

∏n

k=1(1− ζqk)(1− ζ−1qk)
. (2.1)

Andrews and Garvan [6] proved that aside from the anomalous case of M(m,n) if
n = 1 (where the correct values are M(0, 1) := 1 and M(m, 1) := 0 for m 6= 0) the
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crank generating function is given by

C(z; τ) :=
∑

m∈Z
n≥0

M(m,n)ζmqn =:
∞∑

n=0

crankn(ζ)q
n =

∞∏

n=1

1− qn

(1− ζqn)(1− ζ−1qn)
. (2.2)

The cranks that the authors in [28] used are of the form

Ck

(
a1, a2, . . . , ak+δ2∤k

2

; z; τ

)
:= C(0; τ)

k−δ2∤k
2

k+δ2∤k
2∏

j=1

C(ajz; τ), (2.3)

where aj ∈ Z for j = 1, . . . ,
k+δ2∤k

2
and where δS := 1 if a statement S is true and 0

otherwise. Note that the notation differs slightly from that of [28] and we choose it
since it is more convenient for our purposes. Recalling (2.3), we define (in the case of
Bk, for k ≥ 7),

Ak(z; τ) := Ck

(
k + δ2∤k

2
+ 1,

k + δ2∤k
2

, . . . , 3, 2; z; τ

)
,

Bk(z; τ) := Ck

(
k + δ2∤k

2
+ 2,

k + δ2∤k
2

+ 1, . . . , 6, 5, 3, 2; z; τ

)
.

(2.4)

We begin with a lemma illustrating how Conjecture 1.2 is a statement related to
the equidistribution of the rank and crank. This is implicit in the existing literature,
but we provide a proof here for the convenience of the reader. By Φℓ(ζ)|f(ζ) for
f(ζ) ∈ Q[ζ−1, ζ ], we mean that f(ζ) = g(ζ)Φℓ(ζ) for g(ζ) ∈ Q[ζ−1, ζ ], i.e., that the

quotient f(ζ)
Φℓ(ζ)

is a Laurent polynomial as well. Define

f̂r,ℓ :=
∑

j≡r (mod ℓ)

[
ζj
]
f(ζ).

Lemma 2.1. Let f(ζ) be a Laurent polynomial in Q[ζ−1, ζ ] and ℓ a prime. Then
Φℓ(ζ) | f(ζ) in Q[ζ−1, ζ ] if and only if for r ∈ {0, . . . , ℓ− 2}

f̂r,ℓ = f̂ℓ−1,ℓ.

Remark. Letting f(ζ) be rankℓn+β(ζ) or crankℓn+β(ζ), we see that divisibility by Φℓ(ζ)
is equivalent to equidistribution modulo ℓ. We use this result frequently.

Proof of Lemma 2.1. Multiplying f(ζ) by a sufficiently large power of ζ and using
the fact that gcd(ζ,Φℓ(ζ)) = 1, we may assume that f(ζ) ∈ Q[ζ ]. Since Φℓ(ζ) is



CRANKS, STANTON-TYPE CONJECTURES, AND UNIMODALITY 9

irreducible over Q[ζ ], it is a standard fact from algebra that Φℓ(ζ) | f(ζ) is equivalent
to f(ζℓ) = 0. Writing f(ζ) =

∑n

j=0 ajζ
j, we see that

f(ζℓ) =
n∑

j=0

ajζ
j
ℓ =

ℓ−1∑

r=0

∑

0≤j≤n
j≡r (mod ℓ)

ajζ
r
ℓ =

ℓ−1∑

r=0

f̂r,ℓζ
r
ℓ =

ℓ−2∑

r=0

(
f̂r,ℓ − f̂ℓ−1,ℓ

)
ζrℓ ,

where for the last equality we use the fact that Φℓ(ζℓ) = 0. Since 1, ζℓ, . . . , ζ
ℓ−2
ℓ is a

basis for Q[ζ ] over Q, the claim follows. �

Lemma 2.1 can be generalized to equidistribution modulo prime powers by requiring
divisibility by multiple cyclotomic polynomials, but we omit the details since we are
only interested in equidistribution modulo primes in this paper. However, we utilize
a modified version of the above lemma when we require divisibility by Φ5(ζ

2) for
the proof of part (2) of Conjecture 1.2. The following is used in conjunction with
Theorem 2.3, which in particular satisfies the conditions of this lemma.

Lemma 2.2. Let f(ζ) be a Laurent polynomial and ℓ an odd prime. Then Φℓ(−ζ) |
f(ζ) in Q[ζ−1, ζ ] if and only if for r ∈ {0, 1, . . . , ℓ− 2},

(−1)r
(
f̂r,2ℓ − f̂r+ℓ,2ℓ

)
= f̂ℓ−1,2ℓ − f̂2ℓ−1,2ℓ.

Proof. As in the proof of Lemma 2.1, we may assume that f(ζ) ∈ Q[ζ ]. As Φℓ(−ζ)
is also an irreducible polynomial in Q[ζ ], Φℓ(−ζ) | f(ζ) is equivalent to f(−ζℓ) = 0
since −ζℓ is a root of Φℓ(−ζ). Writing f(ζ) =

∑n

j=0 ajζ
j, we see that

f(−ζℓ) =
n∑

j=0

aj(−ζℓ)
j =

ℓ−1∑

r=0




∑

0≤j≤n
j≡r (mod 2ℓ)

(−1)jaj +
∑

0≤j≤n
j≡ℓ+r (mod 2ℓ)

(−1)jaj


 ζrℓ

=

ℓ−1∑

r=0

(−1)r
(
f̂r,2ℓ − f̂r+ℓ,2ℓ

)
ζrℓ

=
ℓ−2∑

r=0

(
(−1)r

(
f̂r,2ℓ − f̂r+ℓ,2ℓ

)
−
(
f̂ℓ−1,2ℓ − f̂2ℓ−1,2ℓ

))
ζrℓ .

Since 1, ζℓ, . . . , ζ
ℓ−2
ℓ is a basis for Q[ζℓ] over Q, we conclude the claim. �
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We now review known results concerning the crank that allow us to prove Theo-
rem 1.3. First, in order to prove (2) of Conjecture 1.2, we need additional relationships
among cranks modulo 10 given by Garvan [17].

Theorem 2.3 ((1.17) and (1.18) of [17]). For n ∈ N0, 0 ≤ k ≤ 4, j ∈ {0, 1}

M(2k + j, 10; 5n+ 4) =
1

5
M(j, 2; 5n+ 4).

Additionally, in order to utilize Theorem 3.1, we need the following result of Ji and
Zang [22] related to crank unimodality.

Theorem 2.4 (Theorem 1.7 of [22]). For n ≥ 44 and 1 ≤ m ≤ n− 1,

M(m − 1, n) ≥ M(m,n).

Unfortunately, crankn(ζ) is not actually unimodal for n ≥ 44 because M(n−1, n) =
0 and M(n, n) = 1 for n ≥ 2. In order to see this, we have the following result, which
is needed below in the paper.

Lemma 2.5. For fixed k ∈ N, the sequence M(n− k, n) is constant for n ≥ 2k.

Remark. As alluded to above, Lemma 2.5 proves that crankn(ζ) is not unimodal. We
see in the proof of Theorem 1.3 below that crank∗

ℓ,n(ζ) is unimodal, thus illustrating
the need for the modified crank function that Stanton provides.

Proof of Lemma 2.5. We utilize the following summation formula for m ∈ N [16,
Theorem 7.19]

∞∑

n=0

M(m,n)qn =
1∏∞

k=0(1− qk)

∞∑

n=1

(−1)n−1q
n(n−1)

2
+mn. (2.5)

By replacing m by m+ 1 and dividing both sides by q, we find that
∞∑

n=−1

M(m+ 1, n+ 1)qn =
1∏∞

k=0(1− qk)

∞∑

n=1

(−1)n−1q
n(n−1)

2
+(m+1)n−1.

However, since m+ 1 > 0, we may conclude that M(m + 1, 0) = 0, so
∞∑

n=0

M(m+ 1, n+ 1)qn =
1∏∞

k=0(1− qk)

∞∑

n=1

(−1)n−1q
n(n−1)

2
+(m+1)n−1. (2.6)

Subtracting (2.5) from (2.6) yields
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∞∑

n=0

(M(m+ 1, n+ 1)−M(m,n))qn

=
1∏∞

k=0(1− qk)

∞∑

n=1

(−1)n−1
(
q

n(n−1)
2

+(m+1)n−1 − q
n(n−1)

2
+mn

)
. (2.7)

We now claim that the j-th Fourier coefficient vanishes for j ≤ 2m. Note that the
term n = 1 vanishes in (2.7). On the other hand for n ≥ 2,

n(n− 1)

2
+ (m+ 1)n− 1 ≥

n(n− 1)

2
+mn ≥ 2m+ 1,

so the smallest power of q in (2.7) is at least 2m+1. Comparing coefficients on both
sides of the equality in (2.7), this tells us that M(m+1, n+1) = M(m,n) for n ≤ 2m.
Replacing m by n− k yields the result. �

3. Proof of the main results

3.1. A general result. We first need the following lemma, where a Laurent polyno-
mial f(ζ) is called symmetric if f(ζ−1) = f(ζ).

Lemma 3.1. Let f(ζ) be a symmetric unimodal Laurent polynomial that is divisible

by Φℓ(ζ) for an odd prime ℓ. Then the coefficients of the Laurent polynomial f(ζ)
Φℓ(ζ)

are

non-negative.

Remark. Note that if f(ζ) is strictly unimodal, then the coefficients of f(ζ)
Φℓ(ζ)

are pos-

itive.

Proof of Lemma 3.1. Write

(1− ζ)f(ζ) =:
∑

m

amζ
m.

By the symmetry of f(ζ), we have
∑

m

amζ
−m =

(
1− ζ−1

)
f
(
ζ−1
)
= −ζ−1(1− ζ)f(ζ) = −

∑

m

amζ
m−1.

Comparing coefficients, we conclude that

am = −a−m+1. (3.1)

We next show that

am ≥ 0 for m ≤ 0 and am ≤ 0 for m ≥ 1. (3.2)
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By (3.1), we only need to prove am ≤ 0 for m ≥ 1. If f(ζ) =
∑

m cmζ
m, then

comparing coefficients for (1− ζ)f(ζ) yields am = cm − cm−1. By the unimodality of
f(ζ), we conclude that cm ≤ cm−1 for m ≥ 1 yielding am ≤ 0 as desired.

Now, we consider f(ζ)
Φℓ(ζ)

. Note that (1− ζ)Φℓ(ζ) = 1− ζℓ. Thus for |ζ | < 1,

∑

m

bmζ
m :=

f(ζ)

Φℓ(ζ)
=

(1− ζ)f(ζ)

1− ζℓ
=
(
1 + ζℓ + ζ2ℓ + . . .

)∑

m

amζ
m.

Comparing coefficients, we find that bm =
∑∞

j=0 am−ℓj . By (3.2), the non-negativity
of bm is then clear for m ≤ 0. For a fixed m ≥ 1, let k be sufficiently large so that
bm+ℓk = 0. Such a k exists because Φℓ(ζ) | f(ζ) implies that bj = 0 for sufficiently
large j. Then

bm = bm − bm+ℓk =

∞∑

j=0

am−ℓj −

∞∑

j=0

am+ℓk−ℓj = −

k−1∑

j=0

am+ℓk−ℓj ≥ 0

by (3.2). Thus, we conclude bm ≥ 0 for all m. �

In order to prove Conjecture 1.2 (2), we require a slight modification of Lemma 3.1.
The proof is similar to the proof of Lemma 3.1.

Lemma 3.2. Let f(ζ) be a symmetric Laurent polynomial that is divisible by Φℓ(ζ
2)

for a prime ℓ and such that [ζm−1]f(ζ) ≥ [ζm+1]f(ζ) for m ∈ N. Then ζℓ−1f(ζ)
Φℓ(ζ2)

is a

symmetric Laurent polynomial with non-negative coefficients.

Proof. We write

(ζ−1 − ζ)f(ζ) =:
N∑

m=−N

dmζ
m and

ζℓ−1f(ζ)

Φℓ(ζ2)
=:

N−ℓ∑

k=−N+ℓ

ekζ
k.

By the symmetry of f(ζ), we have
∑

m

dmζ
−m =

(
ζ − ζ−1

)
f
(
ζ−1
)
= −

(
ζ−1 − ζ

)
f(ζ) = −

∑

m

dmζ
m.

Comparing coefficients, we conclude that

dm = −d−m. (3.3)

Note that in particular d0 = −d0, so d0 = 0. We next show that

dm ≥ 0 for m ≤ 0 and dm ≤ 0 for m ≥ 1. (3.4)
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By (3.3), we only need to prove that dm ≤ 0 for m ≥ 1. Writing f(ζ) =
∑

m cmζ
m,

then comparing coefficients for (ζ−1 − ζ)f(ζ) yields the equality

dm = cm+1 − cm−1.

Additionally, by assumption of the lemma we have that

cm−1 =
[
ζm−1

]
f(ζ) ≥

[
ζm+1

]
f(ζ) = cm+1,

from which dm ≤ 0 follows.

We next note that ζℓ−1f(ζ)
Φℓ(ζ2)

is symmetric since f(ζ) and ζ
1−ℓ
2 Φℓ(ζ) are.

Next we find a formula for ek in terms of dm. For |ζ | < 1, we have

∑

k

ekζ
k =

ζℓ (ζ−1 − ζ) f(ζ)

1− ζ2ℓ
= ζℓ

(
1 + ζ2ℓ + ζ4ℓ + . . .

)∑

m

dmζ
m.

Comparing coefficients, we obtain that

ek =

∞∑

j=0

dk−ℓ(2j+1).

By (3.4), the non-negativity of ek is then clear for k ≤ ℓ since k − ℓ(2j + 1) ≤ 0 for
such values. For a fixed k ≥ ℓ+ 1, let r be sufficiently large so that ek+2ℓr = 0. Such
an r exists because Φℓ(ζ

2) | f(ζ) implies that en = 0 for sufficiently large n. Then

ek = ek − ek+2ℓr =
∞∑

j=0

dk−ℓ(2j+1) −
∞∑

j=0

dk+2ℓr−ℓ(2j+1) = −
k−1∑

j=0

dk+2ℓ(r−j)−ℓ ≥ 0

by (3.4) since all of the indices in the final sum are negative. Thus, we conclude
ek ≥ 0 for all m. �

3.2. Proof of Theorem 1.3.

Proof. We begin with the proof of Conjecture 1.2 (3). The polynomials under con-
sideration are of the form (1.2) for ℓ ∈ {5, 7, 11}. We check the conditions of
Lemma 3.1 for these polynomials. The symmetry of (1.2) follows from the fact that
M(m,n) = M(−m,n) for all m,n ∈ Z, which can be seen from the symmetry of
C(z; τ) under z 7→ −z. Now, we check that (1.2) is divisible by Φℓ(ζ). By Lemma 2.1,
the divisibility of crankℓn+β(ζ) by Φℓ(ζ) is equivalent to

M(0, ℓ; ℓn+ β) = M(1, ℓ; ℓn+ β) = . . . = M(ℓ− 1, ℓ; ℓn+ β).
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For ℓ ∈ {5, 7, 11}, this is simply the statement of the well-known equidistribution of
the crank (see [6, Vector-crank Theorem]). On the other hand,

ζℓn+β−ℓ − ζℓn+β + ζℓ−ℓn−β − ζ−ℓn−β =
(
ζℓn+β−ℓ − ζ−ℓn−β

) (
1− ζℓ

)

=
(
ζℓn+β−ℓ − ζ−ℓn−β

)
(1− ζ)Φℓ(ζ)

proves the divisibility of the remaining part of (1.2). Now, we show the unimodality
of crank∗

ℓn+β(ζ) for ℓn+β ≥ 44. By symmetry, it suffices to show that the coefficients
are decreasing for non-negative powers of ζ . First, note that for m ≥ ℓn+ β + 1,

[ζm]crank∗
ℓ,n(ζ) = M(m, ℓn + β) = 0.

Additionally, if m = ℓn + β, then
[
ζℓn+β

]
crank∗

ℓ,n(ζ) = M(ℓn + β, ℓn+ β)− 1 = 0.

Now, for 0 ≤ m ≤ ℓn+ β − 1, we note that [ζm]crank∗
ℓ,n(ζ) = M(m, ℓn+ β) except if

m = ℓn+ β − ℓ. Thus, by Theorem 2.4,

[ζm] crank∗
ℓ,n(ζ)−

[
ζm+1

]
crank∗

ℓ,n(ζ) ≥ M(m, ℓn + β)−M(m+ 1, ℓn+ β) ≥ 0

for 0 ≤ m ≤ ℓn+ β − 2 and m 6= ℓn+ β − ℓ− 1. In order to prove the inequality for
m = ℓn + β − ℓ − 1, we note for a fixed value k, the sequence {M(n − k, n)}∞n=1 is
constant for n ≥ 2k by Lemma 2.5, so it suffices to check that

[
ζℓn+β−ℓ−1

]
crank∗

ℓ,n(ζ)−
[
ζℓn+β−ℓ

]
crank∗

ℓ,n(ζ)

= M(ℓn + β − ℓ− 1, ℓn+ β)−M(ℓn + β − ℓ, ℓn+ β)− 1 ≥ 0

for ℓ ∈ {5, 7, 11} and n = 22, which the authors have checked by computer. As a
result, we have unimodality of crank∗

ℓ,n(ζ) for ℓn+β ≥ 44. For ℓn+β < 44, the result
can be checked manually. Additionally, if m = ℓn+ β − 1, then
[
ζℓn+β−1

]
crank

∗
ℓ,n(ζ)−

[
ζℓn+β

]
crank

∗
ℓ,n(ζ) = M(ℓn+β−1, ℓn+β)−M(ℓn+β, ℓn+β)+1 = 0,

completing the proof of unimodality.
We now move to the proof of Conjecture 1.2 (2). In order to check the inequality

condition of Lemma 3.2, note that M(m, 5n+4) ≥ M(m+2, 5n+4) for 0 ≤ m ≤ 5n+1
and 5n + 4 ≥ 44 by Theorem 2.4 and can be checked manually for 5n + 4 < 44. As
for m = 5n + 2, it is easy to check that M(5n + 2, 5n + 4) = M(5n + 4, 5n + 4) = 1
for 5n + 4 ≥ 2, and for m ≥ 5n + 3, the inequality follows from the fact that
M(5n + 3, 5n + 4) = 0 and M(m, 5n + 4) = 0 for m > 5n + 4. This proves that
[ζm]crank5n+4(ζ) ≥ [ζm+2]crank5n+4(ζ) for 5n + 4 ≥ 2. Additionally, the divisibility
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by Φ5(ζ
2) follows directly from Lemma 2.2 and Theorem 2.3, so the result follows

from Lemma 3.2. �

3.3. Proof of Theorem 1.5.

Proof. We again use Lemma 3.1. The polynomials under consideration are given
in (1.1) for ℓ ∈ {5, 7}. The symmetry N(m,n) = N(−m,n) can be seen by the
invariance of R(z; τ) under z 7→ −z. The symmetry for the remaining terms in (1.1)
is clear. As for unimodality, the assumption of Conjecture 1.4 means that it suffices
to show that for m ≥ ℓn+ β − 3,

[ζm] rank∗
ℓ,n (ζ) ≥

[
ζm+1

]
rank∗

ℓ,n (ζ) .

From the definition of the rank, it is easy to check that the partition ℓn+β of ℓn+β
is the only partition with rank ℓn+ β − 1. Similarly, we may check that there are no
partitions of rank ℓn+β−2 or of rank m ≥ ℓn+β, while the partition (ℓn+β−1, 1) is
the only partition of rank ℓn+β−3 for n ≥ 1. Therefore, from the definition (1.1), we
see that the unimodality of rank∗

ℓ,n(ζ) holds. Finally, the divisibility of rankℓn+β(ζ) by
Φℓ(ζ) for ℓ ∈ {5, 7} follows from the well-known equidistribution of the rank modulo
5 and 7 and from Lemma 2.1. Additionally,

ζℓn+β−2
ℓ − ζℓn+β−1

ℓ + ζ2−ℓn−β
ℓ − ζ1−ℓn−β

ℓ = ζβ−2
ℓ − ζβ−1

ℓ + ζ2−β
ℓ − ζ1−β

ℓ ,

and by plugging in 5 and 7 for ℓ, we can see that the latter term of (1.1) vanishes un-
der ζℓ and hence is divisible by Φℓ(ζ). Thus, Lemma 3.1 completes the proof of
Theorem 1.5. �

3.4. Sketch of proof of Theorem 1.7. We provide only a sketch of the proof in
order to avoid reintroducing the entire framework of [28] for a simple modification of
those results. We leave it to the interested reader to make the necessary changes to
the proofs in [28]. For such a reader, we point out that there are results analogous
to Lemmas 4.1 and 4.2 that apply to Ak and Bk. The first lemma allows one to
analyze Ak, which explains almost all of the congruences coming from Theorem 1.1.
Below, we use the notation g(ζ ; q) ≡ h(ζ ; q) (modΦℓ(ζ)) to mean that Φℓ(ζ) divides
g(ζ ; q)− h(ζ ; q) in the ring Q[[q]][ζ, ζ−1].

Lemma 3.3. Suppose that {ℓn+ δk,ℓ}n∈N0 is an arithmetic progression coming from
Theorem 1.1 for pk(n) with k + h = ℓt and h ∈ {4, 6, 8, 10} if k is odd and k ∈
{4, 6, 8, 10, 14} if k is even. Then if φR(z; τ) is the theta block associated to h in [28,
Table 1], then there is a choice of a, b ∈ Z such that if z = (az, bz), then
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φR(z; τ)
(
ζ±2q

)
∞ · . . . ·

(
ζ±

k+δ2∤k
2 q

)

∞

(
ζ
±
(

k+δ2∤k
2

+1

)

q

)

∞

≡ q
h
24 f(ζ)(q)

δ2∤k
∞
(
qℓ; qℓ

)t
∞ (modΦℓ(ζ))

for some f(ζ) ∈ Q[ζ
1
2 , ζ−

1
2 ].

Unfortunately, Lemma 3.3 does not appear to hold if k ≡ −14 (mod ℓ) and k is
odd. However, we have the following analogous result that provides a combinatorial
description in this case using Bk.

Lemma 3.4. Suppose that {ℓn+ δk,ℓ}n∈N0 is an arithmetic progression coming from
Theorem 1.1 for pk(n) with k + h = ℓt and h ∈ {6, 14} and k odd. Then if φR(z; τ)
is the theta block associated to h in [28, Table 1], then there is a choice of a, b ∈ Z
such that

φR(z; τ)
(
ζ±2q

)
∞

(
ζ±3q

)
∞

(
ζ±5q

)
∞ · . . . ·

(
ζ±

k+3
2 q
)
∞

(
ζ±

k+5
2 q
)
∞

≡ q
h
24 (q)∞f(ζ)

(
qℓ; qℓ

)t
∞ (modΦℓ(ζ))

for some f(ζ) ∈ Q[ζ
1
2 , ζ−

1
2 ].

One difference between the above lemmas and those in [28] is that the missing
residues in our case may depend on the value of k. However, they are still easy to
determine and can be filled in by an appropriate choice of a and b as was done in [28].
Following the proof of [28, Theorem 1.3], we have the following result.

Corollary 3.5. If {ℓn + δk,ℓ}n∈N0 is an arithmetic progression coming from Theo-
rem 1.1 with k + h = ℓt for h ∈ {4, 6, 8, 10, 14} if k is even and h ∈ {4, 6, 8, 10} if k
is odd, then

Φℓ(ζ) |
[
qℓn+δk,ℓ

]
Ak(z; τ).

Similarly, if {ℓn + δk,ℓ}n∈N0 is an arithmetic progression coming from Theorem 1.1
with k + h = ℓt, h ∈ {6, 14}, and k ≥ 7 odd, then

Φℓ(ζ) |
[
qℓn+δk,ℓ

]
Bk(z; τ).

Using this result, we are able to prove Theorem 1.7.

Proof of Theorem 1.7. To illustrate the symmetry of our polynomials, recall that
crankn(ζ) is symmetric. Thus, the coefficients of Ak(z; τ) and Bk(z; τ) are products
and sums of symmetric polynomials, so they must be symmetric as well. Additionally,
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the unimodality of the coefficients is given as an assumption, while the divisibility
of the coefficients is given by Corollary 3.5. As a result, the proof is finished by
Lemma 3.1. �

4. Numerical evidence of conjectures and ideas for further work

4.1. Computations. The computational evidence supporting Conjecture 1.6 was
found initially through an exhaustive search of crank generating functions to find
likely eventually unimodal examples. The search space is given by

S :=
⋃

3≤k≤11

{
Ck

(
a1, a2, . . . , ak+δ2∤k

2

; z; τ

)
: k ≥ a1 > a2 > · · · > ak+δ2∤k

2

> 0

}
.

Note that the space is unrestricted by any consideration of the cranks’ ability to
explain k-colored partition congruences.

For each crank generating function D ∈ S, the minimum value of m such that
[qn]D is unimodal for all m < n < 75 was found, with D being considered a likely
eventually unimodal candidate if such an m exists. The entire search was completed
in approximately 56 hours on a single-threaded Intel i7-8750H CPU. The search space
for larger k increases exponentially since the number of possible cranks is given by the
⌊k
2
⌋-th central binomial coefficient, with the total computation runtime then being in

O(2k).
The set of all likely eventually unimodal examples was then searched manually

for general trends and potential infinite families, with Ak and Bk emerging as the
families of choice due to their determined unimodality and ability to explain almost
all known k-colored partition congruences. Conjecture 1.6 was then formulated and
more extensively verified for all 3 ≤ k ≤ 20 and the respective n ≤ 99; this verification
took approximately 4 hours on the same hardware.

Evaluating the set of likely eventually unimodal examples also led to the following
general conjecture. See Table 1 for a partial summary of our computations.
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Crank Unimodal?
C3(2, 1; z; τ) ∀n > 7
C3(3, 1; z; τ) no
C3(3, 2; z; τ) ∀n > 6

(a) k = 3

Crank Unimodal?
C4(2, 1; z; τ) ∀n > 1
C4(3, 1; z; τ) no
C4(4, 1; z; τ) no
C4(3, 2; z; τ) ∀n > 1
C4(4, 2; z; τ) no
C4(4, 3; z; τ) ∀n > 23

(b) k = 4

Crank Unimodal?
C5(3, 2, 1; z; τ) ∀n > 9
C5(4, 2, 1; z; τ) no
C5(5, 2, 1; z; τ) no
C5(4, 3, 1; z; τ) ∀n > 11
C5(5, 3, 1; z; τ) no
C5(5, 4, 1; z; τ) ∀n > 9
C5(4, 3, 2; z; τ) ∀n > 10
C5(5, 3, 2; z; τ) no
C5(5, 4, 2; z; τ) ∀n > 13
C5(5, 4, 3; z; τ) ∀n > 13

(c) k = 5

Crank Unimodal?
C6(3, 2, 1; z; τ) ∀n > 1
C6(4, 2, 1; z; τ) no
C6(5, 2, 1; z; τ) no
C6(6, 2, 1; z; τ) no
C6(4, 3, 1; z; τ) ∀n > 5
C6(5, 3, 1; z; τ) no
C6(6, 3, 1; z; τ) no
C6(5, 4, 1; z; τ) ∀n > 11
C6(6, 4, 1; z; τ) no
C6(6, 5, 1; z; τ) ∀n > 21
C6(4, 3, 2; z; τ) ∀n > 14
C6(5, 3, 2; z; τ) no
C6(6, 3, 2; z; τ) no
C6(5, 4, 2; z; τ) ∀n > 19
C6(6, 4, 2; z; τ) no
C6(6, 5, 2; z; τ) ∀n > 20
C6(5, 4, 3; z; τ) ∀n > 7
C6(6, 4, 3; z; τ) no
C6(6, 5, 3; z; τ) ∀n > 32
C6(6, 5, 4; z; τ) ∀n > 19

(d) k = 6

Table 1. Cranks for the given value of k

Conjecture 4.1. Let D(z; τ) := Ck(a1, a2, . . . , ak+δ2∤k
2

; z; τ) for some a1 > a2 > · · · >

ak+δ2∤k
2

> 0 and k ≥ 3. Then D(z; τ) is eventually unimodal if and only if a1−a2 = 1.



CRANKS, STANTON-TYPE CONJECTURES, AND UNIMODALITY 19

4.2. Questions and ideas for further research. We conclude with open questions
for further study.

(1) Recalling the motivation for Conjecture 1.2 given in Section 1.3, are there com-
binatorial interpretations of the coefficients in the conjectures?

(2) Similarly, is there a combinatorial explanation of the non-negativity of the coef-
ficients given in Theorem 1.7?

(3) Use Lemma 2.1 and Lemma 3.1 (or modifications of them such as ones we have
given) to prove non-negativity of coefficients for polynomials related to other
families of partition functions, to congruences of the partition function modulo
higher powers of primes, or to other combinatorial objects.

(4) Prove or give partial results towards any of the unimodality conjectures given
such as Conjecture 1.4 and Conjecture 1.6.
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