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The electron nondipole dynamics in tunneling ionization in an elliptically polarized laser field is investigated
theoretically using a relativistic Coulomb-corrected strong field approximation (SFA) based on the eikonal
approximation of the Klein-Gordon equation. We calculate attoclock angle-resolved light-front momentum
distributions at different ellipticities of the laser field in quasistatic and nonadiabatic regimes and analyze them
with an improved Simpleman model. The nondipole correlations between longitudinal and transverse momentum
components are examined. Deviations of the photoelectron momentum distribution calculated via SFA with
respect to the available experimental results as well as with the improved Simpleman model are discussed and
interpreted in terms of nonadiabatic as well as Coulomb effects in the continuum and under-the-barrier. The
favorable prospects of an experimental observation are discussed.

I. INTRODUCTION

High precision measurements in strong-field atomic physics
allow to detect nondipole features in photoelectron momentum
distribution (PMD) at laser intensities far below the relativis-
tic regime [1–10]. The leading nondipole effect in tunneling
ionization is due to the laser magnetic field and results in
imparting the photoelectron a momentum along the laser prop-
agation direction, which has consequences for the partitioning
of the absorbed photon momentum between the photoelectron
and the parent ion [1, 11–22]. The electron energy resolution
of state-of-the-art detection techniques [23] is of about meV,
which corresponds to a momentum resolution of about 0.01 a.u.
This means that a nondipole shift of a longitudinal momentum
pk ∼ ca2

0 [24] can be detected in a laser field with a0 ∼ 10−2

corresponding to a laser intensity I ∼ 1014 W/cm2 at 800 nm
wavelength. Here, a0 = E0/(cω) is the relativistic laser field
parameter [25], with the laser field amplitude E0, frequency
ω, and the speed of light c. Atomic units are used throughout.
With the recent advancement of the strong field laser technique
into the mid-IR region up to wavelengths of the order of 10
µm [26], the nondipole effects become measurable at even
lower laser intensities. The Lorentz force effect matters not
only in the continuum but also during the sub-barrier tunneling
dynamics, inducing an additional longitudinal momentum shift
Ip/(3c) [5, 11], with the ionization potential Ip. The latter is
increased by sub-barrier Coulomb corrections [22].

In a linearly polarized laser field, the drift of the electron
induced by the laser magnetic field is known to suppress the rec-
ollision and related phenomena, see e.g. [27–29]. At restrained
recollisions, the interplay between the Coulomb, ellipticity, and
nondipole effects in the continuum induces specific structures
in PMD [2–4, 30–36]. In an elliptically polarized laser field
close to circular the Coulomb field of the atomic core disturbs
the photoelectron motion in the continuum mostly near the
tunnel exit, however, it also modifies the sub-barrier dynamics
[22].

While in first experiments [1, 5, 6] the average of the lon-

∗ klaiber@mpi-hd.mpg.de
† k.hatsagortsyan@mpi-hd.mpg.de

gitudinal momentum shift was in the attention of investiga-
tion, the recent experiment of Ref. [4] provides a sub-cycle
time-resolved study, and the experiment of Ref. [8] investi-
gates nondipole correlations between longitudinal-transverse
momentum components in the ionized wave packet. The
nondipole effects have been observed also in high-order above-
threshold ionization [9], and the photoelectron energy peaks
shift against the radiation pressure has been shown in the ex-
periment [10]. The results of these experiments have raised
significant interest of theory, addressing different aspects of
the nondipole phenomena, in particular investigating the nona-
diabatic [37], and Coulomb effects [38, 39], as well as the
inter-cycle interference structure in the PMD in the nondipole
regime [40, 41].

In this paper we investigate theoretically the electron
nondipole dynamics in an elliptically polarized laser field in
detail. A relativistic strong field approximation (SFA) is em-
ployed and Coulomb corrections in the continuum as well
as during tunneling are included in the eikonal approxima-
tion. Main attention is devoted to the attoclock angle-resolved
light-front momentum distributions and on possible different
correlations between longitudinal-transverse momentum com-
ponents. The role of nonadiabatic and Coulomb effects in the
continuum and during tunneling as well as their interplay are
analyzed. The Simpleman model [42] is improved, including
nonadiabatic and Coulomb corrections, for an intuitive inter-
pretation of the PMD features within the SFA theory. The
light-front momentum as a choice for an observable is under-
lined as being especially suitable for exploring the deviations
from the Simpleman model due to nonadiabatic and Coulomb
corrections.

II. THEORETICAL APPROACH

We employ a relativistic Coulomb-corrected SFA (CCSFA)
based on the Klein-Gordon equation, where the Coulomb po-
tential of the atomic core is accounted for using the eikonal
approximation [43, 44]. The ionization amplitude is calculated
in the dressed partition [45], neglecting small spin effects [46]:

mp = −i
∫

dt〈ψp(t)|Hi|φ(t)〉 (1)
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with the interaction Hamiltonian Hi = r · E(η). The laser field
is elliptically polarized:

E = −
E0

√
1 + ε2

[
ex cos(ωη) + εey sin(ωη)]

]
, (2)

where ε is the ellipticity, η = t−k̂·r/c = t−z/c, k̂ the unit vector
along the laser propagation direction, φ(r, t) = caφ0(r, t)φ1(r, t)
is the initial bound state of the electron in a Coulomb-potential
V = −Z/r, with charge Z and an asymptotic expression at
r � 1/κ:

φ0(r, t) =
exp(−κr + iκ2/2t)

r
,

φ1(r) =
(√

2κr
)Z/κ

, (3)

with ca ≡
√
κ/(2π), and κ =

√
2Ip. We use the nonrelativistic

bound state because the relativistic corrections scale as Ip/c2

and are negligible for the applied conditions. The electron final
state in the continuum is assumed to be the Coulomb-Volkov
state in the eikonal approximation [44]:

ψp(r, t) =
1

(2π)3/2 exp[iS 0(r, t) + iS 1(r, t)]. (4)

The applied eikonal approximation is valid if the momentum
change of the electron due to the Coulomb field is smaller with
respect to the electron momentum via laser field. This is the
case when hard recollisions do not play role, which exactly
corresponds to the electron dynamics discussed in this paper,
namely, ionization in an elliptically polarized laser field with
ε & 0.3 [3, 31]. Here,

S 0(r, t) =
(
p + A(η) − (ε/c − c)k̂

)
· r +

∫ ∞

η

ds[ε(s) − c2]

is the Volkov-action, ε =
√

c4 + c2p2 the electron energy,

A(η) =
E0/ω
√

1 + ε2

[
ex sin(ωη) − εey cos(ωη)]

]
(5)

is the laser vector potential, and

ε(s) = ε +
p · A(s) + A(s)2/2

Λ
(6)

is the electron energy in the laser field, with the integral of
motion Λ = ε/c2 − pk/c and pk = k̂ · p. Further, the Coulomb
correction (CC) to the eikonal is

S 1(r, t) =

∫ ∞

η

ds
ε(s)
Λc2 V(r(s, η)), (7)

with the electron relativistic trajectory

r(η′, η) = r +
1
Λ

∫ η′

η

ds
(
p + A(s) + k̂

p · A(s) + A(s)2/2
cΛ

)
.

(8)

The ionization amplitude of Eq. (1) consists of a 4-
dimensional integral. After a coordinate transformation from

t to η, we solve it with the saddle-point method. There-
fore, the integrand is exponentiated in cylindrical coordinates
r = (ρ, ϕ, z)

mp = −i
∫

dηdρdφdz exp(ζ0 + ζ1), (9)

where ζ0 = ln(ρcaHiφ0) − iS 0 and ζ1 = ln(φ1) − iS 1. Conse-
quently, we obtain the saddle-point equations:

∂ηζ0(ρ, ϕ, z, η) = 0
∂ρζ0(ρ, ϕ, z, η) = 0
∂ϕζ0(ρ, ϕ, z, η) = 0
∂zζ0(ρ, ϕ, z, η) = 0. (10)

In the saddle-point equations it was assumed that the first order
term ζ1 is slowly varying and therefore neglected with respect
to the ζ0-contribution. For a given final momentum p the
saddle point equations are solved numerically, obtaining the
ionization amplitude:

mp = −i

√
(−2π)4

det ∂i∂ jζ0,s
exp[ζ0,s + ζ1,s], (11)

where indices i and j run over the cylindrical coordinates and η.
The corresponding momentum distribution is then calculated
via

dw(p)
d3p

= |m(p)|2. (12)

III. SIMPLEMAN MODEL

In this section we extend the well-known Simpleman model
[42] into the relativistic domain for spinless particle and fur-
ther improve it in order to include the nondipole sub-barrier
correction to the longitudinal momentum at the tunnel exit and
its CC, the nonadiabatic corrections to the initial electron mo-
mentum at the tunnel exit, as well as Coulomb corrections due
to the continuum motion in the quasistatic and in nonadiabatic
regimes.

A. Quasistatic regime

In the Simpleman model we find the most probable trajectory
for the ionized electron, and accordingly the most probable
asymptotic momentum corresponding to the peak of PMD.
In the quasistatic regime the ionized electron appears in the
continuum at the tunnel exit (at the laser phase φi = ωηi) with
a vanishing momentum p⊥i = 0, pki = 0. Here p⊥ is the
transverse momentum component in the polarization plane,
and pk the longitudinal component. Further the electron moves
in the laser and Coulomb fields of the atomic core.

Firstly, we find the electron trajectory in a plane-wave laser
field A = A(φ). In this field there are two integrals of mo-
tion following from the field symmetry, namely, on the field
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dependence only in the single variable φ:

p⊥ − A(φ) = p⊥i − A(φi), (13)
ε − cpk = εi − cpki = c2Λ, (14)

with the initial energy εi at φ = φi, φ = ωη. From the latter the
final photoelectron momentum is derived (see e.g. Eq. (A.10)
in [3]):

p⊥ = p⊥i − A(φi), (15)

pk = pki +
p2
⊥ − p2

⊥i

2cΛ
, (16)

with Λ ≈ 1 − pki/c ≈ 1. The latter can be expressed either via
the initial transverse momentum p⊥i or via the asymptotic one
p⊥, which in the leading order of O(1/c) reads:

pk = pki −
p⊥i · A(φi) − A(φi)2/2

c
, (17)

pk = pki −
p⊥ · A(φi) + A(φi)2/2

c
. (18)

In the quasistatic regime and neglecting the sub-barrier
nondipole dynamics, pki = 0 and p⊥i = 0, and the peak of
the final momentum distribution within the Simpleman model
is:

p(m)
⊥ (φi) = −A(φi) (19)

p(m)
k (φi) =

p(m)
⊥ (φi)2

2c
. (20)

We define the light-front momentum via the integral of motion
in a plane wave p− = c(1 − Λ):

p− = pk −
p2
⊥

2c
. (21)

In the quasistatic Simpleman picture the most probable value
of the light-front momentum is, therefore, vanishing

p(m)
− (φi) = 0. (22)

The relationship of Eq. (22) for the time-resolved light-front
momentum is fulfilled in a plain wave laser field of any inten-
sity and ellipticity as far as nonadiabatic and Coulomb effects,
sub-barrier nondipole effects, as well as recollisions are neg-
ligible. For this reason the momentum variable of p−(φi) is a
very convenient observable for the time-resolved investigation
of signatures of nonadiabatic, sub-barrier, and Coulomb effects.
Note that recollisions do not play a significant role at rather
large ellipticity of the laser field ε & 0.3 [3, 31].

B. Sub-barrier corrections

In this section we improve the Simpleman model including
the sub-barrier nondipole, Coulomb, and nonadiabatic correc-
tions. The sub-barrier nondipole effects shift the peak of the
longitudinal momentum distribution at the tunnel exit from the
Simpleman value pki = 0 to:

pki =
Ip

3c

[
1 + 6ν

E(φi)
Ea

]
, (23)

where the first term Ip/(3c) is due to the sub-barrier nondipole
magnetic field effect [11], and the second term due to the sub-
barrier Coulomb field effect in the quasistatic and quasiclassical
approximation [22], ν is the effective principal quantum num-
ber of the bound state, and Ea = κ3 the atomic field strength.

In the nonadiabatic regime the peak of the transverse dis-
tribution in the polarization plane at the tunnel exit is shifted
due to the action of the nonadiabatic transverse force F⊥ ∼
E′(φi)τK ∼ εγ(φi)E(φi) with respect to the direction of the tun-
neling channel during the sub-barrier dynamics within the
Keldysh time τK = γ(φi)/ω, with the Keldysh parameter
γ(φi) = ωκ/E(φi). This yields a transverse nonadiabatic mo-
mentum shift [47]

p(nad)
⊥i =

εγ(φi)κ
6

ê⊥(φi), (24)

where

ê⊥(φi) = (Ey(φi),−Ex(φi))/E(φi), (25)

is the unit vector perpendicular to the time-dependent laser
field.

C. Coulomb corrections in the continuum

During the continuum motion of the ionized electron, the
Coulomb field of the atomic core induces a momentum trans-
fer. In the case of large ellipticity ε & 0.3, recollisions
are negligible and the Coulomb effect mostly arises during
the electron motion near the tunnel exit with the coordinate
re(φi) = −IpE(φi)/E(φi)2.

While in the quasistatic limit the CCs at the tunnel exit are
known [34, 48], here we derive the CC including nonadiabatic
effects. The CC to the momentum due to the atomic potential
V(r) is calculated as follows

δpC = −

∫ ∞

ηi

dη∇V(r(η, ηi)), (26)

using the electron trajectory r(η, ηi) in the laser field. The
following results are obtained.

The CC to the momentum in the field direction reads:

δpeC = πZ
E(φi)

Ea

1 +
γ(φi)
3π

1 − ε2

1 + ε2

E2
0 sin(2φi)
E(φi)2

 , (27)

where the first term coincides with the quasistatic Coulomb
momentum transfer in the field direction derived in [48], which
results in a rotation of the final PMD in the polarization plane,
and inducing the attoclock offset angle δθ ∼ πωZ/(εκ3) with
respect to the Simpleman most probable angle θ0 = π/2. The
second term ∼ γ(φi) is the nonadiabatic CC.

The CC to the momentum in the polarization plane, trans-
verse to the field direction is:

δpe⊥C = −
εγ(φi)κ

6
2Z
κ

E(φi)
Ea

1 +
E2

0

E(φi)2(1 + ε2)

 ê⊥(φi)

(28)
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The first term is the CC due to the initial transverse nonadia-
batic momentum following from [48]. The second term is an
additional CC in the continuum due to the motion driven by
the nonadiabatic transverse force δp⊥ ∼ εγ(φi)κ, see intuitive
explanation in Appendix A.

The CC to the momentum in the laser propagation direction:

δpkC = −

(
pki +

Ip

3c

)
2Z
κ

E(φi)
Ea

−
3π
16
γ(φi)

Ip

3c
Z
κ

E(φi)
Ea

1 − ε2

1 + ε2

E2
0 sin(2φi)
E(φi)2 , (29)

where the first term with the factor pki is the quasistatic
Coulomb momentum transfer in the direction transverse to
the field derived in [48], while the second term with the factor
Ip/(3c) is due to the electron nondipole displacement in the
continuum by the v × B force, see the intuitive explanation in
Appendix B, and the last term is the nonadiabatic CC.

Thus, taking into account the nondipole, Coulomb, and
nonadiabatic effects under-the-barrier and in the continuum,
we have

p⊥i = πZ
E(φi)

Ea

[
1 + ge(φi)

]
+
εγ(φi)κ

6
ê⊥(φi)

[
1 − g⊥(φi)

]
,

(30)

pki =
Ip

3c

[
1 + 6ν

E(φi)
Ea
− gk(φi)

]
, (31)

with the nonadiabatic and Coulomb correction functions

ge(φi) =
γ(φi)
3π

1 − ε2

1 + ε2

E2
0 sin(2φi)
E(φi)2 , (32)

g⊥(φi) =
2Z
κ

E(φi)
Ea

1 +
E2

0

E(φi)2(1 + ε2)

 , (33)

gk(φi) =
E(φi)

Ea

4Z
κ

+
3π
16
γ(φi)

Z
κ

1 − ε2

1 + ε2

E2
0 sin(2φi)
E(φi)2

 .(34)

Here we keep the leading terms in E0/Ea, and have added the
negative continuum Coulomb corrections to the initial momen-
tum, assuming that it takes place during the motion near the
tunnel exit in the case of a large ellipticity. With Eqs. (30),(31)
the most probable asymptotic momentum reads

p(m)
⊥ (φi) = −A(φi) + πZ

E(φi)
Ea

[
1 + ge(φi)

]
+
εγ(φi)κ

6
ê⊥(φi)

[
1 − g⊥(φi)

]
, (35)

p(m)
k (φi) =

Ip

3c

[
1 + 6ν

E(φi)
Ea
− gk(φi)

]
+

A(φi)2

2c

−
πZ
Ea

E(φi) · A(φi)
c

[
1 + ge(φi)

]
(36)

−
εγ(φi)κ

6
ê⊥(φi) · A(φi)

c
[
1 − g⊥(φi)

]
,

The attoclock angle is defined as

tan θ(φi) = py(φi)/px(φi), (37)

which provides a mapping of the initial laser phase of the
tunneled electron to the attoclock angle.

The light front momentum Eq. (21) is an integral of motion:

p−(η) = pk(η) −
p2
⊥(η)
2c

= pki −
p2
⊥i

2c
. (38)

From the latter, keeping the first order terms with respect to
E0/Ea and γ, we have for the peak value of the asymptotic
light-front momentum:

p(m)
− (φi) =

Ip

3c

[
1 + 6ν

E(φi)
Ea
− gk(φi)

]
. (39)

The term p2
⊥i/(2c) in Eq. (38) has contributions of the order of

magnitude O((E0/Ea)2, γ2), which are neglected.
Thus, we have derived in the weakly nonadiabatic regime

the most probable asymptotic momentum of the photoelectron
within the Simpleman model [Eqs. (35),(39)], which provides
the parametric dependence of the asymptotic momentum on
the attoclock angle θ via the parameter φi [Eq. (37)]. The
estimation for the light-front momentum Eq. (39) includes
the nondipole sub-barrier momentum shift [Ip/3c], quasistatic
CC during the sub-barrier dynamics [6νE(φi)/Ea] and in the
continuum [(−4Z/κ)E(φi)/Ea], as well as nonadiabatic CC
[∼ γ(φi)2Z/κ]. The estimation for the transverse momentum
Eq. (35) includes the quasistatic CC during the continuum
dynamics [πZE(φi)/Ea], and its nonadiabatic correction [∼
γ(φi)] as well as the nonadiabatic momentum shift due to sub-
barrier dynamics [εγ(φi)κ/6], and its CC [∼ (2Z/κ)(E(φi)/Ea)].

IV. COMPARISON OF SFA RESULTS WITH IMPROVED
SIMPLEMAN MODEL

A. Time-resolved light-front momentum

In this section we consider the ellipticity dependence of the
time-resolved light-front momentum p−(φ) in the quasistatic
and nonadiabatic regimes, respectively, see Fig. 1. The use of
the light-front momentum for the presentation of the results is
quite useful, because it immediately demonstrates the role of
Coulomb and nonadiabatic corrections, as in the plain Simple-
man model p− = 0. We have applied several versions of SFA:
1) full CCSFA, which include all Coulomb corrections, i.e.
during the sub-barrier dynamics, as well as in the continuum;
2) Tunnel-Coulomb-corrected SFA (TCSFA), the SFA with
only sub-barrier Coulomb corrections; 3) plain SFA with no
Coulomb corrections. We provide also a comparison of the
SFA results with the improved Simpleman model [Eq. (39)].

The general observation from the results of Fig. 1 is the
following. In the quasistatic regime (in our example γ ≈ 0.4),
the improved Simpleman model and the plain SFA describe
quite well the full CCSFA results for the given ellipticity range
ε = 0.5 − 0.9. They both underestimate the CCSFA result for
p− slightly. The deviation of CCSFA result from the improved
Simpleman model and the plain SFA is not large, because the
sub-barrier CC (highlighted via TCSFA) and the continuum CC
(included in CCSFA), which are of opposite sign and larger at
small ellipticity values, compensate each other to some extent
[22].
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FIG. 1. Light-front momentum p− = pk −
p2
⊥

2c vs attoclock offset angle δθ: Left column - quasistatic regime, ω = 0.02 (γ ≈ 0.4); Right column -
nonadiabatic regime ω = 0.05 (γ ≈ 1.1); for ellipticity values (a,d) ε = 0.5, (b,e) ε = 0.7, (c,f) 0.9; (red-solid) CCSFA, (orange-dash-dotted)
plain SFA without CC, (green-dotted) TCSFA (SFA with only sub-barrier CC), (blue-dashed) improved Simpleman model. The laser field
strength is E0 = 0.05.

In the nonadiabatic regime [in our example γ ≈ 1.1, Fig. 1
(right column)] there are large deviations of the plain SFA with
respect to CCSFA at small ellipticity. The performance of
the improved Simpleman model is also not good. It doesn’t
predict the slope the CCSFA result, there is a deviation from
CCSFA in the offset angle dependence. The deviation is larger
at small ellipticities and at large positive offset angles. The
improved Simpleman model does not capture this latter feature.
This stems from nonadiabatic Coulomb corrections, which are
larger for small elipticity. In the nonadiabatic regime the elec-
tron stays longer near the core than the quasistatic estimation
assumes, leading to a large CC. In the Simpleman model we
expand the nonadiabatic CC with respect to γ, and the model

is not accurate at large γ. The characteristic feature of the
CC in the nonadiabatic regime is that it induces an asymmetry
between the positive and negative offset angles. At γ ∼ 1 this
effect is significant.

Contribution of different Coulomb and nonadiabatic correc-
tions are analyzed in Fig. 2(a) for the nonadiabatic regime. The
Simpleman model without CC (but with nonadiabatic correc-
tions) coincides with the plain SFA result for the time-resolved
light-front momentum. The sub-barrier and continuum CCs
are underestimated by the Simpleman model, because of the
applied expansion over γ-parameter (weakly nonadiabatic ap-
proximation). This results in the final deviation of the improved
Simpleman with respect to CCSFA. Especially the asymmetry
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FIG. 2. (a) Different contributions to the Simpleman model for the
nonadiabatic regime, with ω = 0.05 and ellipticity ε = 0.5: (red-
dashed) plain SFA with no CC, (blue-dashed) Simpleman with no CC,
(red-dotted) TCSFA (no continuum CC), (blue-dotted) Simpleman
with no continuum CC, (red, solid) CCSFA, (blue-solid) improved
Simpleman model with all corrections; (b) Ionization phase vs atto-
clock offset angle δθ via the improved Simpleman model Eq. (37)
(blue, solid), plain Simpleman (orange, dashed). The laser field
strength is E0 = 0.05.

of p− with respect to the sign of the offset angle, which is due
to the nonadiabatic Coulomb effects in the continuum are not
captured in the Simpleman model. This asymmetry is also ex-
hibited in Fig. 2(b) showing the ionization phase with respect
to the attoclock offset angle. Thus, the peak of the laser field
φi = 0 is shifted from the zero offset angle, i.e. the field is not
symmetric with respect to δθ = 0.

B. Transverse momentum distribution resolved in time and in
longitudinal momentum

In previous section we investigated the absolute peak value
of the time-resolved light-front momentum [Eq. (39)]. Fol-
lowing the experiment [8], we further provide a more detailed
description and examine the peak of the transverse momen-
tum distribution resolved in the longitudinal momentum, as
well as resolved in time (attoclock offset angle). For a given
ionization phase φi, let us fix pk and calculate the maximum
of the transverse momentum distribution with respect to the
transverse momentum p⊥. The final distribution over trans-
verse momenta arises because of the deviation of the electron

transverse momentum at the tunnel exit from the peak value

p⊥e = ê⊥(φi)
(
p̃⊥ +

εγκ

6

)
(40)

pke = p̃k + Ip/(3c). (41)

Note that p⊥ i = p⊥e − δp⊥C and pke = pki − δpkC , with CCs
δp⊥C and δpkC . Then from Eqs. (15) and (17) we have

p⊥ = p(m)
⊥ (φi) + ê⊥(φi) p̃⊥

[
1 − g⊥(φi)

]
(42)

pk = p(m)
k (φi) + p̃k

[
1 − gk(φi)

]
−

p̃⊥ · A(φi)
c

[
1 − g⊥(φi)

]
,

(43)

where p(m)
⊥ (φi), p(m)

k (φi) are the most probable asymptotic mo-
mentum components of the ionized wave packet at the tunnel
exit via Eqs. (35),(36). the factors g⊥(φi) , gk(φi) account for
the continuum CC due to the additional momentum p̃k, p̃⊥.
The Eq. (43) shows that p̃k and p̃⊥ are not independent at a
given asymptotic momentum pk.

p̃⊥ =

[
p⊥ − p(m)

⊥ (φi)
]
· p̂(m)
⊥ (φi)[

ê⊥(φi) · p̂(m)
⊥ (φi)

] [
1 − g⊥(φi)

] (44)

p̃k =
pk − p(m)

k (φi)
1 − gk(φi)

+ p̃⊥
A⊥(φi)

c
1 − g⊥(φi)
1 − gk(φi)

(45)

where A⊥(φi) = A(φi)·ê⊥(φi), and p̂(m)
⊥ (φi) ≡ p(m)

⊥ (φi)/|p(m)
⊥ (φi)|.

The probability distribution over electron momenta at the tun-
nel exit pke = p̃+Ip/(3c) and p⊥e = p̃⊥+εγκ/6 is determined by
the tunneling Perelomov-Popov-Terent’ev (PPT)-distribution
in the nondipole and nonadiabatic regime [44, 49, 50]:

w( p̃⊥, p̃k) ∝ exp

−2
3

(
κ2 + p2

⊥ e + p2
k e

)3/2

E(φi)

(
1 −

pk e

2c

) (
1 −

εωp⊥ e

2E(φi)

)
(46)

Therefore, the maximum of the distribution for a given
pk − p(m)

k (φi) is determined by the minimum of G(p⊥e, pk e)
[w(p⊥e, pke) ∝ exp (−G(p⊥e, pke))]. From the condition
∂G/∂p⊥ e = 0, taking into account Eq. (45),(44), and keep-
ing the terms linear in p⊥e, pke, and up to the order of 1/c, one
obtains

p⊥ − p(m)
⊥ = α(φi)

[
pk(φi) − p(m)

k (φi)
] A0

c
, (47)

with p⊥−p(m)
⊥ = [p⊥(φi)−p(m)

⊥ (φi)]·p̂(m)
⊥ (φi), and the coefficient

α(φi) defined as

α(φi) ≡ −
A⊥(φi)

A0

[
ê⊥(φi) · p̂(m)

⊥ (φi)
] [

1 − g⊥(φi)
1 − gk(φi)

]
, (48)

and CC factors g⊥(φi), gk(φi) from Eqs.(33), (34). Thus the
time resolved PMD with respect to (p⊥(φi), pk(φi)) shows a
local maximum, which runs along the line of Eq. (47). It is
in accordance of the experimental qualitative observation of
Ref. [8]: when pk > p(m)

k , one has a local maximum of p⊥ at
a given pk, which exceeds the absolute maximum p(m)

⊥ , and
vice verse. An alternative derivation of the correlation of the
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FIG. 3. The coefficient α from Eq. (49) vs attoclock offset angle δθ. Left column - quasistatic regime, ω = 0.02 (γ ≈ 0.4); Right column -
nonadiabatic regime ω = 0.05 (γ ≈ 1.1); for ellipticity values (a,d) 0.5, (b,e) 0.7, (c,f) ε = 0.9; The laser field strength is E0 = 0.05.

transverse and longitudinal components momentum is given in
Appendix C.

One may define also the coefficient α as a function of the
attoclock angle

p⊥(θ) − p(m)
⊥ (θ) = α(θ)

[
pk(θ) − p(m)

k (θ)
] A0

c
, (49)

where p⊥(θ) is the transverse momentum at the given offset
angle θ, and p(m)

⊥ (θ) its peak value, A0 = εE0/(ω
√

1 + ε2).
Note that Eq. (49) is not equivalent to the similar Eq. (47),
because of the momentum dependence of the θ-φi relationship
of Eq. (37), i.e., for the given attoclock angle θ, the corre-
sponding φi is different for p(m)

⊥ and p⊥. Note also that the
definition of α is different from the one in Ref. [8], where
α = (p⊥ − A0)/(pkA0/c). In the Simpleman estimation it is

α = 1.

In Fig. 3 we show the time-resolved α-parameter depen-
dence on the ellipticity of the laser field. First of all, there
is no significant effect of sub-barrier CC as TCSFA results
coincide with the plain SFA at any ellipticity. The Simpleman
results mostly coincide with the plain SFA besides large offset
angles and small ellipticity, which indicates in the latter cases
the role of the nonadiabatic corrections beyond the leading γ
terms. Note also that α = 1 for the Simpleman at δθ = 0, but
α increasing at large offset angles. Significant deviation of
CCSFA results from the plain SFA is observed in nonadiabatic
regime at small ellipticity and large positive offset angles. This
is due to nonadiabatic CC in the continuum. There is an asym-
metry in α with respect to the sign of the offset angle due to
nonadiabaticity.
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FIG. 4. The coefficient α [Eq. (49)] vs the laser field, for ω = 0.04
a.u. and κ = 1 a.u.: (a) ε = 0.6; (b) ε = 1; (red-solid) CCSFA,
(orange-dash-dotted) plain SFA without CC, (blue-dashed) improved
Simpleman model.

In Fig. 4 we discuss the field dependence of the α-parameter.
As expected, for the plain SFA α = 1 at any ellipticity and
intensity. There is a remarkable influence of the continuum CC,
which increases significantly the α-parameter in weak fields
and at small ellipticities. The Simpleman model does not fully
account CC, especially nonadiabatic CC in the continuum.
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FIG. 5. The maximum of the longitudinal momentum via the im-
proved Simpleman (with forward rescattering) vs ellipticity, for
ω = 0.01345 a.u., κ = 0.944 a.u. and E0 = 0.0338 a.u.

V. LONGITUDINAL MOMENTUM AT SMALL
ELLIPTICITY VALUES: ROLE OF RECOLLISIONS

In this section we check the capability of the improved
Simpleman model for small ellipticity values. In this case
recollisions play a role and we have no analytical expression to
account for the recollision effect. For this reason, we calculate
the final longitudinal momentum of the electron numerically
within classical consideration for the most probable trajectory,
assuming that the initial momentum components of the electron
at φi = 0 are

pxi = 0, (50)

pyi =
εγ(φi)κ

6
, (51)

pki =
Ip

3c
, (52)

and the initial coordinate of the tunnel exit is

re = −
κ2

2E(φi)2 E(φi). (53)

With these initial conditions Newton equations are integrated
assuming the Coulomb field as a perturbation:

pk = pki −
p⊥i
· A(φi) − A(φi)2/2

c
−

∫ ∞

ηi

dη∂zV(r(η, ηi)),

(54)

with ωηi = φi
In Fig. 5 we show the ellipticity dependence of the maximum

of the longitudinal momentum, calculated via the Simpleman
estimation. Surprisingly, the given Simpleman estimation fits
well to the experimental results of Ref. [3].

VI. EXPERIMENTAL TIME-RESOLVED SPECTRA VS
CCSFA

In this section we compare the CCSFA calculations of the
time-resolved nondipole momentum shift to the experimental
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FIG. 6. Offset angle (expressed as a time delay) between the attoclock
angle of the maximum yield and the minimum of the longitudinal
momentum vs ellipticity. Experimental data [4] with error bars are
black, CCSFA - blue cycles, and Simpleman results - orange boxes.
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FIG. 7. Longitudinal momentum vs attoclock offset angle: (a) ε = 0.3; (b) ε = 0.4; (c) ε = 0.6; (d) ε = 0.8. Experimental data [4] with error bars
are black, CCSFA - blue cycles, and Simpleman results - orange boxes. The calculations show the average pk for the given offset angle.

data of Ref. [4]. In the latter, rather than the light-front momen-
tum, the data for the longitudinal momentum are presented.

In Fig. 6 we show the offset angle, expressed as a time delay,
between the attoclock angle of the maximum yield and the
minimum of the longitudinal momentum vs ellipticity. Both
the Simpleman and CCSFA results are in accordance with
the experimental data within the error bars. However, the
experimental data hints for a slight slope decreasing the time
delay at large fields. This feature is absent in the Simpleman
model, but demonstrated by CCSFA.
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FIG. 8. The average of the longitudinal momentum vs the transverse
momentum: CCSFA (blue dots), plain SFA (orange dots), CCSFA
with only sub-barrier corrections (green dots), and the experimental
data (black points) of Ref. [5].

In Fig. 7 the CCSFA and Simpleman results for the average
of the longitudinal momentum vs the attoclock offset angle
are compared with the experiment. The Simpleman results on
the time-resolved data coincide with that of CCSFA, however,
there are significant deviations with respect to the experiment,
especially at large offset angles and at large ellipticities. This
indicates that there is an unaccounted large Coulomb effect
(larger at larger ellipticity) in the nondadiabatic regime (larger
at small fields, i.e., at larger offset angles), or some time delay,
which is very intriguing, and still unexplained.

In Fig. 8 we compare the results of CCSFA for the depen-
dence of the average of the longitudinal momentum on the
transverse one with the experimental data of Ref. [5]. Gen-
erally, the Coulomb corrections are not very significant for
the given interaction regime. However, we note an important
message of Fig. 8, that the sub-barrier Coulomb corrections
increase the momentum shift along the propagation direction
〈pk〉, while the continuum one oppositely decreasing it, which
is in accordance with Ref. [22].

VII. CONCLUSION

We have developed a nondipole CCSFA theory and a im-
proved Simpleman model, which include Coulomb corrections
during the sub-barrier dynamics and in the continuum up to
first order in E0/Ea, the improved Simpleman model includes
nonadiabatic corrections up to first order in γ. Both CCSFA
and Simpleman model are applied for the description of the
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time-resolved (attoclock angle resolved) nondipole longitu-
dinal dynamics. Further, we have introduced the light-front
momentum, which absorbs the trivial relativistic correlation
between the transverse and longitudinal momenta and allows
to elucidate the role of nonadiabatic and Coulomb effects. Our
conclusion is that in the quasistatic regime the plain SFA and
the Simpleman model describe quite well the time-resolved
nondipole longitudinal dynamics, because of a partial compen-
sation of the sub-barrier and the continuum Coulomb effects.
In contrast, the nonadiabatic Coulomb effects, especially large
at small ellipticity values, introduce a deviation of the Simple-
man model and the plain SFA with respect to the full CCSFA.
In particular, the nonadiabatic Coulomb effect in the contin-
uum violate the symmetry of the light-front momentum with
respect to the sign of the attoclock offset angle. The Coulomb
effect is especially conspicuous at small ellipticity ε . 0.6 and
positive offset angles, and gives rise to interest for experimental
observation, see for instance Figs. 1(d), and 3(d). The same
kind of CC induces a large deviation of the parameter α from
the Simpleman value 1, see for instance the weak field region
in Fig. 4(a). The parameter α describes the shift of the peak of
the transverse momentum distribution with respect to variation
of the longitudinal momentum.

We find deviations of CCSFA results from the experimental
data of Ref. [4] for large offset angles and large ellipticities,
which indicate that there is a notable nonadiabatic Coulomb
effect and/or ionization time delay still remaining not repro-
ducible within our CCSFA based on the eikonal approximation
and applicable only for soft rescatterings.
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Appendix A: Transverse nonadiabatic Coulomb momentum
transfer

Here we provide an intuitive estimation of the CC in the
direction transverse to the laser electric field in the polarization
plane in the nondipole regime. Due to nonadiabaticity the
electron obtains a transverse momentum during tunneling:

δpy i =
εγκ

6
, (A1)

where the y-axis is transverse to the field in the polarization
plane. The Coulomb momentum transfer can be estimated as

δpy C ∼
Z
x2

y
x
δt, (A2)

where x is the coordinate along the laser electric field direction,
y is the transverse displacement, and δt is the effective interac-
tion time with the atomic core. As x ∼ E0δt2/2, the effective
time can be estimated as

δt ∼
√

x0

E0
, (A3)

assuming during this time the electron displacement is twice
the distance of the tunnel exit x0 ∼

Ip

E0
. The transverse displace-

ment is

y ∼ pyiδt +

∫ δt

dt′
∫ t′′

dt′′Ey(t′′) = pyiδt +
ωE0δt3

6
,(A4)

where Ey ∼ εE0ωt is the transverse nonadiabatic force. The
first terms is estimated as

∼
εγκ

6
2ZE0

κEa
, (A5)

and the second one as

∼ E0
ωδt3

6
∼
εγκ

6
2ZE0

κEa
. (A6)

Thus,

δpy C ∼
εγκ

6
4Z
κ

E0

Ea
. (A7)

Appendix B: Longitudinal Coulomb momentum transfer

Here we provide an intuitive estimation of the CC in the
laser propagation direction in the nondipole regime, when the
electron has an initial momentum at the tunnel exit pki. The
Coulomb momentum transfer can be estimated as

δpk C ∼
Z
x2

z
x
δt. (B1)

We estimate the longitudinal displacement:

z ∼ pkiδt +

∫
p⊥(t′)

c
E(t′)dt′ ∼ pziδt +

E2
0δt

3

6c
. (B2)

Thus

δpkC ∼
Z
x3

0

pziδt +
Z
x3

0

E2
0δt

3

6c
. (B3)

The first terms is estimated as

∼ pki
2ZE0

κEa
, (B4)

and the second one as

∼
Ip

3c
2ZE0

κEa
. (B5)

Taking into account that pki =
Ip

3c , we have

δpk C ∼ pki
4Z
κ

E0

Ea
. (B6)
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Appendix C: Transverse and longitudinal momentum
correlation

Here we provide an alternative derivation of the coefficient
α related to the correlation of the transverse and longitudinal
components momentum. We solve the electron equations of
motion in the laser field of magnetic dipole approximation,
with a time dependent electric and magnetic field:

x′′(t) =
A′x(t)

Λ
, (C1)

y′′(t) =
A′y(t)

Λ
, (C2)

z′′(t) =
x′(t)A′y(t)

cΛ
−

y′(t)A′x[t]
cΛ

, (C3)

with the initial conditions x′(ti) = vxi, y′(ti) = vyi, z′(ti) = pzi,
and x(ti) = y(ti) = z(ti) = 0. The correction to the electron
final momentum due to the electric quadrupole correction to

the laser field is calculated perturbatively:

∆px = −
1
c

∫
Ax(s)z(s)ds = −

E0

cω
pzi sin(ωti) (C4)

∆py = −
1
c

∫
Ay(s)z(s)ds =

εE0

cω
pzi cos(ωti). (C5)

The final transverse momentum is:

p⊥(pzi) =

√
vxi − Ax(ti) + ∆px)2 + (vyi − Ay(ti) + ∆py)2,

(C6)

which we expand over the initial longitudinal momentum pzi
around pz0:

α ≡
p⊥(pzi)
εE0/cω

(C7)

=
{
ε cos(ωti)

[
cvyiω + εE0(c + pz0) cos(ωti)

]
− cvxiω sin(ωti) + E0(c + pz0) sin2(ωti)

} 1
ε

×
{
c2(v2

xi + v2
yi)ω

2 + E0(c + pz0)
[
ε cos(ωti)

(
2cvyiω

+ εE0(c + pz0) cos(ωti)) − 2cvxiω sin(ωti)

+ E0(c + pz0) sin2(ωti)
]}−1/2

.

For the values for vxi, and vyi, we use Eqs. (30), and for pz0,
Eq. (31). The results for α with this estimation coincides with
those in Figs. 3.
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