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Abstract

We report a perturbative calculation of the expectation value of the infinite straight line Maldacena-Wilson

loop in N = 4 supersymmetric Yang-Mills theory to order g6. Thus, we extend the previous perturbative

result by one order. The vacuum expectation value is reformulated in terms of a non-linear and non-local

transformation, the Nicolai map, mapping the full functional measure of the interacting theory to that of a free

bosonic theory. The results are twofold. The perturbative cancellations of the different contributions to the

Maldacena-Wilson loop are by no means trivial and seem to resemble those of the circular Maldacena-Wilson

loop at order g4. Furthermore, we argue that our approach to computing quantum correlation functions is

competitive with more standard diagrammatic techniques.
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1 Introduction

In N = 4 supersymmetric Yang-Mills the Maldacena-Wilson loop operator for a single infinite straight

line is a 1
2 -BPS object [1,2]. As such it is believed that its vacuum expectation value does not receive

any quantum corrections. Lower order perturbative calculations indicate that

〈〈

W(−)
〉〉

g
= 1 . (1.1)

However, thus far no rigorous proof exists showing that indeed all perturbative corrections cancel. In

this work we compute the vacuum expectation value (1.1) up to order g6 for all N using the recently

fully established Nicolai map [3–5], thus extending the previous perturbative results of Erickson,

Semenoff and Zarembo [6,7] by one order.

In early work, Nicolai showed that supersymmetric gauge theories are characterized by a non-local

and non-linear transformation Tg, the Nicolai map [8,9]. Then Dietz and Lechtenfeld realized that the

Nicolai map provides a ghost and fermion free quantization of supersymmetric Yang-Mills theories

[10–12]. However, only very recently it has been understood how to obtain the Nicolai map for all

critical dimensions and in general gauges of N = 1 super Yang-Mills [3–5]. In [13] Nicolai and Plefka

used the map to compute some lower order examples of quantum correlators and the 1-loop dilation

operator in N = 4 super Yang-Mills.

Besides increasing the perturbative precision of (1.1), our calculation functions as a non-trivial proof

of concept regarding the applicability of the Nicolai map. We show that our formalism is competitive

with standard perturbative techniques. However, we will also see that the perturbative cancellations

of the different contributions to the infinite straight line Wilson loop are by no means trivial and

seem to resemble those of the circular Maldacena-Wilson loop at order g4.

1.1 The Maldacena-Wilson loop

In N = 4 super Yang-Mills the Euclidean Maldacena-Wilson loop along a curve C is given by [1]

WM (C) =
1

N
Trc P exp

(

ig

∫

C

dτ
(

Aµ(x)ẋµ + iφI(x)|ẋ|θI
)

)

, (1.2)

where Aµ(x) = taAa
µ(x) is the gauge field and φI(x) = taφa

I(x) are the six scalars. θI describes a point

on the unit 5-sphere, i.e. θIθI = 1, and x(τ) parametrizes the curve C. In the following we choose the

infinite straight line parametrized by xµ(τ) = (τ,0,0,0). The trace is over the color space with gauge

group U(N) in the fundamental representation and generators ta (a = 1, . . . ,N2). These generators

obey

tata =
N

2
1 . (1.3)

Furthermore, we have the relations

fabcfabd = Nδcd , Trc(t
atb) =

1

2
δab and Trc(1) = N . (1.4)
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1.2 Correlation Functions and the Nicolai Map

We state the main theorem from [4,8, 14].

Supersymmetric gauge theories are characterized by the existence of a non-linear and non-local trans-

formation Tg of the bosonic fields Φ = {Aa
µ,φa

I , . . .}

Tg : Φ(x) 7→ Φ′(x,g;Φ) ,

which is invertible at least in the sense of a formal power series such that

1. The bosonic action without gauge-fixing terms is mapped to the abelian action,

SB [g;Φ] = SB [0;Φ′] .

2. The gauge-fixing function Ga(Φ) is a fixed point of Tg.

3. Modulo terms proportional to the gauge-fixing function Ga(Φ), the Jacobi determinant of Tg is

equal to the product of the MSS and FP determinants

J (TgΦ) = ∆MSS[Φ]∆F P [Φ] ,

at least order by order in perturbation theory.

The theorem was proven for N = 1 super Yang-Mills in D = 3,4,6 and 10 dimensions and Landau

gauge in [4] as well as in D = 4 dimensions and general gauges in [5]. Furthermore, Rupprecht provided

an extension to N = 4 super Yang-Mills [15] (also in Landau gauge). In [4, 5] the transformation Tg

has been explicitly computed for N = 1 super Yang-Mills in D = 3,4,6 and 10 dimensions and Landau

gauge up to the fourth order in the coupling.

The inverse Nicolai map is obtained via the power series expansion of the operator Rg (see e.g. [3])

(T −1
g Φ)(x) =

∞
∑

n=0

gn

n!
(Rn

g Φ)(x)
∣

∣

∣

g=0
. (1.5)

Because the Rg operator has the properties of a derivative, the transformation T −1
g acts distributively

on bosonic monomials X[Φ], i.e.

T −1
g X[Φ] = X[T −1

g Φ] . (1.6)

The vacuum expectation value of such a bosonic monomial is given by

〈〈

X[Φ]
〉〉

g
=

∫

DΦ DΨ e−S[g;Φ,Ψ] X[Φ] , (1.7)

where Ψ = {λa
α,Ca, . . .} are the spinor and ghost fields and S[g;Φ,Ψ] is the full supersymmetric action

including the gauge fixing and ghost terms of the theory in question. Integrating out the fermionic

degrees of freedom gives

〈〈

X[Φ]
〉〉

g
=

∫

DΦ ∆MSS[Φ]∆F P [Φ] e−SB[g;Φ] X[Φ] , (1.8)
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where SB[g;Φ] is the bosonic part of the supersymmetric action S[g;Φ,Ψ]. The free field expectation

value of X[Φ] is

〈

X[Φ]
〉

0
=

∫

DΦ e−SB [0;Φ] X[Φ] . (1.9)

Considering the free field expectation value of X[T −1
g Φ] and performing a transformation of the

integration variables yields

〈

X[T −1
g Φ]

〉

0
=

∫

DΦ e−SB [0;Φ] X[T −1
g Φ]

=

∫

DΦ J (TgΦ)e−SB [0;TgΦ] X[Φ] .
(1.10)

Thus, if Tg satisfies 1. - 3. from the main theorem we find that (1.8) and (1.10) are equal and we

conclude

〈〈

X[Φ]
〉〉

g
=

〈

X[T −1
g Φ]

〉

0
. (1.11)

Notice that this transformation does not render the vacuum expectation value trivial, since the

complexity is now hidden in the perturbative expansion of the non-linear and non-local transformation

T −1
g . Using the linearity of

〈〈

. . .
〉〉

g
and the distributivity of T −1

g we can extend (1.11) to n-point

correlators of bosonic operators Oi(xi), i.e.

〈〈

O1(x1) . . .On(xn)
〉〉

g
=

〈

(T −1
g O1)(x1) . . . (T −1

g On)(xn)
〉

0
. (1.12)

So instead of computing full n-point correlation functions of the interacting super Yang-Mills theory

(with fermions and ghosts), we can simply compute the free field expectation value of the purely

bosonic non-interacting theory with the transformed operators. After working out the transformations

(T −1
g Oi)(xi) to the desired order in the coupling, we simply use Wick’s theorem to obtain the free

field expectation value. Up to O(g2) the inverse Nicolai map for D = 10, N = 1 super Yang-Mills in

Landau gauge is given by

(T −1
g A)a

M (z) = Aa
M (z)− gfabc

∫

dv ∂N C(z − v)Ab
M (v)Ac

N (v)

+
g2

2
fabcf bde

∫

dv dw
{

+ 3∂NC(z − v)AcL(v)∂[M C(v − w)Ad
N (w)Ae

L](w)

− 4∂NC(z − v)Ac
[M (v)∂LC(v − w)Ad

N ](w)Ae
L(w)

}

+ O(g3) .

(1.13)

This result was first found in [8] for D = 4, N = 1 super Yang-Mills. In [3] it was shown that it holds

for all critical dimensions of N = 1 super Yang-Mills. So, in particular, in 10 dimensions.

1.3 Conventions and Notation

We use the Euclidean metric. Intermediate results in our calculations are UV divergent. Thus

regularization by dimensional reduction is in order. For N = 1 super Yang-Mills in 10 dimensions we

denote the spacetime indices by M,N = 0, . . . ,9. Dimensionally reducing the 10-dimensional N = 1

3



theory to N = 4 super Yang-Mills in 2ω dimensions, we split the spacetime indices M = (µ,I), where

µ,ν = 0, . . . ,2ω − 1 and I,J = 1, . . . ,10 − 2ω. Likewise we decompose the coordinates zM = (xµ,yI)

and the gauge field

Aa
M (x,y) =

(

Aa
µ(x),φa

I (x)
)

. (1.14)

Notice that the dependence on the internal coordinates yI is dropped.

The scalar propagator in 2ω dimensions is (with the Laplacian � ≡ ∂µ∂µ)

C(x) =

∫

d2ωk

(2π)2ω

eikx

k2
. (1.15)

It satisfies −�C(x) = δ(x) with the 2ω-dimensional delta function δ(x) ≡ δ2ω(x). In 2ω dimensions

we have

C(x) =
Γ(ω − 1)

4πω

1

[x2]ω−1
. (1.16)

In 10 dimensions the vector field propagator is

〈

Aa
M (x)Ab

N (y)
〉

0
= δab

(

δMN − (1− ξ)
∂M ∂N

�

)

C(x − y) . (1.17)

Here ξ is the gauge parameter. We argue that we can compute the inverse Nicolai map in Landau

gauge (ξ = 0) whilst using the Feynman gauge (ξ = 1) for the propagator because the Wilson loop is

gauge invariant. So when computing its vacuum expectation value, all terms coming from the gauge

parameter dependent term in the propagator must vanish. Thus without loss of generality we choose

ξ = 1 and the propagator becomes

〈

Aa
M (x)Ab

N (y)
〉

0
= δabδMN C(x − y) . (1.18)

For n-point quantum correlation functions we define

〈〈

O1(x1) . . .On(xn)
〉〉

m
:=

〈〈

O1(x1) . . .On(xn)
〉〉

g

∣

∣

∣

∣

O(gm)

, (1.19)

with
〈〈

O1(x1) . . .On(xn)
〉〉

0
=

〈

O1(x1) . . .On(xn)
〉

0
.

2 Perturbation Theory

In terms of the 10-dimensional fields the infinite straight line Wilson loop (1.2) takes the simple form

WM (−) =
1

N
Trc P exp

(

ig

∫ ∞

−∞

dτ AM (z)żM

)

, (2.1)

with the 10-dimensional gauge field AM (z) = taAa
M (z) and żM = (ẋµ, ẏI) = (ẋµ, i|ẋ|θI). Moreover, we

abbreviate zi ≡ z(τi). For an infinite straight line żM
i satisfies

δMN żM
i żN

j = ẋi · ẋj − |ẋi||ẋj | = 0 . (2.2)
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In perturbation theory the vacuum expectation value is given by

〈〈

W(−)
〉〉

g
= 1+

ig

N

∫ ∞

−∞

dτ1 żM
1 Trc

〈〈

AM (z1)
〉〉

g

+
i2g2

2!N

∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2 Trc P 〈〈AM (z1)AN (z2)〉〉g

+
i3g3

3!N

∫ ∞

−∞

dτ1 dτ2 dτ3 żM
1 żN

2 żL
3 Trc P

〈〈

AM (z1)AN (z2)AL(z3)
〉〉

g

+ . . . .

(2.3)

The expectation value has been computed perturbatively up to order g4N2 by Erickson, Semenoff

and Zarembo in [6, 7]. We have checked that their result also holds for all N . In the following we

show how to compute the next nontrivial order of (2.3) by the means of the Nicolai map. Expanding

the vacuum expectation value at order g6 we obtain

〈〈

W(−)
〉〉

6

=
ig

N

∫ ∞

−∞

dτ1 żM
1 Trc

〈〈

AM (z1)
〉〉

5

+
i2g2

2!N

∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2 Trc P
〈〈

AM (z1)AN (z2)
〉〉

4

+
i3g3

3!N

∫ ∞

−∞

dτ1 dτ2 dτ3 żM
1 żN

2 żL
3 Trc P

〈〈

AM (z1)AN (z2)AL(z3)
〉〉

3

+
i4g4

4!N

∫ ∞

−∞

dτ1 dτ2 dτ3 dτ4 żM
1 żN

2 żL
3 żP

4 Trc P
〈〈

AM (z1)AN (z2)AL(z3)AP (z4)
〉〉

2

+
i5g5

5!N

∫ ∞

−∞

dτ1 dτ2 dτ3 dτ4 dτ5

× żM
1 żN

2 żL
3 żP

4 ż
Q
5 Trc P

〈〈

AM (z1)AN (z2)AL(z3)AP (z4)AQ(z5)
〉〉

1

+
i6g6

6!N

∫ ∞

−∞

dτ1 dτ2 dτ3 dτ4 dτ5 dτ6

× żM
1 żN

2 żL
3 żP

4 ż
Q
5 żR

6 Trc P
〈〈

AM (z1)AN (z2)AL(z3)AP (z4)AQ(z5)AR(z6)
〉〉

0
.

(2.4)

We briefly discuss the terms which vanish more or less trivially. The trace over 1-point function is

zero since

Trc

〈〈

AM (z1)
〉〉

5
= Trc(t

a)
〈〈

Aa
M (z1)

〉〉

5
= 0 . (2.5)

For the 4-point function, we need to expand the inverse Nicolai map (1.13) up to O(g2). Then we

use (1.12) and collect all terms of O(g2). Computing the Wick contractions, we obtain several non-

vanishing terns. However, once we multiply the correlation function with żM
1 żN

2 żL
3 żP

4 and insert the

parametrization of the straight line, everything cancels. The vanishing of the last two terms is rather

simple. In both cases, there are Wick contractions of two untransformed fields. These produce terms

which are proportional to żM iż
M
j = 0. Thus only the 2- and 3-point functions need to be discussed

in detail.
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2-point function

In order to compute the 2-loop correction to the 2-point function we need to expand the inverse

Nicolai map (1.13) up to O(g4)1. For details see [4] and Appendix B of [5], where (Tg A)a
M up to

order g4 is given. When expanded to the fourth order (T −1
g A)a

M has about 500 terms. We apply

(1.12) to the 2-point function and collect all terms of O(g4), i.e.

Σ1 =
i2g2

2!N

∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2 Trc P
〈〈

AM (z1)AN (z2)
〉〉

4

= −
g6

2N
Trc(t

atb)

∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2

〈

(T −1
g A)a

M (z1)(T −1
g A)b

N (z2)
〉

0

∣

∣

∣

O(g4)
.

(2.6)

Because Trc(t
atb) = Trc(t

bta) the path ordering is trivial. After computing the free field expectation

value of the transformed fields and some basic simplifications, such as enforcing faab = 0, we obtain

roughly 650 terms. Approximately a third of them are proportional to δMN żM
1 żN

2 = 0. In order to

reduce the number of remaining terms we observe that most of them are proportional to
∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2

∫

dy1 dy2 dy3 dy4

× C(z1 − y1)∂M C(y1 − y3)∂P C(y1 − y4)C(y3 − y4)∂P C(y4 − y2)∂N C(y3 − y2)C(y2 − z2) ,

(2.7)

where the four derivatives may sit at any of the seven propagators. Using integration by parts it is

always possible to rearrange the contracted derivatives such that they act on two propagators both

depending on either y1, y3 or y4. In this situation we use
∫

dy4 ∂P C(y1 − y4)C(y3 − y4)∂P C(y4 − y2)

=
1

2

∫

dy4

{

− C(y1 − y4)�C(y3 − y4)C(y4 − y2)

+�C(y1 − y4)C(y3 − y4)C(y4 − y2)

+ C(y1 − y4)C(y3 − y4)�C(y4 − y2)
}

(2.8)

and �C(x − y) = −δ(x − y). Thus (2.7) becomes

1

4

∫ ∞

−∞

dτ1 dτ2 żM
1 żN

2

∫

dy1 dy2 dy3

{

+
1

2
C(z1 − y1)∂M C(y1 − y3)2∂NC(y3 − y2)2C(y2 − z2)

− C(z1 − y1)∂M C(y1 − y3)2C(y1 − y2)∂N C(y3 − y2)C(y2 − z2)

− C(z1 − y1)∂M C(y1 − y3)C(y1 − y2)∂N C(y3 − y2)2C(y2 − z2)
}

.

(2.9)

The first term turns out to be total derivative. Integrating it by parts we obtain
∫ ∞

−∞

dτ1 żM
1 ∂M C(z1 − y1) [. . .] =

∫ ∞

−∞

dτ1
∂

∂τ1
C(z1 − y1) [. . .] = 0 . (2.10)

The other two terms can be combined using the observation
∫

dy3 ∂M C(y1 − y3)2∂N C(y3 − y2) =

∫

dy3 ∂M C(y1 − y3)∂N C(y3 − y2)2 . (2.11)

1When computing the inverse map in Landau gauge it is necessary to explicitly enforce the gauge condition ∂
µ

Aµ = 0

in all terms. This is similar to the determinant test for the Nicolai map in Landau gauge (see [4]).
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We repeat these steps on the other 400 non-vanishing terms. Subsequently, we perform the dimen-

sional reduction and obtain the now very simple expression

Σ1 =
i2g2

2!N

∫

∞

−∞

dτ1 dτ2 żM
1 żN

2 Trc P
〈〈

AM (z1)AN (z2)
〉〉

4

= g6N3
∫

∞

−∞

dτ1 dτ2 ẋ
µ
1 ẋν

2

∫

dy1 dy2 dy3

{

+ ∂µ∂νC(x1 − y1)C(x1 − y2)C(x2 − y1)C(y1 − y3)C(y2 − y3)2

+
3

2
∂µC(x1 − y1)C(x1 − y2)C(x2 − y3)C(y1 − y2)C(y1 − y3)∂νC(y2 − y3)

}

.

(2.12)

Neither of these two terms is a total derivative as there are two x1 dependencies in each of them.

Thus, we must cancel Σ1 against the 3-point function.

3-point function

For the 3-point function the procedure is much the same as for the 2-point function. For the trace

and path ordering we find

Σ2 =
i3g3

3!N

∫

∞

−∞

dτ1 dτ2 dτ3 żM
1 żN

2 żL
3 Trc P

〈〈

AM (z1)AN (z2)AL(z3)
〉〉

3

= −
ig3

24N
dabc

∫ ∞

−∞

dτ1 dτ2 dτ3 żM
1 żN

2 żL
3

〈〈

Aa
M (z1)Ab

N (z2)Ac
L(z3)

〉〉

3

+
g3

24N
fabc

∫ ∞

−∞

dτ1 dτ2 dτ3 ǫ(τ1,τ2,τ3) żM
1 żN

2 żL
3

〈〈

Aa
M (z1)Ab

N (z2)Ac
L(z3)

〉〉

3
,

(2.13)

where dabc is totally symmetric and

ǫ(τ1,τ2,τ3) = [θ(τ1 − τ2)− θ(τ2 − τ1)] [θ(τ1 − τ3)− θ(τ3 − τ1)] [θ(τ2 − τ3)− θ(τ3 − τ2)] . (2.14)

So ǫ(τ1,τ2,τ3) = 1 for τ1 > τ2 > τ3 and anti-symmetric under the transposition of any two τi. The

first term will cancel because the 3-point correlation function at O(g3) is anti-symmetric in a, b, and

c. This time we only need the inverse Nicolai map up to O(g3). However, since we now compute a

3-point function instead of a 2-point function, after the Wick contraction, we have about the same

number of terms as before. But two thirds of the terms are proportional to δMN , δML or δNL and

thus cancel. The remaining terms are simplified using the same integration by parts relations as

above. However, for the 3-point function there are no total derivatives. Subsequently, we perform

the dimensional reduction and obtain the 15 terms

Σ2 = −
g6N3

12

∫

∞

−∞

dτ1 dτ2 dτ3 ǫ(τ1,τ2,τ3) ẋ
µ
1 ẋν

2ẋ
ρ
3

∫

dy1 dy2 dy3

{

+ ∂µ∂ν∂λC(x1 − y1)C(x2 − y1)C(x3 − y2)C(y1 − y3)C(y2 − y3)2

+ ∂µ∂νC(x1 − y1)∂λC(x2 − y1)C(x3 − y2)C(y1 − y3)C(y2 − y3)2

+ permutations
}

+
g6N3

8

∫ ∞

−∞

dτ1 dτ2 dτ3 ǫ(τ1,τ2,τ3) ẋ
µ
1 ẋν

2ẋ
ρ
3

∫

dy1 dy2 dy3

{

+ ∂µ∂νC(x1 − y1)C(x2 − y2)C(x3 − y3)C(y1 − y2)C(y1 − y3)∂λC(y2 − y3)

− C(x1 − y1)∂ν∂λC(x2 − y2)C(x3 − y3)C(y1 − y2)∂µC(y1 − y3)C(y2 − y3)

+ C(x1 − y1)C(x2 − y2)∂λ∂µC(x3 − y3)∂νC(y1 − y2)C(y1 − y3)C(y2 − y3)
}

.

(2.15)
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All these terms have a factor of the form

ẋ
µ
i ∂µC(xi − y) =

∂

∂τi
C(xi − y) (2.16)

and this is their only dependence on xi. Thus we can integrate by parts and use

∂

∂τ1
ǫ(τ1,τ2,τ3) = 2δ(τ1 − τ2)− 2δ(τ1 − τ3) . (2.17)

After carrying out integrations over the delta functions and renaming the variables we obtain

Σ2 = g6N3
∫ ∞

−∞

dτ1 dτ2 ẋ
µ
1 ẋν

2

∫

dy1 dy2 dy3

{

+ ∂µ∂νC(x1 − y1)C(x1 − y1)C(x2 − y2)C(y1 − y3)C(y2 − y3)2

− ∂µ∂νC(x1 − y1)C(x1 − y2)C(x2 − y1)C(y1 − y3)C(y2 − y3)2

+ ∂νC(x1 − y1)∂µC(x1 − y1)C(x2 − y2)C(y1 − y3)C(y2 − y3)2

− ∂µC(x1 − y1)C(x1 − y2)∂νC(x2 − y1)C(y1 − y3)C(y2 − y3)2

−
3

2
∂µC(x1 − y1)C(x1 − y2)C(x2 − y3)C(y1 − y2)C(y1 − y3)∂νC(y2 − y3)

}

.

(2.18)

The first and third term can be combined to give a total derivative. Also the fourth term is a total

derivative. Subsequently, we conclude

Σ2 = −g6N3
∫ ∞

−∞

dτ1 dτ2 ẋ
µ
1 ẋν

2

∫

dy1 dy2 dy3

{

+ ∂µ∂νC(x1 − y1)C(x2 − y1)C(x1 − y2)C(y1 − y3)C(y2 − y3)2

+
3

2
∂µC(x1 − y1)C(x1 − y2)C(x2 − y3)C(y1 − y2)C(y1 − y3)∂νC(y2 − y3)

}

.

(2.19)

We see that Σ1 and Σ2 cancel

Σ1 + Σ2 = 0 . (2.20)

3 Conclusion

We have shown that for a Maldacena-Wilson loop operator of an infinite straight line
〈〈

W(−)
〉〉

g
= 1+ O(g8) (3.1)

for all N . Despite the BPS nature of this operator, the cancellation of the perturbative corrections

at the sixth order is far from trivial. They seem to resemble the cancellations of the fourth-order

perturbative corrections for the expectation value of the circular Maldacena-Wilson loop (see [6]).

All correlation functions have been computed using the Nicolai map. Despite the complexity of

intermediate results, such as the non-linear and non-local transformation of the gauge field to fourth

order in [5], the general procedure is rather simple as it completely circumvents the use of anti-

commuting variables. In the future, it will be interesting to see if the Nicolai map can also be used

to obtain non-perturbative results for certain Wilson loop operators.
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