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1 | INTRODUCTION

The key strategy to fight climate change worldwide is to
invest in renewable energy sources (RES) and increase
their integration into power systems. In recent years,
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Abstract

As the penetration levels of renewable energy sources increase and climatic
changes produce more and more extreme weather conditions, the uncertainty
of weather and power production forecasts can no longer be ignored for grid
operation and electricity market bidding. In order to support the energy indus-
try in the integration of uncertainty forecasts into their business practices, this
work describes an experiment conducted with 105 participants from the energy
industry. In the framework of an IEA Wind Task 36 workshop, the experiment
aimed to investigate existing psychological barriers in the industry to adopt
probabilistic forecasts and to better understand human decision processes. We
designed and ran a ‘decision game’ to demonstrate the potential benefits of
uncertainty forecasts in a realistic—although simplified—problem, where an
energy trader had to decide whether to trade 100% or 50% of the energy of an
offshore wind park on a given day based on deterministic and probabilistic
uncertainty day-ahead forecasts. The focus thus was on a decision-making pro-
cess dealing with extremes that can cause high costs in the form of security
issues in the electric grid for system operators, or high monetary losses for
traders, who have bid a power production into the market that failed to be pro-
duced due to high-speed shutdown of the wind turbines. This paper presents
the obtained results, extracts behavioural conclusions and identifies how to
overcome psychological barriers to the adoption of uncertainty forecasts in the
energy industry.

KEYWORDS

ensemble forecasting, experiment, forecast value, human decision-making, uncertainty,
wind power

however, we observed how extreme weather conditions,
together with growing penetration levels of RES, are
increasingly affecting the power system operation and
planning, as well as electricity markets (Chandramowli
et al., 2014). The inherent uncertainty of such events and
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the associated uncertainty in the power generation from
RES can no longer be ignored by the energy industry.

While the development of RES forecast models based
on so-called deterministic weather forecasts has already
started in the 1990s (Giebel et al., 2011; Hong et al., 2020;
Mengelkamp, 1988) and is today a mature technology,
the integration of RES into power systems requires the
design and application of new methods for power fore-
casts that explicitly model uncertainty in order to achieve
robust predictions, communicate forecast uncertainty to
stakeholders and policymakers, and integrate forecast
uncertainties into the decisions process. However, as the
penetration levels of RES increase and climatic changes
produce more and more extreme weather conditions, cur-
rent deterministic methods have reached their limit due
to the inherent inability to model and convey forecast
uncertainties. Examples of these extreme events are wind
speeds above the cut-out of wind turbines (e.g., 25 m/s)
(Lin et al., 2012) that are the focus of this work; extreme
high energy shortfall events at low wind speeds can how-
ever also become more frequent in the future (van der
Wiel et al., 2019).

These developments require the design and applica-
tion of new methods for RES power forecasts that explic-
itly model uncertainty to achieve robust predictions,
communicate forecast uncertainty to stakeholders and
policymakers, and integrate forecast uncertainties into
the decision-aid systems. Probabilistic information and
forecasts have been shown to improve decision-making
in weather-related processes (Joslyn & LeClerc, 2013;
LeClerc & Joslyn, 2015). Moreover, probabilistic forecasts
allow to better evaluate whether the decision strategy
should be adjusted in the face of negative outcomes.

In meteorology, the uncertainty of weather develop-
ment is simulated by so-called ensemble prediction sys-
tems (EPS), where a sufficient large number of forecasts
are generated by either combining many different numer-
ical weather prediction (NWP) models or by perturbing
the initial conditions of a single NWP model (e.g.,
Houtekamer et al., 1996; Molteni et al., 1996; Toth &
Kalnay, 1997). The methodology was implemented opera-
tionally at the large met centres in the late 1990s, at
about the same time as research on power production
models began (Mengelkamp, 1988). Ensemble forecasts,
when calibrated on short-term horizons (Mohrlen, 2004;
Pinson, 2012), can also be used to quantify the uncer-
tainty of the expected wind or solar power generation.
They enable market traders, market operators, transmis-
sion system operators or parties responsible for power
balancing to act far in advance on the uncertain part of
the expected generation (Mohrlen et al., 2012; Pahlow
et al., 2009). For instance, some traders use this kind of
forecast to optimally adjust the amount of power

generation that is bid into the market (Grimit, 2017). Or
transmission system operators use it to define a reserve
required to account for the uncertainty of the power gen-
eration and to prepare for grid congestion much further
in advance than based on deterministic forecasts (Haupt
et al., 2019). Power system and grid resilience to adverse
weather events is also becoming an important case for the
application of probabilistic weather forecasts (Moreno
et al., 2020). Statistical learning methods can also be used to
generate renewable energy uncertainty forecasts and
statistically-based ensembles (Hong et al., 2020). Although
there is a fair number of applications today that make use
of ensemble forecasts, large parts of the industry still have
difficulties adopting these types of forecasts into their opera-
tion (Bessa et al., 2017; Haupt et al., 2019; Wiirth et al,,
2019). As a result, the renewable energy sector forgoes a
huge potential to reduce its vulnerabilities.

1.1 | Simulated experience in games to
overcome psychological barriers

Reluctance to use new methods, especially if they seem
to be too complicated to grasp, is a well-known
phenomenon—not only in the energy industry. Not sur-
prisingly, reluctance to use probabilities in decision-
making has been reported before in numerous sectors, from
medical decision-making to emergency management (e.g.,
Fundel et al., 2019; Kalke et al., 2021; Mackintosh &
Armstrong, 2020; Renooij & Witteman, 1999).

Often, such reluctance may simply result from misun-
derstandings due to a lack of transparency or poor expla-
nations and representations of the method(s) used to
generate the probabilistic forecast. For instance, studies
have shown that presenting verbal probabilities
(e.g., “likely”) in combination with numerical probabili-
ties leads to more consistent interpretations across per-
sons and reduces reluctance to use probabilities (Budescu
et al., 2009, 2014; Wintle et al., 2019). In fact, over the
years, research dealing with weather forecasts, flood fore-
casting, disaster warnings or climate change has accumu-
lated evidence that uncertainty can be understood and
improve decisions, if it is transparently communicated
(e.g., Joslyn & LeClerc, 2013).

Reluctance to use probabilities may also result from
missing experience how to translate probabilistic fore-
casts into a binary decision (Fundel et al., 2019). Often,
users are presented with a description of a probabilistic
forecast—without a chance to experience their use in
context. Basic research on “decisions from experience”
(e.g., Hertwig & Erev, 2009; Hertwig & Wulff, 2021),
however, shows that people may adjust decisions over tri-
als, if given feedback about the outcomes of their
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decisions—and can develop a less biased interpretation
of the uncertainty than when making decisions based on
a description alone. This suggests that “simulated experi-
ence” with such decisions could help users to overcome
their reluctance to use probabilistic wind power forecasts,
develop their own decisions thresholds but also a better
understanding of the conveyed forecast uncertainty.

Experimental games are a second research strand that
incorporates the use of feedback and experience, by all-
owing people a hands-on experience with a decision sce-
nario and the outcomes of their decisions. In the weather
domain, for instance, Roulston et al. (Roulston et al.,
2006) ran experiments set up as a game in which the par-
ticipants had to manage a road maintenance company
responsible for salting the roads, with probabilistic fore-
casts improving their decisions (see also Joslyn &
LeClerc, 2012, 2013; LeClerc & Joslyn, 2015).

‘Gamification’ provides an opportunity for ‘hands-on’
decision experience and training in a clearly defined context
and a relaxed atmosphere, without the responsibility and
potentially serious consequences in real application (Ramos
et al., 2018). For instance, the international HEPEX! initia-
tive on hydrological ensemble prediction has been fostering
the development and application of so far six publicly avail-
able role-play games, described in Ramos et al. (2018). They
describe ‘...these games as simplified representations of
reality, that do not intend to reproduce the full context of
operational environments. Nevertheless, they have been
successfully used as support material during teaching and
training activities’. In the HEPEX context, it was also found
(Ramos et al., 2018) that ‘games are an excellent way to
introduce complex forecasting concepts and create a relaxed
atmosphere for discussion during trainings or workshops’.

Gamification approaches have so far been developed
for flood forecasting or water management, for example,
HEPEX (HEP, 2021; Ramos et al., 2018; SMH, 2021), fire-
fighter management (WEXICOM, 2019 ‘Feuerwache
Game’), rainfall and temperature probabilistic forecasts
by the MetOffice Weather Game (Stephens et al., 2019),
which used a hypothetical ‘ice-cream seller’ scenario to
‘...test the decision-making ability of the participants
using different methods of representing uncertainty and
to enable participants to experience being “lucky” or
“unlucky,” when the most likely forecast scenario did not
occur’.

The main goal of the present paper is to empirically
investigate how to overcome the psychological barrier
‘reluctance’ to the adoption of probabilistic forecasts in
the wind energy area, by enabling stakeholders to explore
their benefit and use.

'Hydrologic ensemble prediction experiment.

Science and Technology for Weather and Climate

For this purpose, we used a simplified energy trading
scenario to allow participants to experience hands-on
decisions based on probabilistic forecasts in an experi-
mental game—and to allow us to explore the effect of
probabilistic compared with deterministic forecasts on
individuals' decisions.

For the decisions, we presented a series of determinis-
tic forecasts, each followed by their probabilistic counter-
parts, to human decision-makers, who are promising
candidates to benefit from probabilistic forecasts, and
ensemble forecasts in particular. The experimental design
focused on a simplified, but realistic decision problem
that is important for a diverse group of decision-
makers—and that at the same time allows to gain
insights into the benefit and use of probabilistic forecast
by analysing how people update their decision based on
deterministic forecasts after receiving probabilistic fore-
casts of the same situation.

To the best of our knowledge, this is the first work to
investigate wind power human decision-making with
uncertain forecasts, in order to: (a) investigate how peo-
ple respond to and decide based on additional probabilis-
tic forecasts compared with the deterministic forecasts
that are currently in use, and (b) enable participants to
explore how to use probabilistic forecasts, stimulate dis-
cussions and collect ideas on the use of such forecasts.

The current study thus extends complementary previ-
ous work on the communication and use of forecast
uncertainty outside the wind energy industry, such as:
(i) the EPS training course created by the Meteorological
Service of Canada (CMC, 2016) intended to introduce
participants to ensemble forecasting and promote a para-
digm shift to probabilistic approaches in decision-making
(EPS); (ii) studies about (partly biased) perceptions of the
uncertainty of deterministic weather forecasts and factors
that influence the perceived uncertainty (e.g., time hori-
zon) of the public and professional user groups, such as
emergency managers (e.g., Bessa et al.,, 2017; Fleischhut
et al, 2020; Joslyn & Savelli, 2010; Kox et al., 2015);
(iii) research that evaluates the impact of different represen-
tations for communicating forecast uncertainty and
decision-making (e.g., Grounds & Joslyn, 2018; Joslyn
et al., 2013; Joslyn & LeClerc, 2012; LeClerc & Joslyn, 2015;
Marimo et al, 2015; Ramos et al, 2013; Stephens
et al., 2019) (iv) statistical analysis of cases in which uncer-
tainty forecasts have been used with a certain degree of suc-
cess (e.g., aboriginal whaling quotas, weather forecasting,
HIV/AIDS epidemic, population projections, number of
funded graduate students to admit) (e.g., Raftery, 2016);
(v) approaches and challenges to communicate ensemble
weather forecasts to different professional user groups,
including transmission system operators, emergency man-
agers (e.g., fire brigade control) and road workers
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(e.g., Demeritt et al., 2010; Frick & Hegg, 2011; Fundel
et al., 2019).

The remaining of this paper is organized as follows:
Section 2 describes the experiment, which used 12 ran-
domized situations per participant; Section 3 presents the
analyses and results for the main research questions;
Section 4 discusses the main limitations and avenues for
future research; concluding remarks are presented in
Section 5.

All participant data, the code for reproducing the
analyses as well as the forecasts used in the experiment
can be found at a public repository at OSF (All partici-
pant data, the code for reproducing the analyses as well
as the forecasts used in the experiment can be found in
a public repository at the Open Science Framework at
https://osf.io/t8q29/?view_only=5cc6e406ab9243229da
88d983ead8cbl).

2 | DECISION-MAKING
EXPERIMENT
2.1 | A high-stakes decision scenario

under wind power uncertainty

In the decision scenario, participants assumed the posi-
tion of an energy trader for an offshore wind park. The
scenario reflects a realistic, but simplified daily decision
in the electricity market that is strongly affected by
uncertain weather development. There were two main
reasons for this choice: First, most users of weather fore-
casts in the energy industry are familiar with ‘uncertainty
in weather forecasts’ and there is some understanding
about the benefits or potential improvements for
decision-making tasks (e.g., Bessa et al., 2017; Fleischhut
et al., 2020; Fundel et al., 2019; Joslyn & Savelli, 2010;
Mylne, 2002). Our experiment thus provides a familiar
starting point for decision-makers. Second, wind power
trading is highly sensitive to forecast errors and uncer-
tainty. Success strongly depends on trading no more
power than will be available. While trading too little
power is inefficient, trading too much often results in
high costs from buying ‘balancing’ power at a high mar-
ket price. This asymmetry in cost and income is reflected
in the simplified ‘classical single-stage’ cost-loss func-
tion, where the loss from trading too much is higher than
trading less (Mazzi & Pinson, 2017; Murphy, 1985). In
fact, power traders claim that approximately 5% of the sit-
uations are responsible for 95% of the costs in a month or
a year, namely those situations with large forecast errors.
Reducing the costs from large forecast errors is hence more
important than improving the general forecast by 1%-2%.
Probabilistic forecasts explicitly quantify how likely and

how large forecast errors might be, and thus promise to be
a key tool to improve power trading decisions.

The focus of this experiment thus is on a decision-
making process dealing with extremes that can cause the
above described ‘additional’ high costs in the form of
security issues in the electric grid for system operators, or
high monetary losses for traders who bid a power produc-
tion into the market that failed to be produced due to a
high-speed shutdown. As uncertainty in forecasts is
unavoidable, decisions need to consider it within a cost-
loss evaluation.

It may be a part of human nature to thrive for the
ability to produce or receive a perfect forecast. Thus,
maybe it is not surprising that people tend to trust in
deterministic forecasts and rely on them today to a large
extent. However, a deterministic forecast is nothing else
than a ‘best guess’ of one possible outcome. Trusting in a
deterministic forecast therefore simply means to ignore that
uncertainty exists (World-Meteorological-Organisation,
2012). The ensemble forecasts in this experiment were cho-
sen to provide exactly the type of uncertainty forecast that
corresponds to the spread of which the deterministic fore-
casts are just best guesses. In this way, participants had the
chance to learn how the ensemble forecasts relate to one or
a few deterministic forecasts. For the deterministic fore-
casts, we chose three wind power forecasts (with different
wind speed forecasts as inputs) and one wind speed forecast
(a mean least-square error optimized forecasts). The reason
why we chose only one wind speed forecast was to reflect
the information typically requested and used by most end-
users—and thus to demonstrate the lack of information
about the underlying uncertainty contained in a single
deterministic forecast, when translated into wind power.
Figures 1 and 2 show examples of these forecast types.

2.2 |
design

Participants and experimental

One hundred and five participants, mostly experts in the
energy industry or from the meteorological community
with relation to the energy industry, decided whether to
trade 100% or 50% of the energy of an offshore wind park
on a given day, based on (past) real-world deterministic
and probabilistic day-ahead forecasts from an operational
ensemble prediction system (see details in Section 2.4) in
12 randomized situations (see Figures 1 and 2). For each
situation, everyone first made their decisions based on
deterministic forecasts before they could update their
decisions based on a probabilistic forecast for the same
situation and before they received feedback. At the end of
the experiment, participants were asked which forecasts
they would prefer for the decisions they made.
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FIGURE 1

Deterministic forecast of Situation 1 as an example: Three independent and different wind power forecasts, selected from

NWP models of the 75 member multi-scheme ensemble prediction system (MSEPS) (upper plot), one wind speed forecast randomly chosen
from one of the 75 MESPS members (bottom plot); the yellow line is the threshold (25 m/s) around which high-speed shutdowns are likely

to occur.

This design allowed participants to reconsider the deci-
sion they made based on the deterministic forecasts after
receiving an additional probabilistic forecast. The main
advantage of this design is that it allowed us to quantify
how often and in which situation each participant changed
their mind. It can thus help to understand in which situa-
tions probabilistic forecasts may provide additional informa-
tion perceived as useful by professional users. A second
advantage was that participants went from more familiar

deterministic forecasts to their probabilistic representation.
The direct sequential comparison should help them to
understand the forecasts, to see the information that the
deterministic forecasts hide, and stimulate discussion for
the workshop afterwards.

Participants were recruited before a workshop of the
IEA Wind Task 36 in January, 2020, where the experiment
and type of probabilistic forecasts available for decision-
making was explained in more detail. The study was
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FIGURE 2

Probabilistic forecast of Situation 1 as an example: Wind power (upper plot), wind speed forecast (bottom plot), both in the

form of 10 percentiles computed from the 75 member multi-scheme ensemble prediction system (MSEPS); the yellow line is the threshold

(25 m/s) around which high-speed shutdown is likely to occur, the red line is the maximum and the green line the minimum of the

75 ensemble forecasts.

approved by the ethics board of the Max Planck Institute of
Human Development, and all participants gave informed
consent at the beginning.

2.3 | Experimental task and procedure

Based on a given forecast, participants had to decide
whether to trade 100% of the generating power of an

offshore wind park or to trade only 50%, given the possi-
bility of a high-speed shutdown (HSSD), where the wind
park stops generating due to excessive wind conditions.
Participants were informed that high-speed shutdowns
typically occur in the wind range above 21-27 m/s,
mostly known as the cut-off wind threshold of 25 m/s;
and that wind turbines use both the mean wind and wind
gusts to determine whether they turn into a high-speed
shutdown.
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TABLE 1 Cost-loss table for the ‘Offshore Wind Power 5000 4
Trading’ experiment. °
3 25001
HSSD No HSSD z
I 0
Trading 100% —5000 5000 °
< ] = Trade 100%
Trading 50% 0 2500 df —2500 ece
= Trade 50%
-5000_ _ i . d
0% 25% 50% 75% 100%
. . . . Probability of HSSD
The instructions also explained the potential payoffs
of each decision, depending on whether a high-speed FIGURE 3 Expected payoff of decisions as a function of

shutdown would occur. To reflect the costs of large and
small errors, we used a simplified cost function: Trading
100% generated an income of 5000 EUR, if there was no
high-speed shutdown. In case of a high-speed shutdown,
a cost of 5000 EUR occurred. Trading 50% generated an
income of 2500 EUR, if there was no high-speed shut-
down. In case of a high-speed shutdown, income and
costs balanced each other, so the payoff was zero (see
Table 1). This cost function follows the classical single-
stage cost-loss model from the weather forecast literature
(Murphy, 1985) and has been used in laboratory experi-
ments to study different ways to communicate forecast
information (Bolton & Katok, 2017). Real-world electric-
ity market bidding problems have of course more com-
plex mathematical formulations, such as the ones
discussed in (Botterud et al., 2012; Dai & Qiao, 2015).
Despite the simplified problem description, the chosen
cost function nevertheless reflects a typical asymmetry in
price for forecast errors of different sign.

For scoring, we only considered whether there was a
high-speed shutdown (HSSD) any time during the fore-
cast period, where the actual generation was either full
load production (100%) or a shutdown scenario (>50%
reduced production) for this particular wind farm. No
other costs were considered. The wind farm has a capac-
ity of 100 MW and the spot market price is 50 Eur/MW.
The cost function assumed that balance costs are equiva-
lent to spot market prices and participants were informed
about these details.

Thus, trading 100% was a risky choice that could lead
to a large income or a large loss. The more conservative
50% trading strategy eliminates the risk, because no bal-
ance cost arise. Given this cost-loss ratio, the expected
value of both options, trading 100% and trading 50%, can
be calculated using

k
EX]= Y xp )

where E [X] is the expected value of a decision option
(e.g., trade 100% or trade 50%), x values are the potential
outcomes depending on the events (HSSD or no HSSD)

different probabilities of an HSSD, given the cost-loss table shown
in Table 1. The decision threshold is 30%, that is, if the probability
of HSSD is higher than 30%, trading 50% has higher expected
payoff, and if the probability is lower than 30%, trading 100% has a
higher expected payoff.

and p is the probability of each event. If the probability of
an HSSD is lower than 30%, the expected value of trading
100% is higher than trading 50%; and it is lower if the
probability of an HSSD is higher than 30% (see Figure 3).
According to an expected value decision strategy, it
would therefore be optimal to trade 100% only if the
probability of an HSSD is lower than 1/3, following the
red line in Figure 3, and otherwise choose the safe option
to trade only 50%, following the green line.

Whereas it is impossible to infer the probability based
on the deterministic forecasts, the percentiles in the prob-
abilistic forecasts give an indication of the uncertainty of
the forecasts and the probability of exceeding the thresh-
old of 25 m/s in the form of the 9 percentiles (P10...P90).
The percentiles provide an indication of when to follow
the green line in Figure 3 in the range above 30% proba-
bility (P70 wind speed > wind threshold and P30 wind
power < full power load) or the red line in Figure 3
below 30% probability (P70 wind speed < wind threshold
and P30 wind power = full power load). Still, it is worth
noting that it is far from trivial to follow an expected value
strategy based on the probabilistic forecasts. On the one
hand, the representations of uncertainty as a fan chart do
not directly convey the probability of exceeding a threshold
but require to implicitly infer it from the quantiles as
described. On the other hand, empirical studies in psychol-
ogy and behavioural economics have shown repeatedly that
people most of the time do not implement cost-loss or
expected value strategies but instead often follow simpler
heuristics (Gigerenzer et al., 2011; Gigerenzer & Brighton,
2009; Kahneman, Slovic, & Tversky, 1982).

This shows that for the design of real-world applica-
tions, careful thought needs to be given to how best to
present forecast data in order to support a specific
decision-making task of the user. For example, the proba-
bility of exceeding a specific threshold may be further
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enhanced by turning ‘red” when that probability exceeds
the level at which the relevant cost function would give a
negative expected outcome.

2.4 | Forecast used in the experiment
Participants made decisions based on 12 real-world deter-
ministic and probabilistic day-ahead power production
and wind speed forecasts, respectively. The forecasts were
selected over a period from October 2018 to April 2019
from an offshore wind park in the North Sea, whose
power generation is traded directly in the electricity mar-
ket. For all forecasts, it was known whether a high-speed
shutdown had occurred or not.

Both the deterministic and probabilistic forecasts
were taken from an operational multi-scheme ensemble
prediction system (MSEPS) (e.g., Mohrlen et al., 2012)
that is suitable and well tested for such extreme events in
wind energy.” The multi-scheme approach is especially
useful for extremes that may happen at any time
throughout the forecast horizon (e.g., Bessa et al., 2017;
Cali, 2010; Haupt et al., 2019). The MSEPS system, run
by the weather service provider WEPROG, is dedicated to
the variations of the fast physical and dynamic processes
in the lower atmosphere and used for wind energy appli-
cations since over 15 years (Mdhrlen, 2004).

For the presentation of the probabilistic forecasts, the
75 ensemble members of the MSEPS system were
summed up into 9 percentiles P10-P90, represented by a
fan chart, with P50 being the median line. As counterpart
to the ensemble forecasts, we presented participants with
three deterministic forecasts, a typical amount of infor-
mation provided in real-world applications, for example,
from different modelling centres. The three power fore-
casts were chosen from the MSEPS as independent fore-
casts with a very different set-up of the NWP models
(e.g., see Figures 1 and 2). Although three deterministic
forecasts may at times provide a certain hint of the fore-
cast uncertainty, such a small number of forecasts cannot
convey a representative uncertainty.

Because wind turbines are calibrated to take both the
average wind speed and the short-term gusts into
account, the uncertainty in wind speed is also one impor-
tant indicator to judge the probability of a shutdown of

?In this so-called multi-scheme approach, all ensemble members
contain the same NWP kernel, whereas various parameterisation
schemes are exchanged. In the MSEPS, the parameterisations dealing
with the fast physical processes in the lower atmosphere are solved with
five different condensation schemes, five different vertical diffusion
schemes and three different dynamic schemes. This provides

5 x 5 x 3 =75 ensemble members that are well-defined, their
difference is known and does not change.

the wind turbines. Therefore, the power forecasts were
always presented together with a wind speed forecast. In
the deterministic case, one wind speed forecast, randomly
chosen from one ensemble model, was presented. In the
probabilistic case, the wind speed forecasts showed 9 per-
centile bands to indicate the uncertainty underlying any
single/deterministic wind speed forecast (see footnote 1).

A horizontal line at 25 m/s indicated the typical aver-
age wind speed threshold at which high-speed shutdown
may occur (Figure 1), while the variable effect of gusts
adds further uncertainty to any decision based on the
wind forecast, and can occur at mean speeds from about
21 m/s. Reflecting a real-world issue with extreme events
such as an HSSD, in some cases the selected wind speed
and power forecasts can also appear inconsistent.

Overall, we selected the 12 forecast situations to sys-
tematically cover four categories depending on whether a
high-speed shutdown (HSSD) occurred and whether we
hypothesized that there were visible indicators of an
HSSD in the respective forecasts (see Table 2). Situations
in which an HSSD occurred (category one and two) are
most important for the prevention of high losses, and in
particular Category 1, because it is in these situations
where a probabilistic forecast may actually provide a bet-
ter indication of an HSSD than the deterministic
forecasts.

3 | RESULTS

Overall, the experiment provided us with several insights
about the usefulness of probabilistic forecasts in a power
trading application. First, we found that 70% of the partici-
pants had an equal or better final outcome with the addi-
tional information from the probabilistic forecasts and that
participants made more correct decisions and took less risk
when this was appropriate, that is, when the uncertainty
forecasts of both wind power and wind speed indicated no
or very little probability of a high-speed event to occur.
Overall, participants changed their mind after seeing the
probabilistic forecasts in 18% of all decisions, and 90% of
participants changed their mind at least once.

The results indicate that probabilistic forecasts have the
potential to improve human decision-making, although the
increased income based on probabilistic forecasts was not
significant given the current selection of decision situations.
However, the current selection provided important first
insights that indicators people may use to correctly predict
a high-speed shutdown based on probabilistic forecasts.
That participants have made less risky decisions is two-fold:
first, it shows that not having the probabilistic information
may lead to risky decisions due to a lack of information,
which is generally unwanted. Second, it demonstrates that
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TABLE 2 Categories of the forecasts in the 12 situations presented in the experiment.
Visible in
Category HSSD event Probabilistic forecast Deterministic forecast Situation IDs used in the results
1 Yes Yes No 1,2,3,4
2 Yes Yes Yes 5,6
3 No Yes No 7,8,9,10
4 No Yes Yes 11,12
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Forecasts Forecasts FIGURE 5 Histogram of the difference between participants’
FIGURE 4 Boxplot and raw data of participants' final balance final balance based on probabilistic and deterministic forecasts.

based on deterministic compared with probabilistic forecasts. The
horizontal line in the boxplot represents the median, the diamond
shows the mean. The distance between the lower and upper limit of
the box shows the inter-quartile range (IQR) of the distribution;
each dot represents the final balance of a participant. The dots were
jittered for better visibility.

the additional probabilistic information can generate more
risk-averse behaviour when this is appropriate.

In that sense, the experiment revealed a number of
interesting aspects for the decision-making of extreme
events and shows that probabilistic forecasts can add
value to the decision-making process. In the following
sections, we will present the outcome of the various parts
of the experiment in more detail.

3.1 | How did probabilistic forecasts
affect decisions?

One way to answer this question is to compare partici-
pants’ final outcome based on the deterministic forecasts
alone to their final outcome with the additional probabi-
listic forecasts. For each participant, we thus aggregated
the payoffs over all decisions, separately for the decisions
based on deterministic and based on the probabilistic
forecasts. The distribution of final outcomes for both con-
ditions is displayed in Figure 4. Based on the probabilistic
forecasts, participants had a higher final (mean = 14,571,
SD = 5969, median = 15,000, interquartile range
[IQR] = 12,500-17,500) than based on the deterministic
forecast (mean = 12,429, SD = 5229, median = 12,500,

Values above zero mean that probabilistic forecasts benefited the
decisions of a participant, values below zero mean that it harmed
decisions.

IQR = 7500-17,500; V = 2779, p < 0.005, Wilcoxon
signed-ranks test on paired sample).

If we look at the central 50% of the participants
(IQR), it is worth noting that the spread in outcomes is
only half the spread compared with the spread based on
the deterministic forecasts. Thus, probabilistic forecast
not only improved the overall performance, but also
resulted in a more uniform performance of the middle
50% of participants. However, there are also participants
in the lower tail of the distribution who performed con-
siderably worse than others.

To understand whether some participants had worse
outcomes with the probabilistic forecasts in particular,
we calculated how many participants benefited from the
probabilistic forecast. We subtracted for each participant
their final outcome based on deterministic forecasts from
their outcome based on probabilistic forecasts (see
Figure 5). Overall, the results are encouraging: 70% of the
participants either had better or identical outcomes based
on probabilistic forecasts than on deterministic forecasts.
Exactly 53% in fact improved their outcomes; however,
30% also did worse than with the deterministic forecasts.

3.2 | Where did the benefits come from?

A better final balance can only be achieved by making
more correct decisions, that is, by more often predicting
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FIGURE 6
decision for each of the 12 decisions situations based on
deterministic or additional probabilistic forecasts.

Proportion of participants taking the correct

correctly when an HSSD occurs and when it does not.
Aggregated across the 12 decisions and 105 participants,
the proportion of correct decisions based on probabilistic
forecast (66% of 105-12 = 1260 decisions) was slightly
higher than based on deterministic forecasts alone (62%
of 1260 decisions). If we look at the individual decision
situations, the probabilistic forecasts led to more correct
decisions in 8 out of 12 situations (Figure 6). Among
these, it is Situation 1 that is responsible for the overall
better decision outcomes based on probabilistic informa-
tion in the experiment (for the corresponding forecast see
Figure 2).

3.3 | Risk assessment

An important research question is to understand how
knowledge of the uncertainty of forecast changes the risk
assessment of the situation. Aggregated over all situations
and participants, the risky option, that is, trading 100%,
was chosen slightly less often based on the additional
probabilistic forecast (51% out of 1260) compared with
the decisions based on the deterministic forecasts alone
(52% out of 1260).

Figure 7 compares the proportion of risky decisions
for each of the 12 decision situations. Reflecting the pre-
vious results, decisions are quite similar, except for Situa-
tion 1. In this case, only 32% choose the risky option
based on probabilistic forecasts, compared with 70%
based on the deterministic forecasts.

Thus, Situation 1 is a prototypical example of a situa-
tion, where income was generated from a decision based
on the additional probabilistic forecasts, whereas deci-
sions based on the deterministic forecast alone generated
a cost due to an incorrect risky decision. This is in fact
what we should expect: in cases with high uncertainty,
probabilistic forecasts are more likely to hold decision-
makers back and trade less in order to reduce the possi-
ble loss. If a deterministic forecast is wrong (e.g., due to

Forecast peterministic [ Probabilistic
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S
& 75%]
o
S 50%1
c
S 25% I
g i
: nMEEN-N NEW.N1
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FIGURE 7 Proportion of participants taking the risky option

(trading 100%) for each of the 12 decision situations based on
deterministic or probabilistic forecasts.

phase error or amplitude error), the decision-maker has
no possibility to know why and may thus take a risky
decision (trade 100%). The probabilistic forecast, in con-
trast, warns about a potential risk and may suggest to be
careful. It is situations like these that traders fear as the
most economic dangerous decision situations, and it is
these situations that are often responsible for the large
individual losses that generate the bulk of the overall
costs. The experiment can thus be considered successful
in producing a realistic example application for this type
of problem.

For all results, it is important to keep in mind that in
the current experimental design, participants always
received the probabilistic forecast right after their deci-
sion based on the deterministic forecast. When presented
with the uncertainty of the forecast, participants there-
fore had already thought about the situation. Their risk
assessment was thus never based on the probabilistic
forecast alone.

Instead, the experimental design allows to observe,
whether participants change their mind once they are
presented with the uncertainty of the forecasts. Overall,
participants changed their mind after seeing the probabi-
listic forecasts in 18% of all decisions, and 90% of partici-
pants changed their mind at least once.

Figure 8 shows that in 9 out of 12 situations, more
than 10% of the participants changed their mind when
presented with the additional information. In three cases,
30%-23% changed their mind (Situations 4, 3 and 9) and
in one case—again Situation 1—48% did. The overall low
proportion of changed decisions on the one hand reflects
the small differences between decisions.

In a real application, it would now be interesting to
examine, whether and when the additional information
contained in probabilistic forecasts overall improves the
risk assessment capabilities of decision-makers, that is,
reduces costs and enhances income, and whether it
reduces the costs of very expensive cases sustainably. This
evaluation would require a higher number and a more
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Distribution of changed decisions after being

representative selection of critical cases as we used in this
first experiment. However, the experiment provides a
good example of how real applications could be evaluated
for a customer of such a product, promising avenues for
future research, and a good starting point to explore how
to select critical cases for future studies.

3.4 | How did the different situations
affect decision-making?

The strong improvement in Situation 1 compared with
other situations reflects that probabilistic forecasts did
not add relevant information in all situations where we
had expected this (category one and three; Table 2).

Here, the current set of situations can help to develop
the first hypotheses, which indicators in the forecasts par-
ticipants used to make their decision, and thus how to
select critical cases for future research. For illustration,
we focus on situations in Category 1, which are particu-
larly important: in these situations, we expected the prob-
abilistic forecast to be a better indicator for a HSSD than
the deterministic forecasts, and hence to reduce the
impact of missed events with high losses.

For Situation 1 (Figure 1), the deterministic forecasts
barely indicate the risk of a high-speed shutdown. Two out
of the three power forecasts indicate no drop in power gen-
eration. This is further confirmed by the wind speed fore-
cast that is clearly below the critical threshold of 25 m/s
and does not change throughout the forecast period. In the
probabilistic wind power forecast (Figure 2), in contrast, it
becomes obvious that more than one member of the ensem-
ble predicts a drop in power generation—in line with the
wind speed forecast that reveals a considerable uncertainty
during the same period.

In Situation 2, 71% and 78% of the participants correctly
expected an HSSD and thus traded 50% based on either
deterministic and probabilistic forecasts, respectively—
compared with Situation 3, where only 26% and 19% cor-
rectly expected an HSSD (see Figure 6). If we look at the
deterministic forecasts, the wind speed gets much closer to

Science and Technology for Weather and Climate

the critical threshold in Situation 2 than in Situation
3. Moreover, in Situation 2, the deterministic power forecast
shows a drop in generation at the same time when the wind
speed forecast gets close to the threshold, whereas in Situa-
tion 3, the wind speed prediction is constantly away from
the threshold. If we look at the probabilistic forecast, the
picture does hardly change despite the additional percen-
tiles shown. For instance, in Situation 3, none of the percen-
tiles comes close to the wind speed threshold.

Especially interesting is Situation 4, as slightly more
participants correctly expected an HSSD based on the
deterministic forecasts (59%) than based on the probabi-
listic forecasts (48%). Here, the deterministic wind speed
forecast is again close to the critical threshold; at the
same time, the deterministic power forecasts show no
simultaneous performance drop. The conflicting informa-
tion may have made this a harder decision, and may
explain that only 59% of the participants correctly
expected an HSSD based on the deterministic forecasts
(compared with about 71% in Situation 2). Importantly,
the probabilistic forecasts look quite similar. The
predicted uncertainty is rather small, with the worst-case
ensemble member barely scratching the wind speed
threshold. The low visible uncertainty may thus have
reassured some more participants to expect no HSSD and
falsely take a risky decision (Figure 7). It is important to
note that uncertainty forecasts with a larger spread can
often be helpful in catching low-probability-high-impact
events, but at the same time lead to expensive decisions
due to high uncertainty. Narrow forecast intervals can on
the other hand lead a decision-maker to over-confidence
in a decision—see, for example, Roussos et al. (2021) for
a detailed discussion and modelling framework.

In summary, the pattern suggests that a decision-
maker needs to understand the cost-loss function of the
problem, in this case knowledge about the 30% probabil-
ity as described in Section 2.3 and shown in Figure 3, or
at least use some kind of heuristics such as a simple
sequential decision tree: Consider whether the wind
speed gets close to the threshold of 25 m/s or not. If it
does not get close, do not expect an HSSD. If it gets close
and there is a simultaneous drop in power generation,
expect an HSSD—otherwise expect an HSSD with some
probability. Such a decision strategy would produce simi-
lar decisions based on the deterministic and probabilistic
forecasts whenever the predicted uncertainty is low.

3.5 | Which forecast information did
participants prefer?

In the last part of the experiment, participants indicated
which forecasts they would prefer for the decisions they
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FIGURE 9 Preferred forecast information for the kind of

decision made.

made. The questions can be seen in Figure 9. The partici-
pants were able to select multiple options. The aim was
to investigate whether the participants were satisfied with
the provided information and whether they would prefer
more information, and if so, what kind of information
they would like to receive.

The most striking result was that 93% preferred some
type of probabilistic forecast. Among these participants,
37% preferred having probabilistic wind speed and wind
power forecasts. Whereas 21% would prefer probabilistic
wind forecasts alone, only 5% would base their decision
on a power forecast alone. 30% of the participants would
like to have a deterministic ‘best guess’ inside the proba-
bilistic forecasts. Such a ‘best guess’ forecast may be
trained or tuned with information about the wind farm
that are not weather related and can provide additional
information relevant to the decision, for example, turbine
control mechanisms, when blades are pitched to reduce
power output, or related to wake effects in and around
the wind farm, direction dependency, etc.

Overall, the results show that decision-makers prefer
probabilistic forecasts, but also indicate that the combina-
tion of probabilistic wind and power forecasts is still per-
ceived as more helpful than the power forecasts alone.
Considering the few users of ensemble forecasts in the
industry, the result may also be interpreted as a lack of
available information on the concrete implementation pos-
sibilities of ensemble forecasts into decision support tools
in particular and probabilistic tools in general. Once
decision-makers get inspired by the use of such tools
through practical applications in the form of games and
experiments, some of the identified barriers may disappear.

4 | DISCUSSION

41 | Experiment's limitations

Whereas deterministic forecasts show no information
about the probability of a high-speed shutdown,

probabilistic forecasts explicitly quantify the uncertainty
information. In this experiment, we showed a typical
24-h window of a trading day in order to help the
decision-maker to get an overview and become familiar
by working visually with such uncertainty forecasts.

In a real-life application, the decision would have to
be made for each hour separately, or, alternatively with
time spans and thresholds for such hours, where the
probability exceeds these thresholds. Those shutdown
periods with lower or no production at all will also be
traded or handled over a number of hours before and
after the event due to known phase errors in forecasts. In
that sense, the current experiment was not too far away
from a real-life application.

For the current experiment, it is also important to
keep in mind that individuals often do not update their
beliefs sufficiently in the face of new information. In this
case, seeing the deterministic forecast first is likely to
anchor participants so that they likely do not decide
based on the probabilistic forecasts as they would without
seeing the deterministic forecast first. Moreover, their
thoughts about the situation will also be influenced by
considering the deterministic forecasts first. The next step
will thus be to use an experimental design that tests the
benefit of deterministic forecasts and probabilistic fore-
casts on their own by presenting both independently
from each other.

Finally, the main benefit of probabilistic information
was observed in Situation 1 but not in all others, where
we had it initially expected. Here, it is important to
develop a better understanding of which situations prob-
abilistic forecasts contain information that can improve
decisions.

4.2 | Avenues for future research
There are a number of promising avenues to further
develop this research.

First, to better understand and quantify the benefit of
probabilistic forecast, it is key to select a representative
set of critical decision situations. On the one hand, this
might require the use of complementary information
(or indices) that characterize the ‘degree of uncertainty’
(see Bessa et al., 2017 for some examples) and study their
correlation with past events (and context), where the use
of probabilistic forecasts resulted in a significant positive
benefit. On the other hand, it requires to investigate what
cues and features human decisions-makers focus in a
given forecast representation in order to predict a high-
speed shutdown. Knowing the cues people rely on would
allow to predict in which cases different decisions should
be expected.
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From a risk communication perspective, it is also key
to investigate whether and how different representations
affect decisions (e.g., Joslyn & LeClerc, 2013), and how to
best communicate uncertainty information transparently
(Spiegelhalter et al., 2011). For instance, would decisions
differ, if forecasts were given in text or table format; or by
showing all 75 members of the probabilistic forecasts as a
‘spaghetti plot’? More information is not always better:
‘Spaghetti plots’ do not generally add useful information,
especially, when the uncertainty of the weather situation is
high and ensemble members deviate strongly from each
other (Bessa et al., 2017). They may highlight the uncer-
tainty of certain, specific situations, for example, strong,
short-lasting ramps, more clearly compared with percentile
bands. However, in the HSSD case, spaghetti plots would
not add more or better information to the task.

In the current experiment, 30% of the participant per-
formed worse with the additional probabilistic forecasts
than with deterministic forecasts alone. There are a num-
ber of possible reasons for this: they may have been unfa-
miliar with probabilistic forecast and information in
general, they may have misunderstood the forecast repre-
sentation, or they may have used a less appropriate deci-
sion strategy. One main focus in future studies thus will be
to better understand why some people perform worse than
other, in order to develop better representation formats and
explanations to boost their decisions competencies.

The first step is to better understand which decision
strategies are adaptive in order to assess, if decision-
makers are risk averse or risk prone under uncertainty.
On the one hand, individuals risk preferences vary. On
the other hand, even in simplified decision situations, the
expected value of an option is not necessarily equivalent
to its expected utility for decision-makers. To study
whether risk preferences change appropriately, one can
model behaviour in probabilistic games with utility the-
ory, for example, a choice between a feed-in tariff
¥ (guaranteed income) or direct participation in the elec-
tricity market with probability p of earning less than y or
1 — p for winning more than y.

The second important step is to understand how deci-
sions depend on the structure of the decision context.
Depending on the context, strategies other than expected
utility maximization may be more suited, for example, a
more robust strategy that puts a stronger emphasis to
avoid large losses, for example, to avoid insolvency
(Doherty & Eeckhoudt, 1995). A risk-averse strategy can be
unwarranted in one decision context, but be called for in
another where optimizing a long-term expected gain is only
the second goal after maintaining operative processes.

Third, whereas probabilistic wind forecasts are nor-
mally calibrated, wind power forecasts incorporate differ-
ent sources of uncertainty. Thus, the overall value of

Science and Technology for Weather and Climate

course depends on the quality of the forecast itself. Proba-
bilistic forecasts are one important step to make this
transparent. In that respect, it might be interesting to
show the difference in methodology and application of
different methods to generate probabilistic forecast,
focusing on low probability, but high impact scenarios,
such as:

« Scenarios with wind speed above cut-out value for
multiple hours (e.g., 2-3 h) and where uncertainty
forecasts generated with a statistical model are not able
to capture this event since: (1) a similar event was
never observed in historical data; (2) temporal depen-
dency structure is not captured by the statistical
model.

« Hours with extreme regulation of power prices (this
sometimes occurs in Nord Pool market) and where
forecast errors in one direction can be highly penalized
(even if they have small deviations).

Another important step is to investigate where non-
psychological barriers to the application of probabilistic
forecast in the operational environments exist. Possible
barriers may be the costs of implementation, training of
staff, lack of knowledge about available applications or
lack of proper communication about the possibilities and
advantages of using such forecasts. Finally, energy traders
and transmission system operators generally handle a port-
folio of RES power plants and this aggregation mitigates the
impact of forecast uncertainty (see e.g., (Miettinen &
Holttinen, 2017) and (Pahlow et al., 2009) section ‘Pooling
of energy’). In contrast, distribution system operators and
local energy communities are more exposed to RES uncer-
tainty and adverse weather, in particular its impact in elec-
trical grid technical constraints. This motivates the need to
show to end-users the added value of uncertainty informa-
tion for finding remedial actions that solve predicted techni-
cal problems. An experiment similar to the one presented
in this paper would be highly relevant since the impact of
RES uncertainty is an indirect result (i.e., influence in volt-
age and current in the grid) and therefore not straightfor-
ward to be understood by a human operator in a control
centre.

5 | CONCLUSIONS

This experiment revealed a promising way of examining
how to overcome psychological barriers to the adoption
of probabilistic forecasts in the operation of the electric
grid and in power trading applications. In total, there
were 105 participants, mostly experts in the energy indus-
try or from the meteorological community with relation
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to the energy industry. Although the experiment was
simplified, it still provided a realistic scenario for many
decision-makers in the industry, and for this reason was
well received by the participants as an exemplary applica-
tion for the use and application of probabilistic forecasts
from a physical-based ensemble weather prediction sys-
tem, and considered a useful tool for training purposes.
The feedback we received also confirmed us in our
approach to build on ‘decision from experience’ and
gamification. To create simplified representations of reality,
also described in the hydrological science (Ramos
et al., 2018), increases the engagement level of people, when
learning to use a new technology. The learning-by-doing
and ‘playing’ a game in a safe environment may not repro-
duce the entire context of a decision-making problem in a
specific operational environment, but instead provides a
platform to introduce people with a complex topic, train
and teach awareness for the challenges and benefits that
come with the advanced technology.

The results hence revealed a number of interesting
aspects of decision-making in the energy industry, and
also how complex the evaluation of good or bad decision-
making is for real-life applications. Nevertheless, the
results encourage a further development of this experi-
ment by increasing the number of cases to create a more
representative distribution. This will also allow us to eval-
uate how we could use experimental games like this as
training tools that enable decisions-makers to learn from
experience how to deal with uncertainty in a structured
and state-of-the-art way.
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