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A long-standing problem of fine-structure anomalies in muonic atoms is revisited by considering
the ∆2p splitting in muonic 90Zr, 120Sn and 208Pb and the ∆3p splitting in muonic 208Pb. State-of-
the-art techniques from both nuclear and atomic physics are brought together in order to perform
the most comprehensive to date calculations of nuclear-polarization energy shifts. Barring the more
subtle case of µ-208Pb, the results suggest that the dominant calculation uncertainty is much smaller
than the persisting discrepancies between theory and experiment. We conclude that the resolution
to the anomalies is likely to be rooted in refined QED corrections or even some other previously
unaccounted-for contributions.

Introduction.—For more than 40 years there has been
a perplexing discrepancy between theory and experiment
with regard to the fine structure in muonic atoms [1–4].
Due to the fact that mµ ≈ 207me, the Bohr radius of
muonic orbitals is 207 times smaller than in ordinary
electronic hydrogenlike atoms, which renders muon en-
ergy levels highly sensitive to nuclear structure [5–8]. In
this respect, the most challenging effect to describe is
the intricate interplay between muonic and internal nu-
clear degrees of freedom, which is known as nuclear po-
larization (NP). This phenomenon leads to shifts ∆ENP

of muon energy levels, which can be observed in high-
precision x-ray measurements of muonic transitions. Un-
der the assumption that all other effects have been taken
into account, the remaining difference between theory
and experiment is typically ascribed to the NP correc-
tion. However, in some cases, the NP energy shifts ex-
tracted in this way turned out to be in striking dis-
agreement with theoretical predictions. For instance,
the experiments suggest that |∆ENP

2p3/2
| > |∆ENP

2p1/2
| for

muonic 208Pb [1, 2], 90Zr [3] and 112–124Sn [4]. At first
glance, these results seem to be counterintuitive by a sim-
ple argument that the 2p1/2 orbital is closer to a nucleus
and, thus, should be affected stronger by nuclear dynam-
ics. In addition, a strong anomaly of the same kind has
also been observed for the ∆3p splitting in µ-208Pb [2].

The most notable theoretical efforts to explain these
anomalies were performed in Refs. [9–12], where, unlike
previous attempts, the transverse part of the electromag-
netic muon-nucleus interaction was taken into account.
While the longitudinal, or Coulomb, part always leads to
|∆ENP

2p3/2
| < |∆ENP

2p1/2
| as expected, the transverse part

was shown to give rise to an additional NP contribution
with the opposite muon-spin dependency [9]. Accord-
ing to Ref. [10], the transverse interaction accounted for
about half and one-fourth of the ∆2p and ∆3p anoma-
lies in µ-208Pb, respectively. Nevertheless, significant
portions of the discrepancies persisted, with |∆ENP

2p1/2
|

still being slightly larger than |∆ENP
2p3/2
|. A glimpse of a

possible resolution to the ∆2p anomaly in µ-208Pb was
later provided in Ref. [11] by treating the nucleus in the
relativistic mean-field approximation. However, the au-
thors themselves stressed the large uncertainties associ-
ated with the nuclear spectrum obtained in this way, and
explaining the ∆3p splitting still remained a challenge.
In another attempt the effect of enhancing the energy-
weighted sum rule (EWSR) with respect to its classical
value was considered for both muonic 208Pb and 90Zr [12].
Once again, the experimental data could not be repro-
duced reasonably well, and the anomalies continued to
be unresolved.

In this letter, we present a qualitative step forward
in theoretical description of the NP effect by combining
state-of-the-art tools in order to take into account both
muonic and nuclear spectra in the most complete and
precise to date manner. The full electromagnetic muon-
nucleus interaction is included within a field-theoretical
framework. Most importantly, nuclear model dependence
is analyzed extensively leading to strong indications of
NP not being responsible for the fine-structure anomalies
in muonic atoms.

Computational method.—In the field-theoretical ap-
proach the NP effect can be described with an effective
self-energy Goldstone diagram shown on Fig. 1 (a). The
photon propagator Dµν is modified by the so-called NP
insertion, which is indicated as a shaded blob and can be
expressed as [13]

D̃µν(x, x′) = Dµν(x− x′) (1)

+

∫
d4x1d

4x2Dµξ(x− x1)Πξζ(x1, x2)Dζν(x2 − x′),

with the nuclear-polarization tensor

iΠξζ(x1, x2) = 〈O|T[JξN (x1)JζN (x2)]|O〉 , (2)

where JµN denotes the nuclear transition four-current den-
sity operator, and the “vacuum” state |O〉 corresponds to
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Figure 1. Leading-order nuclear-polarization (NP) effect:
(a) effective self-energy Goldstone diagram with a dressed
photon propagator; (b) ladder, (c) cross and (d) seagull Feyn-
man diagrams. A bound muon is denoted by a double line,
while a nucleus is denoted by a single solid line. The shaded
blob represents the NP insertion.

the nucleus being in its ground state. Here and later,
four-vectors are represented by regular typeface, whereas
three-vectors are denoted by bold letters. The units
~ = c = 1 and α = e2/4π are used throughout the letter.

The leading-order NP effect can then be equivalently
described by the ladder and cross Feynman diagrams rep-
resenting a two-photon exchange between a bound muon

and a nucleus [14] (Fig. 1 (b) and (c)). However, if non-
commuting nuclear charge and current operators are em-
ployed, it can be shown that an additional contribution
has to be included in order to ensure gauge invariance of
the NP correction [15, 16]. This additional term can be
represented by the so-called seagull diagram (Fig. 1 (d)),
and in the case of non-relativistic nuclear charge-current
operators it formally corresponds to the substitution [15]:

Πξζ(x1, x2)→ 〈I|ρN (x1)|I〉
mp

δξζδ(4)(x1 − x2), (3)

where |I〉 stands for the nuclear ground state, ρN is the
nuclear charge density operator, mp is the proton mass,
and δξζ is the Kronecker delta extended to four dimen-
sions with δ00 = 0.

The corresponding contributions to the NP energy
shift for a muonic reference state |i〉 due to each of these
diagrams (L, X and SG stand for ladder, cross and seag-
ull, respectively) can be expressed in the momentum rep-
resentation as [15]

∆EL
NP = −i(4πα)2

∑

i′I′

∫∫
dq dq′

(2π)6

∫
dω

2π

Dµξ(ω, q)Dζν(ω, q′) 〈iI|jµm(−q)JξN (q)|i′I ′〉 〈i′I ′|JζN (−q′)jνm(q′)|iI〉
(ω + ωm − iEi′ε)(ω − ωN + iε)

, (4)

∆EX
NP = +i(4πα)2

∑

i′I′

∫∫
dq dq′

(2π)6

∫
dω

2π

Dµξ(ω, q)Dζν(ω, q′) 〈iI ′|jµm(−q)JξN (q)|i′I〉 〈i′I|JζN (−q′)jνm(q′)|iI ′〉
(ω + ωm − iEi′ε)(ω + ωN − iε)

, (5)

∆ESG
NP = −i(4πα)2

∑

i′

∫∫
dq dq′

(2π)6

∫
dω

2π

Dµξ(ω, q)δξζDζν(ω, q′) 〈i|jµm(−q)|i′〉 〈i′|jνm(q′)|i〉
(ω + ωm − iEi′ε)

〈I|ρN (q − q′)|I〉
mp

, (6)

where the limit ε → 0+ is implied, the indices i′ and I ′
in the sums run over an entire muonic Dirac spectrum
and a complete set of nuclear excitations, respectively,
jµm is the Dirac four-current operator of the muon, ωm =
Ei′−Ei and ωN = EI′−EI . The specific formulas in the
Feynman and Coulomb gauges are presented in Ref. [15]
(see the Supplemental Material for comments [17, 18]),
and the expressions for the reduced matrix elements of
both muonic and nuclear charge-current operators can be
found in Ref. [9].

Taking into account a complete muonic Dirac spec-
trum poses a challenge since it includes an infinite set
of bound states as well as positive- and negative-energy
continua. Thus, direct calculations are difficult to imple-
ment with high accuracy, as they inevitably involve esti-
mations of remainders of the sum over the bound states
and the integrals over the continua. In this work, we deal
with this challenge by confining the system to a spher-
ical cavity and employing finite basis-set expansions of

the muon wave function in terms of B-splines [19] within
the dual-kinetic-balance approach [20]. In this way, the
continuous part of the spectrum becomes discrete, and
the computation is reduced to finite sums with no re-
mainders to evaluate. The convergence of the results
is readily controlled by varying the size of the cavity
and the number of B-splines used. The Dirac equa-
tion is solved in a potential of a nucleus with a finite
charge distribution. Similar to Ref. [21], we found that
it is sufficient to use the simple Fermi charge distribu-
tion ρF (r) = N{1 + exp[(r− c)/a]}−1 with the standard
value of the diffuseness parameter a = 2.3/(4 ln(3)) fm
and adjust the half-density radius c such that a tabu-
lated value of the root-mean-square nuclear radius [22]
is reproduced.

Computing a nuclear spectrum is yet more challenging
since in the case of heavy nuclei an ab initio description
is not even feasible. However, sophisticated particle-hole
theories have proven to be very successful at describing
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the rich variety of nuclear excitations [23–25]. In our cal-
culations we first carry out the Hartree-Fock computa-
tions of single-nucleon wave functions where the interac-
tions between the nucleons are described by the Skyrme
force [26]. Then we employ the random-phase approx-
imation (RPA) with a full self-consistency between the
Hartree-Fock mean field and the RPA excitations [27].
Non-relativistic charge-current operators [9] are used for
calculating the nuclear matrix elements in Eqs. (4)-(6)
for the 0+, 1−, 2+, 3−, 4+, 5− and 1+ excitation modes.
The cutoff energy of the unoccupied single-particle states
in the RPA model space is chosen to be 60 MeV, which
corresponds, for example, to around 1500 RPA excita-
tions in the case of the 3− mode in 208Pb. The complete-
ness of the obtained spectra is numerically controlled
using the double-commutator EWSR, which is fulfilled
at the level of at least 99.8% in most cases. Thus, the
present RPA description represents a significant improve-
ment over the ones used previously in Refs. [9, 10, 28].
Finally, parallel computing on a cluster is employed to
achieve high precision in such combined muon-nuclear
calculations.

Results and discussion.—In Table I we present our
results for NP corrections (absolute values |∆ENP| =
−∆ENP) to the ground state 1s1/2 as well as the ex-
cited states 2p1/2 and 2p3/2 in muonic 90Zr, 120Sn and
208Pb. In the case of µ-208Pb the states 3p1/2 and
3p3/2 are also considered. The quantities of main inter-
est are the corresponding NP contributions to the fine-
structure splittings ∆2pNP = |∆ENP

2p1/2
| − |∆ENP

2p3/2
| and

∆3pNP = |∆ENP
3p1/2
| − |∆ENP

3p3/2
|. Our calculations in the

Feynman and Coulomb gauges agree within 0.1–0.3%
demonstrating an excellent fulfillment of gauge invari-
ance. Table I contains total NP corrections in the Feyn-
man gauge, while separate contributions from each type
of nuclear excitations are listed in the Supplemental Ma-
terial [17].

The main limitation of any NP calculation comes from
the fact that nuclear transition charge and current den-
sities are not known from first principles. As a conse-
quence, an effective nuclear model has to be applied,
and the NP correction inevitably becomes model depen-
dent. In this work, we analyze this model dependence ex-
tensively by performing the computations for 9 different
Skyrme parametrizations, namely, KDE0, SKX, SLy5,
BSk14, SAMi, NRAPR, SkP, SkM* and SGII, covering
a wide range in the parameter space [29–37].

We start our analysis with perhaps the most promi-
nent case of µ-90Zr. To put the effect of nuclear model
dependence into the context of the ∆2p fine-structure
anomaly, we show our results on Fig. 2 in relation to
the experimentally allowed region [3] for |∆ENP

1s1/2
| and

∆2pNP. Most notably, the results for different nuclear
models are simply spread along a line almost parallel to
the allowed region. Thus, even though individual NP cor-

-20

-15

-10

-5

 0

 5

 10

 1  1.1  1.2  1.3  1.4  1.5  1.6

N
P 

2p
1/

2 
 –

  N
P 

2p
3/

2 
(e

V
)

NP 1s1/2 (keV)

-20

-15

-10

-5

 0

 5

 10

 1  1.1  1.2  1.3  1.4  1.5  1.6

PresentRinker-Speth

Figure 2. Theoretical values of the nuclear-polarization (NP)
corrections for µ-90Zr in relation to the experimentally al-
lowed range for ∆2pNP as a function of |∆ENP

1s1/2
|. The graph

was adapted from Ref. [3].

rections can vary significantly depending on the Skyrme
interaction, the distance between theory and experiment
for ∆2pNP remains practically constant.

As for tin isotopes, the authors of Ref. [4] do not pro-
vide experimentally allowed ranges for ∆2pNP. Never-
theless, according to their analysis, the theoretical values
of the ∆2p fine-structure splittings are consistently too
high by about 150 eV, and furthermore, it is necessary to
have ∆2pNP < 0 in order to obtain a better agreement
with experiment. However, the authors estimate ∆2pNP

as 29 eV and 28 eV for muonic 112Sn and 124Sn, respec-
tively. Our results for µ-120Sn in Table I demonstrate
again that the nuclear model uncertainty does not offer
an explanation for the anomalies, with ∆2pNP being per-
sistently positive and around 20 eV for all the Skyrme
parametrizations used.

In the case of µ-208Pb the situation is more subtle
since, in principle, some 1− nuclear excitations in the
regions 5.5–6.5 MeV and 8–9 MeV [38] may come close in
energy to the 2p → 1s and 3p → 1s muonic transitions,
respectively, resulting in muon-nuclear resonances. This
phenomenon was first noticed in Ref. [39] for the 3d→ 2p
muonic transitions and the low-lying 3− nuclear state at
2.615 MeV. With regard to 1− resonant levels, the ef-
fect is even stronger due to the long range of the dipole
NP potential. As it was discussed in Ref. [28], 1− muon-
nuclear resonances can be significant even when the asso-
ciated energy denominators in a second-order perturbed
calculation are hundreds of keV. The net effect is highly
sensitive not only to the exact relative positions of the
muonic and nuclear levels involved but also to the shapes
of the corresponding nuclear transition charge and cur-
rent densities [12].

In our calculated spectra for 208Pb we encounter a
number of 1− excitations in both aforementioned regions.
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Table I. Nuclear-polarization (NP) corrections (absolute values |∆ENP| = −∆ENP, in eV) to the states 1s1/2, 2p1/2 and
2p3/2 in muonic 90Zr, 120Sn and 208Pb. In the case of µ-208Pb the states 3p1/2 and 3p3/2 are also considered. The quantities
∆2pNP = |∆ENP

2p1/2
|−|∆ENP

2p3/2
| and ∆3pNP = |∆ENP

3p1/2
|−|∆ENP

3p3/2
| are the corresponding NP contributions to the fine-structure

splittings. The Skyrme parametrizations are ordered in increasing values of the ground-state correction in µ-90Zr.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII
µ-90Zr 1s1/2 1406 1445 1447 1451 1483 1488 1522 1526 1560

2p1/2 65.9 70.3 69.5 70.0 72.5 71.7 73.9 74.4 75.7
2p3/2 60.6 64.7 64.0 64.5 66.8 65.9 67.9 68.6 69.7
∆2pNP 5.3 5.6 5.5 5.5 5.7 5.8 6.0 5.8 6.0

µ-120Sn 1s1/2 2564 2510 2481 2425 2530 2531 2570 2567 2744
2p1/2 247 248 236 231 246 245 247 247 269
2p3/2 228 229 218 214 228 226 227 228 248
∆2pNP 19.9 19.6 18.0 17.0 18.7 18.7 19.2 18.9 21.1

µ-208Pb 1s1/2 5463 5432 5557 5588 5727 5889 5815 5905 6035
2p1/2 1781 1850 1834 1900 1937 1997 1955 2005 2044
2p3/2 1725 1798 1776 1852 1877 1936 1886 1942 1981
3p1/2 529 576 556 566 616 540 628 614 627
3p3/2 559 612 589 602 648 576 672 645 664
∆2pNP 56.0 51.8 57.5 48.1 59.1 60.5 69.3 63.3 62.7
∆3pNP -29.5 -35.9 -33.4 -36.1 -31.9 -35.8 -44.1 -30.3 -37.3

-400

-300

-200

-100

 0

 100

 4  4.5  5  5.5  6  6.5

Haga et al. Present

N
P 

2p
1/

2 
 –

  N
P 

2p
3/

2 
(e

V
)

NP 1s1/2 (keV)

-400

-300

-200

-100

 0

 100

 4  4.5  5  5.5  6  6.5

(a)

-500

-400

-300

-200

-100

 0

 4  4.5  5  5.5  6  6.5

Haga et al.
Present

N
P 

3p
1/

2 
 –

  N
P 

3p
3/

2 
(e

V
)

NP 1s1/2 (keV)

-500

-400

-300

-200

-100

 0

 4  4.5  5  5.5  6  6.5

(b)

Figure 3. Theoretical values of the nuclear-polarization (NP) corrections for µ-208Pb in relation to the experimentally allowed
ranges for ∆2pNP (a) and ∆3pNP (b) as functions of |∆ENP

1s1/2
|. The graphs were adapted from Ref. [10].

Although RPA is an excellent tool for describing integral
properties of a nuclear spectrum as a whole, the accuracy
for individual energy levels is by no means high enough
to reliably predict such resonant phenomena. Therefore,
similar to Ref. [28], we simply eliminate any accidental
muon-nuclear resonances by discarding 1− RPA excita-
tions that come closer than 0.3 MeV to the 2p → 1s or
3p → 1s muonic transitions. It is worth noting, how-
ever, that this does not significantly affect the overall
completeness of the spectra, since the total contributions

of the discarded RPA states to the EWSR are always
less than 1%. Fig. 3 shows the resulting NP correlations
between |∆ENP

1s1/2
| and both ∆2pNP (a) and ∆3pNP (b) in

relation to the experimentally allowed regions [2]. It can
be seen that, in the absence of muon-nuclear resonances,
the model uncertainty is once again much smaller than
the gap between theory and experiment. We emphasize
that due to the extremely high intrinsic uncertainties as-
sociated with muon-nuclear resonances, they should be
regarded as a measure of last resort in explaining the
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fine-structure anomalies in µ-208Pb, and their treatment
goes beyond the scope of this letter.

Conclusions and outlook.—In the quest to explain var-
ious persisting discrepancies between theory and exper-
iment, we have performed the most complete to date
calculations of the NP effect in muonic 90Zr, 120Sn and
208Pb. Utilizing state-of-the-art techniques and leverag-
ing modern computational power allows us to take into
account the entire muonic and nuclear spectra in a con-
trolled manner and with an improved precision.

We have found that the dominant nuclear model un-
certainty is of surprisingly minor importance in the con-
text of the fine-structure anomalies in muonic atoms,
leading to even more tension between theory and exper-
iment. One should bear in mind possible complications
in the special case of µ-208Pb due to potential muon-
nuclear resonances; therefore, we suggest that the less
intricate cases of muonic 90Zr and 112–124Sn should be
tackled first. The non-relativistic nuclear treatment in
our calculations is justified by the excellent agreement
between the non-relativistic seagull term and antinucleon
NP contributions in light muonic atoms [16]. In addi-
tion, there is a general consistency between relativistic
and non-relativistic approaches for a variety of nuclear
phenomena [24–26]. However, in the special case of NP,
a possible non-negligible role of relativistic nuclear effects
in heavy systems may still deserve further investigation,
as proposed in Refs. [11, 16].

For the most part, we deem the NP effect unlikely
to be responsible for the anomalies, implying that the
solution is presumably rooted in refined QED calcula-
tions. In particular, the self-energy correction in muonic
atoms, despite being comparable to the NP shifts [12],
has only been estimated using rather simple prescrip-
tions [40]. Therefore, a rigorous treatment of this effect
developed in the field of highly-charged ions (see, e.g.,
Refs. [41–43]) could shed some light on the anomalies.
Lastly, some other exotic effects, such as the anomalous
spin-dependent interaction mentioned in Ref. [44], might
also play a role in explaining the discrepancies, although
it is far less likely. In summary, we conclude that more
attention to other effects beyond NP is required in or-
der to finally resolve this tantalizing and long-standing
puzzle.
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1 COMMENTS ON THE FORMULAS PRESENTED IN REF. [1]

1.1 The Coulomb gauge

1) Please note a minor misprint in the formula (23) in Ref. [1] for the DC
00 component of the photon propagator.

The correct expression is

DC
00(ω, q) =

1

q2 + iε
, (1)

with a three-vector q in the denominator instead of a four-vector q.

2) There is also a small error in the formula (30). It should read:

WC
T (q) = −

∑

λ

[
ωeωN
q2
〈i′||mλ(q)||i〉 〈I ′||Mλ(q)||I〉 +

λ+1∑

L=λ−1
〈i′||tλL(q)||i〉 〈I ′||TλL(q)||I〉

]
, (2)

such that there is no additional sum over λ inside the square brackets.

1.2 Corrections to excited muon states

We would like to point out a subtlety with regard to calculating nuclear-polarization energy shifts to excited muon
states. In these cases one encounters integrals of the following form:

∆E =

∫ ∞

0

∫ ∞

0

f(q, q′) dq dq′

(q − a− i0)(q′ − b− i0)
, (3)

where a > 0 and b > 0. In evaluating such two-dimensional integrals, due to the Poincaré-Bertrand theorem, there is
an additional term as compared to simply applying the Sokhotski-Plemelj formula twice [2]:

1

q − a− i0
1

q′ − b− i0 =

[ P
q − a + iπδ(q − a)

] [ P
q′ − b + iπδ(q′ − b)

]

+ π2δ(q − a)δ(q′ − b), (4)

such that the products of the delta-functions cancel each other resulting in

Re(∆E) = P
∫ ∞

0

P
∫ ∞

0

f(q, q′) dq dq′

(q − a)(q′ − b) , (5)

where P denotes the Cauchy principal value.
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2 DETAILED NUMERICAL RESULTS ON NUCLEAR MODEL DEPENDENCE

2.1 µ-90Zr

Table I. Contributions from different nuclear excitation modes to the nuclear-polarization (NP) corrections (absolute values
|∆ENP| = −∆ENP, in eV) to the states 1s1/2, 2p1/2 and 2p3/2 in muonic 90Zr. The quantity ∆2pNP = |∆ENP

2p1/2
|− |∆ENP

2p3/2
| is

the corresponding NP contribution to the fine-structure splitting. The values are given for 9 different Skyrme parametrizations.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII

1s1/2 0+ 233.2 218.9 243.5 230.1 239.3 245.7 261.4 253.8 253.2

1− 637.0 646.1 666.2 658.9 706.5 692.2 679.4 708.8 728.2

2+ 308.5 345.3 311.4 322.4 310.3 315.2 355.2 329.9 332.0

3− 160.0 162.5 157.5 171.9 159.6 164.4 153.2 163.7 174.1

4+ 42.4 46.3 42.9 43.3 42.8 43.9 46.8 44.6 45.8

5− 20.1 21.4 20.5 20.1 20.3 20.9 21.6 20.9 21.7

1+ 4.4 4.8 4.5 4.5 4.6 5.4 4.9 4.5 4.6

Total 1405.6 1445.4 1446.6 1451.1 1483.3 1487.6 1522.4 1526.2 1559.5

2p1/2 0+ 1.8 1.7 1.9 1.8 1.9 1.9 2.0 2.0 1.9

1− 38.6 39.9 41.6 40.8 44.7 43.0 42.6 45.0 45.9

2+ 15.6 18.5 16.1 16.7 15.9 16.5 19.5 17.2 17.0

3− 7.6 7.7 7.6 8.4 7.6 7.8 7.2 7.9 8.4

4+ 1.5 1.7 1.6 1.6 1.6 1.6 1.7 1.6 1.7

5− 0.7 0.7 0.7 0.7 0.7 0.7 0.8 0.7 0.7

1+ 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1

Total 65.9 70.3 69.5 70.0 72.5 71.7 73.9 74.4 75.7

2p3/2 0+ 0.8 0.8 0.9 0.8 0.9 0.9 1.0 0.9 0.9

1− 36.6 37.8 39.5 38.8 42.4 40.8 40.3 42.7 43.6

2+ 14.5 17.1 14.9 15.5 14.7 15.3 18.1 15.9 15.8

3− 6.7 6.8 6.6 7.4 6.7 6.9 6.4 6.9 7.3

4+ 1.3 1.4 1.3 1.3 1.3 1.4 1.5 1.4 1.4

5− 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

1+ 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1

Total 60.6 64.7 64.0 64.5 66.8 65.9 67.9 68.6 69.7

∆2p 5.3 5.6 5.5 5.5 5.7 5.8 6.0 5.8 6.0
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2.2 µ-120Sn

Table II. Contributions from different nuclear excitation modes to the nuclear-polarization (NP) corrections (absolute values
|∆ENP| = −∆ENP, in eV) to the states 1s1/2, 2p1/2 and 2p3/2 in muonic 120Sn. The quantity ∆2pNP = |∆ENP

2p1/2
|−|∆ENP

2p3/2
| is

the corresponding NP contribution to the fine-structure splitting. The values are given for 9 different Skyrme parametrizations.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII

1s1/2 0+ 425.5 389.6 441.6 422.0 430.4 443.6 470.9 465.5 462.3

1− 1060.4 1066.4 1087.7 1112.7 1158.2 1130.0 1104.2 1177.7 1202.1

2+ 538.0 582.0 541.2 561.9 546.0 555.1 601.1 582.0 585.3

3− 423.3 345.4 291.0 208.7 276.6 278.7 266.7 219.0 364.5

4+ 76.6 82.7 77.0 78.8 77.4 79.1 82.4 80.8 83.4

5− 33.7 36.8 35.2 34.2 34.6 35.5 37.4 35.4 38.9

1+ 6.8 7.5 6.9 6.9 7.0 8.8 7.6 6.9 7.1

Total 2564.2 2510.4 2480.6 2425.3 2530.2 2530.8 2570.4 2567.3 2743.6

2p1/2 0+ 6.9 6.4 7.2 6.9 7.1 7.2 7.7 7.6 7.5

1− 121.9 125.7 127.6 132.1 139.2 133.5 130.1 142.3 144.3

2+ 59.4 67.4 60.9 63.1 61.9 65.4 71.5 66.6 66.4

3− 50.5 39.1 31.3 19.7 29.0 29.1 27.5 21.0 41.2

4+ 5.9 6.5 6.1 6.2 6.1 6.3 6.5 6.4 6.5

5− 2.5 2.7 2.6 2.5 2.6 2.6 2.8 2.6 2.9

1+ 0.4 0.5 0.4 0.4 0.4 0.7 0.5 0.5 0.5

Total 247.4 248.2 236.1 230.8 246.3 244.8 246.5 246.9 269.2

2p3/2 0+ 3.4 3.2 3.6 3.4 3.5 3.6 3.8 3.8 3.7

1− 115.8 119.0 121.3 125.7 132.0 126.4 123.1 134.9 136.9

2+ 55.9 63.4 57.5 59.4 58.4 62.1 67.5 62.7 62.4

3− 44.9 34.8 27.9 17.5 25.9 25.9 24.6 18.7 36.6

4+ 5.2 5.6 5.3 5.3 5.3 5.5 5.6 5.5 5.7

5− 2.1 2.2 2.2 2.1 2.2 2.2 2.3 2.2 2.4

1+ 0.3 0.3 0.3 0.3 0.3 0.4 0.3 0.3 0.3

Total 227.5 228.6 218.1 213.8 227.6 226.1 227.3 228.0 248.1

∆2p 19.9 19.6 18.0 17.0 18.7 18.7 19.2 18.9 21.1
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2.3 µ-208Pb

Table III. Contributions from different nuclear excitation modes to the nuclear-polarization (NP) corrections (absolute values
|∆ENP| = −∆ENP, in eV) to the states 1s1/2, 2p1/2 and 2p3/2 in muonic 208Pb. The quantity ∆2pNP = |∆ENP

2p1/2
|−|∆ENP

2p3/2
| is

the corresponding NP contribution to the fine-structure splitting. The values are given for 9 different Skyrme parametrizations.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII

1s1/2 0+ 1335.7 1214.2 1379.4 1323.1 1356.7 1437.8 1473.3 1462.1 1465.1

1− 2189.4 2177.4 2235.8 2277.5 2381.5 2364.7 2262.7 2401.3 2467.1

2+ 1117.5 1190.9 1121.2 1163.0 1128.0 1150.5 1234.5 1194.5 1205.7

3− 527.8 538.3 529.0 526.0 563.0 623.2 534.0 542.3 580.0

4+ 188.9 200.1 188.3 193.8 191.4 196.9 200.2 197.9 205.1

5− 91.1 97.2 91.2 92.0 92.9 97.8 96.5 94.1 99.1

1+ 12.6 14.0 12.3 12.9 13.5 18.1 13.7 12.9 13.4

Total 5462.9 5432.0 5557.2 5588.2 5727.0 5889.0 5815.0 5905.1 6035.5

2p1/2 0+ 92.0 85.1 95.8 91.5 95.0 99.9 101.5 101.0 101.2

1− 879.2 874.6 916.2 966.6 990.3 968.0 936.8 1032.6 1042.8

2+ 494.3 559.9 503.4 525.0 508.3 543.8 591.9 544.0 546.9

3− 218.7 226.6 221.5 217.6 242.5 279.1 221.5 225.3 246.2

4+ 63.7 68.4 64.2 66.1 66.1 68.3 68.2 67.8 70.3

5− 29.2 31.2 29.6 29.7 30.6 32.4 31.1 30.6 32.3

1+ 3.6 4.1 3.2 3.8 3.7 5.1 4.0 3.8 4.0

Total 1780.8 1850.1 1833.8 1900.3 1936.5 1996.5 1955.0 2005.1 2043.7

2p3/2 0+ 53.6 49.8 56.0 53.4 55.7 58.5 59.4 59.0 59.1

1− 886.0 882.4 922.7 981.3 995.7 968.7 932.0 1037.2 1050.0

2+ 493.3 561.0 502.6 524.2 508.1 551.7 594.4 542.8 545.6

3− 205.8 213.1 208.4 204.8 228.2 262.5 208.2 211.8 231.5

4+ 58.2 62.3 58.6 60.3 60.4 62.4 62.1 61.8 64.1

5− 26.1 27.8 26.5 26.5 27.4 29.0 27.6 27.3 28.9

1+ 1.7 1.9 1.6 1.7 2.0 3.2 1.8 1.7 1.9

Total 1724.7 1798.3 1776.4 1852.3 1877.4 1936.0 1885.6 1941.8 1981.0

∆2p 56.0 51.8 57.5 48.1 59.1 60.5 69.3 63.3 62.7
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Table IV. Contributions from different nuclear excitation modes to the nuclear-polarization (NP) corrections (absolute values
|∆ENP| = −∆ENP, in eV) to the states 3p1/2 and 3p3/2 in muonic 208Pb. The quantity ∆3pNP = |∆ENP

3p1/2
| − |∆ENP

3p3/2
| is the

corresponding NP contribution to the fine-structure splitting. The values are given for 9 different Skyrme parametrizations.

KDE0 SKX SLy5 BSk14 SAMi NRAPR SkP SkM* SGII

3p1/2 0+ 33.7 31.0 35.1 33.5 34.7 36.6 37.3 37.1 37.1

1− 247.4 263.6 267.8 273.3 316.3 229.4 289.6 307.8 311.6

2+ 154.0 182.4 158.2 164.0 162.7 156.8 204.0 171.9 172.5

3− 65.3 67.7 65.9 64.9 72.4 84.1 65.9 67.1 73.6

4+ 19.0 20.4 19.1 19.7 19.6 20.3 20.3 20.2 20.9

5− 8.8 9.4 8.9 8.9 9.2 9.7 9.3 9.2 9.7

1+ 1.2 1.4 1.0 1.2 1.2 2.9 1.3 1.2 1.3

Total 529.3 575.9 556.0 565.5 616.2 539.7 627.7 614.4 626.7

3p3/2 0+ 20.6 19.1 21.6 20.5 21.4 22.5 23.0 22.8 22.8

1− 278.1 293.5 301.9 309.6 346.2 262.5 322.9 338.5 349.3

2+ 167.4 202.3 172.5 178.3 179.6 175.2 231.1 187.6 188.2

3− 65.5 67.8 66.1 65.1 72.6 84.3 66.0 67.2 73.7

4+ 18.4 19.7 18.5 19.1 19.1 19.7 19.6 19.5 20.3

5− 8.3 8.9 8.4 8.5 8.7 9.2 8.8 8.7 9.2

1+ 0.4 0.6 0.4 0.4 0.6 2.1 0.5 0.5 0.5

Total 558.8 611.8 589.4 601.6 648.1 575.5 671.8 644.7 664.0

∆3p -29.5 -35.9 -33.4 -36.1 -31.9 -35.8 -44.1 -30.3 -37.7
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