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We investigate the magnetic excitations of elemental gadolinium (Gd) using inelastic neutron scattering,
showing that Gd is a Dirac magnon material with nodal lines at K and nodal planes at half integer `. We
find an anisotropic intensity winding around the K-point Dirac magnon cone, which is interpreted to indicate
Berry phase physics. Using linear spin wave theory calculations, we show the nodal lines have non-trivial Berry
phases, and topological surface modes. We also discuss the origin of the nodal plane in terms of a screw-
axis symmetry, and introduce a topological invariant characterizing its presence and effect on the scattering
intensity. Together, these results indicate a highly nontrivial topology, which is generic to hexagonal close
packed ferromagnets. We discuss potential implications for other such systems.

Topological materials exhibiting quasiparticles with linear
band crossings effectively described by the Dirac equation
play an important role at the frontier of condensed matter
physics [1, 2]. The electronic structure of Graphene estab-
lished it as the prototypical example of a fermionic Dirac
material [1, 3]. It was subsequently realized that related
physics can occur in systems with bosonic quasiparticles in-
cluding among others phonons [4], photons [5, 6], and more
recently, magnons [7–12]. The interesting topological fea-
tures of magnon bands are often associated with band de-
generacies that can be understood as a consequence of sym-
metries describable by spin-space groups [13, 14]. Magnon
band structures can realize analogs of e.g. Chern insulators
and topological semimetals [10–12] and can host both Dirac
[7, 8, 15] or Weyl magnons [2, 16, 18–20], as well as exhibit
extended one-dimensional nodal degeneracies [15, 21, 22] and
triply-degenerate points [23]. Consequently magnetic systems
can also exhibit phenomena similar to those found in topo-
logical electronic materials, for example a magnon thermal
Hall effect arising from gapped bands with topologically non-
trivial Chern numbers [24–29]. In this work we describe a
system with a magnon nodal plane degeneracy, thus further
extending the fruitful analogy between topological magnets
and topological electronic systems [30, 31].

Dirac band crossings have been observed in the layered
local-moment magnetic systems CrI3 [32] and CoTiO3 [33,
34]. These systems are related to the honeycomb ferromagnet,
a simple bipartite lattice that is the prototypical example of a
two-dimensional Dirac magnon system. One strong indicator
of non-trivial topology is an anisotropic “winding” intensity
around the Dirac point, as seen in CoTiO3 [35, 36]. Dirac
magnons have also been observed in the three-dimensional
antiferromagnet Cu3TeO6 [37, 38].

In this Letter we use inelastic neutron scattering to measure
the magnon spectrum of elemental gadolinium (Gd), showing
directly that it is a Dirac material. Gd is a highly isotropic
ferromagnet with the hexagonal close packed (HCP) structure
that forms a simple three-dimensional bipartite lattice. We
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Figure 1. (a) HCP crystal structure of Gd. The lattice is bipartite,
with interpenetrating layers of ABAB-stacked triangular lattices. (b)
First Brillouin zone of Gd. The dark blue lines delineate the asym-
metric unit in reciprocal space, the red dots show the high symmetry
points (notated on the right), and the green regions indicate nodal
lines at h = k = 1/3 and nodal planes at ` = ±1/2.

demonstrate experimentally that the magnon bands in Gd (i)
exhibit Dirac nodal lines with a clear anisotropic winding in-
tensity and non-trivial Berry phase, and (ii) interestingly also
show a nodal plane. We discuss the protection of the nodal
plane by a combination of a screw-axis symmetry and effec-
tive time reversal symmetry, and introduce a Z2 topological
invariant to characterize it. Our results suggest that the entire
class of rare earth HCP ferromagnets is a simple model system
for topological magnetism.

The Gd HCP structure and its reciprocal lattice are illus-
trated in Fig. 1. Gd orders ferromagnetically at Tc = 293 K
[39–41]. Although Gd is metallic, the first three valence elec-
trons are completely itinerant and the rest are localized, leav-
ing an effective Gd3+ at each site [42]. In the half-filled f
shell, the orbital angular momentum is effectively quenched
leaving S = 7/2 magnetism [43] with near-perfect isotropy
and spin-orbit coupling that vanishes to first order. (Small
anisotropies do exist in Gd [44] which influence the direc-
tion of the ordered moment [40], but these are of the order
30 µeV [45]—so small that they have never been measured
with neutrons.) This makes Gd an ideal material for studying
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Heisenberg exchange on a hexagonal lattice.
The Gd spin wave spectrum was first measured by Koehler

et al. in 1970 [46]; but only along (hh0), (hh̄0), (h00), and
(00`) directions. These data show a linear magnon band cross-
ing at K = (1/3, 1/3, 0), indicating a Dirac node and sug-
gesting the possibility of nontrivial topology. The temper-
ature dependence of the Gd magnons was measured in the
1980’s [47, 48], but only along the same symmetry direc-
tions as Ref. [46]. Here we have used SEQUOIA, a modern
time of flight spectrometer [49, 50] at the SNS [51], to mea-
sure the Gd inelastic neutron spectrum over the entire Bril-
louin zone volume. The sample was a 12 g isotopically en-
riched 160Gd single crystal (in fact, the same 99.99% enriched
crystal as was used in Ref. [46]; naturally occurring Gd is
highly neutron absorbing) aligned with the hh` plane horizon-
tal. Measurements were carried out at 5 K with incident en-
ergies Ei = 50 meV and 100 meV. Data were processed with
Mantid software [1]; see the Supplemental Materials [53] and
Ref. [54] for further details. The resulting full data set allows
one to directly see topological features in the spectrum. The
data were thoroughly analyzed to determine an accurate spin
exchange Hamiltonian: this is discussed in detail in a separate
paper [54] focusing on the Gd magnetic interactions. Here we
focus on the topological properties of the Gd magnon bands.

Data along high-symmetry directions are shown in Fig. 2
alongside the linear spin wave theory (LSWT) fit. As this
comparison demonstrates, the refined model closely repro-
duces the measured spectrum. Due to this agreement and the
high spin length (S = 7/2), LSWT is expected to provide a
good description of Gd.

From a topology perspective, there are two particularly
noteworthy features in the Gd scattering: a nodal line degen-
eracy at h = k = 1/3 extending along `, and a nodal plane
degeneracy at ` = 1/2. We will discuss each in turn.

The first feature in the data is a linear band crossing at K,
shown in Fig. 2. As shown in Fig. 3, it extends along `, mak-
ing it a nodal line. This band crossing shows an anisotropic
intensity pattern [Fig. 2 (e)-(h)], where the intensity follows
sinusoidal modulation winding around the Dirac cone, in-
verted above and below the crossing point. A similar inten-
sity winding was seen in CoTiO3 [33, 34], and is understood
to be a signature of the nodal line and nontrivial Berry phase
around (1/3, 1/3, `) [35, 36]. (This is similar to a signature
of Berry phase physics in graphene seen using polarization-
dependent angle-resolved photoemission spectroscopy [55].)
Unlike CoTiO3, the offset angle of the intensity winding is
zero to within error bars: no anisotropy or off-diagonal ex-
change shifts the intensity away from the (hh0) line.

To more firmly establish the topological nature of the nodal
line, we turn to linear spin-wave theory [3, 56] and a simpli-
fied J1 − J2 − J3 model that qualitatively captures the main
features of the full fitted model, including the band crossings,

H = J1

∑
〈i, j〉

Si · S j + J2

∑
〈〈i, j〉〉

Si · S j + J3

∑
〈〈〈i, j〉〉〉

Si · S j, (1)

where Jn represents nth nearest neighbor exchange. Jn < 0

0

10

20

 (m
eV

)

(a) =
data

(b) =
LSWT

M K
0

10

20

 (m
eV

)

(c) =

Gd, 5 K
M K

(d) =

0.2 0.3 0.4
( )

0.1

0.0

0.1

(
)

16.5 meV(e)

0.2 0.3 0.4
( )

20 meV

=

(f)

- / 0 /
 (angle around )

0.00

0.25

0.50

 (a
rb

. u
.)

(g)

16.5 meV
20 meV

0.0

0.2

0.4

0.6

 (arb.u.)

(h)

( )
( )

(e)

(f)

( / , / , ) linear crossing

Figure 2. Measured and fitted spin wave spectra of Gd. Panels (a)
and (c) show the measured Gd spectra along high-symmetry direc-
tions. Panels (b) and (d) show spin wave theory calculated spectra
using the best fit Hamiltonian [54]. The top row shows the scattering
at ` = 1, the second row at ` = 2. Note the linear band crossing
at K. Panels (e) and (f) show constant energy slices above and be-
low the band crossing, showing “intensity arcs”. Panel (g) shows the
intensity binned around the circles in (e) and (f), fitted to a sin func-
tion. (h) The “Dirac node” dispersion surface, with colored circles
indicating the slices in panels (e)-(f).

indicates ferromagnetic exchange. (For the values of the ex-
change couplings, see Ref. [54].) J1 and J3 couple the two
sublattices, whereas J2 couple only sites within the same sub-
lattice (within ab-planes). This model includes three of the
four largest magnitude exchange interactions that were deter-
mined in the full fit. (Since J4 has a lower coordination num-
ber than J1,2,3, it only produces a smaller `-dependent contri-
bution to the energy.) Details of these calculations are shown
in the Supplemental Material [53].

The HCP lattice is inversion symmetric, and the spin-wave
Hamiltonian has an effective time-reversal symmetry [2, 53].
Together, these symmetries guarantee that the Berry curvature
vanishes everywhere, and thus HCP Gd does not have non-
trivial Chern numbers or Weyl magnons. Nevertheless, the
same symmetries protect the magnon nodal lines, which are
pinned to Brillouin zone corners by threefold rotation sym-
metry about ĉ, C3z. The topology of the magnon nodal lines
can be classified in terms of the Berry phase about a closed
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contour C,

γm [C] =

∮
C

dk · Am (k) , (2)

where Am = i 〈um (k)|∇k|um (k)〉 is the Berry connection, and
|um (k)〉 ∼

(
∓ exp(iφk), 1

)T is the mth energy eigenstate of the
magnon Hamiltonian. If C is pierced once by a nodal line, it
is trivial if γm = 0 and non-trivial if γm = π. Direct evalua-
tion for Eq. (1) for Gd shows γm [C] = ±π for contours sur-
rounding the nodal lines at K and K′ [53], thus demonstrating
their topological nature. It is the nontrivial phase φk of the
wave function |um (k)〉 that generates the Berry phase and the
anisotropic intensity, which is proportional to 1±cos (φk) (plus
sign for upper band) and winds about K [53].

A second noteworthy feature is a nodal plane. As shown in
Fig. 3, the Dirac cone flattens and then inverts as ` increases
(plotting between ` = 1 and ` = 2—the cone at ` = 0 is not
fully visible due to kinematic constraints of the experiment).
In fact, every integer shift in ` brings an inversion in the Dirac
cone intensity, and every half-integer ` gives a degeneracy in
the modes at all h and k. This degeneracy, shown in Fig. 3(e)
and (f) where the Dirac cone is completely flattened, gives rise
to a nodal plane.

Above and below this nodal plane, there is a discontinu-
ous shift in the Dirac cone intensity. This is caused by the
phase φk discontinuously flipping by π upon passing through
the nodal plane. As we discuss in detail in the Supplemental
Material [53], this nodal plane arises in the HCP ferromagnet
from the combination of effective time-reversal and nonsym-
morphic twofold screw symmetry {C2z, (0, 0, 1/2)}, connect-
ing the two sublattices. Spin orientation plays no role in the
Heisenberg limit. Any magnetic Hamiltonian which main-
tains these symmetries will also have a symmetry-protected
nodal plane.

We can describe the nodal plane more formally by defin-
ing a Z2 topological invariant, which changes discontinuously
across the nodal plane. Such an invariant can either be defined
in terms of the Pfaffian of a transformed magnon Hamiltonian
[53], or in terms of wavefunction properties. Here we focus on
the latter. We define νm

k ≡ sgn 〈um (k) |σ1|um (k)〉, where σ1 is
the first Pauli spin matrix. If we choose a reference wavevec-
tor k and k′ ≡ k + (0, 0, δkz) the difference 1/2|νk − νk′ | counts
the number of times the nodal plane is crossed (and thus the
number of times the intensity inverts) modulo two.

Although the nodal plane is not expected to produce a topo-
logical surface state [31, 58], the nodal lines are. To investi-
gate this, we theoretically considered the simplest geometry
for surface modes: a slab of a finite number of triangular lat-
tice layers along ĉ as shown in Fig. 1. This was done for the
full fitted LSWT model (26 neighbor exchange terms) using
the SpinW software [59] by creating a supercell geometry with
and without periodic boundary conditions in the c direction
(the c termination was generated by creating a blank space at
the top of the physical layers, effectively breaking periodic-
ity). The result is shown in Fig. 4 for 20 Gd unit cells (40
triangular lattice layers). LSWT [Fig. 4(b)] shows the pres-
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Figure 3. Evolution of the Dirac cone at K = ( 1
3

1
3 `) as a function of

`. The white dashed lines are calculations using the fitted LSWT
Hamiltonian, while the background colormap shows experimental
neutron scattering data. The two columns show perpendicular cuts
through the K point. As ` goes from 1 to 2, the cone flattens and
inverts, such that the intensity at ` = 1 is opposite of ` = 2. The two
LSWT bands are degenerate at K throughout this evolution, yielding
a nodal line. Note the emergence of a nodal plane at ` = 1.5, where
the two magnon bands degenerate everywhere in the hk plane. To the
right are schematics of the Dirac cone, where intensity inverts after
crossing the nodal plane.

ence of a clear surface mode, emerging from the bulk modes
projected into the 2D surface Brillouin zone. Since inelastic
neutron scattering is not a surface probe we cannot resolve
the same mode in the data, but nevertheless find qualitative
agreement with the bulk modes [Fig. 4(a)].

It should be emphasized that neither of these
degeneracies—the nodal line at h = k = 1/3 and the
nodal plane at ` = 1/2—depend sensitively upon the details
of the magnetic exchange Hamiltonian. On the HCP lattice,
they appear with both the simplest nearest neighbor ferro-
magnetic exchange interaction, or with any number of further
neighbor exchanges—so long as they are all Heisenberg
exchanges and the ground state remains ferromagnetic,
preserving effective time-reversal symmetry (this was first
noted by Brinkman in 1967 [13] and the topological conse-
quences have been explored in Ref. [14]). Thus, although
the further neighbor exchange interactions are important for
understanding the wiggles in Gd’s magnon dispersion, they



4

0

5

10

15

20

25
 (m

eV
)

(a)  Gd, 5 K < <

( , ) ( , ) ( , ) ( , )
0

5

10

15

20

25

 (m
eV

) bulk modes

surface mode

(b) LSWT, 20 layer, C-axis termination
0

1

2

 (arb. u.)

Figure 4. Surface magnons in Gd. (a) In-plane high-symmetry cuts
of 5 K Gd scattering integrated from ` = 1 to ` = 2. (b) Linear spin
wave theory (LSWT) calculated modes for a 20-layer Gd slab using
the best fit Hamiltonian. Note that, because of the finite extent along
ĉ, ` is no longer a good quantum number, and the magnon modes
from each layer form a continuum between ` = 1 and ` = 2, such
that the magnon modes strongly resemble the integrated data in panel
(a). The c-axis termination surface magnon mode, shown in red, lies
outside this continuum at lower energies, and is thus distinct from
bulk magnons.

are not important for understanding the topology.
These experiments and calculations were carried out on Gd,

which has near-perfect isotropic Heisenberg exchange. How-
ever, because of the intrinsic connection between symmetry,
degeneracy, and topology [13, 14, 60–62] similar topological
features can be expected in more anisotropic ferromagnetic
HCP metals such as Tb [63, 64], Dy [63, 65], and hexagonal
Co [66]. (However, for Co one must consider the effects of
itinerancy and continuum scattering likely eliminate the ob-
servability of Dirac magnons in HCP Co [67–69].)

From a topological magnon perspective, it is particularly
interesting to consider the addition of interactions breaking
the symmetries protecting the nodal degeneracies. One choice
which can break the effective time-reversal symmetry is the
Dzyaloshinskii-Moriya (DM) exchange interaction [70]

H =
∑

i j

D · (Si × Sj), (3)

where D is the DM vector. Like on the honeycomb lattice
[12], it is symmetry-allowed on the HCP lattice second nearest
neighbor bonds.

It is easily shown on the level of LSWT that easy axis or
easy plane single-ion anisotropy preserves the extended de-
generacies as the effective time reversal symmetry, originat-
ing from spin-space symmetries, is preserved, whereas DM
exchange with out-of-plane D vector lifts the K-point and
nodal plane degeneracy while leaving a grid of ` = 1/2

nodal lines, giving rise to potential chiral surface magnon
modes [54]. However, the true situation is more complicated
for anisotropic rare earth HCP ferromagnets such as Tb or
Dy. In such cases, the strong spin-orbit coupling may induce
other symmetry-allowed off-diagonal exchange, which would
in turn affect the surface modes. This means that that induc-
ing chiral surface modes in these materials may prove a chal-
lenge. Full characterization of other HCP ferromagnets spin
exchange Hamiltonian is necessary to determine the possibil-
ity of directional surface modes.

In conclusion, we have shown that the magnetic excita-
tion spectrum of elemental gadolinium contains nodal line and
nodal plane degeneracies, which are directly visible in the ex-
perimental data. The nodal line around K shows anisotropic
intensity characteristic of nontrivial topology, and Berry phase
calculations confirm this to be so. We also identify a nodal
plane in the data, derive the symmetry requirements for such
a feature, and propose an invariant describing its topology.
These results have implications not just for Gd, but for all
HCP ferromagnets, as the topological features are generic to
the lattice. Other consequences of the HCP topology may
exist—particularly concerning the nodal plane—but these are
left for future study.
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SUPPLEMENTAL INFORMATION FOR DIRAC MAGNONS,
NODAL LINES, AND NODAL PLANE IN ELEMENTAL

GADOLINIUM

This supplement contains I. parameters for the experiment,
II. a discussion of symmetry properties and topological invari-
ants for the general hexagonal closed packed (HCP) ferromag-
net spin-wave problem, and III. an explicit linear spin-wave
theory (LSWT) treatment of the spectrum and topology of the
J1 − J2 − J3 − J4 model.

I. EXPERIMENT PARAMETERS

For the SEQUOIA measurement, we ran the T0 chopper at
90 Hz, Fermi 1 chopper at 120 Hz, Fermi 2 chopper at 360 Hz
for Ei = 50 meV. For Ei = 100 meV we ran the same con-
figuration but Fermi 2 chopper at 540 Hz. The sample was
rotated in one degree steps to measure the inelastic spectra,
and the data were reduced and symmetrized [1] to fill out the
full Brillouin zone.

II. SYMMETRY PROPERTIES AND TOPOLOGY OF THE
NODAL PLANE

The nodal plane lives on the hexagonal boundaries of the
Brillouin zone. Here we show that it is enforced by effective
time reversal and nonsymmorphic symmetries.

Gadolinium crystallizes into a HCP structure with space
group #194 or P63/mmc. We place an origin midway between
triangular layers on a line extending perpendicular to the trian-
gular planes at the centroid of one of the triangles. This group
has 24 generators besides translations. Some of the nontrivial
elements of this group are as follows:

1. Threefold rotation about ẑ: C3z and C2
3z,

2. A screw composed of C2z and a translation along ẑ
through (0, 0, 1/2),

3. Twofold rotation axes along (1, 0), (0, 1) and (1, 1)
through the origin,

4. Twofold rotation axes in-plane 30 degrees rotated about
ẑ from those above followed by a (0, 0, 1/2) translation,

5. Sixfold screw axis with (0, 0, 1/2) translation,

6. Inversion about the origin,

and compositions of these.
For our purposes, an important observation is that the group

is nonsymmorphic with a twofold screw axis that we denote
{C2z, (0, 0, 1/2)}. There is also a glide symmetry that can be
obtained by composing the screw and the inversion symme-
tries. If a general lattice position is denoted ma1 + na2 + la3
and a general wavevector by k1b1 + k2b2 + k3b3, the screw
symmetry acts on the sites as (m, n, l)→ (−m,−n, l + 1/2) and

the sublattice label swaps. Thus applying the screw twice is
equivalent to a translation through one primitive vector out of
plane. It follows that the action of the screw on a magnon state
is

U({C2z, (0, 0, 1/2)})|k1, k2, k3; 1〉 → | − k1,−k2, k3; 2〉 (S1)

U({C2z, (0, 0, 1/2)})|k1, k2, k3; 2〉 → e2πik3 | − k1,−k2, k3; 1〉,
(S2)

where we take a (periodic) Fourier transform convention with
H(k) = H(k + G).

Importantly, the magnon Hamiltonian also satisfies an ef-
fective time reversal symmetry. Physical time reversal is bro-
ken by the ferromagnetic order, but the fact that the magnetic
Hamiltonian has only rotationally invariant couplings tells us
that the system is left invariant under the application of time
reversal followed by a rotation of the moments through axes
perpendicular to the moments, which can easily be verified us-
ing the notation of Ref. [2]. This spin-space symmetry is anti-
unitary and therefore acts like an effective time reversal sym-
metry T ∗. It is inherited by the magnon Hamiltonian where it
acts as k→ −k and complex conjugation.

The degeneracy on the hexagonal Brillouin zone boundary
is enforced by the product of time reversal and the screw sym-
metries: T ∗U({C2z, (0, 0, 1/2)}). In particular, the square of
this symmetry element is exp(−2πik3) = −1 on the upper and
lower Brillouin zone faces where k3 = ±1/2 implying that
there is a Kramers degeneracy in the two-band magnon model
on this surface.

We may look at this from the perspective of a general two-
band Hamiltonian

H(k) =

(
A(k) B(k)
B∗(k) A′(k)

)
. (S3)

Time reversal symmetry forces A(k) and A′(k) to be even in
momentum and B(k) = B∗(−k). It is now convenient to switch
from k1, k2, k3 to Cartesian kx, ky, kz. The twofold screw sym-
metry acts as G(kz)H(−kx,−ky, kz)G†(kz) = H(kx, ky, kz) or(

0 1
e−ickz 0

) (
A(−kx,−ky, kz) B(−kx,−ky, kz)
B∗(−kx,−ky, kz) A′(−kx,−ky, kz)

) (
0 eickz

1 0

)
= H(kx, ky, kz) (S4)

where G2(kz) = exp(−ickz), which implies that

A′(−kx,−ky, kz) = A(kx, ky, kz). (S5)

On the zone boundary kz = ±π, the constraint from time re-
versal that A and A′ are even in momentum now implies that
A′(kx, ky) = A(kx, ky). Now consider B(k). The screw symme-
try implies that

eickz B∗(−kx,−ky, kz) = B(kx, ky, kz) (S6)

and, with time reversal B(k) = B∗(−k) at kz = ±π we find that
B must vanish. We have therefore directly shown the presence
of the nodal plane in the two band model.
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Figure S1. Calculated intensity of the upper (higher energy) magnon
mode across the Brillouin zone below (a) and above (b) the ` = 1/2
nodal plane for the HCP ferromagnet. When the nodal plane is
passed, the intensity pattern inverts.

It is worth pointing out that the symmetry is high enough to
force B(kx, ky,±π) to vanish whether time reversal is present or
not. We consider only the two-fold screw symmetry and inver-
sion. Inversion has the effect of taking k to −k and swapping
the sublattices so B(kx, ky, kz) = B∗(−kx,−ky,−kz). Recalling
the constraint from the screw symmetry eickz B∗(−kx,−ky, kz) =

B(kx, ky, kz) we obtain, at kz = ±π, that B must vanish. How-
ever in this case A is not constrained to equal A′ through these
symmetries alone so the time reversal symmetry is essential
to the nodal plane in this system.

Since there is both inversion and time reversal in the
Heisenberg model, the topological charge of the nodal planes
is zero as it is for the nodal lines. Another way of putting
this is that there are no sources of Berry flux (as it is zero by
symmetry).

Although the topological charge of the nodal planes is zero,
one may ask whether there is an invariant for the nodal planes
analogous to the π winding of the Berry phase around nodal
lines. We focus on the nontrivial phase of the wavefunction
φk in an eigenstate of the Hamiltonian at k:

ψk− =

(
− exp(iφk)

1

)
ψk+ =

(
exp(iφk)

1

)
(S7)

This phase has observable consequences as the intensity in
each band is proportional to 1 ± cos(φk) (plus sign for upper
band). Around the nodal lines, the phase winds and this is re-
sponsible for the highly anisotropic intensity in their vicinity.
Everywhere inside the zone the phase is completely smooth.
However, the presence of the nodal plane has an unmistakable
effect on the phase: it flips by π discontinuously on passing
through the nodal plane in the kz direction. This results in a
discontinuous change in the intensities when passing through
the nodal plane, as shown in Fig. S1 (also see Fig. 3 in the
main text). The appropriate topological invariant picks up this
phase flip.

How can we see it at the level of the Hamiltonian? Now
take, for convenience, the Fourier transform convention in-
cluding basis vectors (i.e.

∑
i Fia exp(ik · (Ri + ra)) where

ra is a basis vector and Ri a primitive lattice vector). The

Figure S2. HCP crystal structure of Gd, with layers of triangular
lattices. The two sublattices are labeled A, B. Both the crystallo-
graphic (abc) and Cartesian (xyz) coordinate systems are indicated,
along with in-plane lattice vectors a1/2 and basis vector rB. The ver-
tical lattice vector, a3, points out of the depicted plane.

phase φk originates from the off-diagonal components and
these have a kz dependence that looks like cos(kz). Within
the zone, this merely modulates the size of the off-diagonal
components without changing the phase. This further im-
plies that the winding of the Berry phase within the zone
along kz is trivial. However on passing through the zone
boundary along kz, cos(kz) changes sign which is equivalent
to φk → φk + π. One way of characterizing this phase change
is to remove the diagonal components of the Hamiltonian as
they merely shift the bands. This done, the Hamiltonian is
H(k) = f1(k)σ1 + f2(k)σ2 and a unitary transformation brings
this into the form

H̃(k) =

(
0 −iq
iq 0

)
. (S8)

Define µk ≡ sgn Im
[
pfH̃(k)

]
where pf denotes the Pfaffian.

This number is smooth in the zone and changes discontinu-
ously across the nodal plane. Thus, if we choose a reference
wavevector k and k′ ≡ k+(0, 0, δkz) the difference 1/2|µk−µk′ |

counts the number of times the nodal plane is crossed mod-
ulo two. If the protecting time reversal and screw symmetry
is broken, the phase will tend to vary smoothly along suit-
ably chosen paths in momentum space. If the symmetry is in
place, the invariant is a robust diagnostic of the presence of
the nodal plane regardless of the nature of the magnetic inter-
actions. Another way of formulating an invariant for this sys-
tem is through the quantity νk ≡ sgn 〈ψk±|σ1|ψk±〉 and associ-
ated invariant 1/2|νk − νk′ | as the matrix element is essentially
cos φk. This wave-function-based invariant is also shown in
the main text.

III. SPIN-WAVE THEORY OF THE J1 − J2 − J3 − J4 MODEL

Here we provide analytical LSWT results for the simplified
model. Although we limited the discussion in the main text to
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a J1 − J2 − J3 model, it is straightforward to include also J4
in the explicit LSWT calculations, and we will do so here by
considering

H =

4∑
n=1

∑
i, j

Ji, j
n Si · S j, (S9)

where Ji, j
n = Jn if sites i, j are nth nearest neighbors, and

Ji, j
n = 0 otherwise. Similarly to Ref. [3], we describe Gd as

a two-sublattice ferromagnet consisting of ABAB-stacked tri-
angular lattice layers, as shown in Fig. S2. Denoting the in-
and out-of-plane lattice constants by a and c, respectively, the
lattice (ai, i = 1, 2, 3) and basis vectors (rA/B) can be chosen
(expressed in the (xyz) coordinate system indicated in Fig. S2)

a1 = (a, 0, 0) , a2 =

−a
2
,

a
√

3
2

, 0
 , a3 = (0, 0, c) ,

(S10)

rA = (0, 0, 0) , rB =

(
−a
2
,

a

2
√

3
,

c
2

)
. (S11)

The resulting reciprocal lattice vectors are

b1 =
2π
a

(
1,

1
√

3
, 0

)
, b2 =

4π

a
√

3
(0, 1, 0) , (S12)

b3 =
2π
c

(0, 0, 1) . (S13)

To lowest order in the Holstein-Primakoff expansion,

S +
i =
√

2S ai, S −i =
√

2S a†i , S z
i = S − a†i ai, (S14)

for i ∈ A, and with ai → bi for i ∈ B. After substitution into
Eq. (S9), keeping terms quadratic in creation and annihila-
tion operators, and Fourier transforming we obtain the LSWT
Hamiltonian

H(2) =
∑

k

{
Cd (k)

(
a†kak + b†kbk

)
+Co (k) a†kbk + Co (−k) b†kak

}
, (S15)

where

Cd (k) = 12J2S (γ2 (k) − 1) + 4J4S (γ4 (k) − 1)

− 12J1S − 12J3S , (S16)
Co (k) = 12S

[
J1γ1 (k) + J3γ3 (k)

]
, (S17)

γn (k) = 1
zn

∑
~δn

e−ik·~δn , zn is the number of nth nearest neigh-

bors, and ~δn are the nth nearest neighbor vectors. Explicitly,
the neighbor vectors are given by

~δ1 ∈
{
rηB, a1 + rηB,−a2 + rηB,

rηB − a3, a1 + rηB − a3,−a2 + rηB − a3

}
, (S18)

~δ2 ∈ ± {a1, a2, a1 + a2} , (S19)

~δ3 ∈
{
a1 + a2 + rηB, a1 − a2 + rηB,−a1 − a2 + rηB, (S20)

a1 + a2 + rηB − a3, a1 − a2 + rηB − a3,−a1 − a2 + rηB − a3

}
,

~δ4 ∈ ±a3, (S21)

where rηB = ηR, and η = 1 (η = 0) for the Fourier con-
vention including basis vectors (the periodic Fourier conven-
tion). Note that HCP lattice sites are not centers of inversion,
and that the ~δ1/3 vectors connect sublattices in the direction
A → B. (For B → A, simply use ~δ′1/3 = −~δ1/3.) With these
vectors we obtain

γ2 (k) =
1
3

cos(akx) + 2 cos
(

akx

2

)
cos

 √3aky

2

 , (S22)

γ4 (k) = cos (ckz) , (S23)

both of which are manifestly real-valued, and for η = 1

γ
η=1
1 =

1
6

(
1 + eickz

) (
e

iakx
2 + e

1
2 ia

(
2kx+

√
3ky

)
+ e

1
2 i
√

3aky

)
× e−

1
6 i

(
3ckz+3akx+2

√
3aky

)
, (S24)

γ
η=1
3 =

1
6

(
1 + eickz

) (
e2iakx + eia

(
kx+
√

3ky

)
+ 1

)
× e−

1
6 i

(
3ckz+6akx+2

√
3aky

)
. (S25)

which are generally complex-valued. In the periodic Fourier
convention we instead find

γ
η=0
1 =

1
6

(
1 + eickz

) (
1 + e−iakx + e

1
2 ia

(√
3ky−kx

))
, (S26)

γ
η=0
3 =

1
6

(
1 + eickz

) (
eiakx + eia

√
3ky + eia

(
2kx+

√
3ky

))
× e−

1
2 ia

(
3kx+

√
3ky

)
. (S27)

These functions all satisfy γn (−k) = γ?n (k), where ? denotes
complex conjugate. While γ2,4 (k) are invariant under both C3
and C6 rotations about k̂z, γ1,3 (k) [and thus also h (k)] has C3
symmetry but not C6.

Since there are no anomalous terms in the magnon Hamil-
tonian H(2), it can be diagonalized unitarily. We write

H(2) = const +
∑

k

X†kh (k) Xk, (S28)

where

Xk = (ak, bk)T , h (k) =

(
Cd (k) Co (k)
C?

o (k) Cd (k)

)
, (S29)

and diagonalize h(k). (We note that while the form of opera-
tors such as h(k) depends on the Fourier convention, observ-
ables do not.) This yields eigenvalues

ε1,2 = −2S (6J1 + 6J2 + 6J3 + 2J4) + 12J2S γ2 (k)

+ 4J4S γ4 (k) ∓ 12S |J1γ1 (k) + J3γ3 (k)| , (S30)

with − (+) for ε1 (ε2), and eigenvectors

ψ1/2 =
1
√

2
(∓ f (k) ,+1)T , (S31)

where

f (k) =
J1γ1 (k) + J3γ3 (k)
|J1γ1 (k) + J3γ3 (k)|

≡
g (k)
|g (k) |

, (S32)
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i.e. the states have the same structure as in Eq. (S7). The gap
2∆ε(k) = ε2(k)−ε1(k) = 24S |J1γ1 (k) + J3γ3 (k)| = 24S |g(k)|
only depends on the inter-sublattice interactions J1,3. Non-
accidental degeneracies occur when γ1(k) = γ3 (k) = 0.
The structure of Eqs. (S24), (S25) (or Eqs. (S26), (S27)) is
such that this occurs either when the first factor vanishes,(
1 + eickz

)
= 0, or when the second factors vanish. At kz =

±π/c (` = ±1/2),
(
1 + eickz

)
= 0∀kx, ky, which produces

the nodal planes. The second factors vanish at the K, K′

points (which are related by a C6 rotation), and along paths
K → H → K, K′ → H′ → K′ at finite kz, giving rise to the
nodal lines.

In Section II we argued that the nodal plane is protected by a
combination of effective time reversal and screw symmetries.
The time reversal symmetry can be seen explicitly in the J1 −

J4 model from the identity γn (−k) = γ?n (k) and the fact that
the linear spin wave Hamiltonian depends exclusively on these
functions. The screw symmetry places constraints Eqs. (S5)
and (S6) on the Hamiltonian and it is straightforward to check
that both are satisfied by Cd(k) and C0(k) respectively. The
latter is true because kz appears only through (1 + eickz ), in the
η = 0 convention, which equals eickz (1 + e−ickz ).

As mentioned in the main text, the nodal lines can be clas-
sified in terms of a closed-path Berry phase,

γm [C] =

∮
C

dk · Am (k) , (S33)

where C is a closed contour,A is the Berry connection,

Am = i 〈um (k)|∇k|um (k)〉 , (S34)

and |um (k)〉 is an eigenstate of h(k). Using Eq. (S31),

A = Am =
i
2

f ?(k)∇k f (k), ∀m, (S35)

from which it is clear that the topological properties are re-
lated to the intersublattice couplings J1,3, and independent of
J2,4. (Thus the J1, J2, J3 model considered in the main text has
identical topology to the model here.) To obtain γm, it is con-
venient to shift the k-space origin to e.g. K, using coordinates
(k′x, k

′
y, k
′
z) and then introduce cylindrical coordinates,

k′x = ρ cosϕ, k′y = ρ sinϕ, k′z = kz. (S36)

such that ρ describes the radius of a circular loop about the
nodal line, and ϕ the angle along the loop. Then direct evalu-
ation of Eq. (S35) (here performed using Mathematica at var-
ious kz values) yields γ = ±π at K and K′, see Table I.

As noted in the main text, the nodal line gives rise to a clear
topological surface mode. The degree to which it separates
from the bulk modes does depend on the specific exchanges
included in the Hamiltonian. This is illustrated by the results
for a pure J1 model and the J1−J2−J3 model shown in Fig. S3,
using the same slab geometry supercell as for the full fitted
model.

Table I. Berry phase calculated at loops surrounding different lines
in momentum space. The leftmost column indicates a line segment,
the k-space coordinates of which are given in two coordinate systems
(columns two and three).

Point (kx, ky, kz) (hk`) γ1 = γ2

Γ − A − Γ (0, 0, kz) (0, 0, `) 0
K − H − K

(
2π
3α ,

2π
√

3α
, kz

) (
1
3 ,

1
3 , `

)
π

K − H − K
(
− 4π

3α , 0, kz

) (
− 2

3 ,
1
3 , `

)
π

K − H − K
(

2π
3α ,−

2π
√

3α
, kz

) (
1
3 ,−

2
3 , `

)
π

K′ − H′ − K′
(
− 2π

3α ,−
2π
√

3α
, kz

) (
− 1

3 ,−
1
3 , `

)
−π

K′ − H′ − K′
(

4π
3α , 0, kz

) (
2
3 ,−

1
3 , `

)
−π

K′ − H′ − K′
(
− 2π

3α ,
2π
√

3α
, kz

) (
− 1

3 ,
2
3 , `

)
−π
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Figure S3. Surface magnons for a simplified Linear spin wave theory
(LSWT) models, showing the topological band crossings and sur-
face modes are independent of the particular model details. (a) Sur-
face magnon calculated for a 20-layer Gd slab using the three nearest
neighbor fitted exchange interactions. (b) Surface magnon calculated
for the nearest neighbor exchange only. Note that in both cases, the
bulk modes linearly cross at at K, while the surface magnon mode
lies outside this continuum, indicating that this surface magnon is a
property of the lattice symmetry rather than the details of the Hamil-
tonian.
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