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We introduce a method for reconstructing macroscopic models of one-dimensional stochastic pro-
cesses with long-range correlations from sparsely sampled time series by combining fractional calculus
and discrete-time Langevin equations. The method is illustrated for the ARFIMA(1,d,0) process and
a nonlinear auto-regressive toy model with multiplicative noise. We reconstruct a model for daily
mean temperature data recorded at Potsdam (Germany) and use it to predict the first frost date
by computing the mean first passage time of the reconstructed process and the 0 °C temperature
line, illustrating the potential of long-memory models for predictions in the subseasonal-to-seasonal
range.

Introduction– Predicting the dynamics of complex sys-
tems with models inferred from data has been a long-
standing endeavor of science. If such models are stochas-
tic they can capture quite naturally erratic fluctuations
in the observed data. We will discuss the large body of
literature on the reconstruction of Markov processes be-
low. However, in many real world data sets, violations of
Markovianity by long-range temporal correlations have
been observed. For a stationary process with light-tailed
increment distribution, the Hurst exponent H measures
such temporal long-range correlations [1]. For H > 0.5,
the process exhibits persistent long-range correlations.
For H = 0.5, the process is only short-range correlated.
Models for long-range correlations emerged after Hurst’s
study of the reservoir capacity for the river Nile [2]. Later
on, long-range correlations were found in data sets of
temperature anomalies [3, 4], river runoffs [5], extreme
events return intervals [6], biological systems [7, 8], and
economics [9]. The earliest models generating long-range
correlations are Fractional Brownian Motion (FBM) [10]
in continuous time and ARFIMA processes [11, 12] in
discrete time. The ARFIMA(1,d,0) process is defined as:

yt+1 = φ yt + (1−B)−d ξt , (1)

in which the positive real number φ is the autoregres-
sive parameter, B is the backshift operator and ξt Gaus-
sian white noise. It has the asymptotic Hurst exponent
H = 0.5 + d. Figure 1 shows conditional averages of yt,
E(yt|y0 ∈ [2.9995, 3.0005]) as a function of t for various
values of the memory parameter d, where the condition
requires that y0 ∈ [2.9995, 3.0005]. The short-range limit
of this example, d = 0, H = 1/2, is an AR(1) process and
has an autocorrelation time of τ = −1/ lnφ ≈ 2.3. The
much slower relaxation of this conditional mean to the
sample mean of the process (which is 0) demonstrates
that memory in the noise can lead to enhanced pre-
dictability of the process. Therefore, it is beneficial to
reconstruct such models from data, if there are clear in-
dications for temporal long-range correlations, instead of
ignoring them.
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FIG. 1. Conditional averages of ARFIMA(1,d,0) processes
with φ = 0.65 and various parameter values d relax to zero on
different time scales. For larger d, the memory of the noise is
stronger, resulting in a slower relaxation towards the mean of
the process. This indicates that for processes with long-range
correlations (d > 0), prediction horizons are longer than for
processes without long-range correlations. All averages are
conditioned on y0 ∈ [2.9995, 3.0005]. The memory length for
processes with d > 0 is M = 250, the sample size is N = 104.
Error bars indicate standard deviations.

Today, there are many approaches to reconstructing
stochastic models from data. Examples include Gen-
eralized Langevin equations [13, 14], Fractional Klein-
Kramers equations [15], underdamped Langevin equa-
tions [16], Fokker-Planck equations [17–20], and discrete-
time ARFIMA and NARMA models [21, 22]. While all
of these approaches deal with either low sampling rates,
long-range correlated data, nonlinear drift terms, mul-
tiplicative noise or single-trajectory data, none of them
covers all of these complications for model reconstruc-
tion at once. However, in many applications e.g. geo-
physical time series recordings, neither trajectory ensem-
bles nor highly sampled data sets are available, when the
time series exhibit both non-trivial short-range and long-
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range behavior. Király and Jánosi propose a method for
the model reconstruction of daily temperature anomalies
with long-range correlated input noise in an ad hoc and
approximate way. [23] Here, we extend this pioneering
work to a generally valid framework for the reconstruc-
tion of discrete-time models and illustrate the predicitive
power of long-memory models.

In the remainder of this letter, we describe our method
and illustrate it by applying it to the ARFIMA(1,d,0)
process, to a non-trivial toy model, and to daily mean
temperature data. Finally, we use a reconstructed
stochastic model of daily mean temperature anomalies
to predict the first frost date in Potsdam, Germany, and
assess the performance of the prediction.

Method– We exploit the scale freedom of long-range
correlations and decompose the long-range and short-
range behavior of stochastic time series. Firstly, we
remove long-range correlations using the Grünwald-
Letnikov fractional derivative resulting in a process which
is approximately Markovian. Then, we reconstruct the
short-range dynamics with a dicrete-time Langevin equa-
tion. Finally, we numerically create sample paths with
the inferred Langevin equation and introduce long-range
temporal correlations again employing the Grünwald-
Letnikov fractional integral also used in ARFIMA pro-
cesses.

We start with a one-dimensional, stationary time se-
ries {yt}1≤t≤N of length N , which exhibits an asymp-
totically constant Hurst exponent H > 0.5. The nu-
merical value of H may be determined by Detrended
Fluctuation Analysis (DFA) [24, 25] or other methods,
among them R/S statistics [2], and Wavelet transforms
[26, 27]. We use the first-order finite difference approxi-
mation of the Grünwald-Letnikov fractional derivative of
order d = H − 1

2 with a finite difference of ∆t = 1.0,
defined as [28]

t−MD
d
t yt =

M∑
j=0

ω
(d)
j yt−j ; ω

(d)
j = (−1)j

(
d

j

)
. (2)

Here, M defines the memory length of the fractional
operation which for ARFIMA or FBM is infinite. For

numerical ease we use the recurrence relation w
(d)
j =

(1 − d+1
j )w

(d)
j−1 with w

(d)
0 = 1. Also, for a given time

series, choosing an appropriate finite M is a trade-off
between the loss of M data points and the time scale
of the long-range correlations to be removed. Choos-
ing M = N/2 would be optimal, but increased statistical
fluctuations in the subsequent analysis advice smaller M .
Removal of long-range correlations from time series using
fractional calculus has been applied e.g. in [29, 30].

The values of the resulting fractionally differenced time
series are denoted by {t−MDd

t yt} = {xt}, which we
consider Markovian. We now model the time series

{xt}1<t<N−M with a discrete-time Langevin equation

xt+1 = f(xt) + g(xt) ξt . (3)

Reminiscent of the continuous-time Langevin equation
we refer to f(xt) as drift and to g(xt) as diffusion. Here,
both f(xt) and g(xt) are allowed to be nonlinear re-
sulting in a nonlinear restoring force and multiplicative
noise, ξt denotes Gaussian white noise with 〈ξt〉 = 0 and
〈ξtξt′〉 = δtt′ . We assume g(xt) ≥ 0 for xt ∈ (−∞,∞).
The subsequent scheme is inspired by the reconstruction
scheme for time-discrete NARMA models [21, 31]. At
first, we make an ansatz Φ(xt;φ), φ = (φ1, φ2, ...) for the
drift f(xt). The functional form of Φ requires an edu-
cated guess upon inspection of the data in the (xt+1, xt)
plane. Demanding stability of the process requires f(xt)
to monotonically decrease in xt for xt → ±∞. We then
find the optimal parameters φ̂ by a least-squares fit, i.e.

φ̂ = arg min
{φ}

N−1∑
t=1

(xt+1 − Φ(xt;φ))2 = arg min
{φ}

N−1∑
t=1

Rt(φ)
2
.

(4)

For a drift function Φ(xt, φ̂) which resembles f(xt),
the averaged squared residual amounts to 〈R2

t 〉 =
g(xt)

2〈ξ2t 〉 = g(xt)
2, because of assumptions about the

noise. Hence, we make an ansatz Θ(xt; θ), θ = (θ1, θ2, ...)
for the squared residuals. Again, an educated guess
is needed for its functional form. Performing a least-
squares fit yields the optimal parameters for approximat-
ing g(xt)

2.
With the acquired parameters, we can generate tra-

jectories employing the following discrete-time Langevin
equation:

xt+1 = Φ(xt, φ̂) +

√
Θ(xt, θ̂) ξt . (5)

Here, ξt is Gaussian white noise with zero mean and vari-
ance one. By construction, time series generated using
Eq. 5 are Markovian and should have similar stochastic
properties as the fractionally differenced time series {xt}.

Finally, we fractionally integrate the model time se-
ries, adding long-range correlations to the model data.
For this purpose, we employ the first-order finite differ-
ence approximation of the Grünwald-Letnikov fractional
integral which is obtained by setting d → −d in Eq. 2
and reads:

t−MI
d
t xt =

M∑
j=0

(−1)j
(
−d
j

)
xt−j . (6)

Our approach neglects measurement noise. Since we are
interested in reconstructing a macroscopic model possess-
ing the same statistical properties as the original time
series, we consider potential measurement noise as an in-
distinguishable part of the process. Choosing appropri-
ate functions Φ and Θ is crucial for obtaining a suitable
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(a) Drift of bimodal toy model (b) Diffusion of bimodal toy
model

FIG. 2. Parameter inference for toy model defined by Eq. 7.
Left panel 2(a) shows the drift inference of the model, right
panel 2(b) shows the diffusion inference of the model. Red
dots are the N = 106 data points. Blue crosses show average
values for 25 bins of equal width, only shown for illustration.
Orange curves show the results of least-squares fits for poly-
nomials of order three, and four, respectively. Green dashed
curves show input drift and input diffusion, respectively. Or-
ange and green curves are in perfect agreement.

model. Therefore, we advise testing various functions
and base the selection both on goodness of fit as well as
comparisons of model data and original data.

ARFIMA(1,d,0) process and the discrete-time
Langevin equation– We demonstrate the two parts of
our method with the ARFIMA(1,d,0) process and a toy
model defined by a non-linear discrete-time Langevin
equation. From the definition of the ARFIMA(1,d,0)
process yt (cf. Eq. 1), it is clear that by applying the
finite difference fractional derivative (cf. Eq. 2) we
obtain the AR(1) process:

xt+1 = φxt + ξt , xt = (1−B)d yt = lim
M→∞

t−MD
d
t yt .

Due to linearity, the auto-regressive parameter φ is the
same as in the ARFIMA(1,d,0) model. Hence, inference
of φ from the fractionally differenced process and subse-
quent fractional integration of the inferred process yields
the original process here.

The following toy model process possesses a bimodal
distribution and illustrates solely the second part of our
method for nonlinear functions f(xt) and g(xt):

xt+1 = −0.04x3t + 1.8xt + (0.01x2t + 0.5) ξt , (7)

with ξt as before. We make polynomial ansatzes of order
three and four for the drift Φ(xt) and diffusion Θ(xt),
respectively. Figure 2 displays model data as well as the
perfect agreement of input drift and diffusion functions
and their reconstructions. The reconstruction works also
with a fifth order polynomial for Φ(xt) and a sixth order
polynomial for Θ(xt).
Daily Temperature Data and First Frost Prediction–

We apply our method to daily mean 2m-temperature
data of the Potsdam Telegrafenberg weather station and
predict the first frost date in late autumn using the
first passage time of the reconstructed process with the

101 102 103 104

Segment Length
10−1

100

101

102

103

Fl
uc

tu
ati

on
 F

un
cti

on

H = 0.5
Differenced Potsdam data
Model data, H = 0.67
Potsdam data, H = 0.65

FIG. 3. Detrended Fluctuation Analysis (DFA-3) of daily
mean temperature anomalies (green triangles), fractionally
differenced daily mean temperature anomalies (blue crosses)
and model data (orange dots). Offset for improved visibil-
ity. The asymptotic slope of the fluctuation functions H of
the daily mean temperature anomalies and the model data
coincide almost perfectly. The slope of the fractionally differ-
enced daily temperature anomalies approaches the H = 0.5
line, indicating the absence of long-range correlations.

zero temperature boundary. The data is provided by
the European Climate Assessment & Dataset project
team (https://www.ecad.eu/ ) [32]. The Potsdam tem-
perature data set consists of an uninterrupted time se-
ries starting January 1st 1893 and is therefore apt for
our analysis. Neglecting the daily temperature cycle,
we consider the temperature data set as a time series
of a discrete-time stochastic process with two additional
trends, namely seasonal cycle (also called climatology)
and climate change. We approximate the seasonal cy-
cle by fitting a second-order Fourier series to the data,
adding a quadratic function in time to account for the
nonstationarity of the temperature time series due to
climate change. The resulting stationary time series
referred to as temperature anomalies is approximately
Gaussian [33, Fig.2, p.9246]. Here, we use DFA-3 to
determine the Hurst exponent resulting in H = 0.65
(cf. Figure 3).

Following the recipe described above, we fractionally
differentiate the temperature anomalies with d = H−0.5
and a memory length of three years (M = 1095). Choos-
ing longer memory ranges does not improve the model.
For the drift and diffusion terms, we make a polyno-
mial ansatz of order three and order four, respectively.
Figure 4 displays the estimated drift and diffusion func-
tions for the fractionally differenced Potsdam Telegrafen-
berg daily mean temperature anomalies. Király and
Jánosi also report nonlinearities for drift and diffusion
of temperature anomalies for an aggregate of tempera-
ture time series of 20 Hungarian weather stations. [23,
Fig.3, p.4] Their data shows more pronounced nonlineari-
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(a) Drift estimation (b) Diffusion estimation

FIG. 4. Estimation of drift (cf. panel 4(a)) and diffusion
(cf. panel 4(b)) of the discrete-time Langevin equation for
fractionally differenced daily mean temperature anomalies of
the Potsdam Telegrafenberg weather station. Red dots are
the fractionally differenced anomalies (see panel 4(a)), and
their squared residuals (cf. Eq. 4, panel 4(b)). The blue
crosses are bin averages of the red dots, displayed for illustra-
tion only. The green curves are results of least-squares fits of
polynomials of order three for the drift and order four for the
diffusion. The orange curves are results of least-square fits of
model data (100 samples of the length of the Potsdam data)
generated with Eq. 5 and obtained parameters of the green
curves. There are small deviations of the diffusion for large
negative anomalies between the Potsdam data and the modal
data due to the numerical stability constraint.

ties for drift and diffusion than the Potsdam temperature
anomalies because of more data points for large anoma-
lies where nonlinearities are more dominant.

To ensure numerical stability of the discrete-time
Langevin equation defined by the estimated drift and dif-
fusion functions, we set Θ(xt > xmax) = Θ(xmax) and
Θ(xt < xmin) = Θ(xmin). We then fractionally integrate
a discrete-time Langevin trajectory generated with the
drift and diffusion parameters obtained. Figure 5 dis-
plays the cumulative histograms, autocorrelation func-
tions and power spectral densities of the temperature
anomalies and model trajectories (see Figure 3 for the
Hurst parameter estimation). They are in very good
agreement.

The reconstructed process may serve for making pre-
dictions. We predict the first frost date for the Pots-
dam Telegrafenberg weather station by computing the
first passage time distribution of generated process tra-
jectories and the zero temperature line for a sample size
of thirty years. We choose the 31st of October as the
forecast start date. For each sample year, we cut the
Potsdam daily mean temperature time series at the 31st
of October, resulting in a time series from January 1st
1893 to the 31st of October of the sample year. After
removal of the seasonal cycle, we infer model parame-
ters with our method. Using the reconstructed model,
we generate 25 × 103 trajectories using Eq. 5, setting
the fractionally differenced temperature on the forecast
start date as the initial condition. We add the gener-
ated trajectory to the fractionally differenced tempera-
ture anomalies, fractionally integrate the concatenated
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FIG. 5. Comparison of Potsdam daily mean temperature
anomalies and model data. The model time series consists
of 100 samples of the length of the Potsdam data set. The
power spectral density is estimated with a periodogram and
Welch’s method. The model data slows slightly higher vari-
ance than the Potsdam data. The autocorrelation function of
the Potsdam data exhibits some small-scale oscillations not
explained by our model. The power spectral density of the
model agrees well with the Potsdam data apart from a kink
at the maximum frequency.

new trajectory, add the seasonal cycle and determine its
first passage time with the 0 °C temperature line. The
mean first passage time over the ensemble of 25 × 103

values is the predicted first frost date. For a benchmark
prediction we fit a parabola to the observed frost dates
of the years before the sample year, paralleling the cli-
mate change correction, and extrapolate it to the sample
year. Figure 6 shows the observed first frost date, the
predicted first frost date and its standard deviation, the
benchmark prediction and the zero-crossing of the sea-
sonality cycle for the years 1991− 2020. The bias of the
predicted first frost sample average amounts to −0.64
days, meaning our prediction is almost unbiased. We use
the root-mean-square error (RMSE) and the mean abso-
lute error (MAE) to measure the prediction performance.
The RMSE of our prediction is smaller than the variance
of the observed first frost dates, indicating our prediction
narrows the uncertainty of the predicted event. RMSE
and MAE (cf. caption of Figure 6) show that the pre-
diction performs much better than the seasonality but
only slightly better than the benchmark estimation. We
note that the variance of the observed first frost date
is much larger than the variance of the prediction. In
real weather, the first frost date is impacted by many
factors, e.g. large-scale weather patterns not captured
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FIG. 6. First Frost Prediction Results. Dark blue triangles
are the observed first frost dates of the Potsdam Telegrafen-
berg daily mean temperature data set. Light blue stars indi-
cate the benchmark prediction of the first frost date obtained
by fitting a parabola to the previous observed first frost dates
since 1893. Black squares are the zero-crossings of the sea-
sonality cycle for years in which they exist. Red dots are
the predicted first frost date with one standard deviation of
the first frost date distribution. Accuracy of estimators: Pre-
diction: RMSE = 15.3 d and MAE = 11.5 d, benchmark
prediction: RMSE = 16.8 d and MAE = 11.7 d, seasonality:
RMSE = 41.8 d and MAE = 39.2 d, standard deviation of ob-
served first frost dates: σ = 16.1 d. The first frost prediction
performs slightly better than the benchmark prediction.

by the local daily mean temperature. Commemorating
we solely use a one-dimensional time series to predict an
event in a high-dimensional complex system, we expect
better prediction performances for reconstructed models
in more-dimensional systems. Additionally, larger val-
ues of the memory parameter d would also contribute to
larger prediction horizons (cf. Figure 1).
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