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THE HOMOTOPY MOMENTUM MAP OF

GENERAL RELATIVITY

CHRISTIAN BLOHMANN

Abstract. We show that the action of spacetime vector fields on the variational
bicomplex of general relativity has a homotopy momentum map that extends the
map from vector fields to conserved currents given by Noether’s first theorem to
a morphism of L∞-algebras.

1. Introduction

1.1. Motivation. The diffeomorphism symmetry of general relativity, a mathe-
matical implementation of the Einstein equivalence principle, is one of its defining
features. In contrast to the internal symmetry of gauge theories, diffeomorphisms
are external symmetries since they act not only on the fields (i.e. lorentzian met-
rics), but also on spacetime. The initial value problem, which yields the hamiltonian
formulation of the field dynamics, and the presymplectic structure on the space of
fields, which yields the Poisson bracket of observables, both depend on the choice
of a codimension 1 submanifold as initial time-slice. But such a submanifold is not
invariant under diffeomorphisms. In physics terminology: it breaks the symmetry.
The consequence is that the basic ingredients of quantization, the hamiltonian and
the Poisson bracket, are not compatible with the diffeomorphism symmetry. This
issue lies at the heart of some of the fundamental open problems in general relativity
and has captivated the interest of many authors since the 1960s.
One of its mathematical symptoms is that the action of the group of diffeomor-

phisms and the action of the Lie algebra of vector fields are not hamiltonian. More
precisely, Noether’s first theorem, which associates to a symmetry a conserved mo-
mentum does not define a homomorphism of Lie algebras. (The Noether momenta
are the components of the Einstein tensor integrated over the codimension 1 sub-
manifold.) Worse, the space of Noether momenta is not even closed under the
Poisson bracket.
In an earlier paper we could show that there is a natural diffeological groupoid

describing the choices of initial submanifolds, which exhibits the Poisson brackets
as the bracket of its Lie algebroid [BFW13]. Next, we have developed a notion of
hamiltonian Lie algebroids, which generalizes the notion of hamiltonian Lie algebra
action to the setting of Lie algebroids [BW]. We have conjectured that the Noether
charges of general relativity are the components of the momentum section of a
hamiltonian Lie algebroid, which would give a conceptual explanation of some of the
intriguing features of the constraint functions. Finally, in [BSW] we have interpreted
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2 C. BLOHMANN

the momenta as elements of a generalized Lie-Rinehart algebra, which is connected
to the BV-BFV approach to boundary conditions in classical field theories.
In this paper, we sidestep the choice of initial submanifolds altogether by using

higher algebraic structures. We show that the map from vector fields to their Noether
currents is part of a homotopy momentum map in the sense of multisymplectic
geometry.

1.2. Content and main results. In Sec. 2 we study the premultisymplectic form
ω = EL + δγ of a lagrangian field theory (LFT), where EL is the Euler-Lagrange
form and γ a boundary form. We prove in Prop. 2.4 that the obstruction of a
premultisymplectic vector field X to be hamiltonian lies in bidegree (0, n−1) of the
variational bicomplex, where n is the dimension of the spacetime manifold. This
shows that the L∞-algebra of hamiltonian forms can be interpreted as generalized
current algebra. We introduce the notion of manifest diffeomorphism symmetry
(Def. 2.12) and observe that every such symmetry has a hamiltonian momentum
map that is given explicitly in terms of the lagrangian and the boundary form
(Prop. 2.15).
In Sec. 3 we consider the case of general relativity. Generalizing the concept

of tensor fields, we introduce the notion of covariant and contravariant families of
forms in the variational bicomplex (Def. 3.3). We then show that the product of
families, the contraction of indices, the raising and lowering of indices, etc. have
properties that are analogous to tensor fields. In Sec. 3.5 we introduce the notion of
covariant derivative of families of forms. In Props. 3.13 and 3.14 we derive divergence
formulas that show that horizontally exact forms can be expressed as the contraction
of families of forms with the covariant derivative.
Sec. 4 contains the main results. In Thm. 4.1 we prove that the Lepage form

L + γ, which is the primitive of the premultisymplectic form ω, is invariant under
the action of spacetime vector fields. This implies that the action has a homotopy
momentum map, which is described explicitly in Thm. 4.2.

1.3. Relation to previous work. The study of multisymplectic forms in classical
field theory goes back to at least the 1970s. Best known is perhaps the highly influ-
ential, but never finished GiMmsy project (named by the initials of the collaborators
involved, with the main protagonists Gotay and Marsden capitalized). Their goal
was “to explore some of the connections between initial value constraints and gauge
transformations” in classical field theories with constraints, such as general relativ-
ity [GIMM04, p. 1]. Towards this end they introduced the notion of multimomentum
maps [GIMM04, p. 46] (see also [CnCI91, Sec. 4.2]). Given the action ρ : g → X(M)
of a Lie algebra on a manifold M with a closed (n + 1)-form ω, a multimomentum
map was defined as a smooth map M → g

∗ ⊗ ∧n−1T ∗M or, equivalently, a linear
map f : g → Ωn−1(M), such that d f(a) = −ιρ(a)ω for all a ∈ g.
Missing from this definition was a requirement of compatibility with the Lie

bracket of g, analogous to hamiltonian momentum maps in symplectic geometry.
It seems natural to require f to be g-equivariant. Alternatively, the hamiltonian
forms in Ωn−1(M) can be equipped with a “Poisson bracket” and f required to
commute with the brackets. However, both conditions turn out to be too strong
and rarely satisfied. Moreover, the “Poisson bracket” does not satisfy the Jacobi
identity, so that it is not immediately clear for what kind of algebraic structure f
should be a homomorphism.
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This lack of compatibility of algebraic structures leads to issues in the study of
the constraints of classical field theories with diffeomorphism symmetries, of which
general relativity is the theory “par excellence” [GIMM04, Interlude I, p. 52]. The
constraint functions of general relativity are given by the values of the multimo-
mentum map integrated over the Cauchy surface. The resulting map is called the
energy-momentum map [GIM04, Sec. 7B]. While the energy-momentum map shows
that the constraint functions arise from the multimomentum map, it does not ex-
plain the relation between the Lie brackets of the symmetry algebra of vector fields
and the Poisson brackets of the constraints. (For the history of this often studied
but elusive problem see Sec. 4 of [BFW13].) From the viewpoint of homotopical
algebra, this was to be expected: Lie brackets that satisfy the Jacobi identity up
to exact terms and maps that preserve the brackets up to exact terms are generally
not compatible with homotopies of the underlying complexes. Instead we have to
use the homotopy algebraic structure, i.e. the minimal extension of Lie algebras to
differential complexes that is stable under quasi-isomorphisms. For a better behaved
theory of multimomentum maps, we are thus led to L∞-algebras.
In [Rog12, Thm. 5.2] it was shown that the bracket on hamiltonian forms in

Ωn−1(M) has a natural extension to an L∞-algebra structure on a graded subspace
of the de Rham complex, with the 1-bracket given by the de Rham differential.1

It was realized in [CFRZ16, Def./Prop. 5.1] that this is the natural setting for
the generalization of hamiltonian momentum maps to the multisymplectic setting,
defined as morphisms µ : g → L∞(M,ω) of L∞-algebras. The µ1 component of
every homotopy momentum map is a multimomentum map [CFRZ16, Sec. 12.1].
For the obstructions to lifting a multimomentum map to a homotopy momentum
map see [CFRZ16, Sec. 9.2].
In local lagrangian field theories, a multimomentum map is given by Noether’s

theorem [BHL10, Sec. 4.1]. Finding a homotopy momentum map, however, is a
much more difficult problem, even more so in general relativity, where the Hilbert-
Einstein lagrangian is non-polynomial in the fields and of second jet order. The
situation simplifies greatly if the multi(pre)symplectic form has a primitive, ω = dλ,
and if the action leaves λ invariant. Then a homotopy momentum map can be
defined by inserting the fundamental vector fields in λ [CFRZ16, Sec. 8.1]. If we
want to check whether this applies to a classical field theory, we have to identify the
correct λ as well as the correct action of the diffeomorphism group. Many authors use
for λ the boundary 1-form, so that ω is the universal current in the sense of [Zuc87],
and assume that the action is vertical (e.g. [BHL10]). We will show that instead
we have to take the sum of the lagrangian and the boundary 1-form for λ and the
diagonal action (12) on fields and spacetime by vertical and horizontal vector fields.

1.4. Conventions. The spacetime manifold M is assumed to be smooth, finite-
dimensional, and second countable. The infinite jet manifold J∞F of a smooth fibre
bundle F → M is viewed as pro-manifold, so that its de Rham complex, i.e. the
variational bicomplex, is an ind-differential complex. For the computations and
proofs in this paper, however, this will not play much of a role. The same goes for

1In [BFLS98] it was shown that the bracket of integrated local functions on the jet bundle has
extensions to alternative L∞-algebra structures on cohomological resolutions. However, these L∞-
structures were not given by an explicit construction, depended on choices, and did not suggest a
stronger notion of multimomentum maps.
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the diffeological structure on the space of fields F = Γ(M,F ), of which we will only
use the fact that the diffeological tangent bundle is given by the space of sections
of the vertical tangent bundle TF = Γ(M,V F ). For the grading and differentials
of the variational bicomplex we use the notation of [DF99]: A form in Ωp,q(J∞F )
has vertical degree p and horizontal degree q. The vertical differential is denoted by
δ and the horizontal differential by d. Otherwise, we follow [And89], with specific
references given in the text. We use the summation convention throughout the
paper, so that all repeated indices are being summed over.

Remark 1.1. Instead of “momentum map”, many authors use the term “moment
map”, which derives from a mistranslation of the French term “moment” as in
“moment cinétique” (angular momentum) or “application moment” [Sou70].

1.5. Brief review of homotopy momentum maps. For the reader’s conve-
nience, we give a brief review of the main notions of multisymplectic geometry
used in this paper. This is also necessary to fix the notation, the choice of gradings,
and the signs.
Let M be a manifold with a closed (n + 1)-form ω. A pair (X,α) consisting of a

vector field X ∈ X(M) and a form α ∈ Ωn−1(M) is called hamiltonian if

ιXω = −dα .
A vector field or a form is called hamiltonian if it is part of a hamiltonian pair.
We denote the space of hamiltonian vector fields by Xham(M) and the space of
hamiltonian forms by Ωn−1

ham(M).
For the pair (M,ω) we can construct an L∞-algebra L∞(M,ω) defined as follows

[Rog12, Thm. 5.2]. The Z-graded vector space is

L∞(M,ω)i =





Ωn−1
ham(M) ; i = 0

Ωn−1+i(M) ; 1− n ≤ i < 0

0 ; otherwise .

The brackets lk : ∧kL∞(M,ω) → L∞(M,ω) are defined by

l1(α1) = dα1

for degα1 < 0, by

lk(α1 ∧ . . . ∧ αk) = −(−1)
1
2
k(k+1)ιXk

· · · ιX2
ιX1

ω

= −(−1)kιX1
ιX2

· · · ιXk
ω ,

for k > 1 and degα1 = . . . = degαk = 0 where (Xi, αi) are hamiltonian pairs, and
by zero in all other cases. With this degree convention, the degree of lk is 2− k.

Definition 1.2 (Def./Prop. 5.1 in [CFRZ16]). Let M be a manifold with a closed
(n+1)-form ω. Let ρ : g → X(M) be a homomorphism of Lie algebras. A homotopy

momentum map of the action ρ is a homomorphism of L∞-algebras

µ : g −→ L∞(M,ω) ,

such that

ιρ(a)ω = −d µ1(a)

for all a ∈ g.
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We recall that a morphism µ : L′ → L of L∞-algebras is given by a family of
linear maps µk : ∧kL′ → L, k ≥ 1 of degree 1− k, subject to relations that are best
expressed either in terms of the L∞-operad or in the language of formal pointed
manifolds. If the domain L′ = g is a Lie algebra, as is the case for a homotopy
momentum map, the conditions for µ to be a morphism simplify greatly. They are
best expressed in terms of the boundary operator δ : ∧•

g → ∧•−1
g of the Chevalley-

Eilenberg complex for Lie homology,

δ(a1 ∧ . . . ∧ ak) =
∑

1≤i<j≤k

(−1)i+j [ai, aj] ∧ a1 ∧ . . . âi . . . âj ∧ . . . ∧ ak .

A collection of linear maps µk : ∧k
g → L∞(M,ω) is a homotopy momentum map if

and only if [CFRZ16, Prop. 3.8]

dµk(a1 ∧ . . . ∧ ak) + µk−1δ(a1 ∧ . . . ∧ ak) = (−1)
1
2
k(k+1)ιρ(ak) · · · ιρ(a1)ω ,

for all 1 ≤ k ≤ n, where we set µ0 := 0 and µn+1 := 0. This relation can be
interpreted homotopically as follows. Shifting the degree of g by 1 and shifting the
degree of the de Rham complex by n − 1, the right hand side can be expressed in
terms of the degree 0 map

ν : S(g[1]) −→ Ω(M)[n + 1]

ν(a1 ∧ · · · ∧ ak) := (−1)kιρ(a1) · · · ιρ(ak)ω ,

where we have used that S(g[1])−k
∼= ∧k

g. The maps µk have degree −1. The con-
dition for µ to be a morphism of L∞-algebras can be written succinctly as [CFRZ16,
Sec. 6.2]

(1) dµk + µk−1δ = ν ,

that is, a homotopy momentum map µ is a null-homotopy of the map of cochain
complexes ν.
In degree k = 1 the condition (1) reads dµ1(a1) = −ιρ(a1)ω, that is

(
ρ(a1), µ1(a1)

)

is a hamiltonian pair. With this relation, ν can be expressed in terms of the L∞-
brackets as

ν(a1 ∧ . . . ∧ ak) = −lk
(
µ1(a1) ∧ . . . ∧ µ1(ak)

)
.

For k = 2, Eq. (1) is spelled out as

(2) l2
(
µ1(a1) ∧ µ1(a2)

)
= µ1

(
[a1, a2]

)
− dµ2(a1 ∧ a2) ,

which shows that the failure of µ1 to be a homomorphism of Lie algebras is a d-exact
term. For k = 3 we obtain

l3
(
µ1(a1) ∧ µ1(a2) ∧ µ1(a3)

)
= µ2([a1, a2] ∧ a3 + [a2, a3] ∧ a1 + [a3, a1] ∧ a2)
− dµ3(a1 ∧ a2 ∧ a3) .

Proposition 1.3 (Sec. 8.1 in [CFRZ16]). Let ω = dλ for some λ ∈ Ωn(M). If λ is
invariant under the action ρ : g → X(M), i.e.

Lρ(a)λ = 0

for all a ∈ g, then it has a homotopy momentum map µ : g → L∞(M,ω) given by

µk(a1 ∧ . . . ∧ ak) = ιρ(a1) · · · ιρ(ak)λ .
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Notation 1.4. For shorter notation we will write the k-bracket also as

lk(α1 ∧ . . . ∧ αk) ≡ lk(α1, . . . , αk)

≡ {α1, . . . , αk}
Analogously, we will write the momentum map as

µk(a1 ∧ . . . ∧ ak) ≡ µk(a1, . . . , ak) .

In this notation, Eq. (2) is written as

(3) {µ1(a1), µ1(a2)} = µ1

(
[a1, a2]

)
− dµ2(a1, a2) .

2. Multisymplectic geometry of lagrangian field theories

The space of fields of a field theory is the set of sections F = Γ(M,F ) of a fibre
bundle over a manifold M , naturally equipped with the functional diffeology. The
lagrangian is a map L̃ : F → Ωn(M), where n is the dimension ofM . We will assume
that the lagrangian is local, i.e. a differential operator, so that L̃(ϕ) = (j∞ϕ)∗L,
where L ∈ Ω0,n(J∞F ) is the lagrangian form and j∞ϕ : M → J∞F is the infinite
jet prolongation of the field ϕ :M → F .
If M is compact, we can define the action S : F → R by S(ϕ) =

∫
M
L̃(ϕ). Many

interesting and important lorentzian spacetimes are not compact, however, so that
the action is generally not well-defined. Therefore, we have to formulate the action
principle, the derivation of the field equations, the notion of symmetries, etc. in a
cohomological form within the variational bicomplex [Zuc87,DF99].
In Sec. 2.1 we state the action principle in its cohomological form, essentially

replacing integration by taking cohomology classes with respect to the spacetime
differential d. By the cohomological version of partial integration the variation of
the lagrangian can be written as δL = EL − dγ, where EL is the Euler-Lagrange
form and the γ the boundary form [Zuc87]. EL can be viewed as the differential
operator of the field equations, so that it governs the dynamics of the field the-
ory. The integration of δγ over a codimension 1 submanifold of spacetime yields a
presymplectic form on the space of fields, so that it describes the Poisson brackets
of the field observables.
For the multisymplectic approach we will consider ω = EL+δγ, which is an exact

(n+ 1)-form of degree (n+ 1). Its primitive is the Lepage form L+ γ. In Prop. 2.4
we show that the bidegree (0, n−1)-component of a hamiltonian form is a conserved
current in the sense of [Zuc87]. The L∞-algebra associated to ω as in [Rog12] can
therefore be viewed as a higher version of the current algebra.
If M is closed, so that the action S : F → R is defined, a symmetry of the LFT is

an automorphism Φ of F that leaves the action invariant, Φ∗S = S. Infinitesimally,
a vector field Ξ on F is a symmetry if LΞS = 0. This is the case if and only if LΞL̃ is
d-exact, which we take as the general definition of a symmetry. For a local lagrangian
we have to require that the vector field Ξ, too, is local. In Sec. 2.3 we observe that
a vector field on the diffeological space F is local if and only if it descends to a
vector field on J∞F , which is the infinite prolongation of an evolutionary “vector
field”. Such vector fields are strictly vertical in the sense that their inner derivative
commutes with the horizontal differential. The strictly horizontal vector fields whose
inner derivative commutes with the vertical differential are the lifts of the spacetime
vector fields by the Cartan connection.
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In Def. 2.12 we introduce the notion of manifest diffeomorphism symmetry, which
is an action ρ : X(M) → X(J∞F ) of the Lie algebra of spacetime vector fields on the
infinite jet bundle, such that ρ(v) = ξv+ v̂ is the sum of a strictly vertical vector field
ξv and the Cartan lift of v that leaves the Lepage form invariant, Lρ(v)(L+ γ) = 0.
We point out in Prop. 2.15 that such a symmetry has a homotopy momentum map
given by inserting the fundamental vector fields of the action into the Lepage form,
which is a special case of the well-known Prop. 1.3.

2.1. The cohomological action principle. A variety of ingredients can play a
constitutive role in the mathematical study of classical field theories. For the purpose
of this paper the following minimal definition will suffice:

Definition 2.1. A local lagrangian field theory (LFT) consists of a manifold
M of dimension n, called the spacetime, a fibre bundle F →M , called the configu-
ration bundle, and a form L ∈ Ω0,n(J∞F ) in the variational bicomplex, called the
lagrangian.

Let α ∈ Ωp,q(J∞F ), where p denotes the vertical and q the horizontal degree. The
vertical differential will be denoted by δ, the horizontal differential by d. The form
α is represented by a form on a finite dimensional jet manifold JkF , which is given
by a map α̃ : JkF → ∧p+qT ∗JkF . In this way α gives rise to a k-th order differential
operator

Dα : F −→ Γ(M,∧p+qT ∗JkF )

ϕ 7−→ α̃ ◦ jkϕ ,

where jkϕ : F → JkF is the k-th jet prolongation of ϕ. In this notation, the
integrand of the action can be written as L̃(ϕ) = DL(ϕ).
The target of the differential operator Dα is not a vector space, so it does not

make sense to consider the equation “Dα(ϕ) = 0”, even though this is how the
corresponding PDE is often written. And even if F → M is a vector bundle so that
∧p+qT ∗JkF → F is a vector bundle, the right hand side cannot be required to be
the zero section, as this would imply that ϕ is the zero section of F →M . Instead,
we have to use that there is a zero form 0 ∈ Ωp,q(JkF ) in every bidegree. The PDE
can then be written more carefully as Dα(ϕ) = D0(ϕ). If this equation holds, we
will say that α vanishes at ϕ ∈ F.

Definition 2.2. A form α ∈ Ωp,q(J∞F ) is said to be d-exact at ϕ ∈ F if there is
a form β ∈ Ωp,q−1(J∞F ) such that α− dβ vanishes at ϕ.

Definition 2.3. A field ϕ ∈ F is said to satisfy the cohomological action prin-

ciple if δL is d-exact at ϕ.

If a form α is of top horizontal degree q = n, then there is a unique representative
Pα of its d-cohomology class, which has the following property: The form α is d-
exact at ϕ if and only if Pα vanishes at ϕ. The map P : Ωp,n(J∞F ) → Ωp,n(J∞F )
is the cohomological version of partial integration and straightforward to compute.
It is called the interior Euler operator. Forms in the image of P are called “source”
for p = 1 and “functional” for p > 1 [Tak79], [And89, Def. 2.5 and Ch. 3].
The map E := Pδ : Ωp,n(J∞F ) → Ωp+1,n(J∞F ) is called the Euler operator.

The source form EL ∈ Ω1,n(J∞F ) is called the Euler-Lagrange form. Since the
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interior Euler operator does not change the d-cohomology class, EL = PδL and δL
are in the same d-cohomology class, i.e.

EL− δL = dγ ,

for some γ ∈ Ω1,n−1(J∞F ). The form γ is called a boundary form.
From the properties of source forms it follows that a field satisfies the cohomolog-

ical action principle if and only if it satisfies the Euler-Lagrange equation

DEL(ϕ) = D0(ϕ) .

In physics terminology, such a field is called on shell.

2.2. Premultisymplectic structure and current L∞-algebra. Let γ be a bound-
ary form. The form

(4) λ := L+ γ

of total degree n will be called the Lepage form2. Let the total differential of J∞F

be denoted by d = δ + d. The total differential of the Lepage form is

ω := dλ

= EL+ δγ ,
(5)

which is the premultisymplectic structure we are interested in.
On J∞F we have the splitting of vector fields into a vertical and horizontal com-

ponent which leads to the bigrading on the de Rham complex. Moreover, we have
the acyclicity theorem of the variational bicomplex. This leads to the following
description of hamiltonian vector fields.

Proposition 2.4. Let X be a vector field on J∞F with vertical component X⊥.
Then X is hamiltonian with respect to the premultisymplectic form ω = EL+ δγ if
and only if

(i) LXω = 0, and
(ii) ιX⊥EL = dj for some j ∈ Ω0,n−1(J∞F ).

In the proof, we will use the following lemma [Del18, Thm. 11.1.6].

Lemma 2.5. Let β ∈ Ωn(J∞F ) be a d-closed form and

β = β0 + . . .+ βn

its decomposition into summands of bidegree deg βk = (k, n− k). Then β is d-exact
if and only if β0 is d-exact.

Proof. A form α ∈ Ωn−1(J∞F ) can be decomposed as

α = α0 + . . .+ αn−1 ,

into components of bidegree degαk = (k, n−1−k). The total differential decomposes
as

dα = dα0 + (δα0 + dα1) + . . .+ (δαn−2 + dαn−1) + δαn−1 ,

into summands of homogeneous bidegree, where the first summand has bidegree
(0, n) and the last (n, 0). Assume that β = dα. This condition must hold in each
bidegree individually. In particular we have β0 = dα0.

2For the terminology see [Kru83] or [And89, p. 199]. Deligne and Freed call λ the “total
Lagrangian” [DF99, p. 161].
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Conversely, assume that β0 = dα0 for some α0 ∈ Ω0,n−1(J∞F ). The total differ-
ential of β decomposes as

dβ = (δβ0 + dβ1) + . . .+ (δβn−1 + dβn) + δβn

into summands of homogeneous bidegree, where the first summand has bidegree
(1, n) and the last (n + 1, 0). By assumption dβ = 0, which has to hold in each
bidegree separately,

0 = δβ0 + dβ1

0 = δβ1 + dβ2

...

0 = δβn−1 + dβn

0 = δβn .

From the first equation we get

0 = δβ0 + dβ1 = δdα0 + dβ1

= d(−δα0 + β1) .

It follows from the acyclicity theorem for the variational bicomplex [Tak79, Thm. 4.6]
that−δα0+β1 = dα1 for some α1 ∈ Ω1,n−2(J∞F ). The bidegree (2, n−1) component
of dβ = 0 can now be written as

0 = δβ1 + dβ2 = δ(δα0 + dα1) + dβ2

= d(−δα1 + β2) .

As before, it follows from the acyclicity theorem that β2 = δα1 + dα2 for some
α2 ∈ Ω2,n−3(J∞F ). By induction, we obtain forms α0, . . . , αn−1 such that dα = β

for α = α0 + . . .+ αn−1. �

Proof of Prop. 2.4. Let X⊥ be the vertical and X‖ the horizontal component of X .
Assume that ιXω = −dα. The left hand side decomposes as

ιXω = (ιX⊥ + ιX‖)(EL+ δγ)

= ιX⊥EL+
(
ιX‖EL+ ιX⊥δγ

)
+ ιX‖δγ ,

into summands of bidegree (0, n), (1, n − 1), and (2, n − 2). We conclude that the
bidegree (0, n) component of the hamiltonian condition is ιX⊥EL = −dα0, which is
condition (ii) for α0 = −j. Since ω is closed, we have LXω = dιXω = 0 which is
condition (i).
Conversely, assume that (i) and (ii) hold. This means that −β = ιXω is d-

closed and that β0 = dα0, where α0 = −j. It now follows from Lem. 2.5 that
ιXω = −β = −dα. �

A form j ∈ Ω0,n−1(J∞F ) is also called a current. A current is called conserved

if it is d-closed on shell, i.e. if dj vanishes at every solution of the Euler-Lagrange
equation. Prop. 2.4 shows that the degree (0, n − 1) component of a hamiltonian
form is a conserved current. In this sense, L∞(J∞F, ω) can be viewed as higher
current algebra.
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The k-bracket of hamiltonian forms α1, . . . , αk is given by

{α1, . . . , αk} = −(−1)k(ιX⊥
1

+ ι
X

‖
1

) · · · (ιX⊥
k
+ ι

X
‖
k

)(EL+ δγ)

=
∑

1≤i<j≤k

(−1)k−i−j(ι
X

‖
1

· · · ι̂
X

‖
i

· · · ι̂
X

‖
j

· · · ι
X

‖
k

)(ιX⊥
i
ιX⊥

j
δγ)

+
∑

1≤i≤k

(−1)i−1(ι
X

‖
1

· · · ι̂
X

‖
i

· · · ι
X

‖
k

)(ιX⊥
i
EL)

+
∑

1≤i≤k

(−1)i−1(ι
X

‖
1

· · · ι̂
X

‖
i

· · · ι
X

‖
k

)(ιX⊥
i
δγ)− (−1)k(ι

X
‖
1

· · · ι
X

‖
k

)EL

− (−1)k(ι
X

‖
1

· · · ι
X

‖
k

)δγ ,

where X1, . . . , Xk are the hamiltonian vector fields. The 2-bracket is given by

{α, β} = (ιY⊥ + ιY ‖)(ιX⊥ + ιX‖)(EL+ δγ)

= ιY⊥ιX⊥δγ + (ιY ‖ιX⊥ − ιX‖ιY⊥)EL

+ (ιY ‖ιX⊥ − ιX‖ιY⊥)δγ + ιX‖ιX‖EL

+ ιY ‖ιX‖δγ ,

(6)

where (X,α) and (Y, β) are hamiltonian pairs.

2.3. Noether symmetries. The diffeological tangent space of F is given by the
space of sections of the vertical tangent bundle, TF ∼= Γ(M,V F ), so that a vector
field on F is given by a map Ξ : Γ(M,F ) = F → TF = Γ(M,V F ). This map is
called local if it is a differential operator, i.e. if there is a commutative diagram

Γ(M,F )×M Γ(M,V F )×M

JkF V F

jk

Ξ×idM

j0

ξ0

where V F = ker(TF → TM) is the vertical vector bundle. The map ξ0 is often
called an evolutionary “vector field”.

Remark 2.6. We put quotes around evolutionary “vector field” because it cannot
be naturally viewed as an actual vector field unless the configuration bundle F →M

is equipped with a flat connection. Readers who are used to this traditional (but
abusive) terminology (e.g. Def. 1.15 in [And89]) are kindly asked to ignore the quotes.

The map ξ0 can be prolonged to a vector field ξ on J∞F , which is the unique
vector field such that

(7)

Γ(M,F )×M Γ(M,V F )×M

J∞F TJ∞F

j∞

Ξ×idM

Tj∞

ξ

commutes. If such a commutative diagram exists, we will say that ξ ∈ X(J∞F )
lifts to the vector field Ξ ∈ X(F). The following proposition is a purely algebraic
characterization of such vector fields.

Proposition 2.7. A vector field ξ ∈ X(J∞F ) lifts to a vector field on F if and only
if [ιξ, d] = 0.
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Proof. The proof follows from a straightforward computation in jet coordinates. �

The kernel of Ω1,0(J∞F ) defines an integrable distribution on TJ∞F , called the
Cartan distribution, which can be interpreted as a flat Ehresmann connection on
TJ∞F → M . The horizontal lift of a vector field v ∈ X(M) is denoted by v̂ ∈
X(J∞F ). Since the connection is flat, the map X(M) → X(J∞F ), v 7→ v̂ is a
homomorphism of Lie algebras. The following is a purely algebraic characterization
of such lifts.

Proposition 2.8. A vector field ξ on J∞F is the horizontal lift of a vector field on
M by the Cartan connection if and only if [ιξ, δ] = 0.

Proof. The proof follows from a straightforward computation in jet coordinates. �

The last two propositions can be understood geometrically as follows. Assume for
the sake of argument that F is a finite dimensional manifold. The de Rham complex
of Ω(F ×M) has a bigrading with vertical differential δ in the direction of F and
horizontal differential in the direction of M . A vector field ξ on F×M is the lift of
a vector field on F if and only [ιξ, d] = 0 and a lift of a vector field on M if and only
if [ιξ, δ] = 0. Props. 2.7 and 2.8 show that this characterization is valid also in the
variational bicomplex. In order to emphasize this geometric interpretation, we will
use for the purpose of this paper the following terminology:

Definition 2.9. A vector field ξ on J∞F will be called strictly vertical if [ιξ, d] = 0
and strictly horizontal if [ιξ, δ] = 0.

The Lie derivatives of a strictly vertical vector field ξ and of a strictly horizontal
vector field v̂ are given by

Lξ = [ιξ, δ] , Lv̂ = [ιv̂, d] .

Definition 2.10. A strictly vertical vector field ξ such that LξL = dβ for some
β ∈ Ω0,n−1(J∞F ) will be called a Noether symmetry of the LFT.

Remark 2.11. Vector fields on the infinite jet bundle are sometimes called “gen-
eralized vector fields” and symmetries given by such vector fields “generalized sym-
metries” (e.g. in [DF99]). However, an analysis of Noether’s historic paper shows
that this is Noether’s original notion of symmetry, which was only to be rediscovered
later [KS11, Sec. 7.1].

Recall that a form j ∈ Ω0,n−1(J∞F ) is also called a current. If there is a strictly
vertical vector field ξ such that

dj = ιξEL ,

then j is called a Noether current and (ξ, j) a Noether pair [DF99, Def. 2.97].
Noether currents are conserved. Noether’s first theorem states that if ξ is a Noether
symmetry, then

j := β − ιξγ

is a Noether current. The proof is a half-line calculation,

dj = dβ − dιξγ = ιξδL+ ιξdγ = ιξEL ,

which highlights the advantage of working in the variational bicomplex.
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2.4. Manifest diffeomorphism symmetries. In [DF99, p. 169], amanifest sym-

metry was defined to be a vector field X ∈ X(J∞F ) such that:

(i) X = ξ + v̂ is the sum of a strictly vertical vector field ξ and a strictly
horizontal vector field v̂.

(ii) Lξ+v̂(L+ γ) = 0.

This suggests the following terminology:

Definition 2.12. Let (M,F, L) be a LFT with boundary form γ. An action

ρ : X(M) −→ X(J∞F )

v 7−→ ρ(v) := ξv + v̂ .

by manifest symmetries will be called a manifest diffeomorphism symmetry.

Remark 2.13. The Cartan lift v 7→ v̂ of vector fields on M is a homomorphism of
Lie algebras. Since strictly vertical and strictly horizontal vector fields commute, it
follows that the map v 7→ ξv is a homomorphism of Lie algebras, too.

Remark 2.14. If F → M is a natural bundle, i.e. diffeomorphisms between open
subsets of M lift functorially to diffeomorphisms between local sections, then it
follows from [ET79] that we have an action of vector fields on J∞F . The diffeomor-
phism symmetries of LFTs often arise in this way.

Proposition 2.15. Let (M,F, L) be an LFT with boundary form γ. Then every
manifest diffeomorphism symmetry ρ : X(M) → X(J∞F ) has a homotopy momen-
tum map

µ : X(M) −→ L∞(J∞F,EL+ δγ) .

given by

µk(v1, . . . , vk) := ιρ(v1) · · · ιρ(vk)(L+ γ) .

Proof. This is a special case of Prop. 1.3. �

The homotopy momentum map of a single vector field is split into a bidegree
(0, n− 1) and a bidegree (1, n− 2) summand as

µ1(v) = (ιξv + ιv̂)(L+ γ) = (ιv̂L+ ιξvγ) + ιv̂γ

= −jv + ιv̂γ ,
(8)

where

(9) jv = −ιv̂L− ιξvγ

is the Noether current of ξv. In general, the map µk splits into a (0, n − k) and a
(1, n−k−1) component given by the two lines of the right hand side of the equation

µk(v1, . . . , vk) = −
k∑

i=1

(−1)k−i(ιv̂1 · · · ι̂v̂i · · · ιv̂k)jvi + (1− k)(ιv̂1 · · · ιv̂k)L

+ (ιv̂1 · · · ιv̂k)γ .
For example, we have

µ2(v, w) = (ιv̂jw − ιŵjv + ιv̂ιŵL) + ιv̂ιŵγ
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Using Eq. (6), we can write the l2-bracket of the momenta as

{µ1(v), µ1(w)} = ιξwιξvδγ + (ιŵιξv − ιv̂ιξw)EL

+ (ιŵιξv − ιv̂ιξw)δγ + ιŵιv̂EL

+ ιŵιv̂δγ ,

(10)

where the three lines of the right hand side are of bidegrees (0, n − 1), (1, n − 2),
and (2, n− 3). The right hand side of Eq. (3) is expressed in terms of the Noether
current as

µ1([v, w])− dµ2(v, w) = −j[v,w] + d(ιv̂jw − ιŵjv + ιv̂ιŵL)

+ ι
[̂v,w]

γ − δ(ιv̂jw − ιŵjv + ιv̂ιŵL)− dιv̂ιŵγ

+ ιŵιv̂δγ .

Remark 2.16. If we integrate µ1(a) over a closed codimension 1 submanifold Σ ⊂
M , we see from Eq. (8) that we obtain, up to a sign, the usual Noether charge∫
Σ
µ1(v) = −

∫
Σ
jv. This is no longer true for the brackets. The integral

∫
Σ
ιξwιξvδγ

of the first summand on the right hand side of Eq. (10) is the usual bracket of charges.
The integral of the second summand, however, is an additional contribution, which
is not present in the multimomentum map of [BHL10, Sec. 4.1]. The integrals of all
other terms on the right hand side of Eq. (10) vanish for degree reasons.

Example 2.17 (Classical mechanics). In classical mechanics spacetime is timeM =
R and the configuration bundle is trivial, F = R× Q → R, so that F = C∞(R, Q)
is the space of smooth paths in Q. Let us consider the lagrangian of a particle of
mass 1 in a potential V ,

L =
(
1
2
q̇iq̇i − V (q)

)
dt .

Here t, qi, q̇i, q̈i, . . . are coordinates on the infinite jet bundle, given by

q̇i(j∞0 x) =
dxi

dt

∣∣∣
t=0

for a path x : R → Q. Using the relations dδqi = −δq̇i ∧ dt, dqi = q̇idt, and
dq̇i = q̈idt, we find that δL = EL− dγ with

EL = −
(
q̈i +

∂V

∂qi

)
δqi ∧ dt

γ = q̇iδqi .

For the presymplectic form ω we obtain

ω = −
(
q̈i +

∂V

∂qi

)
δqi ∧ dt+ δq̇i ∧ δqi ,

which is a form on J2(R×Q). The Cartan lift of the infinitesimal generator of time
translation, i.e of the coordinate vector field ∂t ≡ ∂

∂t
∈ X(R) is

∂̂t =
∂

∂t
+ q̇i

∂

∂qi
+ q̈i

∂

∂q̇i
+ . . .

The time translation x(τ) 7→ x(τ−t) of paths descends to the strictly vertical vector
field

ξ∂t = −q̇i ∂
∂qi

− q̈i
∂

∂q̇i
− . . .
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The fundamental vector field of the diagonal action of time translation on J∞F is
therefore given by

(11) ρ(∂t) = ξ∂t + ∂̂t =
∂

∂t
.

This equation looks like a tautology, but the vector field ∂
∂t

on the right hand side is
not horizontal and must not be identified with the vector field in the time direction.
Moreover, ρ is not C∞(M)-linear.
Eq. (11) implies that Lρ(∂t)(L + γ) = 0, so that time translation is a manifest

symmetry. The corresponding momentum map is given by

µ1(∂t) = −j∂t ,

since for degree reasons the term ι∂̂tγ vanishes. The Noether momentum

j∂t = −ι∂̂tL− ιξ∂tγ = 1
2
q̇iq̇i + V (q)

is the energy.

3. The variational bicomplex of lorentzian metrics

We turn to general relativity. Here, the fields are lorentzian metrics on the space-
time manifold M . Vector fields on M act on metrics by the Lie derivative. This
action is local, so that it descends to the infinite jet bundle, inducing an action on
the variational bicomplex. In order to study this action, we introduce in Def. 3.3 the
concept of covariant and contravariant families of forms in the variational bicomplex,
which generalizes the concept of tensor fields. In Sec. 3.5 we generalize the notion
of covariant derivative to such families of forms. In Sec. 3.6 we derive divergence
formulas that express the horizontal differential of a form in terms of the covariant
derivative and the metric volume form. While the computations are similar to those
with tensor fields, there are also differences. For example, the metric volume form
is invariant (Lem. 3.11), rather than transforming as a density.

3.1. The action of spacetime vector fields. Assume that M is a manifold of
finite dimension n. The configuration bundle of general relativity is the bundle of
fibre-wise lorentzian metrics on the tangent spaces of the spacetime manifold M ,
which we denote by Lor → M . We use the “east coast” sign convention in which
the signature of the metric is (−1, 1, . . . , 1). The diffeological space of lorentzian
metrics on M will be denoted by Lor.

Remark 3.1. In many papers on LFTs and the variational bicomplex one of the
the following simplifying assumptions about the configuration bundle F → M is
made: F is a vector bundle; the fibres of F are connected; the space of sections
F = Γ(M,F ) is non-empty; the jet evaluations jk : F ×M → JkF are surjective.
All these assumptions generally fail for the bundle of lorentzian metrics.

The configuration bundle is natural, which means that local diffeomorphisms on
M lift functorially to the sheaf of sections. In particular, we have a left action
of the diffeomorphism group Diff(M) on the space of fields Lor by pushforward.
Infinitesimally, we have a left action of the Lie algebra of vector fields,

Ξ : X(M) −→ X(Lor)

v 7−→ (Ξv : η 7→ −Lvη) ,
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where the symmetric 2-form −Lvη represents a tangent vector in TηLor. This action
is local, so that it descends to an action of X(M) on J∞Lor by strictly vertical vector
fields,

ξ : X(M) −→ X(J∞Lor)

v 7−→ ξv .

Together with the Cartan lift of the vector field in X(M), we obtain a homomorphism
of Lie algebras

(12)
ρ : X(M) −→ X(J∞Lor)

v 7−→ ρ(v) := ξv + v̂ .

Our ultimate goal is to show that ρ is a manifest symmetry of general relativity for a
natural choice of boundary form. In this section we will gather the necessary tools.

3.2. Jet coordinates. Let (x1, . . . , xn) be a system of local spacetime coordinates
on an open subset U ⊂M . The coordinate vector fields will be denoted by ∂a =

∂
∂xa ,

the coordinate 1-forms by dxa. A lorentzian metric η ∈ Lor is written in local
coordinates as η = 1

2
ηabdx

a ∧ dxb, where ηab = ι∂bι∂aη ∈ C∞(M) are the matrix
components of the metric. (Recall that we use the Einstein summation convention
throughout the paper.)
The local coordinates on M induce local jet coordinates given by

gab,c1···ck : J∞Lor −→ R

j∞x η 7−→ ∂kηab

∂xc1 · · ·∂xck
∣∣∣
x
.

Since the partial derivatives commute, gab,c1···ck is invariant under permutations of
the indices c1, . . . , ck. To avoid overcounting in summation formulas it is convenient
to use the multi-index notation of multi-variable analysis: A multi-index is a tuple
C = (C1, . . . , Cn) of natural numbers Ck ≥ 0. The number |C| = C1 + . . . + Cn

is called the length of the index. The concatenation of a multi-index with a single
index is given by

Cd = (C1, . . . , Cd + 1, . . . , Cn) .

The jet coordinate function labeled by a multi-index is given by

gab,C(j
∞
x η) =

∂|C|ηab

(∂x1)C1 · · · (∂xn)Cn

∣∣∣
x
.

The collection of functions {xa, gab,C} for 1 ≤ a ≤ b ≤ n and C ∈ Nn
0 is a system of

local coordinates on J∞Lor.

Remark 3.2. In the physics literature, the same notation is usually used for both
the jet coordinates and their evaluation on a field, which can be confusing. For
example, if M is non-compact, every n-form is exact, in particular the integrand
L(η) of the action. So for the step “discarding exact terms” during the derivation
of the Euler-Lagrange equation to be meaningful, we must view the integrand as an
element L ∈ Ω0,n(J∞Lor), i.e. as an expression of the jet coordinates like gab,c and

not of the derivatives ∂ηab
∂xc of a particular metric η.

The variational bicomplex is generated as bigraded algebra by the coordinate
functions, the vertical coordinate 1-forms δgab,C in degree (1, 0), and the horizontal
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coordinate 1-forms dxa in degree (0, 1). A (p, q)-form is given in local coordinates
by

ω = ωa1,b1,...,ap,bp,C1,...,Cp
e1,...,eq

δga1b1,C1
∧ . . . ∧ δgapbp,Cp

∧ dxe1 ∧ . . . ∧ dxeq ,
where the coefficients are functions on J∞Lor. The other differentials of the jet
coordinates are given by [And89, p. 18]

δxa = 0

dgab,C = gab,Ce dx
e .

It follows that the differentials of the coordinate 1-forms are given by ddxa = 0,
δδgab,C = 0, δdxa = 0, and

dδgab,C = −δgab,Ce ∧ dxe .
Dually, the C∞(J∞Lor)-module of vertical vector fields is spanned by the coordi-

nate vector fields ∂
∂gab,C

, which satisfy

ι ∂
∂gab,C

δga′b′,C′ = δaa′δ
b
b′δ

C
C′

ι ∂
∂gab,C

dxe = 0 .

The module of horizontal vector fields, called the Cartan distribution, is spanned by
the vector fields

∂̂a =
∂

∂xa
+

∞∑

|D|=0

gbc,Da

∂

∂gbc,D
,

which satisfy
ι∂̂aδgbc,D = 0

ι∂̂adx
a′ = δa

′

a .

The Cartan distribution can be viewed as an Ehresmann connection on the bundle
J∞Lor → M . The horizontal lift of a vector field v = va(x) ∂

∂xa on M to J∞Lor is
given by

v̂ = va(x)∂̂a .

The vertical and horizontal differentials of a function f ∈ C∞(J∞Lor) are given
by [And89, pp. 18-19]

δf =

∞∑

|C|=0

∂f

∂gab,C
δgab,C

df = (∂̂af)dx
a .

The horizontal differential of a form ω ∈ Ωp,q(J∞Lor) is given in local coordinates
by

(13) dω = (−1)p+q(L∂̂a
ω) ∧ dxa .

A vector field is strictly horizontal if and only if it is the horizontal lift v̂ of a
vector field v on M by the Cartan connection. A vector field ξ is strictly vertical if
and only if it is the infinite prolongation of an evolutionary “vector field”, i.e. of a
map ξ0 : J∞Lor → V Lor of bundles over Lor, where V Lor ⊂ TLor is the vertical
tangent bundle. In local coordinates it is of the form

(14) ξ =

∞∑

|C|=0

(∂̂Cξab)
∂

∂gab,C
,
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where the ξab are functions on J
∞Lor and where ∂̂C = (∂̂1)

C1 · · · (∂̂n)Cn is the multi-
index notation for the iterated application of the horizontal lifts of the coordinate
vector fields.

3.3. Action of spacetime vector fields on infinite jets. The action of a vector
field v ∈ X(M) on a lorentzian metric η ∈ Lor by the negative Lie derivative,
η 7→ −Lvη, is given in local coordinates by

ηabdx
adxb 7−→ −

(
vc
∂ηab

∂xc
+
∂va

′

∂xa
ηa′b +

∂vb
′

∂xb
ηab′

)
dxadxb .

We can view this as transformation of the coordinate functions

(15) gab 7−→ −
(
vcgab,c +

∂va
′

∂xa
ga′b +

∂vb
′

∂xb
gab′

)
=: ξab ,

which are the components of the evolutionary “vector field” ξab
∂

∂gab
. Its infinite

prolongation is the strictly vertical vector field

ξv =

∞∑

|C|=0

(∂̂Cξab)
∂

∂gab,C
,

which defines the action (12) of vector fields on the infinite jet bundle.

3.4. Covariant and contravariant families of forms. The Lie derivative of a
coordinate function with respect to a strictly horizontal vector field is given by

Lv̂gab,C = ιve∂̂edgab,C = vegab,Ce .

In particular, we have

L∂̂e
gab = gab,e .

Note that this is the Lie derivative of a single function gab ∈ C∞(J∞Lor) and must
not be confused with the Lie derivative of a metric 2-form on M . The formula (15)
for the 0-jet component ξab of ξv can now be written as

Lξvgab = −Lv̂gab −
∂va

′

∂xa
ga′b −

∂vb
′

∂xb
gab′ .

This can be expressed in terms of the diagonal action ρ as

(16) Lρ(v)gab = −∂v
a′

∂xa
ga′b −

∂vb
′

∂xb
gab′ .

Since δ commutes with both Lξv and Lv̂, it commutes with Lρ(v). This implies that

(17) Lρ(v)δgab = −∂v
a′

∂xa
δga′b −

∂vb
′

∂xb
δgab′ .

Using gabgbc = δac , we get

(18) Lρ(v)g
ab =

∂va

∂xa
′ g

a′b +
∂vb

∂xb
′ g

ab′ .

These calculations suggest the following definition.
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Definition 3.3. A family of forms χ
b1···bq
a1···ap ∈ Ω(J∞Lor), 1 ≤ a1, . . . , bq ≤ n is called

covariant in a1, . . . , ap and contravariant in b1, . . . , bq if

Lρ(v)χ
b1···bq
a1···ap

= −
p∑

i=1

∂va
′
i

∂xai
χ
b1···bq
a1···a′i···ap

+

q∑

i=1

∂vbi

∂xb
′
i

χ
b1···b′i···bq
a1···ap .

A form χ ∈ Ω(J∞Lor) is called invariant if Lρ(v)χ = 0.

Def. 3.3 generalizes the notion of covariant and contravariant tensors to families
of forms in Ω(J∞Lor). In this terminology Eqs. (16), (17), and (18) show that the
indices of gab and δgab are covariant, while those of gab and δgab are contravariant.
Covariant and contravariant families behave in many ways as tensors.

Lemma 3.4. Let χa be a covariant and ψb a contravariant family of forms. Then
the family χa ∧ ψb is covariant in a and contravariant in b.

Proof. This follows immediately from the fact that Lρ(v) is a degree 0 derivation of
the algebra Ω(J∞Lor). �

Lemma 3.5. Let χb
a be a family of forms that is covariant in a and contravariant

in b, then the contracted form χa
a (summation over a) is invariant.

The last two lemmas generalize in an obvious way to families with several indices.
An immediate consequence of Lem. 3.4 and Lem. 3.5 is that we can raise and lower
indices with the metric coordinate functions in the usual way: If χa is covariant, then
χa = gaa

′
χa′ is contravariant. If χ

a is contravariant, then χa = gaa′χ
a′ is covariant.

Lemma 3.6. If the family χb ∈ Ω(J∞Lor) is covariant, then the family ι∂̂aχb is
covariant in a and b.

Proof. Let ψab = ι∂̂aχb We have

Lρ(v)ψab = Lξv+v̂(ι∂̂aχb)

=
(
ι∂̂aLξv + ι∂̂aLv̂ + ι[v̂,∂̂a]

)
χb

= ι∂̂aLρ(v)χb −
∂va

′

∂xa
(ι∂̂a′χb)

= −∂v
b′

∂xb
ψab′ −

∂va
′

∂xa
ψa′b ,

which shows that ψab is covariant in a and b. �

Lemma 3.7. If the family χa ∈ Ω(J∞Lor) is covariant, then the family δχb is
covariant.

Proof. We have

Lρ(v)δχa = δLρ(v)χa

= δ
(
−∂v

a′

∂xa
χa′

)

= −∂v
a′

∂xa
δχa′ ,

which shows that χa is covariant. �
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The last lemma generalizes in an obvious way to families of forms with covariant
and contravariant indices. The analogous statement for the horizontal differential
works only for invariant forms:

Lemma 3.8. If χ ∈ Ω(J∞Lor) is invariant, then dχ is invariant.

Proof. The differential d commutes with Lρ(v), so that Lρ(v)dχ = dLρ(v)χ = 0. �

Lemma 3.9. If the form χ ∈ Ω(J∞Lor) is invariant, then the family L∂̂a
χ is

covariant.

Proof. We have

Lρ(v)(L∂̂a
χ) = Lξv+v̂(L∂̂a

χ)

=
(
L∂̂a

Lξv + L∂̂a
Lv̂ + L[v̂,∂̂a]

)
χ

= L∂̂a
Lξv+v̂χ− ∂va

′

∂xa
(L∂̂a′

χ)

= −∂v
a′

∂xa
(L∂̂a′

χ) ,

which shows that L∂̂a
χ is a covariant family. �

Lemma 3.9 holds only for an invariant form χ. If χb is a covariant family, then
L∂̂a

χb is not covariant. In order to obtain a covariant family by differentiation we
have to generalize the concept of covariant derivative to families of forms in the
variational bicomplex.

3.5. Covariant derivative of families of forms. In the cohomological approach
to general relativity, we have to interpret the connection coefficients, the covariant
derivative, the curvature, the volume form, etc. as expressions in the variational
bicomplex. The connection coefficients of the Levi-Civita connection have to be
viewed as functions on J∞Lor that are given in local coordinates by the expression

(19) Γa
bc =

1
2
gad(gdb,c + gdc,b − gbc,d) .

The covariant derivative has to be defined in the variational bicomplex as follows.

For a family of forms χ
b1···bq
a1···ap that is covariant in the lower indices and contravariant

in the upper indices we define

∇cχ
b1···bq
a1···ap = L∂̂c

χb1···bq
a1···ap −

p∑

i=1

Γ
a′i
cai χ

b1···bq
a1···a′i···ap

+

q∑

i=1

Γbi
cb′i
χ
b1···b′i···bq
a1···ap .

Using this definition, we can check by the usual calculation that the connection
coefficients (19) of the Levi-Civita connection is the unique family of functions sym-
metric in b and c, such that ∇cgab = 0. The Riemann curvature tensor is given
by Riemabc

d χd = (∇a∇b − ∇b∇a)χc, which has now to be viewed as a family of
functions on J∞Lor.

Lemma 3.10. Let χb be a covariant family of vertical forms. Then the family ∇aχb

is covariant in a and b.
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Proof. We have to compute the Lie derivative of ∇aχb = L∂̂a
χb−Γc

abχc with respect
to ρ(v) = ξv + v̂. For the first summand we get

Lρ(v)(L∂̂a
χb) = L∂̂a

(Lξv+v̂χb) + L[v̂,∂̂a]
χb

= L∂̂a

(
−∂v

b′

∂xb
χb′

)
+ ι[v̂,∂̂a]dχb

= − ∂2vb
′

∂xa∂xb
χb′ −

∂vb
′

∂xb
(L∂̂a

χb′)−
∂va

′

∂xa
ι∂̂a′

dχb

= −∂v
b′

∂xb
(L∂̂a

χb′)−
∂va

′

∂xa
(L∂̂a′

χb)−
∂2vc

∂xa∂xb
χc .

For the second summand we must compute the Lie derivative of the connection
coefficients. For this we need the following formula.

Lξvgab,c = LξvL∂̂c
gab

= L∂̂c
Lξvgab

= −L∂̂c

(
Lv̂gab +

∂va
′

∂xa
ga′b +

∂vb
′

∂xb
gab′

)

= −(L[∂̂c,v̂]
+ Lv̂L∂̂c

)gab

− ∂2va
′

∂xc∂xa
ga′b −

∂va
′

∂xa
δga′b,c −

∂2vb
′

∂xc∂xb
gab′ −

∂vb
′

∂xb
gab′,c

= −Lv̂gab,c −
∂va

′

∂xa
ga′b,c −

∂vb
′

∂xb
gab′,c −

∂vc
′

∂xc
gab,c′

− ∂2va
′

∂xc∂xa
ga′b −

∂2vb
′

∂xc∂xb
gab′

With this relation, we can compute the action of vector fields on the connection
coefficients, which yields

Lρ(v)Γ
c
ab =

∂vc

∂xc
′ Γ

c′

ab −
∂va

′

∂xa
Γc
a′b −

∂vb
′

∂xb
Γc
ab′ −

∂2vc

∂xa∂xb
.

Putting everything together, we obtain

Lρ(v)(∇aχb) = Lρ(v)L∂̂a
χb − (Lρ(v)Γ

c
ab)χc − Γc

ab(Lρ(v)χc)

=
∂va

′

∂xa
(∇a′χb) +

∂vb
′

∂xa
(∇aχb′) ,

where the terms containing the second order derivatives of va cancel. This finishes
the proof. �

3.6. Divergence formulas. In the variational bicomplex, the metric volume form
is the (0, n)-form on J∞Lor defined as

(20) volg =
√
− det g dx1 ∧ . . . ∧ dxn .

We recall that we have adopted the “east coast” sign convention for Lorentz metrics
with 1 negative and n − 1 positive signs, so that det g is negative. The partial
derivative of the square root of the determinant with respect to the 0-jet coordinates
is given by

∂

∂gab

√
− det g = 1

2
gab

√
− det g .
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The partial derivatives with respect to xa and all higher jet coordinates gab,C vanish.
It follows that the vertical and the horizontal differentials are given by

δ
√

− det g = 1
2
gabδgab

√
− det g

d
√

− det g = 1
2
gabgab,c

√
− det g dxc .

For the vertical differential of the volume form we obtain

(21) δvolg =
1
2
gabδgabvolg .

Although volg is not a volume form on J∞Lor, every (0, n)-form τ can be written
as

τ = fdx1 ∧ . . . ∧ dxn =
f√

− det g
volg ,

for a unique function f ∈ C∞(J∞Lor). Therefore, we can define the divergence of a
vector field X ∈ X(J∞Lor) by the relation

LXvolg = (divX)volg .

For a strictly horizontal vector field v̂ we have

Lv̂volg = (Lv̂

√
− det g) dx1 ∧ . . . ∧ dxn +

√
− det g Lv̂(dx

1 ∧ . . . ∧ dxn)

=
(

1
2
gabgab,cv

c +
∂vc

∂xc

)
volg =

(
Γa
acv

c +
∂vc

∂xc

)
volg

= (∇av
a)volg .

(22)

We conclude that
div v̂ = ∇av

a .

While this looks like the usual expression, we point out that the divergence div v̂ is
now a function on J1Lor.

Lemma 3.11. The metric volume form is invariant.

Proof. For the Lie derivative of the volume form with respect to the vertical vector
field we obtain

Lξvvolg = ιξvδvolg

= −1
2
gab

(
Lv̂gab +

∂va
′

∂xa
ga′b +

∂vb
′

∂xb
gab′

)
volg

= −
(
vc 1

2
gabgab,c +

∂vc

∂xc

)
volg

= −Lv̂volg ,

where in the last step we have used Eq. (22). We conclude that Lρ(v)volg = 0 for all
v ∈ X(M). �

Remark 3.12. Lem. 3.11 can be stated by saying that ξv + v̂ is divergence free.

From the formula for the divergence of a vector field we deduce

(∇av
a)volg = d

(
vaι∂̂avolg) .

This formula generalizes to higher vertical forms, as we will show next.

Proposition 3.13. Let χa be a family of (p, 0)-forms on J∞Lor. Then

(23) ∇aχ
a ∧ volg = (−1)pd(χa ∧ ι∂̂avolg) .
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Proof. Consider the (p, n− 1)-form

χ = (−1)pχa ∧ ι∂̂avolg ,
where the χa are (p, 0)-forms. The horizontal differential of χ is given by

dχ = (−1)p+n−1(L∂̂c
χ) ∧ dxc

= (−1)n−1
L∂̂c

(χa ∧ ι∂̂avolg) ∧ dx
c

= (L∂̂c
χa) ∧ (−1)n−1(ι∂̂avolg) ∧ dx

c + χa ∧ (−1)n−1(L∂̂c
ι∂̂avolg) ∧ dx

c

= (L∂̂a
χa) ∧ volg + χa ∧ (−1)n−1(ι∂̂aL∂̂c

volg) ∧ dxc

= (L∂̂a
χa) ∧ volg + χa ∧ (−1)n−1ι∂̂a(Γ

b
bcvolg) ∧ dxc

= (L∂̂a
χa + Γb

baχ
a) ∧ volg

= (∇aχ
a) ∧ volg ,

where we have used Eq. (13), the Leibniz rule, the relation

(ι∂̂avolg) ∧ dx
c = (−1)n−1δcavolg ,

and Eq. (22). �

For later use, we generalize the formula (23) further to families of (p, 1)-forms.

Proposition 3.14. Let χab be a family of (p, 1)-forms on J∞Lor such that χab =
−χba. Then

(24) ∇aχ
ab ∧ ι∂̂bvolg = (−1)pd(1

2
χab ∧ ι∂̂aι∂̂bvolg) .

Proof. Consider the (p, n− 2)-form

χ = 1
2
(−1)pχab ∧ ι∂̂aι∂̂bvolg .

We have the relation

(ι∂̂aι∂̂bvolg) ∧ dx
c = ι∂̂a [(ι∂̂bvolg) ∧ dx

c]− (−1)n−1(ι∂̂bvolg) ∧ (ι∂̂adx
c)

= [ι∂̂a(−1)n−1δcbvolg]− (−1)n−1(ι∂̂bvolg)δ
c
a

= (−1)n−1(δcbι∂̂a − δcaι∂̂b) volg .

Moreover, since χab = −χba, we have

∇aχ
ab = L∂̂a

χab + Γa
adχ

db + Γb
adχ

ad

= L∂̂a
χab + Γa

adχ
db .

Using these relations, we can compute the horizontal differential of χ as

dχ = 1
2
(−1)p+n−2(L∂̂c

χ) ∧ dxc

= 1
2
(L∂̂c

χab) ∧ (−1)n−2(ι∂̂aι∂̂bvolg) ∧ dx
c

+ 1
2
χab ∧ (−1)n−2

L∂̂c
(ι∂̂aι∂̂bvolg) ∧ dx

c

= 1
2
(L∂̂c

χab + χabΓd
dc) ∧ (−1)n−2(ι∂̂aι∂̂bvolg) ∧ dx

c

= 1
2
(L∂̂c

χab + χabΓd
dc) ∧ (−1)(δcbι∂̂a − δcaι∂̂b)volg

= (L∂̂a
χab + χabΓd

da) ∧ ι∂̂bvolg
= (∇aχ

ab) ∧ ι∂̂bvolg ,
which finishes the proof. �
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4. The homotopy momentum map of general relativity

We now have all the tools needed for the multisymplectic interpretation of the
diffeomorphism symmetry of general relativity. We start by recalling the Euler-
Lagrange and the standard boundary form. Then we show in Thm. 4.1 that the
Lepage form is invariant under the diagonal action of vector fields. In other words,
the action of vector fields is a manifest diffeomorphism symmetry of general relativity
in the sense of Def. 2.12. It follows from Prop. 2.15 that the symmetry has a
homotopy momentum map, which is given explicitly in Thm. 4.2.

4.1. Euler-Lagrange and boundary form. The lagrangian form of the Hilbert-
Einstein action is

(25) L = R volg ,

where R is the scalar curvature, which has to be interpreted within the variational
bicomplex as a function on J∞Lor as follows: The Riemann curvature tensor is given
in local coordinates in terms of the connection coefficients (19) by

Riemabc
d = ∂̂bΓ

d
ac − ∂̂aΓ

d
bc + Γe

acΓ
d
eb − Γe

bcΓ
d
ea .

This is the usual formula [Wal84, Eq. (3.4.4)] with the partial coordinate derivatives

replaced by the Cartan lifts ∂̂a and ∂̂b. The Ricci curvature is given by the contrac-
tion Ricab := Riemaeb

e and the scalar curvature by the trace of the Ricci curvature
R = gab Ricab.
The vertical differential of the scalar curvature R = gab Ricab is given by

δ(gabRicab) = δgabRicab +g
abδRicab .

The first term can be written as

δgabRicab = −Ricab δgab

The second term is given by [Wal84, Eq. (E.1.15)]

gabδRicab = ∇aγa

where
γa = gbc(∇cδgab −∇aδgbc) ,

and where the covariant derivative is to be understood as

∇aγa = gab(L∂̂a
γb − Γc

abγc) ,

as explained in Sec. 3.5. The vertical differential of the volume form was computed
in Eq. (21). Putting everything together, we get

δL = −
(
Ricab −1

2
Rgab

)
δgab ∧ volg +∇aγa ∧ volg .

The first term is the Euler-Lagrange form

EL = −Gabδgab ∧ volg ,

where
Gab = Ricab −1

2
Rgab

is the Einstein tensor. The Einstein tensor is divergence-free, i.e.

∇aG
ab = L∂̂a

Gab + Γa
acG

cb + Γb
acG

ac

= 0 .
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Using Eq. (23), the second term can be written as a d-exact term

(∇aγa) ∧ volg = −dγ ,
where

γ = γa ∧ ι∂̂avolg
= gadgbc(∇cδgab −∇aδgbc) ∧ ι∂̂dvolg

(26)

is the boundary form.

4.2. Invariance of the Lepage form.

Theorem 4.1. The Lepage form L + γ given by the sum of the Hilbert-Einstein
lagrangian (25) and the boundary form (26) is invariant under the action (12) of
spacetime vector fields. In other words, the action is a manifest diffeomorphism
symmetry in the sense of Def. 2.12.

Proof. The invariance must hold independently in every bidegree, so that we need
to prove the two equations

Lξv+v̂L = 0 , Lξv+v̂γ = 0 .

We start by proving the invariance of L. We have

LξvL = ιξvδL = ιξv(EL− dγ)

= ιξvEL+ dιξvγ .
(27)

We will compute both summands separately. First we use (15) to compute

ιξvδgab = −
(
vcgab,c +

∂va
′

∂xa
ga′b +

∂vb
′

∂xb
gab′

)

= −
(
vcgab,c + ∂∂̂a(v

cgcb)− vcgcb,a + ∂∂̂b(v
cgac)− vcgac,b

)

= −
(
∂∂̂avb + ∂∂̂bva − vcg

ce(gca,b + gcb,a − gab,c)
)

= −
(
∂∂̂avb + ∂∂̂bva − vc2Γ

c
ab

)

= −(∇avb +∇bva) ,

where we have used (19). With this formula we obtain

ιξvEL = Gab(∇avb +∇bva)volg

= 2
(
∇a(G

abvb)
)
volg

= d
(
2Gabvbι∂̂avolg

)
,

(28)

where in the last step we have used the divergence formula (23). For the second
term we compute

ιξvγ = [ιξvg
adgbc(∇cδgab −∇aδgbc)] ∧ ι∂̂dvolg

= gadgbc[−∇c(∇avb +∇bva) +∇a(∇bvc +∇cvb)] ι∂̂dvolg

= gadgbc[∇c∇avb −∇c∇bva − 2∇c∇avb +∇a(∇bvc +∇cvb)] ι∂̂dvolg

= [∇c(∇dvc −∇cvd)− 2gadgbc(∇c∇a −∇a∇c)vb] ι∂̂dvolg

= [∇c(∇dvc −∇cvd)− 2Ricbd vb] ι∂̂dvolg

= −2Ricab va ι∂̂bvolg + [∇a(∇bva −∇avb)] ι∂̂bvolg

= −2Ricab va ι∂̂bvolg − d
(
1
2
(∇avb −∇bva) ι∂̂aι∂̂bvolg

)
,

(29)
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where in the last step we have used the divergence formula (24). Inserting (28)
and (29) into the right hand side of (27), we obtain

LξvL = 2d
(
Gabvbι∂̂avolg − 2Ricab va ι∂̂bvolg

)

= −d
(
Rvaι∂̂avolg

)

= −Lv̂L ,

which finishes the proof of the invariance of L.
It remains to prove the invariance of γ. The strategy of the proof is to show that

all indices appearing in

γ = gadgbc(∇cδgab −∇aδgbc) ∧ ι∂̂dvolg
are covariant or contravariant in the sense of Def. 3.3, so that their contraction is
invariant by Lem. 3.5.
We have shown in Lem. 3.11 that the volume form is invariant. It follows from

Lem. 3.6 that the index d of ι∂̂dvolg is covariant. We have shown in Eq. (18) that the

indices of gad and gbc are contravariant. In Eq. (17) we have seen that the indices
of δgbc are covariant. It follows from Lem. 3.10 that the indices of the covariant
derivatives ∇c and ∇a are covariant. Lem. 3.4 shows that the wedge product is
contravariant in all upper and covariant in all lower indices. With Lem. 3.5 we
conclude that γ is invariant. �

Theorem 4.2. The action of spacetime vector fields on the infinite jet bundle of
Lorentz metrics defined in (12) has a homotopy momentum map

µ : X(M) −→ L∞(J∞Lor, EL+ δγ) ,

given by

µk : ∧k
X(M) −→ L∞(J∞Lor, EL+ δγ)

µk(v1, . . . , vk) := ιρ(v1) · · · ιρ(vk)(L+ γ) .

Proof. The proof follows from Thm. 4.1 and Prop. 1.3. �

The Noether current, which was given in (9) by the general formula jv = −ιv̂L−
ιξvγ, can be computed with (29) to

(30) jv = 2Gabva ∧ ι∂̂bvolg + d
(
1
2
(∇avb −∇bva) ι∂̂aι∂̂bvolg

)
.

The k = 1 component of the homotopy momentum map, which was given in (8) by
the general formula µ1(v) = −jv + ιv̂γ, is

µ1(v) = −2Gabva ∧ ι∂̂bvolg − d
(
1
2
(∇avb −∇bva) ι∂̂aι∂̂bvolg

)

+ gadgbc(∇cδgab −∇aδgbc)v
e ∧ ι∂̂dι∂̂evolg .

Remark 4.3. The Noether current of a symmetry is determined only up to a d-
closed form. Usually, the second summand of (30) is dropped, so that the Noether
current is C∞(M)-linear in v and can be interpreted as the energy-momentum tensor
Gab. Here, we must take (30) as Noether current so that µ is a homomorphism of
L∞-algebras.
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