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In order to survive in a complex environment,
the human brain relies on the ability to flexibly
adapt ongoing behaviour according to intrinsic and
extrinsic signals. This capability has been linked to
specific whole-brain activity patterns whose relative
stability (order) allows for consistent functioning,
supported by sufficient intrinsic instability needed
for optimal adaptability. The emergent, spontaneous
balance between order and disorder in brain activity
over spacetime underpins distinct brain states. For
example, depression is characterized by excessively
rigid, highly ordered states, while psychedelics can
bring about more disordered, sometimes overly
flexible states. Recent developments in systems,
computational and theoretical neuroscience have
started to make inroads into the characterization of
such complex dynamics over space and time. Here, we
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review recent insights drawn from neuroimaging and whole-brain modelling motivating
using mechanistic principles from dynamical system theory to study and characterize brain
states. We show how different healthy and altered brain states are associated to characteristic
spacetime dynamics which in turn may offer insights that in time can inspire new treatments
for rebalancing brain states in disease.

This article is part of the theme issue ‘Emergent phenomena in complex physical and
socio-technical systems: from cells to societies’.

1. Introduction
The brain is a hugely complex system, which is able of (re)producing a plethora of behaviours
emerging from spatio-temporal dynamics [1]. Consisting of approximately 100 billion neurones
with about 100 trillion synapses between them, this dense network of anatomical and functional
interactions has been named the human connectome [2,3]. Recent advances in transcriptomics
have further demonstrated the heterogeneity of neuronal anatomy across the human brain [4,5].
The arising dynamics of neuronal interactions on the structural scaffold is further modulated by
numerous neurotransmitter systems [6]. It is therefore not surprising that many novel approaches
ranging from dynamical system theory [7], information theory [8], turbulence [9] to statistical
mechanics [10–13] are needed to understand the brain’s complex spatio-temporal dynamics in its
entirety [1].

Indeed, this has meant a paradigm shift away from looking at the brain and its function solely
in terms of individual neurones or brain regions to a system-based interaction of a multiplicity
of interacting units. One of the fields to emerge from this conceptual leap has been network
neuroscience that has focused on describing large-scale structural and functional networks in
terms of their properties and relevance for creating complex behaviour [14,15] (figure 1a).

In general, the state of a dynamical system can be characterized by the way it responds
to external perturbation [17]. For example, in the wakeful brain state, a nonlinear response
distributed across the whole cortex is elicited with external transcranial magnetic stimulation
(TMS). This is associated to the right balance between differentiation and integration which
allows for percolation of the signal throughout the cortex. This contrasts with the deep sleep
state, whereby TMS perturbation results in highly localized excitation. Upon further increase
in the perturbation strength, the localized response increases but maintains its stereotypical
and homogeneous spread unlike the nonlinear response of the wakeful state [18,19] (figure 1b).
These varying responses of the complex spatio-temporal dynamics recorded with electro-
encephalography (EEG) can successfully distinguish between vegetative, minimally conscious
or anesthetized states [20].

At the right balance, a complex system can further demonstrate self-organizing properties
across space and time from nonlinear interactions of the parts [1,21,22]. Interestingly, this happens
in a distributed manner without a centralized control dictating the emerging order [23] (figure 1c).
In the brain, spatio-temporal organization can be thought of in terms of progression of scales, from
the very microscopic (neuronal), mesoscopic (neuronal circuits) to the macroscopic (ensembles of
cortical regions). This nested hierarchy has characteristics of scale invariant properties whereby
similar features of organization are observed across topology [24], space and time [25] as well as
canonical computational motifs [26] (figure 1d). Importantly, such organization is hypothesized
to happen at the edge of criticality—a dynamical regime where long-range spatial and temporal
correlations are made possible [27]. One of the features of systems poised at the edge of
criticality is power-law scalings. They have been observed across spatial dimensions—from
individual neurones [28] to whole-brain networks derived from functional magnetic resonance
imaging (fMRI) [29], as well as across temporal dimensions—both at the fast scale of EEG and
magnetoencephalography (MEG) recordings [30,31] and at the slow scale of fMRI data [32]. It is
further relevant to appreciate the properties that the system is endowed with close to criticality, as
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Figure 1. The brain as a complex system. (a) A shift in perspective towards considering the brain’s function and structure
as an integrated network of relationships as opposed to solely localized descriptions of individual regions of interest. (b) In
many biological systems such as the brain, interactions between stimuli and measurement outputs are mostly nonlinear.
(c) The spontaneous formation of spatio-temporal patterns from intrinsic brain processes is indicative of self-organization.
(d) Complex activity patterns are detected across many spatial and temporal scales, from neurones to whole brain, from
milliseconds to minutes. (e) A system at the edge of instability can have characteristics of critical dynamics. (f ) The interactions
of constituent parts at the mesoscopic scale give rise to brain activity patterns emerging at the macroscopic scale that cannot
be merely explained by the individual parts alone (adapted from [1] and [16]). (Online version in colour.)

in this regime the dynamic range, capacity and transmission of information are optimized [33,34].
It is in this range that spatio-temporal metastability (a notion of dynamical flexibility) has been
hypothesized to be maximal [35–38] (figure 1e).

Furthermore, complex systems exhibiting self-organizing properties give rise to emergent
phenomena with various examples across nature—flocks of startles, swarms of bees or ant
colonies. Such collective behaviour of a system emerges from the interaction of a large number of
individual elements, which can only be explained in its entirety by the rules of interaction among
parts and not by simply looking at the individual elements alone [39]—the behaviour is said to be
computationally irreducible. In the brain, such characteristics are representative of higher order
cognition which cannot be simply reduced to the underlying neurophysiology. Specifically, in
resting-state brain activity, a condition without any external task, spatially synchronized systems,
termed resting-state networks (RSNs), are hypothesized to be emergent from the underlying
neuronal activity [26] (figure 1f ). These emergent properties (examples of weak emergence) result
in creating their own rules through which they interact with the environment and having the
potential to become the most dominant property determining the activity of the underlying parts
[8,40].

2. Insights from neuroimaging
Much of the progress in understanding large-scale brain spatio-temporal patterns has come from
studying the brain with fMRI, which provides whole-brain coverage at high spatial resolution,
at the expense of temporal resolution. A common approach for the analysis of large-scale spatio-
temporal activity patterns has been to use a network-based perspective, where static functional
connectivity (FC) is estimated as the similarity between the time series of pairs of atlas-based
regions [41]. Despite the initial success of shifting the perspective from regional activations to
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Figure 2. Dynamic approaches to functional MRI. (a) Substrate-based representation of fMRI activity. fMRI signals are
parcellated into regions; their temporal relationship is quantified and clustered to obtain a set of spatial patterns that
dynamically evolve in time. Substrate-based measures allow us to summarize the spatial patterns dynamics. (b) Connectome
harmonic decomposition (CHD) is an approach that considers spatial patterns expressed from the Laplacian eigenmodes of the
structural connectome. The so-called connectome harmonics are then projected onto the time series allowing for analysis of
these connectome harmonics in time (adapted from [46]). (Online version in colour.)

network-based methods, it has remained challenging to tease apart different brain states with
sufficient subject specificity using a purely static approach [27,42,43]. Since the brain is a dynamic
process that evolves in time, static FC might miss important time-varying characteristics of brain
activity [42,44]. Indeed, this has been hinted at by studies focusing on the variability over time of
individual functional connections [45].

To this date, many methods have been developed to characterize the fMRI spatial
organization varying in time [42,43]. Commonly, various features of time-varying activity are
exploited, but largely they converge on quantification of signal variability, spatial substate-based
representations and topology of temporal graphs.

While methodological considerations might differ based on a specific approach, they carry
a similar outlook on the FC dynamics (FCD) as resulting from the combination of a repertoire
of spatio-temporal brain substates. Once such a description is achieved, it is possible to
describe spatial substates varying in time in terms of their fractional occupancy (i.e. probability),
dwell time (i.e. duration) and transition probability among other summary measures and in
turn create a more accurate description of the dynamic processes that the brain engages in
(figure 2a).

While FCD tries to represent spatio-temporal patterns from brain activity recordings alone,
an active area of research has focused on the underlying network of white-matter fibres, derived
from diffusion weighted imaging, which enables the emergence of brain activity in different brain
states. How structure sculpts function is far from clear; however, it is commonly accepted that
brain structure constrains the space on which dynamics emerge. The idea can be put forward
in Aristotle’s quote ‘the shape of water is determined by its container’. The harmonic modes
of diffusion in a structural network can be analytically determined from the eigenvectors of
the graph Laplacian [47,48]. Specifically, the connectome harmonics framework has shown that
combining a few of the slowest modes of diffusion in the structural connectome (captured from
the Laplace eigenvectors with smallest eigenvalue) can accurately describe the known RSNs [47].
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Incidentally, these harmonic modes can be approached as building blocks of brain activity to
represent complex spatio-temporal patterns of brain activity in mental disorders, as well as in
different states of consciousness [49] (figure 2b).

3. Insights from whole-brain modelling
While FCD offers important insights about the spatio-temporal brain activity, it is crucial
to move beyond merely comparative approaches of empirical results to understand how
complex dynamics emerges from structural brain topology. Therefore, it is pertinent to construct
computational models that will enable us to approximate emerging brain dynamics from the
structural connectome through simulation and as such provide fundamental observations about
the structural, functional and dynamical properties of spatio-temporal brain activity in different
brain states [50,51].

Whole-brain computational models describe neural activity of interacting brain regions as a set
of coupled differential equations representing the desired neurophysiology or dynamic profile.
To reinforce the biological plausibility of the model, a structural connectome is used to reflect
the strength of connections between individual brain regions. The choice of the brain regional
model often depends on striking a delicate balance between model complexity and realism. In
particular cases, emergent brain dynamics can be addressed through mean-field approximations
of neural mass activity or phenomenological models of coupled oscillators [52,53]. Several
different scenarios have been proposed, with conductance-based and excitatory-inhibitory
neurone-based models describing aspects of brain physiology [54,55] to phenomenological
models depicting synchronization mechanisms, such as Kuramoto and Hopf models [56,57]
(figure 3a).

One of the important aspects of the emerging richness of spatio-temporal activity is its
underlying structural connectivity. It has been shown that the optimal fit between empirical
and simulated data emerges when modularity and efficiency are balanced [61], which is
directly linked to the topological properties of the structural connectome [62]. Importantly,
when such topology is disrupted through lesioning of the underlying connectivity, many
important properties of the emerging dynamics are lost [63,64]. Moreover, when simulating
dynamics across a range of network architectures, from the regular lattice topology to random
network organization, the optimal working point emerges in the intermediate small-world regime
demonstrating both high modularity and high efficiency [61].

Another important aspect driving the emergence of spatio-temporal features is the coupling
strength between neuronal populations. At the optimal weakly coupled point, neuronal
populations have the ability to influence one another resulting in collective activity patterns
that approximate RSNs [55] and static FC [52]. Instead, if the coupling is too strong, complete
synchronization of the neuronal populations results in the loss of functional specificity. On the
other hand, at very little coupling, the activity is governed by the local neuronal populations
rendering the emergent spatial patterns structureless [57]. Furthermore, the delays arising from
the transmission of signals between neuronal populations have also been shown to be relevant
[55,56,65], although they seem to affect the temporal and spectral properties of RSNs rather than
their integrity [7].

FC evolves over time, and therefore, it is pertinent to consider the mechanisms giving rise to
such spatio-temporal fluctuations. In other words, applied whole-brain models should further
illuminate FCD features beyond static FC or the emergence of RSNs. Recently, it has been
demonstrated that at an optimal level of coupling between brain regions, structured noise alone
(combined with the SC) can explain the static FC, but not the non-stationary dynamics [66,67].
This begs the question: ‘What are the additional principles giving rise to such spatio-temporal
dynamics?’ One possibility is to attribute it to stochastic nonlinear dynamics embedded in each
region. Accordingly, the spatio-temporal dynamics emerges from noise-induced fluctuations of
regional nonlinear models poised at the edge of instability [68]. As such, the model becomes
endowed with characteristics of critical systems such as an increase in the repertoire of
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Figure 3. Insights from whole-brain modelling. (a) Whole-brain models describe spatio-temporal dynamics in terms of
stochastic nonlinear dynamics embedded in each region, which interact with other regions through the anatomical structure
represented by the connectome. An important step in the description of such models is validation with empirical FC features.
(b) Spatial and temporal organization of brain dynamics is preserved in models with structural connectomes exhibiting small-
world properties [58] weakly coupled interactions between regions of interest and local dynamics poised at the edge of
instability [59]. (c) The metastable regime of rich spontaneous brain dynamics can be perceived in-between the extreme cases
of the spatial and temporal order continuum (adapted from [60]). (Online version in colour.)

possible brain substates and long-range temporal correlations [16,69]. Indeed, such characteristics
have been demonstrated to emerge from coupled oscillatory units with fluctuating amplitude,
represented by a supercritical Hopf bifurcation, where the whole-brain network model was
able to recapitulate spatio-temporal measures including FCD [57] and probabilistic metastable
substates [70].

4. Spacetime of psychedelic and depressive brain states
With the development of whole-brain non-invasive neuroimaging techniques, it has been
recognized that different brain states are made up of waning and waxing of evolving spatio-
temporal patterns [71]. While optimal functioning of the human brain can be recognized in
the resting-state condition of ordinary waking state, it becomes altered in other brain states
such as the psychedelic-induced state or clinically determined depressive state. Importantly, the
hypothesis is that the relationship between the psychedelic-induced and depressive state can be
approached from a theoretical perspective combining insights from spatio-temporal analysis of
neuroimaging data with whole-brain network models.
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5. Theoretical descriptions
In the entropic brain hypothesis, it is posited that the level of entropy of complex brain activity
(understood broadly in terms of neural signal diversity) indexes the richness of informational
content of brain states with upper and lower boundaries marking the cessation of ordinary
waking state. Positioned in a zone of instability, the ordinary waking state is observed with
a sufficient stability and flexibility. When entering the psychedelic-induced state, entropy is
enhanced resulting in more susceptible and malleable brain dynamics. The spontaneous brain
dynamics is believed to move closer to criticality with a broadening of the repertoire of possible
substates that the brain engages in [49]. Conversely, in the depressive state, such dynamics
is characteristically inflexible with ruminative and self-critical periods of thinking resulting in
diminished entropy. In this respect, the ability to flexibly engage in divergent thinking becomes
impaired. One possibility is that the brain dynamics become less metastable, with a given
substate, for example the default mode network (DMN) and fronto-parietal network (FPN),
coming to control most of cognition [72,73].

A further description of psychedelic-induced and depressive brain states in terms of
large-scale functional networks and spatio-temporal dynamics is the RElaxed Beliefs Under
pSychedelics (REBUS) model. In this perspective, psychedelics are acting to relax precision of
high-level priors or beliefs and thus making them more sensitive to the bottom-up information
inputs, predominantly through the limbic system, that would otherwise be omitted, and
potentially revising, and cultivating aberrant priors. These high-level priors are encoded in
spontaneous activity of neuronal hierarchies, especially in high-level associative regions as
well as the DMN, acting as compressive or summary models that constrain the content of
the levels below. By relaxing/decompressing these priors, it is possible for the unheard or
suppressed information to travel freely through the neuronal hierarchies and be noticed in higher
levels [74]. The REBUS principle implies the anarchic brain whereby the intrinsic hierarchy of
information processing is disrupted mainly at the higher levels, as represented for example
by the FPN and DMN. This results in bottom–up information flows being put on the same
footing with higher levels of the hierarchy. In this sense, there is no longer any ‘central
control’, as implied by the term anarchic, resulting in the loss of the functional hierarchy,
enhanced brain entropy as well as enhanced effective connectivity of the bottom-up informational
flows [74].

6. Empirical findings

(a) Psychedelic-induced brain state
Over the last decade, several neuroimaging studies have been carried out exploring the neural
correlates of the psychedelic experience across various substances. To this date, studies have
investigated brain activity under the influence of psilocybin—in both healthy [75] and depressed
populations [76,77], LSD [78], ayahuasca [79] and DMT [80]. These data provide a unique
opportunity to investigate the changes in spontaneous brain activity during the psychedelic
experience across space and time.

Along the spatial dimension, FC of fMRI activity has been demonstrated to broaden the
repertoire of possible brain patterns, as described by connectome harmonics, both in the LSD
and psilocybin states [46,49] (figure 4c). Similarly, an enhanced repertoire of dynamic connectivity
substates has been observed under the influence of psilocybin [84]. Furthermore, another study
on the effects of psilocybin using algebraic topology has demonstrated an increase in the number
of low stability homological structures as well as an emergence of unique and stable homological
structures [85].

From the perspective of functional systems, psilocybin has been found to decrease FC
between the medial prefrontal cortex (mPFC) and posterior cingulate cortex, as well as functional
activity of anterior cingulate cortex and mPFC [75]. Further, increases in between-network
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Figure 4. Psychedelic-induced state in space and time. Neuroimaging studies demonstrating various aspects of spatio-
temporal dynamics under the influence of psychedelics. (a) LSD increases dynamic functional density, defined by averaged
static functional connectivity between a region of interest and the rest of the brain, specifically in functional systems pertaining
to the frontoparietal, default mode and salience networks [81]). (b) Repertoire broadening of brain substates, as described
by connectome harmonics, in LSD and psilocybin-induced states [49]). (c) Temporal complexity, as defined by LZ-complexity,
increases under psilocybin (PSIL), ketamine (KET) and LSD-induced states [82]. (d) Spatio-temporal dynamics alterations, as
described by LEiDA, under the influence of psilocybin. Frontoparietal network becomes less frequently visited [83]. (Online
version in colour.)

connectivity have been observed in most of the RSNs with the exception of lower cognitive
networks [86]. Similarly, LSD increased FC density in higher associative networks matching with
the DMN, salience and frontoparietal attention networks and thalamus, as well as between-
network connectivity of the aforementioned networks and their lower cognitive counterparts [81]
(figure 4a). This has been complemented by decreases in within-network connectivity of the DMN
and other RSNs [78]. Using measures from graph-theory, LSD has been found to increase global
integration [84], while ayahuasca has been found to increase the Shannon entropy of the degree
distribution [87]. Taken together, these results point to within-network disintegration coupled
with increased between-network cohesion.

Along the temporal dimension, signal complexity has been demonstrated to increase in LSD,
psilocybin and ketamine-induced states [82] (figure 4b), while in the LSD state, this increase has
been pronounced the most in the eyes closed condition [88]. Moreover, changes in temporal
correlations have been observed in co-activations of various brain substates as described by
connectome harmonic decomposition, suggesting a spatial grouping in a non-trivial manner [46].
Interestingly, EEG experiments have revealed that ayahuasca decreases collective oscillations
in the alpha frequency band (8–13 Hz) and increases localized gamma power (30–100 Hz) [89].
Similarly, DMT was found to decrease both alpha and beta (13–30 Hz) band oscillations and
increase signal diversity [80]. Lastly, in both LSD- and psilocybin-induced states, MEG signal
power was decreased across the whole frequency spectrum [78,90]. Since the oscillations detected
with EEG/MEG are generated by the synchronized activity of large neuronal populations,
these studies suggest that the psychedelic experience is linked to an inhibition of long-range
synchronization, leading to increased signal diversity, which in turn results in a broader repertoire
of brain substates.
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Figure 5. Depressive state in space and time. Neuroimaging studies demonstrating various aspects of spatio-temporal
dynamics inmajor depressive disorder. (a) Spatio-temporal dynamics alterations, as described by leading eigenvector dynamics
analysis. A brain network consisting of frontoparietal, default-mode salience and striatum regions becomes visited less
frequently and for shorter periods of time while the globally active network is more prevalent in vulnerable remitted-MDD
patients compared to healthy controls [93]. (b) Global synchrony and temporal stability are both increased in MDD patients
[94]. (Online version in colour.)

(b) Depressive state
Recent developments in non-invasive neuroimaging have started to paint a system-level
perspective of brain function in different brain disorders [91]. In major depressive disorders
(MDD), aberrant functional network interactions have been associated with the control
network responsible for cognitive control and outward interaction with the world, the DMN
engaged in internal mental processes and introspection and the salience network involved
in evaluating valence of relevant cognitive and biological events. Indeed, a description of
the interactions among these three functional networks, dubbed the triple-network model,
has been proposed to explain affective and cognitive dysfunction in several major brain
disorders [92].

A recent study has shown that vulnerable remitted-MDD patients were found to exhibit
impaired recruitment and duration of a network consisting of frontoparietal, default-mode,
salience and striatum regions, while concomitantly spending more time in a globally active
network pattern compared to controls (figure 5a). The former network has been considered
important for switching between internally and externally oriented attention [93]. Notably, when
both patients and controls were induced in a sad mood by recalling sad past events, both groups
exhibited an increased occupancy of the globally synchronized pattern, suggesting that mood
modulates functional network dynamics. These results are in line with reports of an increased
within-network connectivity in DMN regions, while more persistent resting-state FC between
prefrontal and temporal regions of the DMN indicates a stronger prevalence of the DMN [94,95]
(figure 5b). In terms of switching capabilities at the system level, an increase in variability has been
observed between mPFC of the DMN and anterior insula and decreased variability between DMN
and FPN suggestive of enhanced sensitivity to emotional information resulting in a ruminative
state [94,95]. Overall, more pronounced synchronization and temporal stability has been observed
in MDD patients compared to healthy participants, but further studies will be required to further
investigate FCD in the depressive state.

(c) Future perspective
Building on the insights from neuroimaging studies and whole-brain models, the brain’s spatio-
temporal dynamics can be perceived as a temporal trajectory through an n-dimensional dynamic
landscape of weakly coupled substates constrained by the structural connectome. Furthermore, it
happens at the edge of instability where the brain can explore a plethora of substates and maintain
long-range temporal correlations. The characteristics of individual basins of attraction (substates)
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Figure 6. Activity landscape. Brain activity in different brain states as described by fMRI. Here, the depressive state, resting-
state and psychedelic state. Activity landscape where the brain’s spatio-temporal dynamics can be perceived as a temporal
trajectory through an n-dimensional terrain of weakly coupled substates constrained by the structural connectome. Optimal
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specific attractors become pronounced, making it more difficult to escape from their vicinity. On the contrary, psychedelic-
induced stateswill result in a ‘flattened’ landscape and thuswill allow formoreflexibility tomovewithin the landscape (adapted
from [49]). (Online version in colour.)

are described in terms of their prominence of occurrence (fractional occupancy), temporal
stability (dwell times) and proximity to other substates (transition probability). Corroborated by
neuroimaging studies in healthy brain functioning, the landscape will manifest enough stability
to meaningfully visit substates, but at the same time sufficient flexibility not to become trapped in
one particular substate. In the depressive state, alterations in the dynamical landscape will change
the temporal trajectories with certain attractors being more or less prominent implying aberrant
dwellings in certain parts of the landscape. On the contrary, the psychedelic state will result in the
‘flattening’ of the landscape with less predictable temporal trajectories implying novel re-routings
through the underlying landscape [49,96–98].

In practice, further progress will require mechanistic scenarios where various brain states
can be modelled to their spatio-temporal description. This can be made possible endowing
causal whole brain models with additional metadata reflecting heterogeneous features of
brain organization such as neurotransmitter densities, excitatory/inhibitory ratio and temporal
processing hierarchy [99]. Already promising studies have shown a causal link between 5HT-
2A receptors transmission and the psychedelic-induced state in a whole-brain model paradigm
[100,101]. Another important aspect will require causal understanding of how different brain
states can transitions between each other both in terms of their spatio-temporal signatures, on
the level of functional systems and neurotransmitter neurophysiology. For example, recent work
has demonstrated how whole-brain causal models can be used in predicting regional significance
in transiting between ordinary awake and dreamless sleep states [70]. Lastly, a further detailed
theoretical description of brain states in terms of their functional hierarchies as well as their spatial
and temporal multiscale representation will be relevant in constraining the space of mechanistic
perturbation sites through which transitions between states are explored. For example, recent
work demonstrating the brain’s hierarchical nature has been developed in terms of functional
harmonics—a method describing FC in terms of multidimensional and multiscale modes [102]
(figure 6).
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7. Conclusion
In this review, we have argued for a perspective of the brain as a complex system, reinforcing
a clear need to interpret and understand the underlying mechanisms of brain states along both
spatial and temporal dimensions. Importantly, this is made possible with non-invasive imaging
and whole-brain modelling, that map and simulate the rich spatiotemporal dynamics of the brain.
Experimentally, the optimal waking state is hypothesized to have a sustained stability and at the
same time is conducive to flexible reorganizations. In this context, psychedelics-induced state and
the depressive state will lie on the opposite sides of a spectrum of spatio-temporal dynamics.
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