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Abstract

Testing is recommended for all close contacts of confirmed COVID-19 patients. However, existing
group testing methods are oblivious to the circumstances of contagion provided by contact tracing. Here,
we build upon a well-known semi-adaptive pool testing method, Dorfman’s method with imperfect tests,
and derive a simple group testing method based on dynamic programming that is specifically designed to
use the information provided by contact tracing. Experiments using a variety of reproduction numbers
and dispersion levels, including those estimated in the context of the COVID-19 pandemic, show that
the pools found using our method result in a significantly lower number of tests than those found using
standard Dorfman’s method, especially when the number of contacts of an infected individual is small.
Moreover, our results show that our method can be more beneficial when the secondary infections are
highly overdispersed.

Introduction

As countries around the world learn to live with COVID-19, the use of testing, contact tracing and isolation
(TTT) has been proven to be as important as social distancing for containing the spread of the disease [I].
However, as the infection levels grow, TTI reaches a tipping point and its effectiveness quickly degrades as the
health authorities lack resources to trace and test all contacts of diagnosed individuals [2]. In this context,
there has been a flurry of interest on the use of group testing—testing groups of samples simultaneously—to
scale up testing under limited resources.

The literature on group testing methods has a rich history, starting with the seminal work by Dorfman
[3H5]. However, existing methods [6] [7], including those developed and used in the context of the COVID-19
pandemic [8HI6], are oblivious to the circumstances of contagion provided by contact tracing and assume
statistical independence of the samples to be tested. This assumption can be seemingly justified by classi-
cal epidemiological models where the number of infections caused by a single individual follows a Poisson
distribution. However, in COVID-19, there is growing evidence suggesting that the number of secondary
infections caused by a single individual is overdispersed—most individuals do not infect anyone but a few
superspreaders infect many in infection hotspots [I7H23]. Overdispersion has been also observed in MERS
and SARS [24H26]. In this work, our goal is to develop group testing methods that are specifically designed
to use the information provided by contact tracing and are effective in the presence of overdispersion.

More specifically, we build upon a well-known semi-adaptive pool testing method, Dorfman’s method with
imperfect tests [B, 27]. In Dorfman’s method, samples from multiple individuals are first pooled together
and evaluated using a single test. If a pooled sample is negative, all individuals in the pooled sample are
deemed negative. If the pooled sample is positive, each individual sample from the pool is then tested
independently. However, rather than modeling the probability that each individual sample is positive using
an independent Bernoulli distribution as in Dorfman’s method, we assume that: (i) the samples to be tested
are all the contacts of a diagnosed individual during their infectious period, who are identified using contact
tracing, and (ii) the number of true positive samples, i.e., secondary infections by the diagnosed individual,
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follows an overdispersed negative binomial distribution [22 23]. Given any arbitrary set of pools, we then
compute the average number of tests and the expected number of false negatives and false positives under
our model. Finally, we introduce a dynamic programming algorithm to efficiently find the set of pools
that optimally trade off the average number of tests, false negatives and false positives in polynomial time.
Experiments using a variety of reproduction numbers and dispersion levels in secondary infections, including
those observed for COVID-19, show that the pools found using our method result in a significantly lower
average number of tests than those found using standard Dorfman’s method, especially when the number of
contacts of an infected individual is small. Moreover, our results show that our method can be particularly
beneficial when the number of secondary infections caused by an infectious individual is highly overdispersed.

Methods

Modeling overdispersion of infected contacts

Previous work have mostly built on the assumption that the number of infections X caused by a single
individual follows a Poisson distribution with mean r, so X ~ Pois(r), where r is often called the effective
reproduction number. However, having equal mean and variance, the Poisson is unable to capture settings
where the number of cases to be tested for exhibits higher variance. Following recent work in the context of
COVID-19 [19] 22], we instead model X using a generalized negative binomial distribution. For a (standard)
negative binomial distribution, X ~ NBin(k,p) can be interpreted as the number of successes before the
k-th failure in a sequence of Bernoulli trials with success probability p. For a generalized negative binomial
distribution, k£ > 0 can take real values and the probability mass function is given by

I'(n+k)

PX =n)= T'(k)n!

where k is called the dispersion parameter and parameterizes higher variance of the distribution for small k.
Since E[X] = kp/(1 —p), we assume in this work that the number of secondary infections X is distributed as
X ~ NBin (k, p) with p = r/(k+r), hence parameterizing X via its mean E[X] = r and dispersion parameter
k. Under this parameterization, Var[X] = r(1 +r/k), which is greater than the variance of the Poisson r for
k < oo. For k — oo, the sequence of random variables X, ~ NBin(k, r/(k + r)) converges in distribution to
X ~ Pois(r), making the negative binomial a suitable generalization of the Poisson for modeling secondary
infections.

Assuming we test all contacts of a diagnosed individual during their infectious period, we have prior
information about the maximum number of possible infections N in practice. In this setting, we will write

@rpn(n)=P(X=n|X<N) when X ~NBin(k,r/(k+7r)). (1)

Here, note that P(X =n|X < N)=P(X =n)/P(X < N) if n < N and 0 otherwise.

Pooling contacts of a positively diagnosed individual

In this context, our goal is to identify infected individuals among all contacts A of a positively diagnosed
individual via testing, where |A| = N. For events concerning each individual 7 € N, we define the following
indicator random variable:

I; = 1[individual j is infected]

In addition, for each pool of individuals S C N, we define the number of infected in S as I(S) := >, s I;-
Following our assumption on the distribution of the number of secondary infections, we define

P(IN) =n) = qrr.n(n)



Let T(S) = 1[test of pool § is positive]. To account for the sensitivity s. (i.e., true positive probability)
and specificity s, (i.e., true negative probability) of tests, we parameterize the conditional probabilities as

P(T(S) = 1|I(S) > 0)
P(T(S) = 0] I(S) = 0)

In the above, following the literature on the group testing [5], we assume that the sensitivity of pool tests
is independent of the exact number of infected individuals in the pool. Moreover, while dilution has been
shown to often be negligible [28], the effect can easily be addressed by making the conditional T'(S) | I(S),
dependent on the corresponding pool size |S].

Se
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Dorfman testing under overdispersion of infected contacts

Dorfman testing proceeds by pooling individuals into non-overlapping partitions of A and first testing the
combined samples of each pool using a single test. Every member of a pool is marked as negative if their
combined sample is negative. If a combined sample of a pool is positive, each individual of the pool is
subsequently tested individually to determine who exactly is marked positive in the pool.
Let D}S denote the indicator random variable for the event that individual j is marked as infected in pool
S C N :|8] > 1 after Dorfman testing. Then, D}-S can be expressed as
Dj =1[T(S) =1nT({j}) = 1,

i.e., taking value 1 if and only if the combined sample of pool S is first tested positive and the sample of
individual j is tested positive in the second step. In the simple case of |S| = 1, we have DY = T'({;}).

Expected number of tests Let K(S) be the number of tests performed when testing pool S as described
above. Then, the expected number of tests E[K(S)] due to a pool § is:

1+ f(S) |S]>1

E[K(S)] = {1 -

where f(S) is given by

168) = I81[1 = P(1(S) = 0)]

S|
= [S||1 =) _P(T(S) =0]I(S) = s) P(I(S) = s)]
|S| N
= [S|{1 =) _P(T(S) =0[1(S) = 5) Y _ P(I(S) = s| I(N) =n) P(I(N) = n)

N
— P(T(8)=0[I(S) =0) Y _P(I(S) =0[I(N) =n)P(I(N) = n)]
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where the last step follows from the fact that I(S)|I(N) = n ~ HGeom(N,n,|S|), our assumption about
P(I(N) = n) and our assumptions about T'(S).



Expected number of false negatives To compute the number of false negatives, we distinguish between
two cases. If |[S| = 1, i.e., the pool consists of only one person, there is no distinction between a group test
and an individual test. Therefore, a false negative can occur only if the person is infected and the test turns
out negative. Thus,

N
E[FN(S) = (1= s)PI(S) =1) = (1= 5) Y T aren(n)

If |S] > 1, a pooled test is performed and, if it turns out positive, individual tests are performed afterwards.
The expected number of false negatives in this case is

|S| IS|
E[FN(S)] = ZsP(T(S) =0|I(S)=s)P(I(S) =s) + ZP(T(S) =1|I(S) =s)P(I(S) = s)s (1 — s¢)
s=1 s=1

where the first term corresponds to the case where the group test outcome is falsely negative and the second
term corresponds to the case where the group test outcome is truly positive and the individual tests are falsely
negative. Using our assumptions about the individual probabilities, we can rewrite the above expression as

< & & o [ ()
E[FN(S)] =Y s(1—-s)P(I(S)=5)+ > s(1—sc)scPI(S)=3s)=Y s(l—s2)|> qu,k,w(n)
s=1 s=1 s=1 n=s |S|

Expected number of false positives We likewise distinguish between the two cases for computing the
number of false positives. Again, if |S| = 1, there is no distinction between a group test and an individual
test. Therefore, a false positive can occur only if the person is not infected and the test turns out positive.

Thus,
N-1

E[FP(S)] = (1 - 5,)P(I(S) = 0) = (1 5,)

n=0

N-n (n)
N qr,k,N T

If |S| > 1, a group test is performed and, after a positive result, individual tests are performed subsequently.
Truly negative subjects are falsely classified as positive if the corresponding group test outcome is positive
and the subject’s subsequent individual test outcome is positive, i.e.,

IS|—1

E[FP(S)] = )Y P(T(S)=1]1(S) = )PU(S) = s)(IS| — 5)(1 —s,)
s=0

Finally, under our assumptions about the individual probabilities, we rewrite the above expression as

1S|—1
E[FP(S)] = (1= s,)PUL(S) = 0)IS|(1 = 5) + D s PU(S) = 5)(S]| = 5)(1 = 5)
¥ (5) 5 x5

= (1 - 5,)?|S] qr,N(N) Gr,e, N (12)

|S|
20

+ Z Se(ls‘_s)(l_sp) Z (N)
s=1 n=s |S|

Finding the optimal pool sizes

First, we note that the expected number of tests, false negatives and false positives only depend on the pool
size. Therefore, overloading notation, for a number of contacts [N'| = N and pool of size |S| = s, we will
write F[K(s)], E[FN(s)] and E[FP(s)].

Our goal is to find the sizes {s;} of the optimal sets of pools that optimally trade off the expected number
of tests, false negatives and false positives [5]:

minimize g(s;) subject to s;i =N
pe 2ale) 2



Algorithm 1 Find the sizes of the optimal set of pools under overdispersion of infected contacts

Input: Number of secondary contacts N, sensitivity s., specificity s,, parameters r, k, Ay and Ay

1: Sg« 0

2: h(O) +~0
3: for ke {l,...,N} do
4: g(k) < CoMPUTEOBJECTIVE(k, N, ¢, Sp, T, k; A1, A2)
5: forne {1,...,N} do
6:  h(n) < minicj<n [9(5) + h(n — j)]
T s < argming o, [9(7) + h(n — )]
8: S, =8,_sU {S}
9: return Sy
with

9(si) = E[K(s;)] + ME[FN(s;)] + ME[FP(s)],

where A1 and Ay are given non-negative parameters, penalizing the numbers of false negatives and false
positives.

Perhaps surprisingly, we can solve the above problem in polynomial time using a simple dynamic pro-
gramming procedure. More specifically, define the following recursive functions:

() = i [9()) + hn = )]
‘Sn = 'Sn—s U {5}7

where s = argmin; ., [g(j) + h(n — j)]. Interpreting n as the number of individuals not yet assigned
to a pool, using the two recursive functions, the (sizes of the) optimal set of pools can be recovered by
computing h(n) in increasing order of n. Algorithm [I| summarizes the overall procedure, where the function
COMPUTEOBJECTIVE(-) precomputes the function g(k) for each k € {1,..., N}. More formally, we arrive
at the following proposition:

Proposition 1 Given N contacts, the set of pool sizes Sx returned by Algorithm[1] are optimal.

Proof We will prove this proposition by induction. In the base case, where n = 1, it is easy to see that
the optimal solution is 8§ = {1} i.e., it consists of one group with size 1 and the minimum of the objective
value is OPT} = g(1), while the recursive functions trivially find the optimal solution since h(1) = g(1). For
n > 1 contacts, the inductive hypothesis is that the values h(#) and sets S; recovered by Algorithm (1| for
all i < n are optimal. Let & and OPT,, be the optimal set of pool sizes and the respective value of the
objective function for n contacts.

Suppose, for the sake of contradiction, that OPT,, < h(n) i.e., the solution computed using the recursive
functions for n contacts is suboptimal. Let St = {s},s5,...,s}. Then, we get:

! l !
Y a(s7) <g(s)+h(n—s) =D g(si) <glsi)+h(n—s7) =D g(s7) <OPT,_y;,

i=1 i=1 =2

where the first step is based on the fact that g(s) + h(n —s) < g(j) + h(n —j) forall j : 1 < 57 < n and
the second step is based on the inductive hypothesis. Since ) ,_, s} = n — s}, the final inequality implies
that, having n — s} contacts, the set of pool sizes {s3, ..., s;} is strictly better than the optimal one which is
clearly a contradiction. Therefore, the values h(n) and sets of pool sizes S,, given by the recursive functions
are optimal for all n: 1 <n < N.

|
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Figure 1: Performance of our method (Algorithm |1)) and Dorfman’s method for various values of the number
of contacts of a diagnosed individual during their infectious period. Panel (a) shows the number of tests
per contact, where the dots represent the average value and the error bars cover 90% of the observations.
Panel (b) shows the average pool size. Panel (c¢) shows the empirical distribution of the percentage of tests
saved by using our method instead of Dorfman’s method, where we exclude the highest and lowest 5% of
observations. In all panels, we set the sensitivity and specificity to s, = s, = 0.95, and sample the number
of secondary infections from a truncated negative binomial distribution with mean r = 2.5 and dispersion
parameter k = 0.1 [19, 20, 29, B0]. For each combination of method and parameter values, the averages and
quantiles in all panels are estimated using 100,000 samples.

Results and Discussion

We perform simulations to evaluate Algorithm [1| against Dorfman’s method in its ability to optimally trade
off resources and false test outcomes in the presence of overdispersed distributions of secondary infections.
To generate the infection states for each contact, we first fix a number of contacts IV and sample the
number of secondary infections n ~ g, i n(n), where ¢, n(n) is a truncated negative binomial distribution
as defined in Eq. Then, we select n of the N contacts at random and set their status to infected. To
implement Dorfman’s method, we use a variation of Algorithm [I| in which the expected numbers of tests,
false negatives and false positives are computed assuming an independent individual probability of infection
p=Eq, , v[n]/N, using the formulas derived by Abrahamian et al. [5].

We first compare the performance of our method and Dorfman’s method at finding the pools that min-
imize the number of tests (i.e., Ay = A2 = 0) for fixed values of the reproductive number r and dispersion
parameter k matching estimations done during the early phase of the COVID-19 pandemic. Figure [1] sum-
marizes the results with respect to the number of contacts N of the diagnosed individuals. The results
show that our method achieves a lower average number of tests across all values of NV, with its competitive
advantage being greater when the number of contacts is small and less apparent as the number of contacts is
increasing. Moreover, Dorfman’ method chooses pool sizes that increase with the number of contacts while
the ones chosen by our method remain relatively constant. This leads to significant differences between the
distributions of the number of tests performed under the two methods. For example, as shown in Figure c),
when the number of contacts is N = 20, our method is most likely to perform about 50% less tests than
Dorfman’s. However, due to the more conservative pool sizes given by Dorfman’s method, there is a small
probability that our method ends up performing more tests, sometimes even double the amount.

Next, we investigate to what extent our method offers a competitive advantage with respect to Dorfman’s
method for additional values of the reproductive number r and dispersion parameter k different than those
estimated during the early phase of the COVID-19 pandemic. Figure [2| summarizes the results, which show
that our method offers the greatest competitive advantage whenever the number of secondary infections is
overdispersed, i.e., k — 0. Moreover, as the number of contacts N increases, the competitive advantage is
greater for larger values of the reproductive number 7.

Finally, we explore the trade-off between the average number of tests that our method achieves and the
false positive and negative rates, under different values of the parameters \; and A2. Figure[3|summarizes the
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Figure 2: Performance of our method (Algorithm and Dorfman’s method for different values of the
reproductive number r and dispersion parameter k. Each panel shows the average percentage of tests
saved by using our method instead of Dorfman’s method. Here, we set the sensitivity and specificity to
s¢ = sp = 0.95 and, in each experiment, we estimate the average using 100,000 samples.
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Figure 3: Average number of tests, false negative rate and false positive rate achieved by our method
(Algorithm [1)) under different values of the parameters A; and A2 and different levels of specificity s, and
sensitivity s,. In each panel, we either penalize the false negative rate (i.e., we vary A1 and set Ay = 0)
or the false positive rate (i.e., we vary Ay and set A\; = 0). Accordingly, for the former, we show the false
negative rate vs average number of tests (in blue) and, for the latter, we show the false positive rate vs
average number of tests (in pink). Here, we set the number of contacts to N = 100 and sample the number
of positive infections from a truncated negative binomial distribution with mean r = 2.5 and dispersion
parameter k = 0.1. In each experiment, we estimate averages using 100,000 samples.

results, which show that, to achieve lower false negative and false positive rates, more tests need to be per-
formed. When trading off the number of tests with the number of false positives (A1 = 0, A2 > 0), our method
gradually changes the average pool size, leading to many possible trade-off points between the number of tests
and the false positive rate. When A5 takes small values, the optimal solution leads to pool sizes that minimize
the number of tests, while the solution consists of pools of two contacts when Ay gets significantly larger.
When balancing the number of tests with the number of false negatives (A\; > 0, A2 = 0), there are only two
or three possible solutions, with the extreme ones corresponding to pool sizes minimizing the number of tests
and pools of size one, i.e., individual testing for all. We noticed that the expected number of false negatives
in a pool grows linearly with its size for sizes greater than one, therefore, making the exact size of the pool
irrelevant in terms of the expected total number of false negatives. As a consequence, this leads to only a few
optimal solutions where some of the contacts are individually tested while the rest of them are split into pools.

Our results have direct implications for the allocation of limited and imperfect testing resources in future
pandemics whenever there exists evidence of substantial overdispersion in the number of secondary infections.
In this context, we acknowledge that more research is needed to more accurately characterize the level of
overdispersion in a pandemic. Moreover, it would be interesting to extend our algorithm using distributions
other that the negative binomial and practically evaluate our method in randomized control studies.
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