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A LIE THEORETIC CATEGORIFICATION OF THE COLOURED

JONES POLYNOMIAL

CATHARINA STROPPEL AND JOSHUA SUSSAN

Abstract. We use the machinery of categorified Jones-Wenzl projectors to
construct a categorification of a type A Reshetikhin-Turaev invariant of ori-
ented framed tangles where each strand is labeled by an arbitrary finite-
dimensional representation. As a special case, we obtain a categorification
of the coloured Jones polynomial of links.
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1. Introduction

The discovery of the quantum group in the 1980’s led to remarkable applications
in topology, giving rise to invariants of tangles and 3-manifolds. While this is still
an active area of study, a different direction in the application of quantum groups to
topology was proposed by Crane and Frenkel [20]. The philosophy of categorifcation
is that algebraic structures giving rise to topological invariants should be replaced
by structures of a higher categorical level and these higher structures should give
rise to topological invariants of one dimension higher.

The first concrete realization of this philosophy was constructed by Khovanov
who assigned a complex of graded vector spaces to an oriented link embedded
in S3. As a result, one gets a homological invariant of links whose graded Euler
characteristic is the Jones polynomial. It was later proved by Khovanov [37] and
independently by Jacobsson [30] and then Lie theoretically in [59] that a surface
bounded by two links induces a chain map of the Khovanov complexes which in
turn becomes a topological invariant of the surface, up to signs. The sign incon-
sistency was subsequently fixed in various ways: Blanchet [11] via singular foams,
Clark-Morrison-Walker [18] via cobordisms with disorientation lines, and Ehrig-
Stroppel-Tubbenhauer [21] via a sign modified arc algebra. Seidel and Smith [52]
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reconstructed Khovanov homology using symplectic geometry. Using the geometry
of the affine Grassmanian [17], Cautis and Kamnitzer gave an algebraic-geometric
formulation of Khovanov homology.

Another approach to the categorification of the Jones polynomial was developed
by Bernstein, Frenkel, and Khovanov [8]. They proposed a categorification of the
tangle invariant constructed by Reshetikhin and Turaev where each strand of the
tangle is labeled by the two-dimensional irreducible representation V1 of Uq(sl2).
The main construction of their work is a category whose complexified Grothendieck
group is isomorphic to a tensor power of the standard two-dimensional represen-
tation of U(sl2) along with functors on this category which induce an action of
the enveloping algebra and the Temperley-Lieb algebra on the Grothendieck group.
Relations in these algebras are upgraded to isomorphisms of functors. The cate-
gories involved are categories of highest weight representations of the Lie algebra
gln, the so-called category O. Their conjectures were proved and categorification
of the tangle invariant was completed by the first author [58]. The Koszul grading
that these highest weight categories possess was used to construct a categorification
of the action of the quantum group and of the Temperley-Lieb algebra (such that
the generic parameter q corresponds to a shift in the grading). A proof that the
functor associated to a given tangle diagram is invariant under the Reidemeister
moves was given, and hence a categorification of the Reshetikhin-Turaev tangle
invariant established. In [60] a functor to Khovanov’s construction was established.

The next development in the categorification of the representation theory of
Uq(sl2) was a categorification of tensor products of arbitrary finite-dimensional
representations of Uq(sl2) [24]. This construction uses categories of Harish-Chandra
bimodules. This program was continued in [25] where a categorification of the
Jones-Wenzl projector and 3j-symbols was given.

In the present paper we use the machinery developed in [25] to construct a cat-
egorification of the Reshetikhin-Turaev invariant of oriented framed tangles where
each strand is labeled by an arbitrary finite-dimensional representation. In the spe-
cial case of a (0,0)-tangle, we get a categorification of the the coloured Jones poly-
nomial. The proof that we get a tangle invariant relies on the main theorem of [58],
a study of twisting functors on subcategories of O given by projectively presented
subcategories, along with a categorical characterization of the Jones-Wenzl projec-
tor provided in [25]. We assign functors Φ̂col(D) to each oriented framed tangle

diagramD and establish the following functor valued invariant Φ̂col(−)⟨3γ(cab(−))⟩:

Theorem 1. Let D1 and D2 be two diagrams for an oriented, framed, coloured
tangle T from points coloured by d to points coloured by e. Then

Φ̂col(D1)⟨3γ(cab(D1))⟩ ≅ Φ̂col(D2)⟨3γ(cab(D2))⟩.

The induced morphism on the Grothendieck group is the morphism of modules for
the quantum group Uq(sl2) associated to T by Reshetikhin and Turaev.

The first categorification of the coloured Jones polynomial was constructed by
Khovanov [36]. His construction is based upon his earlier categorification of the
Jones polynomial and a certain cabling procedure which differs from the one given
here. His invariant is different from ours since coloured Khovanov homology is non-
zero in finitely many degrees whereas our construction lies in an unbounded derived
category and a computation for the unknot shows that there is in general non-zero
homology in infinitely many degrees. On the level of graded Euler characteristics,
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the constructions of course coincide. Beliakova and Wehrli [7], extended [36] using
Bar-Natan’s formulation, and also constructed a Lee deformation [40].

Webster [66] constructed a categorification of the Reshetikhin-Turaev invariant
for quantum groups attached to arbitrary simple complex Lie algebras and in partic-
ular for Uq(sl2). It appears via a chain of non-trivial equivalences to be equivalent to
the construction here. Webster’s work is based upon diagrammatically defined al-
gebras generalizing cyclotomic quotients of algebras constructed by Khovanov and
Lauda, and independently Rouquier [38], [39], [49]. For the connection between
KLR-algebras, Khovanov’s algebra and category O see [12], [14], [60].

Cooper and Krushkal [19] categorified the Jones-Wenzl projector and the coloured
Jones polynomial using Bar-Natan’s formulation of Khovanov homology [5]. Their
categorification of the Jones-Wenzl projector agrees with ours and the earlier con-
struction in [24] up to Koszul duality, [62]. Rozansky also constructed a categori-
fication of the projector coming from the knot homology of torus braids [50]. This
construction was generalized by Cautis [16].

If we allow only fundamental representations as colours then our construction
gives an invariant of oriented tangles [58]. The proof of Theorem 1 and its straight-
forward slk generalisation rely substantially on two ideas: i) Every irreducible rep-
resentation is the quotient of some tensor product of fundamental representation.
ii) The projection operator onto this summand slides through the braiding maps
and through evaluation and coevaluation maps (corresponding to cup and cap tan-
gles). We categorify these properties. They reduce the check of Reidemeister moves
to the case of fundamental colours, except for the first Reidemeiser move. Here,
only the weaker version for framed framed oriented tangles can be shown.

The coloured Jones polynomial plays an important role in the construction of the
Reshetikhin-Turaev 3-manifold invariant [48]. One fixes a 3-manifold and a framed
link such that surgery on the link gives the 3-manifold. A summation over all colours
assigned to the link components of the corresponding coloured Jones polynomials
is invariant under the Kirby moves, so it is in fact a 3-manifold invariant, [48]. In
order to avoid an infinite summation, Reshetikhin and Turaev consider however
a quantum group at a root of unity, where there are only finitely many finite-
dimensional irreducible representations. Thus a categorification of this invariant,
as well as the Turaev-Viro invariant, requires a categorification of the Jones-Wenzl
projector at a root of unity. Here, together with [25], we establish the basics for a
categorification of the representation theory for generic q.

Overview of the paper. In Section 2, we review the representation theory of
Uq(sl2) and show how one can construct tangle invariants and the coloured Jones
polynomial from it. In Section 3, we summarize the Bernstein-Frenkel-Khovanov-
Stroppel categorification of tensor products of arbitrary finite-dimensional repre-
sentation of Uq(sl2). The Bernstein-Gelfand functors between category O and
categories of Harish-Chandra bimodules are reviewed and used to categorify the
inclusion and projection morphisms of tensor products of representations. We give
a new description of the categorical Jones-Wenzl projector in Section 4. This for-
mulation utilizes Lauda’s sl2 category as well as some facts about the cohomology
of Grassmannians. In Section 5 we review the categorification of the Jones polyno-
mial conjectured in [8] and proved in [58]. A study of twisting functors and their
adjoints acting on subcategories of O is given in Section 6. The main result of this
section is that certain compositions of twisting functors map a derived category
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of projectively presented objects to another such category and consequently a cat-
egorification of the action of the R-matrix. The main theorem and its proof are
included in Section 7. We use Sections 5 and 6 to show that if two diagrams are
related by a Reidemeister move, then the assigned functors are isomorphic.

Acknowledgements. The authors are very grateful to Sabin Cautis, Mikhail Kho-
vanov, and You Qi for helpful conversations.

J.S. is partially supported by the NSF grant DMS-1807161 and PSC CUNY
Award 64012-00 52. J.S. gratefully acknowledges support from the Simons Center
for Geometry and Physics, Stony Brook University at which some of the research for
this paper was performed. He would also like to thank the Max Planck Institute for
Mathematics in Bonn and the Hausdorff Center of Mathematics for its hospitality
during the early stages of this project.

2. Representation theory of Uq(sl2)

In this section we recall basic structures on the representation theory of Uq(sl2)
from [32] and [33] and review the corresponding Reshetikhin-Turaev invariant for
oriented framed tangles. All this will later be categorified.

2.1. Representations. Let C(q) be the field of complex rational functions in an
indeterminate q. Later on we will also work with the ring of integral formal power
series of finite order in q which we denote by Z((q)). An element of Z((q)) is a
formal Laurent series, ∑i∈Z aiq

i, in q with coefficients ai ∈ Z with ai = 0 for almost
all i < 0.

Definition 1. Let Uq = Uq(sl2) be the associative algebra over C(q) generated by
E,F,K,K−1 satisfying the relations:

(i) KK−1 =K−1K = 1,
(ii) KE = q2EK,

(iii) KF = q−2FK,

(iv) EF − FE = K−K−1

q−q−1
.

Let [k] = ∑k−1
j=0 q

k−2j−1 and [n
k
] = [n]!

[k]![n−k]! . Let V̄n be the unique (up to isomor-

phism) irreducible module for sl2 of dimension n+1. Denote by Vn its quantum ana-
logue (of type I), that is the irreducible Uq(sl2)-module with basis {v0, v1, . . . , vn}
such that

(1) K±1vi = q
±(2i−n)vi Evi = [i + 1]vi+1 Fvi = [n − i + 1]vi−1.

There is a unique bilinear form ⟨ , ⟩′ ∶ Vn × Vn → C(q) which satisfies

(2) ⟨vk, vl⟩′ = δk,lqk(n−k)[n
k
].

The vectors {v0, . . . , vn} where vi = 1
[n
i
]vi form the dual standard basis characterised

by ⟨vi, vi⟩′ = qi(n−i). Recall that Uq is a Hopf algebra with comultiplication

(3) △(E) = 1⊗E+E⊗K−1, △(F ) =K⊗F+F⊗1, △(K∓1) =K∓1⊗K∓1.
and antipode S defined as S(K) = K−1, S(E) = −EK and S(F ) = −K−1F . Thus,
the tensor product Vd ∶= Vd1

⊗⋯⊗Vdr
has the structure of a Uq-module with standard

basis {va = va1
⊗⋯⊗var

} where 0 ≤ aj ≤ dj for 1 ≤ j ≤ r. Denote by va = va1⊗⋯⊗var

the corresponding tensor products of dual standard basis elements.
4



(1) . . . (i) (i+1) . . . (n)

(1) . . . (i) (i+1) . . .(n + 2)

Figure 2.1 The intertwiners ∩i,n and ∪i,n.

Remark 2. We made a specific convenient choice of comultiplication. Others might
be taken as well. For instance, if we set Ẽ = KE, F̃ = FK, K̃ = K and ṽ0 = v0,
ṽ1 = qv1 in V1, then Ẽ, F̃ , K̃ satisfy the relations from Definition 1 and the structure
coefficients from (1) hold for the tilde-version. Formulas for the comultiplication of

these new generators are given by: △(Ẽ) = Ẽ⊗1+K⊗Ẽ and △(F̃ ) = 1⊗F̃+F̃⊗K−1.
When we categorify these structures later, the functors corresponding to Ẽ and F̃
agree with those for E and F up to a shift (encoded by K).

2.2. Jones-Wenzl projector and intertwiners. Next we define morphisms be-
tween various tensor powers of V1 which intertwine the action of the quantum group,
namely ∪∶C(q) → V ⊗21 and ∩∶V ⊗21 → C(q) which are given on the standard basis by

∪(1) = v1 ⊗ v0 − qv0 ⊗ v1, ∩(vi ⊗ vj) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if i = j

1 if i = 0, j = 1

−q−1 if i = 1, j = 0.

(4)

We define ∩i,n = Id
⊗(i−1)⊗ ∩ ⊗ Id⊗(n−i−1) and ∪i,n = Id

⊗(i−1)⊗ ∪ ⊗ Id⊗(n−i+1) as

Uq-morphisms from V ⊗n1 to V
⊗(n−2)
1 , respectively V

⊗(n+2)
1 . Let C ∶= ∪ ○ ∩ be their

composition and Ci ∶= Ci,n ∶= ∪i,n−2 ○ ∩i,n. We depict the cap and cup intertwiners
graphically in Figure 2.1 (reading the diagram from bottom to top), so that ∩ ○ ∪
is just a circle. In fact, finite compositions of these elementary morphisms generate
the C(q)-vector space of all intertwiners, see e.g. [23, Section 2].

If we encode a basis vector vd of V ⊗n1 as a sequence of ∧’s and ∨’s according to
the entries of d, where 0 is turned into ∨ and 1 is turned into ∧, then the formulas
in (4) can be symbolized by

∧ ∧

✓ ✏

= 0 = ,
∨ ∨

✓ ✏

∨ ∧

✓ ✏

= 1,
∧ ∨

✓ ✏

= −q−1, ⋃(1) = ∧
∨

− q

∨
∧

.

The symmetric group Sn acts transitively on the set of n-tuples with i ones and
n − i zeroes. The stabilizer of ddom ∶= (1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

i

,0, . . . ,0´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
n−i

) is Si × Sn−i. By sending

the identity element e to ddom we fix for the rest of the paper a bijection between
shortest coset representatives in Sn/Si × Sn−i and these tuples d. We denote by w0

the longest element of Sn and by wi
0 the longest element in Si × Sn−i. By abuse of

language we denote by l(d) the (Coxeter) length of d meaning the Coxeter length
of the corresponding element in Sn. We denote by ∣d∣ the numbers of ones in d.

Definition 3. For a = (a1, . . . , an) ∈ {0,1}n let va = va1
⊗ ⋯ ⊗ van

∈ V ⊗n1 be the
corresponding basis vector.
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● Let πn∶V
⊗n
1 → Vn be given by the formula

πn(va) = q−l(a) 1

[n∣a∣]v∣a∣ = q
−l(a)v∣a∣(5)

where l(a) is equal to the number of pairs (i, j) with i < j and ai < aj . This
gives the projection πi1 ⊗⋯⊗ πir ∶V

⊗(i1+⋯+ir)
1 → Vi1 ⊗⋯⊗ Vir .

● We denote by ιn∶Vn → V ⊗n1 the intertwining map

vk ↦ ∑
∣a∣=k

qb(a)va(6)

where b(a) = ∣a∣(n− ∣a∣)− l(a), i.e. the number of pairs (i, j) with i < j and
ai > aj . Define the inclusion ιi1 ⊗⋯⊗ ιir ∶Vi1 ⊗⋯⊗ Vir → V

⊗(i1+⋯+ir)
1 .

The composite pn = ιn ○ πn is the Jones-Wenzl projector. We symbolize the
projection, inclusion and the projector as follows

πn ιn pn

Remark 4. Note that the expression 1
[n
∣a∣
] can be written in a unique way as q−mH ,

where m ∈ Z≥0 and H is a formal power series in q with integral coefficients, hence
an element in Z((q)). For instance,
(7)

1

[2
1
] =

1

q−1 + q
= q−1

1

1 + q2
= q−1(1 − q2 + q4 − q6 + ⋯ ) ∈ Z((q)).

Example 5. For n = 2 we have ι2(v0) = v0 ⊗ v0, ι2(v1) = qv1 ⊗ v0 + v0 ⊗ v1,
ι2(v2) = v1 ⊗ v1, and π2(v0 ⊗ v0) = v0, π2(v1 ⊗ v0) = v1 = [2]−1v1, π2(v0 ⊗ v1) =
q−1v1 = q−1[2]−1v1, π2(v1 ⊗ v1) = v2. Using formula (7) we may view these as
morphisms of representations defined over C((q)).
Proposition 6. The endomorphism pn of V ⊗n1 is the unique Uq(sl2)-morphism
which satisfies (for 1 ≤ i ≤ n − 1):

(i) pn ○ pn = pn (ii) Ci,n ○ pn = 0 (iii) pn ○Ci,n = 0.

2.3. Reshetikhin-Turaev invariant. In this section we recall the Reshetikhin-
Turaev-Jones (coloured) tangle invariants. First note that the universal R-matrix
induces a representation of the braid group with n strands on V ⊗n1 . We first define
the morphisms Πi and Ωi corresponding to unoriented elementary braids.

Definition 7. Define Π∶V ⊗21 → V ⊗21 by Π = −q−1C − q−2 Id = −q−1(C + q−1 Id)
and then Πi = Id⊗i−1⊗Π ⊗ Id⊗n−i−1. Define Ω∶V ⊗21 → V ⊗21 by Ω = −qC − q2 Id =

−q(C + q) Id and then Ωi = Id
⊗i−1 ⊗Ω⊗ Id⊗n−i−1 .

(8)

☞☞☞☞☞☞☞

✷✷✷

✷✷✷

(1) . . . (i) (i+1) . . . (n)

Πi ∶
✷✷
✷✷
✷✷
✷

☞☞☞

☞☞☞

(1) . . . (i) (i+1) . . . (n)

Ωi ∶

For D an oriented tangle diagram, let γ(D) be the number of crossings of the
types shown in (9) minus the number of crossings of the types shown in (10).

(9)

☞☞☞☞☞☞☞

EE☞☞☞☞☞☞☞
✷✷✷

✷✷✷
YY✷✷✷

☞☞
☞☞
☞☞
☞

��☞☞
☞☞
☞☞
☞

✷✷
✷

��✷
✷✷

✷✷✷

(10)
☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷ ☞☞
☞
��☞☞
☞

☞☞☞

✷✷
✷✷
✷✷
✷

��✷
✷✷
✷✷
✷✷
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m n

=

n

m

⋯ ⋯
n

m

m

=
m m

⋯

Figure 2.2 Coloured crossings and caps (similarly cups) via cabling.

Given a (generic) tangle diagram D(T ) of a tangle T from n points to m points,
one can write D(T ) as a finite horizontal and vertical composition of elementary
cup, cap, and braid tangle diagrams from above. Taking the corresponding tensor
products and compositions of intertwiners, we may assign an intertwiner Φ(D(T ))
from V ⊗n1 to V ⊗m1 . In case T is additionally oriented we can associate the intertwiner

q3γ(D(T ))Φ(D(T )) where Φ(D(T )) ∶= Φ(D(T )′) and D(T )′ is obtained from D(T )
by forgetting the orientation.

Theorem 8. ([47, Theorem 5.1]) Let T be an oriented tangle from n points to m
points. Let D1 and D2 be two of its planar projections, written as a composition of
elementary tangle diagrams. Then q3γ(D1)Φ(D1) = q3γ(D2)Φ(D2)∶V ⊗n1 → V ⊗m1 . In

particular, T ↦ q3γ(D(T ))Φ(D(T )) is independent of the choice and presentation of
D(T ), hence defines an invariant of tangles.

This invariant is the well-known Reshetikhin-Turaev-Witten invariant of tangles,
[47]. In the special case of a tangle L from 0 points to 0 points, the tangle becomes a

link and q3γ(L)Φ(L)∶C(q)→ C(q) is the (depending on the definition, renormalised)
Jones polynomial. For a proof of the theorem it suffices to check that the morphisms
satisfy the so-called Reidemeister moves (see e.g. [47, Lemma 5.3]) depicted in (61)-
(66) with all labels removed. Let E be an elementary, oriented, framed tangle from
r (ordered) points to s (ordered) points such that each strand is labeled by a natural
number. This naturally induces a colouring (d1, . . . , dr) and (e1, . . . , es) on the r
respectively s points.

Given a coloured, oriented tangle dia-
gram D, one may form its cable cab(D)
which is obtained from D by drawing l
parallel copies of an uncoloured strand
for each strand coloured by l, e.g.

☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷

1

2

+3/o
/o

☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷☞☞
☞☞

�� .

To E one associates the morphism Φcol(E)∶Vd1
⊗ ⋯ ⊗ Vdr

Ð→ Ve1 ⊗ ⋯ ⊗ Ves
defined as Φcol(E) = (πe1 ⊗⋯⊗πes)○(Φ(cab(E)))○(ιd1

⊗⋯⊗ιdr
). For an arbitrary

tangle T with diagram D(T ) = Eαn
○ ⋯ ○Eα1

, we define the intertwiner Φcol(D) =
Φcol(Eαn

) ○ ⋯ ○Φcol(Eα1
). Up to some normalisation, this is well-defined.

Theorem 9. ([47] Theorem 5.1) Let T be an oriented, coloured, framed tangle from
the coloured points (d1, . . . , dr) to the coloured points (e1, . . . , es). Let D1 and D2

be two of its planar projections. Then

q3γ(cab(D1))Φcol(D1) = q3γ(cab(D2))Φcol(D2)∶ Vd1
⊗⋯⊗ Vdr

→ Ve1 ⊗⋯⊗ Ves .

In particular, T ↦ q3γ(cab(D))Φcol(D(T )) is independent of the choice and presen-
tation of D(T ) and defines an invariant of oriented coloured framed tangles.

For the proof it suffices to check that the morphisms satisfy the Reidemeister
moves given in (61), (63), (64), (65), (62) and (66). This can be done easily using

7



Theorem 8 and [23]. See [47] for more details. In the special case of a framed
coloured link, the invariant above becomes the coloured Jones polynomial.

Using Remark 4, all the constructions and representations and intertwiners con-
sidered so far make sense and can be defined over the base ring C((q)) instead of
C(q) which we will do from now on.
Hence from now on all the representations of the quantum group as well as the
quantum group itself is considered over the base ring C((q)).
2.4. An alternate form of Jones-Wenzl projectors. In this section we give
a description of the Jones-Wenzl projector purely in terms of the quantum group.
This formulation was used in [45] to investigate the projector on a certain weight
space when the quantum parameter is a root of unity. Define the divided power
elements of Uq(sl2) by

E(k) =
Ek

[k]! F (k) =
F k

[k]! .
The following identities are well known and can easily proved by induction:

∆(E(k)) = k

∑
i=0

q−i(k−i)E(k−i) ⊗E(i)K−k+i, ∆(F (k)) = k

∑
i=0

qi(k−i)KiF (k−i) ⊗ F (i).

Let 1−n+2k ∶V
⊗n
1 → V ⊗n1 denote the map projecting V ⊗n1 onto the weight space

where K acts by the scalar q−n+2k.

Theorem 10. Restricting to the weight space of V ⊗n1 where K acts as the scalar

q2k−n, the Jones-Wenzl projector may be expressed as

(11) pn =
E(k)F (k)

[n
k
] ∶= pk,n.

Proof. We will show that the operator is an intertwiner and satisfies the following
properties. By the uniqueness result from Proposition 6, (11) will then follow.

(i) E(k)F (k)

[n
k
] ○ E(k)F (k)

[n
k
] = E(k)F (k)

[n
k
] ,

(ii) Ci,n ○
E
(k)

F
(k)

[n
k
] = 0,

(iii) E(k)F (k)

[n
k
] ○Ci,n = 0.

First we check that pk,n is an intertwiner. We must show that Epk,n = pk+1,nE.

It is easy to see that Epk,n =
[k+1]E(k+1)F (k)

[n
k
] . We calculate

pk+1,nE =
1

[ n

k+1
]E(k+1)F (k+1)E =

[n − k]
[ n

k+1
] E(k+1)F (k) =

[k + 1]E(k+1)F (k)
[n
k
] = Epk,n,

where we used [39, (2.11)] for the second equality. Note that while there are two
terms in formula [39, (2.11)], one of them vanishes due to weight space considera-
tions. Similarly one can show Fpk,n = pk−1,nF . It is obvious that pk,n commutes

with K±1. To prove that the operator E
(k)

F
(k)

[n
k
] is idempotent, we calculate

E(k)F (k)E(k)F (k) = [n
k
]E(k)F (k).

8



using [39, (2.11)]. Note that all but one term in that formula vanish due to weight

space considerations. It now follows immediately that E(k)F (k)

[n
k
] is an idempotent.

By construction the operator F (k) maps the weight space which consists of eigen-
vectors for the eigenvalue q2k−n to the lowest weight space. On the lowest weight
space Ci,n acts as zero. Thus

Ci,n ○
E(k)F (k)

[n
k
] = 0 =

E(k)F (k)

[n
k
] ○Ci,n. �

Thus we may write the Jones-Wenzl projector as

pn =
n

∑
k=0

E(k)F (k)

[n
k
] 1−n+2k.

We now give an independent proof that the Jones-Wenzl projectors defined in
terms of the quantum group slide along cups. While this fact is already guaranteed
by Theorem 9 and Theorem 10, this proof of projector sliding will be useful later
when trying to prove the categorified statement.

Let Cn∶C → V ⊗n1 ⊗ V ⊗n1 be the intertwiner associated to n nested cups.

Lemma 11. For k ≤ n there is an equality

(F (k) ⊗ 1) ○Cn = (−1)kqk(k−1)(Kk ⊗ F (k)) ○Cn.

Proof. This is proved by induction on k. For the base case k = 1 first recall that
∆(F ) =K ⊗F +F ⊗ 1. Then (F ⊗ 1) ○Cn = F ○Cn − (K ⊗F ) ○Cn = −(K ⊗F ) ○Cn,
where the second equality follows from the fact that Cn maps C into the invariant

subspace of V
⊗(2n)
1 , which is annihilated by F .

Now let us assume that the statement is proved for j < k. Then we have

(F (k) ⊗ 1) ○Cn =
(F ⊗ 1)
[k] (F (k−1) ⊗ 1) ○Cn

=
(F ⊗ 1)
[k] (−1)k−1q(k−1)(k−2)(Kk−1 ⊗ F (k−1)) ○Cn

=
(−1)k−1
[k] q(k−1)(k−2)q2k−2(Kk−1 ⊗F (k−1))(F ⊗ 1) ○Cn

= (−1)kqk(k−1)(Kk ⊗F (k)) ○Cn

where the second equality holds by induction, the third equality follows from the
fact that F and Kk−1 commute up to a power of q, and the fourth equality follows
from the base case of the induction. �

Lemma 12. For k ≤ n there is an equality

(E(k) ⊗ 1) ○Cn = (−1)kq−k(k−1)(1⊗Kk)(1⊗E(k)) ○Cn.

Proof. We will prove by induction on k

(12) (E(k) ⊗K−k) ○Cn = (−1)kq−k(k−1)(1⊗E(k)) ○Cn.

The lemma then follows by multiplying (12) on the left by (1 ⊗Kk). In order to
prove the base case of (12) recall that ∆(E) = 1⊗E+E⊗K−1. Then (E⊗K−1)○Cn =
E ○Cn− (E⊗K−1) = −(1⊗E) ○Cn, where the second equality follows from the fact

that Cn maps C into the invariant subspace of V
⊗(2n)
1 which is annihilated by E.

9



Now let us assume that the statement is proved for j < k. Then we have

(E(k) ⊗K−k)⊗Cn =
(E ⊗K−1)
[k] (E(k−1) ⊗K1−k) ○Cn

=
(E ⊗K−1)
[k] (−1)k−1q−(k−1)(k−2)(1⊗E(k−1)) ○Cn

=
(−1)k−1q−(k−1)(k−2)q−2k+2

[k] (1⊗E(k−1))(E ⊗K−1) ○Cn

= (−1)kq−k(k−1)(1⊗E(k)) ○Cn

where the second equality is the induction hypothesis, the third equality follows
from the fact that K−1 and E(k−1) commute up to a power of q, and the fourth
equality follows from the base case. �

Proposition 13. We have the equality

(E(n)F (n) ⊗ 1) ○Cn = (1⊗ F (n)E(n))(Kn ⊗Kn) ○Cn.

Proof. We calculate that (E(n)F (n) ⊗ 1) ○Cn equals

(E(n) ⊗ 1)(F (n) ⊗ 1) ○Cn = (−1)nqn(n−1)(E(n) ⊗ 1)(Kn ⊗ F (n))⊗Cn

= (−1)nqn(n−1)q(−2n2)(Kn ⊗ F (n))(E(n) ⊗ 1) ○Cn

= q(−2n
2)(Kn ⊗ F (n))(1⊗Kn)(1⊗E(n)) ○Cn

= (1⊗ F (n)E(n))(Kn ⊗Kn) ○Cn

using Lemmas 11 and 12 in the second last equalities respectively. �

The next proposition says that Jones-Wenzl projectors slide along cup diagrams.
This is crucial in proving that the Reshetikhin-Turaev invariant is indeed an invari-
ant of coloured framed tangles. The important ingredients in proving this proposi-
tion are the formulas for comultiplication of divided powers along with the fact that

nested cups map the trivial representation into an invariant subspace of V
⊗(2n)
1 .

Proposition 14. There is an equality of intertwiners

( n

∑
k=0

E(k)F (k)

[n
k
] 1−n+2k ⊗ 1) ○Cn = (1⊗ n

∑
k=0

E(k)F (k)

[n
k
] 1−n+2k) ○Cn.

Proof. The intertwiner Cn maps C into the zero weight space of V
⊗(2n)
1 , thus

(13) (1−n+2k ⊗ 1) ○Cn = (1⊗ 1n−2k) ○Cn.

Then by Proposition 13 and [39, (2.11)], we have

( n

∑
k=0

E(k)F (k)

[n
k
] 1−n+2k ⊗ 1) ○Cn = (1⊗ n

∑
k=0

F (k)E(k)

[n
k
] 1−n+2k) ○Cn

= (1⊗ n

∑
k=0

E(k)F (k)

[n
k
] 1−n+2k) ○Cn

noting again that all terms from [39, (2.11)] vanish except one. �
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3. Categorification of tensor products

For an abelian (or triangulated) category A we denote by [A] the Grothendieck
group of A which is by definition the free abelian group generated by the isomor-
phism classes [M] of objectsM in A modulo the relation [C] = [A]+ [B] whenever
there is a short exact sequence (or distinguished triangle) of the form A→ C → B.
When A is a triangulated category, denote n compositions of the shift functor by⟦n⟧. In the followingA will always be a (derived) category of Z-graded modules over
some finite-dimensional algebra A. Hence the category has an internal Z-grading
(and a homological grading) and so [A] has a natural Z[q, q−1]-module structure
where q acts by shifting the internal grading up by 1. We denote by ⟨i⟩ the functor
which shifts the internal grading up by i, so that if M is concentrated in inter-
nal degree zero, then M⟨i⟩ is concentrated in internal degree i. Similarly, if M is
concentrated in homological degree zero, then M⟦i⟧ is concentrated in homological
degree i. In the following we will mostly work with C((q))⊗Z[q,q−1] [A] and call it
the Grothendieck space.

The categorification of both, the 3j-symbol [25] and the coloured Jones polyno-
mial is based on a categorification of the representation V ⊗n1 and the Jones-Wenzl
projector. By this we roughly mean that we want to upgrade each weight space
into a Z-graded abelian category with the action of E, F and K, K−1 via exact
functors (see below for more precise statements). Such categorifications were first
constructed in [8, 24] via graded versions of the category O for gln and various
functors acting on this category. We refer to [25, Section 6] for the example for
n = 2.

3.1. Categorification of V ⊗n1 . We start by recalling the Lie theoretic categori-

fication of V
⊗n

1 . Let n be a non-negative integer. Let g = gln be the Lie algebra
of complex n × n-matrices. We fix the standard Cartan subalgebra h ⊂ g with its
basis given by diagonal matrices: {E1,1, . . . ,En,n} for i = 1, . . . , n. The dual space
h∗ comes with the dual basis {ei ∣ i = 1, . . . , n} with ei(Ej,j) = δi,j . The nilpotent
subalgebra of strictly upper diagonal matrices spanned by {Ei,j ∣ i < j} is denoted
n+. Similarly, let n− be the subalgebra consisting of lower triangular matrices. We
fix the standard Borel subalgebra b = h⊕n+. For any Lie algebra L we denote
by U(L) its universal enveloping algebra, so L-modules are the same as (ordinary)
modules over the ring U(L).

Let W = Sn denote the Weyl group of gln generated by simple reflections (=sim-
ple transpositions) {si,1 ≤ i ≤ n−1}. For w ∈W and λ ∈ h∗, let w ⋅λ = w(λ+ρn)−ρn,
where ρn =

n−1
2
e1 +⋯+

1−n
2
en. In the following we will always consider this action.

For λ ∈ h∗ we denote by Wλ the stabilizer of λ ∈ h∗.

Definition 15. We denote by O =O(gln) the full subcategory of finitely-generated
U(g)-modules M which decompose into finite-dimensional weight spaces Mλ for h
and are U(b)-finite (i.e. each vector lies in a finite-dimensional subspace stable
under b). For n = 0 we denote by O the category of finite-dimensional complex
vector spaces.

This category was introduced in [10]. In addition to all finite-dimensional mod-
ules, the category also contains the Verma modules M(λ) = U ⊗U(b) Cλ for any
1-dimensional h-module Cλ. (Here λ ∈ h∗ and Cλ is the module where h ∈ h

acts by multiplication with λ(h) and n+ acts trivially). We call λ the highest
11



weight of M(λ). The category is closed under taking submodules and quotients,
and under tensoring with finite-dimensional g-modules. In fact it is the smallest
abelian category containing all Verma modules and closed under tensoring with
finite-dimensional modules. For details and standard facts we refer to [29].

Every Verma module M(λ) has a unique simple quotient which we denote by
L(λ). The latter form precisely the isomorphism classes of simple objects in O.
Moreover, the category has enough projectives. Let P (λ) be the projective cover of
L(λ) in O. The category O decomposes into indecomposable summands Oλ, called
blocks, under the action of the centre of U(g). L(λ) and L(µ) are then in the same
block if their highest weights are in the sameW -orbit (as defined above). Hence the
blocks are labeled by the maximal representatives of the W -orbits, maximal with
respect to the Bruhat ordering on h∗. We call these representatives λ dominant
weights since they are in the dominant chamber with respect to ourW -action. Then

the L(w⋅λ), w ∈W /Wλ are precisely the simple objects inOλ. Weight spaces of V
⊗n

1

will be categorified using the blocks Oλ(gln), which by abuse of notation we will call
Ok(gln), corresponding to the integral dominant weights e1+⋯+ek−ρn for 0 ≤ k ≤ n.
When k = 0, the corresponding λ is −ρ. To make calculations easier denote also
by M(a1, . . . , an) the Verma module with highest weight a1e1 +⋯+ anen − ρn with
simple quotient L(a1, . . . , an) and projective cover P (a1, . . . , an) in O(gln). They
are all in the same block and belong to Ok(gln) if and only if k of the aj ’s are 1
and n − k of them are 0.

Each block of O is equivalent to a category of modules over a finite-dimensional
algebra, although this algebra is very difficult to describe in general, see [56] for
small examples. Therefore, our arguments will be Lie theoretic in general, but keep-
ing in mind that in principle everything could be formulated in terms of modules
over certain graded finite-dimensional algebras.

In the following we will focus on the blocks Ok and formulate the statements for
them only, although most of them are true in general. Each block can be enriched
(in a non-trivial way) with the structure of a Z-grading as follows. Let Ak,1n denote
the endomorphism algebra of a minimal projective generator Pk of Ok (for explicit
examples see again [56]). We identify Ok with the category of right Ak,1n -modules
via the functor Homg(Pk,− ). Then it is a non-trivial fact that the algebra Ak,1n

can be equipped with a non-negative grading, actually a Koszul grading, see [6].
Hence we may consider a graded version of the category Ok, that is the category

gmod−Ak,1n of finite-dimensional, graded right modules over Ak,1n and try to lift
all the representation theory to the graded setting. This has been worked out in
[56], so we just recall the results. Each object M specifically mentioned earlier

in category O has a graded lift M̂ in the category gmod−Ak,1n . These lifts are
in fact unique up to isomorphism and shift in the grading. We pick such lifts
P̂(a1, . . . , an), M̂(a1, . . . , an) and L̂(a1, . . . , an) by requiring that their heads are
concentrated in degree zero. (The choice is then unique up to isomorphism).

Category O has a duality d which just amounts to an identification of Ak,1n

with its opposite algebra by taking the usual vector space dual. In particular
we can also work with the category Ak,1n − gmod of graded left modules. Let

d̂ = HomAk,1n
(−,C) denote the graded lift of this duality normalized such that it

preserves the L̂(a1, . . . , an)’s. Let ∇̂(a1, . . . , an) = d̂(M̂(a1, . . . , an)) and then let

∇(a1, . . . , an) be the module after forgetting the grading. Similarly Î(a1, . . . , an) =
d̂(P̂(a1, . . . , an)) is the injective hull of L̂(a1, . . . , an) and I(a1, . . . , an) denotes the
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module when forgetting the grading. One can work out these modules for the
explicit small examples in [56] in terms of representations of quivers.

Let ⟨r⟩ ∶ gmod−Ak,1n → gmod−Ak,1n be the functor of shifting the grading up
by r (such that if M = Mi is concentrated in degree i then M⟨r⟩ = M⟨k⟩i+r is
concentrated in degree i+r). The additional grading turns the Grothendieck group
into a Z[q, q−1]-module, the shift functor ⟨r⟩ induces the multiplication by qr.

Proposition 16. [24, Theorem 4.1, Theorem 5.3] There is an isomorphism

Φn ∶ C((q))⊗Z[q,q−1] [ n

⊕
k=0

gmod−Ak,1n] ≅ V ⊗n1 .(14)

[M̂(a1, . . . , an)] ↦ va1
⊗ va2

⊗⋯⊗ van

of C((q))-modules. The images of the isomorphism classes [L̂(a1, . . . , an)] of simple
modules are Lusztig’s dual canonical basis elements va1♡va2♡⋯♡van .

The following theorem categorifies the Uq-action. The generator E acts just by a

graded lift Ê of tensoring with the natural representation and then projecting onto
the corresponding block (and F with the adjoint), whereasK acts by an appropriate
grading shift on each block. We state the theorem abstractly below and refer to
[24] for details.

Theorem 17 ([24, Theorem 4.1]). There are exact functors of graded categories

Êk ∶ gmod−Ak,1n → gmod−Ak+1,1n , F̂k∶ gmod−Ak,1n → gmod−Ak−1,1n ,

K̂±1k ∶ gmod−Ak,1n → gmod−Ak,1n

such that

K̂i+1Êi ≅ ÊiK̂i⟨2⟩, K̂i−1F̂i ≅ F̂iK̂i⟨−2⟩, K̂iK̂−1i ≅ Id ≅ K̂
−1
i K̂

1
i ,

Êi−1F̂i⊕
n−i−1

⊕
j=0

Id⟨n − 2i − 1 − 2j⟩ ≅ F̂i+1Êi⊕
i−1

⊕
j=0

Id⟨2i − n − 1 − 2j⟩,
and the isomorphism (14) becomes an isomorphism of Uq(sl2)-modules.

3.2. Categorification of the Jones-Wenzl projector. In order to categorify
more general tensor products, we introduce the category kH1

d
(gln) of certain Harish-

Chandra bimodules. For details on these specific categories we refer to [42]. For
basics on the category of (generalised) Harish-Chandra bimodules see [9], [31, Kapi-
tel 6], and for its description in terms of Soergel bimodules see [54], [61].

Definition 18. Let g = gln and define for µ, λ dominant integral λH1
µ(g) to be the

full subcategory of U(g)-bimodules of finite length with objects M satisfying the
following conditions

(i) M is finitely-generated as a U(g)-bimodule,
(ii) every element m ∈M is contained in a finite-dimensional vector space stable

under the adjoint action x.m = xm −mx of g (where x ∈ g, m ∈M),
(iii) for anym ∈M we havemIµ = 0 and there is some n ∈ Z>0 such that (Iλ)nm = 0,

where Iµ, respectively Iλ is the maximal ideal of the centre of U(g) correspond-
ing to µ and λ under the Harish-Chandra isomorphism. (One usually says M
has generalised central character χλ from the left and central character χµ

from the right).
13



We call the objects in these categories Harish-Chandra bimodules. Here is the
construction of the simple objects of these categories. Given two g-modules M
and N we can form the space HomC(M,N) which is naturally a g-bimodule, but
very large. We denote by L(M,N) the ad-finite part, that is the subspace of
all vectors lying in a finite-dimensional vector space invariant under the adjoint
action X.f ∶= Xf − fX for X ∈ g and f ∈ HomC(M,N). This is a Harish-Chandra
bimodule and the simple objects in λH1

µ(g) are precisely the bimodules of the form
L(M(µ), L(w.λ)), where w is a longest element representative in the double coset
space Sµ/Sn/Sλ where Sµ,Sλ are the stabilizers of µ respectively λ (see [31, 6.23]
for details). The Bernstein-Gelfand-Joseph-Zelevinsky inclusion functor realizes the
category of Harish-Chandra bimodules as a subcategory of O, see [9], [31].

Definition 19. Let λ,µ be integral dominant weights. Let Oλ,µ(gln) be the full
subcategory of Oλ(gln) consisting of modules M with projective presentations
P2 → P1 → M → 0 where P1 and P2 are direct sums of projective objects of the
form P (x.λ) where x is a longest element representative in the double coset space
Sµ/Sn/Sλ. Then there are functors

λπ̄µ∶Oλ(gln) → λH1
µ(gln), λπ̄µ(X) = L(M(µ),X),(15)

λῑµ∶λH1
µ(gln)→ Oλ(gln), λῑµ(M) =M ⊗U(gln)M(µ).(16)

Theorem 20. ([9]) The functors λῑµ and λπ̄µ provide inverse equivalences of cat-
egories between Oλ,µ(gln) and λH1

µ(gln).
If the stabilizer of λ is equal Sk × Sn−k and the stabilizer of µ is equal to Sd =

Sd1
× ⋯ × Sdr

, then we denote the categories in Theorem 20 by Ok,d(gln) and

kH1
d
(gln) respectively. The following might be viewed, together with Proposition

16, as a categorical version of [23, Theorem 1.11].

Proposition 21. (i) λπ̄µ maps simple objects to simple objects or zero. All sim-
ple Harish-Chandra bimodules are obtained in this way.

(ii) The simple objects in λH1
µ(gln) = kH1

d
(gln) are precisely the L(M(µ), L(x.λ))

where x is a longest element representative in the double coset space Sµ/Sn/Sλ.
Denote the simple modules in kH1

d
(gln) by:

L (k1, d1∣k2, d2∣⋯∣kr, dr) ∶= L(M(µ), L(0, . . . ,0,´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
d1−k1

1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k1

,⋯,0, . . . ,0´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
dr−kr

,1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
kr

)).
Proof. This is clear from the definition of the functors and the classification of
simple Harish-Chandra bimodules, see [31]. �

Definition 22. The proper standard module labeled by (k1, d1∣k2, d2∣⋯∣kr , dr) is
defined to be

▲ (k1, d1∣k2, d2∣⋯∣kr , dr)
∶= L(M(µ),M(0, . . . ,0,´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶

d1−k1

1, . . . ,1,´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
k1

⋯0, . . . ,0,´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¶
dr−kr

1, . . . ,1´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
kr

)) ∈ kH1
d
(gln).

The name comes from the fact that this family of modules form the proper standard
objects in a fully stratified structure (see Lemma 53 and [15, 42] for details.)

Definition 23. The standard objects are defined as parabolically induced ‘big pro-
jectives’ in category O for the Lie algebra gld ∶= gld1

⊕ gld2
⊕⋯⊕ gldr

. In formulas:

∆ (k1, d1∣k2, d2∣⋯∣kr , dr) ∶= U(gln)⊗U(p) (P (0d1−k11k1) ⊠⋯⊠P (0dr−kr1kr)) ,
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where the gld-action is extended by zero to p = gld + n
+, see [42, Proposition 2.9].

Let Ak,d be the endomorphism algebra of a minimal projective generator of
Ok,d(gln). This algebra naturally inherits a grading from Ak,1n and so via the
Bernstein-Gelfand equivalence, we may consider the graded category of Harish-
Chandra right modules gmod−Ak,d. Let

L̂ (k1, d1∣k2, d2∣⋯∣kr , dr) , ▲̂ (k1, d1∣k2, d2∣⋯∣kr , dr) , ∆̂ (k1, d1∣k2, d2∣⋯∣kr, dr)
be the standard graded lifts with head concentrated in degree zero for the first
two and −∏r

i=1 ki(di − ki) for the last one of the corresponding Harish-Chandra
bimodules.

Lemma 24 ([25, Lemma 44]). . There are graded lifts of the BG-functors

kπ̂d∶ gmod−Ak,1n → gmod−Ak,d(17)

k ι̂d∶ gmod−Ak,d → gmod−Ak,1n ,(18)

which naturally commute with the Uq(sl2)-action from Theorem 17.

The Uq-action from Theorem 17 by exact functors restricts to the subcategories
Ok,d(gln), hence defines also an action on kH1

d
(gln). It induces the following iso-

morphism.

Theorem 25 (Arbitary tensor products and its integral structure).
There is an isomorphism of Uq(sl2)-modules

Φd ∶ C((q))⊗Z[q,q−1] [ n⊕
k=0

gmod−Ak,d] ≅ Vd1
⊗⋯⊗ Vdr

[L̂ (k1, d1∣k2, d2∣⋯∣kr , dr)] z→ vk1♡vk2♡⋯♡vkr ,(19)

This isomorphism sends proper standard modules to the dual standard basis:

[▲̂ (k1, d1∣k2, d2∣⋯∣kr , dr)] z→ vk1 ⊗ vk2 ⊗⋯⊗ vkr .(20)

Proof. See [25, Theorem 45]. �

While the functor kπ̂d is exact, the functor k ι̂d is only right exact. Let

L(k ι̂d) ∶ D<(gmod−Ak,d)→D<(gmod−Ak,1n)
be the left derived functor of k ι̂d, where we use the symbol D<(?) to denote the full
subcategory of the derived category D(?) consisting of complexes bounded to the
right. In particular, for ? =Ok,d(gln), gmod−Ak,1n , kH1

d
(gln), or gmod−Ak,d, any

complex in D<(?) with cohomology only in finitely many places is quasi-isomorphic
to a complex of projectives from ?. Note also that L(kπ̂d) = kπ̂d and the functors
from the Uq(sl2)-action extend uniquely to the corresponding D<(?). In case ? is
graded, let D▽(?) denote the full subcategory of D<(?) consisting of all complexes
K● in D<(?) such that the graded Euler characteristic ∑i∈Z(−1)i[Ki] is a well-
defined element in C((q)) ⊗Z[q,q−1] [?]. We call such complexes Euler finite. In
such a case, the Euler characteristic gives a well-defined element in the completed
Grothendieck group C((q)) ⊗Z[q,q−1] [?] of the abelian category which we identify

with the Grothendieck group of the triangulated category D▽(?) as in [1].

Theorem 26 (Categorification of the Jones-Wenzl projector).

(1) The composition p̂k,d ∶= (L(k ι̂d))kπd is an idempotent. More precisely

kπdL(k ι̂d) is isomorphic to the identity functor.
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= =

Figure 3.3 Properties of projectors

(2) The functors L(k ι̂d) and kπd map Euler finite complexes to Euler finite
complexes.

(3) The induced Z((q))-linear morphism between completed Grothendieck groups

[ n⊕
k=0

L(k ι̂d)]∶ [D▽( n⊕
k=0

gmod−Ak,d)]→ [D▽( n⊕
k=0

gmod−Ak,1n)]
is equal to the tensor product of the inclusion maps ιd1

⊗⋯⊗ ιdr
.

(4) The induced Z((q))-linear morphism between completed Grothendieck groups

[ n⊕
k=0

L(kπ̂d)]∶ [D▽( n⊕
k=0

gmod−Ak,1n)]→ [D▽( n⊕
k=0

gmod−Ak,d)]
is equal to the tensor product of the projection maps πd1

⊗⋯⊗ πdr
.

Proof. See [25, Theorem 46]. �

Remark 27. Theorem 26 provides a categorification of the Jones-Wenzl projector.
Later on we will introduce cup and cap functors. By [25, Theorem 70] the obvious
categorified version of Proposition 6 holds. See [25, Theorem 70] for the properties
needed to characterise this functor uniquely.

Example 28 (Infinite complexes). The complexity of the above functors is already
transparent in Example 5: namely ι2 ○π2(v0⊗v1) = ι2(q−1[2]−1v1) = [2]−1(v1⊗v0 +
q−1v0 ⊗ v1) = 1

1+q2
(qv1 ⊗ v0 + v0 ⊗ v1) rewritten using formula (7) gets categorified

by the infinite resolution

⋯
f
Ð→ P̂(01)⟨4⟩ f

Ð→ P̂ (01)⟨2⟩ f
Ð→ P̂ (01),

where P (01) fits into a short exact sequence of the form M̂(10)⟨1⟩ → P̂ (01) →
M̂(01) and f is the unique up to a scalar degree 2 element in EndA

1,12
(P̂ (01)) ≅

C[x]/[x2]. Note that this is a complex which has homology in all degrees!

The first part of Theorem 26 may be refined as follows, (see Figure 3.3 for an
illustration).

Theorem 29. Let d be a composition of n and e a refinement. Then

p̂k,ep̂k,d ≅ p̂k,d ≅ p̂k,dp̂k,e.

Moreover, for any refinements ei of p̂k,d we have p̂k,d ≅ p̂k,e1
p̂k,e2

⋯p̂k,er
as long as

each part of d appears as part in at least one ei.

Proof. By definition of the quotient functor G ∶= π̂k,eLι̂k,d is the identity functor on
the additive category given by projectives in gmod−Ak,d, and hence also Lι̂k,eG ≅
Lι̂k,d on this subcategory. Since the derived category is generated by projectives,
the first statement of the theorem follows by precomposing the functors by π̂k,d.
The second statement follows by similar arguments which are therefore omitted. �
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4. A Jones-Wenzl complex

4.1. Lauda’s 2-category [39]. The 2-category U is a an additive graded C-linear
category. For each λ ∈ Z, there is an object 1λ . The 1-morphisms are generated
by symbols

E∶1λ → 1λ+2, F∶1λ → 1λ−2

which we often write as 1λ+2E1λ and 1λ−2F1λ respectively. The 1-morphisms may
be drawn as oriented strands.

(21)

Generating
1-morphisms

Diagrams

1λ+2E1λ

λλ + 2

1λ−2F1λ

λλ − 2

The 2-morphisms are generated by the following diagrams.

(22)

Degrees

Generating
2-morphisms

2 2 −2 1 + λ

λ

1 − λ

λ

1 − λ

λ

1 + λ

λ

The 2-morphisms are taken subject to the following relations.

● The biadjointness relations.

(23)

= = = =

(24)

= =

(25)

= =

● The bubble relations.

(26)
k = 0 = k if k < 0, 0 = 1 = 0

17



● The infinite Grassmannian relations.

(27)

∑
k≥0

k tk( ) ∑
k≥0

k tk( ) = 1

● The Nil-Hecke relations.

(28)
− = = −

(29)

= 0 =

● The reduction to bubbles relations.

(30)

λ

= −∑
a+b=−λ

ab

λ λ

= ∑
a+b=λ

a b

λ

● The identity relations.

(31)

−

λ

=λ
+ ∑

a+b+c=λ−1
λ

c

a
b

(32)

−

λ

=λ
+ ∑

a+b+c=−λ−1
λ

c

a
b

Definition 30. The nil-Hecke algebra NHn is the Z-graded algebra generated by
y1, . . . , yn of degree 2 and generators ψ1, . . . , ψn−1 of degree −2 with relations

(1) yiyj = yjyi for all i and j,
(2) ψ2

i = 0 for i = 1, . . . , n − 1,
(3) ψiψj = ψjψi if ∣i − j∣ > 1,
(4) ψiψi+1ψi = ψi+1ψiψi+1 for i = 1, . . . , n − 2,
(5) yiψi −ψiyi+1 = 1 = ψiyi − yi+1ψi for i = 1, . . . n − 1.

Let w0 be the longest element in the symmetric group and ψw0
the corresponding

element in NHn. Define the indecomposable idempotent in NHn

ǫw0
= yn−11 yn−22 ⋯yn−1ψw0

.

18



The idempotent ǫw0
is indecomposable since EndNHn

(NHnǫw0
) is a non-negatively

graded algebra which is one-dimensional in degree zero.
Since the 2-morphisms ofU satisfy nil-Hecke relations, there is an action of NHn

on En and Fn respectively. In the Karoubi envelope Kar(U) of U define objects

E(n) = (En, ew0
)⟨n(n − 1)

2
⟩, F(n) = (Fn, ew0

)⟨n(n − 1)
2

⟩.
Theorem 31. [39, Theorem 9.13] There is an isomorphism [Kar(U)] ≅ U̇q where

U̇q is Lusztig’s idempotent version of Uq.

4.2. The complex. For a k-tuple n = (n1, . . . , nk) ∈ Nk define

∣n∣ = n1 +⋯+ nk, wt(n) = k∑
i=1

ini, en = en1

1 ⋯e
nk

k , cn =
∣n∣!

n1!⋯nk!
.

Then set

rj = ∑
n∈N

k

wt(n)=n−k+j

(−1)∣n∣cnen.
The cohomology of the Grassmannian of k-dimensional planes in C

n plays an
important role in what follows. We will sometimes abbreviate this cohomology by
H*
∶= H*(Gr(k,n)) and we have the following well known classical result.

Proposition 32. The cohomology of the Grassmannian H*(Gr(k,n)) is given by:

H*(Gr(k,n)) ≅ C[e1, . . . , ek]/Ik,n
where Ik,n is the ideal generated by r1, . . . , rk.

We follow now the notation and ideas of Wolffhardt [68]. He finds free bimodule
resolutions of complete intersection rings in general but we focus here on the specific
example of cohomology of Grassmannians. Let V be a Z

2-graded vector space
spanned by vectors bi of degree (−2,2n − 2k + 2i) and vectors fi of degree (−1,2i)
for i = 1, . . . , k. Let S(V ) be the Z

2-graded symmetric algebra of V . It is spanned
by elements of the form

bj1 ∧⋯∧ bjm ∧ fi1 ∧⋯∧ fin

with j1 ≤ ⋯ ≤ jm and i1 < ⋯ < in. In S(V ), we have bj ∧ x = x ∧ bj for all x ∈ S(V )
while fi ∧ fi′ = −fi′ ∧ fi. For a homogeneous element x ∈ S(V ) we refer to the first
grading as the q-degree and denote it by degq(x) and the second grading as the
homological grading and denote it by degh(x). For i = 0, . . . , k define

τi, ∂i∶H
*(Gr(k,n))→ H*(Gr(k,n))⊗H*(Gr(k,n))

by

τi(ej) =
⎧⎪⎪⎨⎪⎪⎩
ej ⊗ 1 for 1 ≤ j ≤ i,

1⊗ ej for i < j ≤ k,
∂i ∶=

1

τk(ei) − τ0(ei)(τi − τi−1).
It is easy to check that the map ∂i is a well-defined. Consider the vector space

H*(Gr(k,n))⊗C H*(Gr(k,n))⊗ S(V )
endowed with the obvious algebra structure, explicitly:

(a1 ⊗ b1 ⊗ v1)(a2 ⊗ b2 ⊗ v2) = (a1a2 ⊗ b1b2 ⊗ v1 ∧ v2).
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Define a complex of H*(Gr(k,n))⊗C H*(Gr(k,n))-bimodules:

(33) (H*(Gr(k,n))⊗C H*(Gr(k,n))⊗ S(V ), ∂)
with

∂(1⊗ 1⊗ fj) = ej ⊗ 1⊗ 1 − 1⊗ ej ⊗ 1 , ∂(1⊗ 1⊗ bj) = k∑
i=1

∂i(rj)⊗ fi ,
∂(1⊗ 1⊗ (v ∧w)) = ∂(1⊗ 1⊗ v)(1⊗ 1⊗w) + (−1)degh(v)(1⊗ 1⊗ v)∂(1⊗ 1⊗w) ,
and the (H*(Gr(k,n)),H*(Gr(k,n)))-bimodule action is given naturally on the
first two tensor factors.

Proposition 33. [68, Theorem 2] The complex in (33) is a free bimodule resolution

of H*(Gr(k,n)).
4.3. Properties of the complex. In order to connect the complex (33) to the
categorified Jones-Wenzl projector from the previous section, we first recall some
important results of Soergel.

Proposition 34. [53, Endomorphismensatz] There is an isomorphism of algebras

Endg(P (0n−k1k)) ≅ H*(Gr(k,n)).
The Soergel functor Vk,n∶gmod−Ak,(1n) → gmod−H*(Gr(k,n)) is defined as

Vk,n(M) = HomAk,(1n)
(P̂(0n−k1k),M) ≅ P̂ (0n−k1k)⊗Ak,(1n)

M.

Via the equivalence of categories gmod−Ak,(n) ≅ gmod−H*(Gr(k,n)), we iden-
tify half of the categorified Jones-Wenzl projector π̂k,(n) with the Soergel functor
Vk,n.

The left adjoint functor of the Soergel functor Tk,n∶D
▽(gmod−H*(Gr(k,n)))→

D▽(gmod−Ak,(1n)) can be described by

Tk,n(M) = P̂ (0n−k1k)⊗L

H*(Gr(k,n))M.

Thus we could write the categorified Jones-Wenzl projector as

p̂k,n∶D
▽(gmod−Ak,(1n))→D▽(gmod−Ak,(1n))

p̂k,n(M) = P̂ (0n−k1k)⊗L

H* P̂ (0n−k1k)⊗Ak,(1n)
M.

There is a 2-functor from Lauda’s 2-category to ⊕n
k=0 gmod−Ak,1n . By the

discussion above, the endomorphism algebras of E(k) and F(k) are modules over
H*(Gr(k,n)). Thus we may define the following complex in the homotopy category:

(34) (pk,n, ∂) = ((E(k)F(k))⊗H* ⊗C H* (H*
⊗CH

*)⊗ S(V ), ∂).
Theorem 35. On D▽(gmod−Ak,1n), the functor pk,n is isomorphic to p̂k,(n), and
thus the following isomorphisms hold:

(1) pk,n ○ pk,n ≅ pk,n,

(2) Êk ○ pk,n ≅ pk+1,n ○ Êk,
(3) F̂k ○ pk,n ≅ pk−1,n ○ F̂k.
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Proof. In order to obtain a complex of Ak,1n -bimodules quasi-isomorphic to p̂k,(n),

we use the resolution of H*(Gr(k,n)) of free (H*(Gr(k,n)),H*(Gr(k,n)))-
bimodules from (33). Recall that p̂k,n is given by the complex of (Ak,(1n),Ak,(1n))-
bimodules

P̂ (0n−k1k)⊗L

H* P̂ (0n−k1k).
We know from (33) that as an (H*,H*)-bimodule, there is a quasi-isomorphism

(35) H* ≅ H*
⊗CH

*
⊗S(V )

Tensoring (35) over H* by P̂(0n−k1k), we get that p̂k,n is quasi-isomorphic to

P̂ (0n−k1k)⊗H* H*
⊗CH

*
⊗H* P̂(0n−k1k)⊗ S(V )

which is then isomorphic to P̂(0n−k1k) ⊗C P̂ (0n−k1k) ⊗ S(V ) ≅ E(k)F(k) ⊗ S(V ).
Thus pk,n ≅ p̂k,(n). The remaining statements of the theorem about pk,n follow
because we know the corresponding statements already for p̂k,(n). �

Remark 36. Webster also connected the categorified Jones-Wenzl projector to the
cohomology of the Grassmannian in [67, Section 4.5].

For the case k = 1 (projective space) and also in the context of categorification
at a root of unity, see [45].

Remark 37. Let C1n = ⊕n
k=0Ck,1n be a 2-representation of U in the sense of Losev

and Webster [41], such that [C1n] ≅ V ⊗n1 . Then on the homotopy category of Ck,1n
there are isomorphisms:

(1) pk,n ○ pk,n ≅ pk,n (2) E○pk,n ≅ pk+1,n○E (3) F○pk,n ≅ pk−1,n○F.

This is true for category O by Theorem 35 and it was shown in [51] that category
O provides a 2-representation of U. The general case follows from the uniqueness
result of tensor product categorifications of Losev and Webster [41] using [51].

5. Categorification of the uncoloured Reshetikhin-Turaev invariant

A categorification of the Reshetikhin-Turaev tangle invariant for the standard
representation was first constructed in [58]. The main result there is the following.

Theorem 38. ([58, Theorem 7.1, Remark 7.2]) Let T be an oriented tangle from
n points to m points. Let D1 and D2 be two tangle diagrams of T. Let

Φ̂(D1), Φ̂(D2)∶ Db ( n⊕
k=0

gmod−Ak,1n)→Db ( m⊕
k=0

gmod−Ak,1m)
be the corresponding functors associated to the oriented tangle. Then there is an
isomorphism of functors Φ̂(D1)⟨3γ(D1)⟩ ≅ Φ̂(D2)⟨3γ(D2)⟩.

We now briefly explain how to associate a functor to a tangle. This is done by
associating to each elementary tangle (cup, cap, braid) a functor. To a braid one
associates a certain derived equivalence. In order to prove that this is a tangle
invariant, we must show that if two tangles are related by a Reidemeister move,
then the associated functors are the same up to isomorphism. Note that we work
here in a Koszul dual picture of the one developed in [58], since we have a better
understanding of the categorification of arbitrary tensor products in this context.
The translation between these two picture is given by the result in [44, Theorem 35,
Theorem 39] relating the corresponding functors via the Koszul duality equivalence
of categories.
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5.1. Functors associated to cups and caps. In the following we briefly recall
the definition of the functors and the main properties which will be used later. For
each 1 ≤ i < n we will define now functors which sends a module to its maximal
quotient which has only composition factors from a certain allowed set.

Given such i, consider the set S of isomorphism classes of simple right Ak,1n -
modules L(a1, a2, . . . , an) where the sequence a = (a1, a2, . . . , an) is obtained from
the sequence (1k0n−k) by applying an element w ∈ Sn which is a shortest coset
representative in Sn/Sk × Sn−k such that the entries in components i and i + 1 of
the sequence resulting from w applied to (1k0n−k) are 1 and 0 respectively. Let
mod−Ai

k,1n be the full subcategory of mod−Ak,1n containing only modules with
simple composition factors from the set S. There are the natural functors

ǫi ∶mod−Ai
k,1n →mod−Ak,1n Zi ∶mod−Ak,1n →mod−Ai

k,1n ,(36)

of inclusion of the subcategory, respectively of taking the maximal quotient con-
tained in the subcategory. Note that Zi is left adjoint to ǫi.

The category gmod−Ai
k,1n is a graded version of the so-called parabolic cat-

egory O defined as follows: let pi be the i-th minimal parabolic subalgebra of g
which has basis the matrix units Er,s, where s ≥ r or r, s ∈ {i, i + 1}. Now re-
place locally b-finiteness in Definition 15 by locally pi-finiteness and obtain the
parabolic category Oi

k(gln), a full subcategory of Ok, see [29, Section 9.3]). We
have Oi

k ≅ A
i
k,1n −mod. In this context Zi is the Zuckerman functor of taking the

maximal locally finite quotient with respect to pi. That means we send a mod-
ule M ∈ Ok to the largest quotient in Oi

k(gln). An important class of objects in
these parabolic categories are the parabolic Verma modules Mpi(a1, . . . , an) where
a = (a1, . . . , an) has the same conditions on it as the labels of the simple object in

this category. Each parabolic Verma module has a graded lift M̂pi(a1, . . . , an) such
that its head is concentrated in degree zero. Now fix a graded lift Ẑi of Zi such
that ẐiM̂(a1, . . . , an) ≅ M̂pi(a1, . . . , an)⟨−1⟩ (when ai = 1 and ai+1 = 0). A classical
result of Enright and Shelton [22] relates parabolic category O with non-parabolic
category O for a smaller rank algebra. This equivalence was lifted to the graded
setup in [46]. For a geometric approach see [55]. The statement is the following.

Proposition 39. Let n ≥ 0. There is an equivalence of categories ζn∶Ok(gln) →
O1

k+1(gln+2) which can be lifted to an equivalence ζ̂n∶gmod−Ak,1n ≅

gmod−A1
k+1,1n+2 , such that M̂p1(a1, . . . , an) gets mapped to M̂(a3, . . . , an). For

n = 0 the corresponding category is equivalent to the category of graded vector spaces.

Now there are functors (up to shifts in the internal and homological degree)
pairwise adjoint in both directions

∩̂i,n∶D
b(gmod−Ak,1n)→Db(gmod−Ak,1n−2)

∩̂i,n ∶= ζ̂
−1
n ○LẐ1⟦−1⟧ ○ ǫ̂2 ○LẐ2⟦−1⟧ ○ ⋯ ○ ǫ̂i ○LẐi⟦−1⟧

∪̂i,n∶D
b(gmod−Ak,1n)→Db(gmod−Ak,1n+2)

∪̂i,n ∶= ǫ̂i ○LẐi⟦−1⟧ ○ ⋯ ○ ǫ̂2 ○LẐ2⟦−1⟧ ○ ǫ̂1 ○ ζ̂n
where we denote by ǫ̂i, the standard lift of the inclusion functor compatible with (4).

The following theorem implies that these functors provide a functorial action of
the Temperley-Lieb category.
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Theorem 40. Let j ≥ k. There are isomorphisms

(1) ∩̂i+1,n+2∪̂i,n ≅ Îd

(2) ∩̂i,n+2∪̂i+1,n ≅ Îd
(3) ∩̂j,n∩̂i,n+2 ≅ ∩̂i,n∩̂j+2,n+2
(4) ∩̂i,n+2∪̂i,n ≅ Îd⟦1⟧⟨1⟩⊕ Îd⟦−1⟧⟨−1⟩

(5) ∪̂j,n−2∩̂i,n ≅ ∩̂i,n+2∪̂j+2,n
(6) ∪̂i,n−2∩̂j,n ≅ ∩̂j+2,n+2∪̂i,n
(7) ∪̂i,n+2∪̂j,n ≅ ∪̂j+2,n+2∪̂i,n

of graded endofunctors of ⊕n
k=0 gmod−Ak,1n . In the Grothendieck group, [∩̂i,n] =

∩i,n and [∪̂i,n] = ∪i,n.
Proof. The first part was proven in the Koszul dual case in [58, Theorem 6.2]. The
theorem now holds for the functors defined above by [44, Section 6.4]. The second
part follows directly from [8, Proposition 15] and Lemma 41 below. �

The following result categorifies (4), and is the main tool in computing the cap
functors explicitly.

Lemma 41. Let M̂(a) ∈ gmod−Ak,1n be the standard graded lift of the Verma
module M(a) ∈ Ok. Let b be the sequence a with ai and ai+1 removed. Then there
are isomorphisms of graded modules

∩̂iM̂(a) ≅
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if ai = ai+1

M̂(b)⟨−1⟩⟦−1⟧ ∈ gmod−Ak−1,1n−2 if ai = 1, ai+1 = 0

M̂(b) ∈ gmod−Ak−1,1n−2 if ai = 0, ai+1 = 1

(37)

whereas ǫ̂i(M̂(b)) is quasi-isomorphic to a complex of the form

⋯ 0Ð→ M̂(c)⟨1⟩Ð→ M̂(d)Ð→ 0 ⋯,

where c and d are obtained from b by inserting 01 respectively 10 at places i, i+ 1.

Proof. This follows directly from [57, Theorem 8.2, Theorem 5.3] and Koszul duality
[44, Theorem 35]. �

To a coloured cap or cup we assign the functors graphically depicted in Figure 2.2.

5.2. Twisting functors and (coloured) crossings. Fix an element w in the
Weyl group of Sn. Let nw = n

−
∩ w−1(n+). Denote by Nw the universal enveloping

algebra U(nw). There is a natural Z-grading on gln where the degree one part is
the direct sum of root spaces for simple roots. This induces a Z-grading on Nw.

Let Γw be an automorphism of gln corresponding to the element w. Define the
semiregular bimodule Sw = U(gln) ⊗Nw

N∗w, where N
∗
w is the graded dual of Nw.

It is a nontrivial fact that Sw is a (U(gln),U(gln))-bimodule and the functor of
tensoring with this bimodule does not depend (up to isomorphism) on the choice
of Γw. An algebraic proof first appeared in [4], see also [2].

Definition 42. The twisting functor Tw∶U(gln) −mod → U(gln) −mod is defined
by Tw(M) = Sw ⊗U(gln)M and the action of gln is twisted by Γw.

The functor is right exact. It is well-known ([2]) that Tw restricts to an end-
ofunctor on Oλ(gln). For a detailed study of the properties of these functors we
also refer to [3]. These functors satisfy the braid relations, so we are particularly
interested in the functors Tw for w = σi, the simple reflections generating Sn. De-
note Tsi by Ti. By [24, Section 5.1], we know that the functor Ti has a graded lift
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T̂i∶gmod−Ak,n → gmod−Ak,n unique up to isomorphism and a shift in the grading.
We choose this lift such that

T̂iM̂(λ) ≅
⎧⎪⎪⎨⎪⎪⎩
M̂(si.λ)⟨−1⟩ if si ∈W

λ

M̂(si.λ)⟨−2⟩ otherwise.
(38)

Remark 43. This lift differs from the one in [24, Section 5] by an overall shift.

We will need the following important relationship between the twisting functor
Ti and the Zuckerman functor Zi:

Theorem 44. ([34], [3, Proposition 5.4]) There is a natural transformation τi∶Ti →
Id such that for any object M, the cokernel of the map (τi)M ∶TiM →M is ZiM.

Corollary 45. ([44, Lemma 41]) There is a distinguished triangle of derived func-
tors

LT̂i → Îd⟨−2⟩→ ǫ̂iẐi⟨−1⟩.
Remark 46. The shifts in the Corollary 45 differ from those in [44] since the
graded lifts of the functors differ from the conventions in [44]. Also note that the
internal grading convention in [44] is opposite to the one used here.

A right adjoint to Tw was studied in [3] and is known to coincide with Joseph’s
completion functor by [34]. Denote this functor by Jw and its graded version by

Ĵw. Again we write Ji and Ĵi in case w = si. By [3], the graded lift Ĵi satisfies

Ĵi∇̂(λ) ≅
⎧⎪⎪⎨⎪⎪⎩
∇̂(si.λ)⟨1⟩ if si ∈W

λ

∇̂(si.λ)⟨2⟩ otherwise
(39)

Lemma 47. There is a distinguished triangle relating RĴi and LẐi as in Corol-
lary 45:

ǫ̂iLẐi⟦−2⟧⟨1⟩→ Îd⟨2⟩→ RĴi.

Proof. By [44, Theorem 35], a graded lift of the translation functor θ̂i and the

functor ǫ̂iLẐi⟦−1⟧ are Koszul dual. There is a distinguished triangle of functors

RD̂i → θ̂i → Id⟨−1⟩(40)

where D̂i is the coshuffling functor, which is defined as the kernel of the canonical

morphism θ̂i → Id⟨−1⟩. See [42] for more details. By [44, Theorem 39], the Koszul

dual of RD̂i is the functor RĴi⟨−1⟩. After applying the Koszul duality functor to
the distinguished triangle in (40), rotation and internal grading shift of the resulting
triangle gives the lemma. �

These distinguished triangles play an important role in proving the following
theorem which appears in [58] in the Koszul dual case. It follows from there directly
by applying the results from [44, Sections 6.4 and 6.5].

Theorem 48 (Reidemeister moves). There are isomorphism of functors:

(1) ∩̂i,n ○LT̂i⟦−1⟧ ≅ ∩̂i,n
(2) ∩̂i,n ○RĴi⟦1⟧ ≅ ∩̂i,n
(3) LT̂i ○RĴi ≅ Îd ≅ RĴi ○LT̂i

(4) LT̂i ○LT̂j ≅ LT̂j ○LT̂i, if ∣i−j∣ ≥ 2
(5) RĴi○RĴj ≅ RĴj ○RĴi, if ∣i−j∣ ≥ 2
(6) LT̂i ○RĴj ≅ RĴj ○LT̂i, if ∣i−j∣ ≥ 2

(7) LT̂i ○LT̂i+1 ○LT̂i ≅ LT̂i+1 ○LT̂i ○LT̂i+1
(8) RĴi ○RĴi+1 ○RĴi ≅ RĴi+1 ○RĴi ○RĴi+1.
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To the crossing appearing in the left of (8) we assign the functor LT̂i⟦−1⟧. To
the crossing appearing in the right of (8) we assign the functor RĴi⟦1⟧. To the cup
appearing in (2.1) we assign the functor ∪̂i,n. To the cap appearing in (2.1) we
assign the functor ∩̂i,n. Thus to any unoriented tangle diagram D, from n points to
m points, we may associate a functor

Φ̂(D)∶Db( n⊕
k=0

gmod−Ak,1n)→Db( m⊕
k=0

gmod−Ak,1m).
By counting the number of positive and negative crossings and including an

overall shift into the functors, we get Theorem 38, giving a functor valued invariant
of oriented tangle which categorifies the invariant from Theorem 8. The proof of
the Reidemeister moves, follows directly from Theorem 48.

Remark 49. On the Grothendieck group level we have the skein relations:

[LT̂k⟦−1⟧] = −q−1[∪̂k−1,n−2 ○ ∩̂k,n] − q−2[Îd]
[RĴk⟦1⟧] = −q2[Îd] − q[∪̂k−1,n−2 ○ ∩̂k,n].

Thus we have a functor valued invariant of tangles which categorifies the Jones
polynomial. Note that the categorification of the Jones polynomial by Khovanov
[35] can be deduced by restricting the functors from the previous theorem to a cer-
tain subcategory which is equivalent to Khovanov’s category of graded Hn-modules
(this follows from [60, Theorem 5.8.1], [14, Theorem 1.1 and Theorem 1.2]).

6. Slide moves

6.1. Height moves of projection, inclusion and projectors. Let d be a com-
position of n with the corresponding Young subgroup Sd ⊂ Sn. Fix k with 0 ≤ k ≤ n
and let F = kπd . On the abelian category, F is given by a Serre quotient functor

F ∶ Ok(gln) →Ok(gln)/S.
Recall that λ = e1 + ⋯ + ek − ρn. Let L(w ⋅ λ) for w ∈ J , be the simple objects in
S. These are the objects annihilated by the functor F . Let L(x ⋅ λ) for x ∈ I, be
the simple objects not annihilated by the functor F . Note that x is a longest coset
representative in Sd/Sn/Sk × Sn−k. Fix i, 1 ≤ i ≤ n − 1 such that ssi = sis for any
s ∈ Sd. Let G ∶= ǫi ○LZi⟦−1⟧.
Lemma 50. There exists a triangulated functor Ḡ making the following diagram

(41) D<(Ok(gln)) G //

F

��

D<(Ok(gln))
F

��
D<(Ok(gln)/S) Ḡ // D<(Ok(gln)/S) .

commute. Moreover the straightforward graded version also holds, with F replaced
by F̂ = kπ̂d and D< replaced by D▽ of the corresponding graded category.

Proof. Let D<(Ok(gln))S denote the full category of D<(Ok(gln)) generated by
complexes with cohomology in S. Let P (w ⋅ λ) denote the projective cover of the
corresponding simple module L(w ⋅λ) in S. We would like to show the existence of
the dashed arrow in (42) which we will define to be Ḡ. It is enough to show that if
F (X) = 0, then FG(X) = 0. Assume F (X) = 0. This means that

Hom(⊕x∈IP (x ⋅ λ),X⟦j⟧) = 0
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for all j ∈ Z. Note that this implies that X ∈ D<(Ok(gln))S . We would like to show
Hom(⊕x∈IP (x ⋅ λ),GX⟦j⟧) = 0.
(42) D<(Ok(gln))S

��

D<(Ok(gln))S
��

D<(Ok(gln)) G //

F

��

D<(Ok(gln))
F

��
D<(Ok(gln)/S) Ḡ //❴❴❴ D<(Ok(gln)/S)

Since G is self-adjoint, we have

(43) Hom(⊕x∈IP (x ⋅ λ),GX⟦j⟧) = Hom(⊕x∈IGP (x ⋅ λ),X⟦j⟧).
Clearly GP (x ⋅ λ) is quasi-isomorphic to a complex of projective objects and it is
enough to show that the projectives which appear are of the form P (y ⋅ λ) where
y ∈ I. Note that y ∈ I, if and only if ǫj ○LZjP (y ⋅ λ) = 0 for all j such that sj ∈ Sd.

By assumption, we have for all sj ∈ Sd that sjsi = sisj . Thus (ǫj ○ LZj)G ≅
G(ǫj ○ LZj). In particular, (ǫj ○ LZj)GP (x ⋅ λ) = 0. Thus GP (x ⋅ λ) is quasi-
isomorphic to a complex of projectives involving only objects of the form P (y ⋅ λ)
where y ∈ I. As a consequence, the spaces in (43) vanish, and thus the functor Ḡ
exists. The commutativity of (41) follows immediately. The construction obviously
lifts to the graded setting. In this case we can replace D< by D▽. �

6.2. Twisting functors on Ok,d(gln). For this subsection, fix d = (d1, . . . , dr)
with dc = p, dc+1 = q and d′ = (d1, . . . , dc+1, dc, . . . , dr). Let b = d1 +⋯+ dc−1. Let

wp,q = (σb+qσb+q+1⋯σb+p+q−1)⋯(σb+2⋯σb+p+1)(σb+1⋯σb+p).
Now we fix several Lie algebras. Let

g = gld1+⋯+dr
(44)

a1 = gld1
⊕⋯⊕ gldc+dc+1

⊕⋯⊕ gldr
(45)

a2 = gld1
⊕⋯⊕ gldc

⊕ gldc+1
⊕⋯⊕ gldr

(46)

a3 = gld1
⊕⋯⊕ gldc+1

⊕ gldc
⊕⋯⊕ gldr

.(47)

The goal of this subsection is to prove that Twp,q
is a functor from Ok,d(gln) to

Ok,d′(gln).
Lemma 51. All injective modules in the block Ok(gln) are objects in the category
Ok,d(gln).
Proof. By [59, Proposition 1.6], any projective object P in Ok(gln) has a copresen-
tation 0→ P → P (0n−k1k)⊕Q → P (0n−k1k)⊕R. The module P (0n−k1k) is clearly in
the subcategory Ok,d(gln). Since P (0n−k1k) is self dual, for any injective object I

in Ok(gln), there is a short exact sequence P (0n−k1k)⊕R → P (0n−k1k)⊕Q → I → 0.
Thus any injective I is in the projectively presented subcategory Ok,d(gln). �

As a consequence, we obtain the following result.

Corollary 52. Any complex A in D<(Ok,d(gln)), (or in D<(kH1
d
(gln))), is quasi-

isomorphic to a complex A′ in D<(Ok,d(gln)), (or in D<(kH1
d
(gln))), where A′ is

a (possibly infinite) complex of projectives or a finite complex of injectives.
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In order to understand how the twisting functor acts on projective objects in
Ok,d(gln), it is easier to study its action on standard objects. The key connection
between standard and projective objects is the following lemma.

Lemma 53. [42, Theorem 2.16] Any projective object P ∈ Ok,d(gln) has a filtration
with subquotients ∆(k1, d1∣⋯∣kr , dr) where k1 +⋯ + kr = k.

The twisting functor is a composition of tensoring with a bimodule and twisting
the action of the Lie algebra by an automorphism defined earlier. We describe now
such an automorphism explicitly.

Lemma 54. The automorphism Γwp,q
can be chosen to act on glp ⊕ glq ⊂ glp+q as

follows: Γwp,q
(ei,j) = ei+q,j+q if i, j ≤ p and is equal to ei−p,j−p if i, j ≥ p.

Proof. We choose the automorphism Γw(g) = wgw−1 where w is the matrix obtained
from the identity by permuting the rows. The ith column of w has a non-zero entry
only at the row w(i). Thus wei,j = ew(i),iei,j = ew(i),j. The jth row of w−1 has a non-

zero entry only at the rth column such that w−1(r) = j. Therefore r = w(j). Thus
ew(i),jw

−1 = ew(i),jej,w(j) = ew(i),w(j). Now the lemma follows when w = wp,q. �

We now aim to give an explicit description of the bimodule which defines the
twisting functor. We recall its definition in terms of localization with respect to a
certain set of root vectors which satisfies the Ore condition. For the moment, take
w = si a simple reflection. Let fi be the basis vector for the one-dimensional subalge-
bra nsi . Define S′′i = U(gln)⊗C[fi]C[fi, f−1i ] to be the localization of the enveloping
algebra with respect to the set generated by fi. This is naturally a (U(gln),U(gln))-
bimodule which contains U(gln) as a subbimodule. Set S′i = S

′′
i /U(gln). This is

in fact precisely how Arkhipov endows Si with the structure of a bimodule so we
record the following non-trivial lemma.

Lemma 55. ([4, Corollary 2.1.4]) There is an isomorphism of (U(gln),U(gln))-
bimodules: Si ≅ S

′
i.

Let B1 = z1, . . . , zβ be a basis for nwp,q
and B2 = y1, . . . , yα a basis for g/nwp,q

.
Define S′′wp,q

to be the localization of U(gln) with respect to B1.

S′′wp,q
= U(gln)⊗C[B1] C[B1,B

−1
1 ].

As before, define the bimodule S′wp,q
= S′′wp,q

/U(gln).
Lemma 56. Let {k1, . . . , kβ} ⊂ Z≥0 and {l1, . . . , lα} ⊂ Z>0. Then the monomials

yk1

a1
⋯y

kγ

aγ
⊗ y−l1

b1
⋯y−lδ

bδ
form a basis for S′wp,q

over C.

Proof. The linear independence of the elements follows directly from [34, Lemma
13]. The fact that these elements also span the bimodule follows from a sim-
plification of the proof of [34, Lemma 13] since nwp,q

is commutative. Thus the
rearrangement of terms given in the aforementioned proof is trivial in this case. �

Remark 57. For a similar statement, see [65, Theorem 3.1].

Corollary 58. Suppose wp,q = w1⋯wl is a reduced expression for w in terms of
simple reflections. Then S′wp,q

≅ Swp,q
as (U(gln),U(gln))-bimodules.

Proof. Since Swp,q
is independent of a reduced expression for wp,q,

Swp,q
≅ Sw1

⊗U(gln) ⋯⊗U(gln) Swl
≅ S′w1

⊗U(gln) ⋯⊗U(gln) S
′
wl
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by Lemma 55. The multiplication map and Lemma 56 give that the latter bimodule
is isomorphic to S′wp,q

. �

Lemma 59. As an a2-module under the adjoint action, Swp,q
is a direct sum of

finite-dimensional submodules.

Proof. We must prove that if X ∈ a2, then the adjoint action of X on Swp,q
is

locally finite. By Corollary 58, we consider the action of X on S′wp,q
. As a vector

space, S′wp,q
is filtered by subspaces each of which is spanned by monomials given

in Lemma 56 of a fixed length . Let m1 = y
k1

a1
⋯y

kγ
aγ and m2 = y

−l1
b1
⋯y−lδ

bδ
. There is

an obvious embedding gldc
⊕ gldc+1

⊂ a2.
If X ∉ gldc

⊕ gldc+1
, then X and m2 commute. Then Xm1 ⊗m2 −m1 ⊗m2X =(Xm1 −m1X)⊗m2. This is then essentially the standard adjoint action of the Lie

algebra on an enveloping algebra so the length of m1 does not increase.
Now suppose X ∈ gldc

⊕ gldc+1
. Then y−1bj X = Xy

−1
bj

or y−1bj X = Xy
−1
bj
+ ybj′ y

−2
bj

for some other index j′. Continuing to commute X to the left of m2, we get
m2X =Xm2+J for some polynomial J in the generators ybj with now positive and
negative exponents. Since a term with a positive exponent either cancel a term with
a negative exponent or kill the monomial, it is clear that the length of J is less than
or equal to the length of m2. Thus Xm1⊗m2−m1⊗m2X = (Xm1−m1X)⊗m2+J .
Once again, the length of Xm1 −m1X is less than or equal to the length of m1 so
the adjoint action of X on m1 ⊗m2 does not increase its length.

Thus for all X ∈ a2, X preserves this filtration so each vector subspace is stable
under this adjoint action and is finite-dimensional. �

Lemma 60. Let ∆ be a standard object in Ok,d(gln). Then Twp,q
∆ is an object in

Ok,d′(gln).
Proof. By [42, Proposition 2.10], it suffices to verify that as an a3-module, Twp,q

∆
is a direct sum of projective objects of Ok(a3). Due to Lemma 54, it suffices to
show that as an a2-module, Swp,q

⊗U(gln) ∆ is a direct sum of projective modules
in Ok(a2). By the definition of the standard module,

Resa2

g Swp,q
⊗U(g)∆ ≅ Res

a2

g Swp,q
⊗U(g) (U(g)⊗U(p2) P

a2) ≅ Resa2

g Swp,q
⊗U(p2) P

a2

where p2 is the parabolic subalgebra whose reductive part is a2 and P a2 is an anti-
dominant projective object in O(a2). This is a quotient of Swp,q

⊗C P
a2 , where

Swp,q
is an a2-module under the adjoint action. By Lemma 59, this module is

locally finite under the adjoint action, so as an a3-module, Twp,q
∆ is a direct sum

of projective objects of Ok(a3). �

Proposition 61. Let P be a projective object of Ok,d(gln). Then Twp,q
P is an

object of Ok,d′(gln).
Proof. By Lemma 60, this functor sends standard objects to objects of Ok,d′(gln).
Standard objects have Verma flags, thus the twist functor is exact on the subcate-
gory of standard objects by [3, Theorem 2.2]. Since projective objects of Ok,d(gln)
have standard flags the twist functor sends a projective object of Ok,d(gln) to an
object of Ok,d′(gln) by induction on the length of the standard flag. �

Proposition 62. Let I be an injective object of Ok(gln). Then Jwp,q
I is an object

of Ok,d′(gln).
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Proof. Let us first look at the corresponding statement for the principal block.
Consider the injective object N ∶= I(0) = dM(0) in the principal block of O(gln).
Then N ′ ∶= Jwp,q

∇(0) = dM(wp,q ⋅ 0) is again a dual Verma module by (39). The
projective cover of a dual Verma module is P (w0 ⋅ 0), hence we have a short exact
sequence of the form

(48) K ↪ P (w0 ⋅ 0)→→N ′,
for some module K. We claim that the projective cover of K has only indecompos-
able summands of the form P (y ⋅ 0) with sy < y for any s ∈ Sd′ . This claim can be
verified by using an alternative definition of the twisting functor Ts as partial coap-
proximation, [34]. Namely Ts of the module N ′ is isomorphic to the largest quotient
of the projective cover P (N ′) of N ′ which surjects onto N ′ and the kernel contains
only simple modules of the form L(x.0) where sx > x. The claim is then equivalent
to the statement that TsN

′ = N ′ for any simple reflection s ∈ Sd′ . Since swp,q > wp,q

for those s, the latter claim follows from [3, Theorem 2.3]. Since Jwp,q
commutes

with translation functors and hence with shuffling functors, the same statements
hold for any injective object I(w ⋅ 0) and for any dual Verma module dM(w ⋅ 0).
Let now Q ∶= dM(a) ∈ Ok. Then Q can be obtained from a dual Verma module
N = M(w ⋅ 0) in the principal block by translating to Ok, in formulas Q = θonN .
Using (48) and the exactness of θon we get an exact sequence

θonP (K)Ð→ θonP (w0 ⋅ 0)→→θonN ′ = θonJwp,q
N.

Now θonP (w0 ⋅ 0) is isomorphic to several copies of P (0n−k1k) and θonP (K) is a
direct sum of copies of P (x⋅λ) ∈ Ok, where sx⋅λ = x⋅λ or sx < x. The first statement
here is clear, and for the second note that sy < y if and only if TsP (y ⋅ 0) ≅ P (y ⋅ 0),
[3, Proposition 5.3 and Corollary 5.2]. In this case TsθonP (y ⋅ 0) ≅ θonTsP (y ⋅ 0) ≅
θonP (y ⋅0) which, by the arguments in the proof of [3, Corollary 5.2], is only possible
if all summands occurring are of the form P (x⋅λ) ∈ Ok, sx⋅λ = x⋅λ or sx < x. Hence,
Jwp,q

dM(a) is an object of Ok,d′(gln). Since dual Verma modules are acyclic for
Jwp,q

([3, Theorem 4.1, Theorem 2.2, Lemma 2.1 (4)]) and injective objects have a
dual Verma flag, the claim of the proposition follows. �

We now obtain the following important result needed to define categorified
coloured crossings.

Corollary 63. The functors LT̂wp,q
and RĴw−1p,q

restrict to projectively presented

subcategories as follows:

(1) LT̂wp,q
∶D▽(⊕n

k=0 gmod−Ak,d) →D▽(⊕n
k=0 gmod−Ak,d′),

(2) RĴw−1p,q
∶D▽(⊕n

k=0 gmod−Ak,d′)→D▽(⊕n
k=0 gmod−Ak,d).

Proof. The ungraded version follows from Propositions 61 and 62 since we need only
to apply these functors to complexes of projective and injective objects respectively.
The graded version follows immediately. �

To the coloured crossings as displayed on the left hand side of Figure 2.2 we
associate the compositions of functors as displayed on the right hand side.

6.3. Sliding past a crossing. The next result says that we could slide the cate-
gorified Jones-Wenzl projector past a categorified crossing when we restrict to the
appropriate category. This is a key result in proving the main theorem in Section 7.
See Figure 6.4 for a graphical interpretation.
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⋯ ⋯

=

⋯ ⋯

Figure 6.4 Sliding past a crossing.

Corollary 64. There are isomorphisms of functors restricted to the subcategories:

D▽(⊕n
k=0 gmod−Ak,d)→D▽(⊕n

k=0 gmod−Ak,d′),
as follows

∣d∣⊕
k=0

LT̂wp,q
○Lk ι̂d ○ kπ̂d ≅

∣d′∣⊕
k=0

Lk ι̂d′ ○ kπ̂d′ ○LT̂wp,q
,(49)

∣d∣⊕
k=0

RĴw−1p,q
○Lk ι̂d ○ kπ̂d ≅

∣d′∣⊕
k=0

Lk ι̂d′ ○ kπ̂d′ ○RĴw−1p,q
.(50)

Proof. By Theorem 63, all of the Jones-Wenzl projection functors are isomorphic
to the identity upon restriction to the projectively presented subcategory. �

The following result gives a categorification of the R-matrix in Rep(Uq(sl2)).
Theorem 65 (Braiding). The functor

LT̂wp,q
∶D▽(gmod−Ak,d)→D▽(gmod−Ak,d′)

is an equivalence of categories with inverse functor RĴw−1p,q
.

Proof. On D<(Ok(gln)), the functors LTwp,q
and RJw−1p,q

are inverse equivalences

of categories. By Corollary 63, these functors restrict to equivalences on the sub-
categories. The graded version follows immediately. �

6.4. Sliding projectors along a cup or cap. Consider the cabled cap diagram
D1 and cup diagram D2 displayed in Figure 6.5. Let n1 = d1 + ⋯ + di−1 be the
number of strands to the left of the cap and cup. Then we add di nested caps
(and cups) and denote n2 = n1 + di. Finally let n3 = n1 + 2di. The diagrams Dl

1

and Dr
1 in Figure 6.6 differ from D1 by an extra Jones-Wenzl projection associated

with the composition d1 = (1n1 , di,1
∣d∣−n2) and d2 = (1n2 , di,1

∣d∣−n3) respectively.
Similar for the cup diagrams Dl

2 and Dr
2 in Figure 6.7 in comparison with D2. Let

F (Di), F (Dl
i) and F (Dr

i ) for i = 1,2 be the functors associated with the respective
diagrams. The equalities of intertwiners displayed in Figures 6.6 and 6.7 lift to
isomorphisms of functors as follows.

d1 . . .
®
di

®
di . . . dn

d1 . . . di
©

di
©

. . . dn

Figure 6.5 Diagrams D1 and D2
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d1 . . . di di . . . dn

=

d1 . . . di di . . . dn

Figure 6.6 Diagrams D
l
1 and D

r
1 : Cap slide

d1 . . . di
©

. . . dn

=

d1 . . . di
©

. . . dn

Figure 6.7 Diagrams D
l
2 and D

r
2 : Cup slide

Theorem 66 (Cup and cap slides). There are isomorphisms of functors

(51) F (Dl
1) ≅ F (Dr

1) , F (Dl
2) ≅ F (Dr

2).
Proof. By definition, (51) means there are isomorphisms:

(1) ⊕∣d∣k=0 F (D1) ○L(k ι̂d1
) ○ kπ̂d1

≅⊕∣d∣k=0 F (D1) ○L(k ι̂d2
) ○ kπ̂d2

,

(2) ⊕∣d∣k=0 L(k ι̂d1
) ○ kπ̂d1

○ F (D2) ≅⊕∣d∣k=0 L(k ι̂d2
) ○ kπ̂d2

○ F (D2).
Using adjointness properties it is enough to establish the second isomorphism.

For that note that there is an adjunction morphism from the functor G′ attached
to the diagram Dlr

2 which is D2 but with two projectors, one on the left of the
cups as in Dl

2 and one on the right as in Dr
2, to the functor associated with Dl

2

and Dr
2 respectively. We claim that in each case this is an isomorphism of functors.

Composing the two isomorphisms provides then the isomorphism of functors we
are looking for. Since the arguments in the two cases are completely analogous, we
consider only the situation arising from Dl

2, i.e. the projector is on the left.
Let us first assume that there are no vertical strands in the diagram D2. Then

F is a functor from a triangulated subcategory of the (bounded in one direction)
derived category of finite-dimensional graded vector spaces. To prove the adjunction
is an isomorphism of functors it is enough to check it on the one-dimensional vector
space C concentrated in homological degree zero. To see that this suffices note that
this implies an isomorphism when applied to any bounded complex of graded vector
spaces. It holds then also for any complex in the subcategory, since the subcomplex
given by fixing an internal degree is always quasi-isomorphic to a bounded complex
by definition of the triangulated subcategory, [1].

Now observe that F (D2)(C) is a simple object (obtained by applying inclusion
functors to a simple object). By (19) d1

π̂(d1,1d1)F (D2)(C) is isomorphic to the

simple object L̂ = L̂(d1, d1∣0,1∣0,1∣⋯∣0,1) which is the graded lift concentrated in
degree zero of L = L(d1, d1∣0,1∣0,1∣⋯∣0,1) ∈ Od1,(d1,1d1 ).

Let P̂ ● = (⋯ → P̂−2 → P̂−1 → P̂0) be a minimal graded projective resolution of

L̂ and let it be a graded lift of a minimal projective resolution P ● = (⋯ → P−2 →
P−1 → P0) of L in Od1,(d1,1d1). If now ZiPj = 0 for any d1 + 1 ≤ i ≤ 2d1 − 1 and j ≤ 0,

then Pj ∈ Od1,(d1,d1) for any j ≤ 0. In particular applying L(d1
ι̂(d1,d1)) ○ d1

π̂(d1,d1)
to P̂ ● does not change anything and the claimed isomorphism follows.
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Otherwise, there exist i, j such that ZiPj /= 0. Pick I ∶= {i1, i2, . . . , ir} ⊆ {d1 +
1, . . . ,2d1 − 1} maximal such that there exists j with ZiPj /= 0 for any i ∈ I. Let
j0 be the maximal j with this property. Note that by assumption I /= ∅ and
j0 /= 0. Consider now ZI ∶= Zi1⋯Zir with standard graded lift ẐI . By construction

ZIPj0 /= 0. To calculate LẐI L̂ we apply ẐI to P̂ ●. The result is nonzero, since it

has by construction nonzero homology in degree j0. (Note that ẐI applied to the

differential does not surject onto P̂j0 , since it did not surject in P ● by maximality.)

But on the other hand, LẐI L̂ = 0 by [25, Theorem 70], see Remark 27. Thus we
have a contradiction and (51) follows in case the diagram contains no vertical lines.

Now we add extra lines on the left and right. Again it is enough to show that
the adjunction morphism gives an isomorphism when the functors are applied to
simple modules. Applying the cup functors from D2 maps a simple module to a
simple module. Then the argument goes along the same lines as above. �

7. Categorification of the coloured Reshetikhin-Turaev invariant

7.1. Main theorem. Let E be an elementary, oriented, framed tangle diagram
from r ordered points to s ordered points such that each strand is labeled by a
natural number. This naturally induces colours d = (d1, . . . , dr) on the r points
and colours e = (e1, . . . , es) on the s points. We define a functor for the diagram E

Φ̂col(E)∶ D▽( ∣d∣⊕
k=0

gmod−Ak,d) →D▽( ∣e∣⊕
k=0

gmod−Ak,e)
by

Φ̂col(E) = ( ∣e∣⊕
k=0

kπ̂e) ○ Φ̂(cab(D)) ○ ( ∣d∣⊕
k=0

L(k ι̂d))
where E is an oriented cabling of E. Then for an arbitrary tangle T with diagram
D = Eαn

○ ⋯ ○Eα1
, define Φ̂col(D) = Φ̂col(Eαn

) ○ ⋯ ○ Φ̂col(Eα1
).

Theorem 67. Let D1 and D2 be two diagrams for an oriented, framed, coloured
tangle T from points coloured by d to points coloured by e. Then

Φ̂col(D1)⟨3γ(cab(D1))⟩ ≅ Φ̂col(D2)⟨3γ(cab(D2))⟩.
Proof. It suffices to show that the coloured Reidemeister moves appearing in (61)-
(66) from the Appendix hold. These functors are comprised of cup, cap, crossing,
and Bernstein-Gelfand functors. The Bernstein-Gelfand-functors appearing in the
interior of the diagrams appear always in pairs, forming categorified Jones-Wenzl
projectors. By Corollary 64 and Theorem 66, we may commute (up to isomor-
phism) all these categorified Jones-Wenzl projectors to the bottom where they act
as identity functors by Theorem 26. Now only cup, cap, and crossing functors la-
beled by 1 remain in the interior. The result then follows from the invariance of
the categorified uncoloured Reshetikhin-Turaev invariant in Theorem 48. �

Remark 68. With the categorification of finite tensor products of arbitrary ir-
reducible finite-dimensional representation for slk [51] and the results in [43], our
proofs show that Theorem 67 holds (with adapted grading shifts) for any slk, k ≥ 2.

As an example, we illustrate the arguments of the proof of Theorem 67 more
explicitly by explaining the Reidemeister move in (61), in more detail. For nota-
tional simplicity, we assume that there are no additional strands present. The left
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hand side of (61) stands for the composition (61∗) of elementary diagrams. To each
of the elementary diagrams we associated a functor, and let F = F6F5F4F3F2F1

be their composition. Note that the inclusion and projection maps in the middle
of the diagram all pair to Jones-Wenzl projectors. In fact, it is always the same
projector in our example. Denote by p̂ = Lk ι̂(m,m,m)○kπ̂(m,m,m) its categorification.
We have Fi = kπ̂(m,m,m)GiLk ι̂(m,m,m), where Gi denotes the functor associated to
the m-cabling of the elementary diagram Di. Then we have

F =
m⊕
k=0

kπ̂(m) ○G6 ○ p̂ ○G5 ○ p̂ ○G4 ○ p̂ ○G3 ○ p̂ ○G2 ○ p̂ ○G1 ○Lk ι̂(m).

By Corollary 64 and Theorem 29 we can remove the second and the fourth p̂, since
we can slide it through the crossing and then use the fact that it is an idempotent.

Another application of Theorems 64 and 66, gives

F ≅
m⊕
k=0

kπ̂(m) ○ F6 ○Lk ι̂(m,1,...,1) ○ kπ̂(m,1,...,1) ○ F5 ○ F4 ○ F3 ○ F2 ○ F1 ○Lk ι̂(m).

This in turn is isomorphic to

m⊕
k=0

kπ̂(m) ○Lk ι̂(m) ○ kπ̂(m) ○ F6 ○ F5 ○ F4 ○ F3 ○ F2 ○ F1 ○Lk ι̂(m).

Since kπ̂(m) ○Lk ι̂(m) ○ kπ̂(m) ≅ kπ̂(m), we get F ≅⊕m
k kπ̂(m) ○F6 ○F5 ○F4 ○F3 ○F2 ○

F1 ○Lk ι̂(m). By Theorem 38, this is isomorphic to ⊕m
k=0 kπ̂(m) ○Lk ι̂(m) ≅ Îd.

7.2. Conjectures about the coloured unknot. While it is easy to calculate the
homology of the unknot coloured by the standard two-dimensional representation
V1, it is much more challenging to determine the homology of the unknot coloured
by Vn for n > 1. In the next section we will compute explicitly the homology of
the unknot coloured by V2 using the fully stratified structure [15] of the category
of Harish-Chandra bimodules.

Gorsky-Oblomkov-Rasmussen [27] gave a conjecture of the homology of the un-
knot coloured by Vn coming from the study of rational DAHAs in a setting which
is Koszul dual to our construction.

Conjecture 69. [26] The homology of the unknot coloured by Vn is isomorphic to
the homology of the differential bigraded algebra

Bn = (C[u1, . . . , un]⊗Λ[ζ1, . . . , ζn], d)
where

deg(uk) = (2 − 2k,2k) deg(ζk) = (1 − 2k,2 + 2k)
and

d(uk) = 0 d(ζk) = ∑
i+j=k+1

uiuj .

Some progress towards a proof of this conjecture has been made by Hogan-
camp [28]. The homology of the unknot coloured by the three-dimensional repre-
sentation calculated in [19] confirms the conjecture for n = 2. Later on in Corollary
71, we reconfirm this conjecture for n = 2. Also see [66, Proposition 8.4].
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8. Examples

8.1. Categorified projector on O1(gl2). Let Q denote the quiver in (52) with
vertices 1 and 2. A path (of length l > 0) is a sequence p = α1α2⋯αl of arrows where
the starting point of αi is the ending point of αi+1 for i = 1, . . . , l − 1. By CQ we
denote the path algebra of Q. It has basis the set of all paths with additionally (1)
and (2) the trivial paths of length 0 beginning at 1 and 2 respectively, and product
given by concatenation. For example, (2∣1∣2) = (2∣1)(1∣2) is a basis element of CQ
of degree two. The path algebra is a graded algebra where the grading comes from
the length of each path.

(52) 1 2

Set A to be the algebra CQ modulo the two-sided ideal generated by (1∣2∣1). By
abuse of notation, we denote the image of an element p ∈ CQ in the algebra A also
by p. The algebra A inherits a grading from CQ since the relation (1∣2∣1) = 0 is
homogenous. Let Aj denote the degree j subspace of A. The degree zero part A0 is
a semi-simple algebra spanned by (1) and (2). The degree one subspace is spanned
by (1∣2) and (2∣1). The degree two subspace is spanned by (2∣1∣2) and Aj = 0 for
all j ≥ 3. Let A+ be the subspace of A whose homogenous elements are in positive
degree. The subspace A+ is the radical of A.

The graded category O1(gl2) is equivalent to the category of finitely-generated,
graded, right modules over the algebra A. The projective modules (1)A and (2)A
correspond to the dominant and anti-dominant projective modules respectively in
category O1(gl2). The simple quotients of the latter two objects correspond to the
one-dimensional right A-modules L(1) = (1)A/A+ and L(2) = (2)A/(2)A+.

Let C = EndA((2)A) be the endomorphism algebra of the anti-dominant pro-
jective module. It is easy to compute that it’s isomorphic to C[x]/(x2). Define
functors

π̂∶gmod−A→ gmod−C π̂(M) =M ⊗A A(2)
and

ι̂∶D▽(gmod−C) →D▽(gmod−A) ι̂(M) =M ⊗L

C (2)A.
The categorified Jones-Wenzl projector is then the composite

p̂∶D▽(gmod−A) →D▽(gmod−A) p̂ = ι̂ ○ π̂.

We now construct an explicit complex of (A,A)-bimodules which is quasi-isomorphic
to the functor p̂. The first step is to resolve the (A,C)-bimodule A(2) as a projec-
tive right C-module:

(53) ⋯Ð→ A(2)⊗C⟨6⟩ h3Ð→ A(2)⊗C⟨4⟩ h2Ð→ A(2)⊗C⟨2⟩ h1Ð→ A(2)⊗C h0Ð→ A(2)
where

hn((2)⊗ 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(2) if n = 0

(2)⊗ x − (2∣1∣2)⊗ 1 if n = 1,3, . . .

(2)⊗ x + (2∣1∣2)⊗ 1 if n = 2,4, . . . .

Next, tensoring the complex

⋯ Ð→ A(2)⊗C⟨6⟩ h3Ð→ A(2)⊗C⟨4⟩ h2Ð→ A(2)⊗C⟨2⟩ h1Ð→ A(2)⊗C
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on the right over C with (2)A we get that p̂ is quasi-isomorphic to

(54) ⋯ Ð→ A(2)⊗(2)A⟨6⟩ f3Ð→ A(2)⊗(2)A⟨4⟩ f2Ð→ A(2)⊗(2)A⟨2⟩ f1Ð→ A(2)⊗(2)A
where

fn((2)⊗ (2)) =
⎧⎪⎪⎨⎪⎪⎩
(2)⊗ (2∣1∣2)− (2∣1∣2)⊗ 1 if n = 1,3, . . .

(2)⊗ (2∣1∣2)+ (2∣1∣2)⊗ 1 if n = 2,4, . . . .

Noticing that the bimodule A(2) ⊗ (2)A is isomorphic to the composition of pro-

jective functors Ê0F̂1, the complex in (54) could be understood as a complex of
projective functors

⋯ Ð→ Ê0F̂1⟨6⟩ f3Ð→ Ê0F̂1⟨4⟩ f2Ð→ Ê0F̂1⟨2⟩ f1Ð→ Ê0F̂1.

8.2. Categorified projectors on O1(gl3). Let Q denote the quiver in (55) with
vertices 1, 2, and 3. Once again, by CQ we denote the path algebra of Q. Set A to
be the algebra CQ modulo the two-sided ideal generated by (1∣2∣1).

(55) 1 2 3

The graded category ZO1(gl3) is equivalent to the category of finitely-generated,
graded, right modules over the algebra A. The projective modules (1)A and (3)A
correspond to the dominant and anti-dominant projective modules respectively in
category O1(gl3). The simple quotients of the projective objects correspond to the
one-dimensional right A-modules L(1) = (1)A(1)/(1)A+, L(2) = (2)A/(2)A+, and
L(3) = (3)A/(3)A+.
8.2.1. The functor p̂(3). Let C(3) = EndA((3)A) be the endomorphism algebra of
the antidominant projective module. It is easy to compute that it’s isomorphic to
C[x]/(x3), (also see Proposition 34). Define functors

π̂(3)∶gmod−A→ gmod−C(3) π̂(3)(M) =M ⊗A A(3)
and

ι̂(3)∶D
▽(gmod−C(3))→D▽(gmod−A) ι̂(3)(M) =M ⊗L

C(3)
(3)A.

The functor categorifying the Jones-Wenzl projector V ⊗31 → V3 → V ⊗31 is then the
composite

p̂(3)∶D
▽(gmod−A)→D▽(gmod−A) p̂(3) = ι̂(3) ○ π̂(3).

We now construct an explicit complex of (A,A)-bimodules which is
quasi-isomorphic to the functor p̂(3). The first step is to resolve the (A,C(3))-
bimodule A(3) as a projective right C(3)-module:

⋯Ð→ A(3)⊗C(3)⟨8⟩ h3Ð→ A(3)⊗C(3)⟨6⟩ h2Ð→ A(3)⊗C(3)⟨2⟩ h1Ð→ A(3)⊗C(3) h0Ð→ A(3)
where

hn((3)⊗ 1) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3) if n = 0

(3)⊗ x − (3∣2∣3)⊗ x if n = 1,3, . . .

(3)⊗ x2 + (3∣2∣3)⊗ x + (3∣2∣3∣2∣3)⊗ 1 if n = 2,4, . . .

.
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Next, tensoring the complex

⋯ Ð→ A(3)⊗C(3)⟨8⟩ h3Ð→ A(3)⊗C(3)⟨6⟩ h2Ð→ A(3)⊗C(3)⟨2⟩ h1Ð→ A(3)⊗C(3)
on the right over C(3) with (3)A we get that p̂(3) is quasi-isomorphic to

(56) ⋯ → A(3)⊗ (3)A⟨8⟩ f3Ð→ A(3)⊗ (3)A⟨6⟩ f2Ð→ A(3)⊗ (3)A⟨2⟩ f1Ð→ A(3)⊗ (3)A
where

fn((3)⊗(3)) =
⎧⎪⎪⎨⎪⎪⎩
(3)⊗ (3∣2∣3)− (3∣2∣3)⊗ (3) for n odd

(3)⊗ (3∣2∣3∣2∣3)+ (3∣2∣3)⊗ (3∣2∣3)+ (3∣2∣3∣2∣3)⊗ (3) for n even.

Noticing that the bimodule A(3) ⊗ (3)A is isomorphic to the composition of pro-

jective functors Ê0F̂1 the complex in (54) could be understood as a complex of
projective functors

⋯ Ð→ Ê0F̂1⟨8⟩ f3Ð→ Ê0F̂1⟨6⟩ f2Ð→ Ê0F̂1⟨2⟩ f1Ð→ Ê0F̂1.

8.2.2. The functor p̂(2,1). Let C(2,1) = EndA((2)A⊕ (3)A). Define functors

π̂(2,1)∶gmod−A→ gmod−C(2,1) π̂(2,1)(M) =M ⊗A (A(2)⊕A(3))
and

ι̂(2,1)∶D
▽(gmod−C(2,1))→D▽(gmod−A) ι̂(2,1)(M) =M⊗L

C(2,1)
((2)A⊕(3)A).

The functor categorifying the Jones-Wenzl projector V ⊗31 → V2 ⊗ V1 → V ⊗31 is then
the composite

p̂(2,1)∶D
▽(gmod−A)→D▽(gmod−A) p̂(2,1) = ι̂(2,1) ○ π̂(2,1).

We now construct an explicit complex of (A,A)-bimodules which is
quasi-isomorphic to the functor p̂(2,1). The first step is to resolve the (A,C(2,1))-
bimodule A(2)⊕A(3) as a projective right C(2,1)-module:

(57)

A(2)⊗ (2)C(2,1)⟨4⟩ h2 //
A(2)⊗ (3)C(2,1)⟨1⟩

⊕

A(3)⊗ (2)C(2,1)⟨1⟩
h1 //

A(2)⊗ (2)C(2,1)
⊕

A(3)⊗ (3)C(2,1)
h0 //

A(2)
⊕

A(3)

A(2)⊗ (2)C(2,1)⟨6⟩
h3

OO

⋯
h4oo

where

h0((2)⊗ (2)) = (2), h1((2)⊗ (3)) = (2)⊗ (2∣3) − (2∣3)⊗ (3),
h0((3)⊗ (3)) = (3), h1((3)⊗ (2)) = (3∣2)⊗ (2) − (3)⊗ (3∣2),

h2((2)⊗ (2)) = (2)⊗ (3∣2∣3∣2) + (2∣3∣2)⊗ (3∣2) − (2∣3)⊗ (2∣3∣2) − (2∣3∣2∣3)⊗ (2),
hn((2)⊗ (2)) =

⎧⎪⎪⎨⎪⎪⎩
(2)⊗ (2∣3∣2) − (2∣3∣2)⊗ (2) if n = 3,5, . . .

(2)⊗ (2∣3∣2) + (2∣3∣2)⊗ (2) if n = 4,6, . . .
.
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Next, tensoring the complex

A(2)⊗ (2)C(2,1)⟨4⟩ h2 //
A(2)⊗ (3)C(2,1)⟨1⟩

⊕

A(3)⊗ (2)C(2,1)⟨1⟩
h1 //

A(2)⊗ (2)C(2,1)
⊕

A(3)⊗ (3)C(2,1)

A(2)⊗ (2)C(2,1)⟨6⟩
h3

OO

⋯
h4oo

on the right over C(2,1) with (2)A⊕ (3)A we get that p̂(2,1) is quasi-isomorphic to

⋯Ð→ A(2)⊗ (2)A⟨6⟩ f3Ð→ A(2)⊗ (2)A⟨4⟩ f2Ð→
A(2)⊗ (3)A⟨1⟩

⊕

A(3)⊗ (2)A⟨1⟩
f1Ð→

A(2)⊗ (2)A
⊕

A(3)⊗ (3)A
where

f1((2)⊗ (3)) = (2)⊗ (2∣3) − (2∣3)⊗ (3)
f1((3)⊗ (2)) = (3∣2)⊗ (2) − (3)⊗ (3∣2)

f2((2)⊗ (2)) = (2)⊗ (3∣2∣3∣2) + (2∣3∣2)⊗ (3∣2) − (2∣3)⊗ (2∣3∣2) − (2∣3∣2∣3)⊗ (2)

fn((2)⊗ (2)) =
⎧⎪⎪⎨⎪⎪⎩
(2)⊗ (2∣3∣2)− (2∣3∣2)⊗ (2) if n = 3,5, . . .

(2)⊗ (2∣3∣2)+ (2∣3∣2)⊗ (2) if n = 4,6, . . .
.

8.2.3. Functor p̂(1,2). Let C(1,2) = EndA((1)A⊕ (3)A). Define functors

π̂(1,2)∶gmod−A→ gmod−C(1,2) π̂(1,2)(M) =M ⊗A (A(1)⊕A(3))
and

ι̂(1,2)∶D
▽(gmod−C(1,2))→D▽(gmod−A) ι̂(1,2)(M) =M⊗L

C(1,2)
((1)A⊕(3)A).

The functor categorifying the Jones-Wenzl projector V ⊗31 → V1 ⊗ V2 → V ⊗31 is then
the composite

p̂(1,2)∶D
▽(gmod−A)→D▽(gmod−A) p̂(1,2) = ι̂(1,2) ○ π̂(1,2).

Just as in Section 8.2.2, we construct an explicit complex of (A,A)-bimodules
which is quasi-isomorphic to the functor p̂(1,2):

⋯Ð→

A(1)⊗ (1)A⟨6⟩
⊕

A(3)⊗ (3)A⟨6⟩
⊕

A(3)⊗ (1)A⟨6⟩
⊕

A(1)⊗ (3)A⟨6⟩

f3Ð→

A(1)⊗ (1)A⟨4⟩
⊕

A(3)⊗ (3)A⟨4⟩
⊕

A(3)⊗ (1)A⟨4⟩
⊕

A(1)⊗ (3)A⟨4⟩

f2Ð→

A(3)⊗ (1)A⟨2⟩
⊕

A(1)⊗ (3)A⟨2⟩
⊕

A(3)⊗ (3)A⟨2⟩
f1Ð→

A(1)⊗ (1)A
⊕

A(3)⊗ (3)A

where

f1((3)⊗ (1)) = (3∣2∣1)⊗ (1) − (3)⊗ (3∣2∣1)
f1((1)⊗ (3)) = (1)⊗ (1∣2∣3) − (1∣2∣3)⊗ (3)
f1((3)⊗ (3)) = (3∣2∣3)⊗ (3) − (3)⊗ (3∣2∣3)
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f2((1)⊗ (1)) = (1∣2∣3)⊗ (1) − (1)⊗ (3∣2∣1)
f2((3)⊗ (3)) = (3)⊗ (1∣2∣3) − (3∣2∣1)⊗ (3) − (3∣2∣3)⊗ (3) − (3)⊗ (3∣2∣3)
f2((3)⊗ (1)) = (3∣2∣3)⊗ (1) + (3)⊗ (3∣2∣1)
f2((1)⊗ (3)) = (1)⊗ (3∣2∣3) − (1∣2∣3)⊗ (3)

and for n ≥ 3

fn((1)⊗ (1)) =(1∣2∣3)⊗ (1) + (1)⊗ (3∣2∣1)
fn((3)⊗ (3)) =(−1)⌊n+42

⌋(3)⊗ (1∣2∣3)+ (−1)⌊n+42
⌋(3∣2∣1)⊗ (3)+ (3)⊗ (3∣2∣3)

+ (−1)n(3∣2∣3)⊗ (3)
fn((3)⊗ (1)) =(3∣2∣3)⊗ (1) + (−1)⌊n−12

⌋(3)⊗ (3∣2∣1)− (3∣2∣1)⊗ (1)
fn((1)⊗ (3)) =(−1)n+1(1)⊗ (3∣2∣3)+ (1)⊗ (1∣2∣3)+ (−1)⌊n−12

⌋(1∣2∣3)⊗ (3).
Remark 70. By Theorem 65, the categoriesD▽(gmod−C(2,1)) andD▽(gmod−C(1,2))
are equivalent.

8.3. The unknot coloured by V2.
Consider the quiver Γ, where each unori-
ented edge represents two oriented edges
in opposite directions. Then we may de-
scribe the graded category O2(gl4) as
the quotient of the path algebra of this
quiver modulo the following relations:

62 1 5

4

3
The quiver Γ:

(1∣2∣1) = 0 (1∣5∣1) = 0
(6∣5∣1) = 0 (1∣5∣6) = 0
(3∣5∣3) = 0 (4∣5∣4) = 0

(1∣2∣3) = (1∣5∣3) (1∣2∣4) = (1∣5∣4)
(4∣2∣3) = (4∣5∣3) (3∣2∣4) = (3∣5∣4)

(2∣4∣5)+ (2∣1∣5) + (2∣3∣5) = 0
(5∣4∣2)+ (5∣3∣2) + (5∣1∣2) = 0
(5∣6∣5)− (5∣3∣5) − (5∣4∣5) = 0

(3∣2∣1) = (3∣5∣1) (4∣2∣1) = (4∣5∣1)
(2∣3∣2) = (2∣1∣2) (2∣1∣2) = (2∣4∣2).

Denote this algebra by A. Let C = EndA((1)A⊕ (5)A⊕ (6)A) whose indecom-
posable projective modules are C(1), C(5), and C(6). The category of C-modules
is fully stratified. Define the standard modules by

∆(i) = C(i)/C(< i)
where C(< i) is the image of all maps from C(j) to C(i) with j < i. In particular
∆(1) = C(1). We give a basis for these standard modules:

∆(1) = {(1), (5∣1), (5∣3∣2∣1), (6∣5∣3∣2∣1)}
∆(5) = {(5), (5∣4∣5), (5∣3∣5), (5∣6∣5∣6∣5), (6∣5), (6∣5∣4∣5), (6∣5∣6∣5), (6∣5∣3∣2∣3∣5)}
∆(6) = {(6)}.
Now we find projective resolutions of the ∆(i) in terms of the C(j).

∆(1) ≅ C(1).
38



∆(5) ≅ C(1)⟨1⟩
⊕

C(1)⟨3⟩
c // C(5) , c = ((1∣5) (1∣2∣3∣5)) .

∆(6) ≅ C(1)⟨2⟩ b // C(5)⟨1⟩ c // C(6) , b = ((1∣5)) c = ((5∣6)) .
There are also proper standard modules ∆̄(i) for i = 1,5,6. One finds

∆̄(1) =∆(1), ∆̄(6) =∆(6), ∆̄(5) =∆(5)/S
where S is the submodule of ∆(5) generated by images of the radical of EndC(∆(5)).
It is actually easy to see that this submodule is the span of all elements except (5)
and (6∣5). Thus

∆̄(5) = C⟨(5), (6∣5)⟩
where the only non-trivial action is (6∣5).(5) = (6∣5). We may now find a filtration
of ∆(5) whose subquotients are isomorphic to ∆̄(5) up to shift. Let

S1 = C⟨(5∣6∣5∣6∣5), (6∣5∣3∣2∣3∣5)⟩
S2 = C⟨(5∣6∣5∣6∣5), (6∣5∣3∣2∣3∣5), (5∣4∣5), (6∣5∣4∣5)⟩
S3 = C⟨(5∣6∣5∣6∣5), (6∣5∣3∣2∣3∣5), (5∣4∣5), (6∣5∣4∣5), (5∣3∣5), (6∣5∣6∣5)⟩
S4 = C⟨(5∣6∣5∣6∣5), (6∣5∣3∣2∣3∣5), (5∣4∣5), (6∣5∣4∣5), (5∣3∣5), (6∣5∣6∣5), (5), (6∣5)⟩.

Then we obviously have S1 ⊂ S2 ⊂ S3 ⊂ S4 =∆(5) and
S1 ≅ ∆̄(5)⟨4⟩, S2/S1 ≅ ∆̄(5)⟨2⟩, S3/S2 ≅ ∆̄(5)⟨2⟩, S4/S3 ≅ ∆̄(5).

There is a resolution of the simple module C-module L(1) (which is a quotient
of C(1) by proper standards:

L1 ≅ ∆̄(6)⟨2⟩ a //
∆̄(5)⟨1⟩
⊕

∆̄(5)⟨3⟩
b // ∆̄(1) where a = ((6∣5)

0
) , b = ((5∣1) (5∣3∣2∣1)) .

The proper standard module ∆̄(5) is quasi-isomorphic to the complex

⋯ // B3
F3 // B2

F2 // B1
F1 // B0 , Bj =∆(5)⟨2j⟩⊕⋯⊕∆(5)⟨2j⟩´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j+1

,

where Fj is a matrix with entries give by:

(Fj)kl =
⎧⎪⎪⎨⎪⎪⎩
(−1)k(5∣4∣5) if k = l and k = 1, . . . , j − 1

(5∣3∣5) if l = k + 1 and k = 1, . . . , j − 1.
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Now we construct a projective resolution of L(1) in the category of C-modules.

q7C(5)
⊕

q8C(1)
⎛
⎜
⎝
(535)+ (545)− 1

2
(515)(1535)

⎞
⎟
⎠

��

D5

⎛
⎜
⎝
(545)− (535)
−(51)

⎞
⎟
⎠

oo D6
oo ⋯oo

q5C(5)
⎛
⎜⎜⎜⎜
⎝

1
2
(5321)(5456)− 1

2
(5656)

−
1
2
(51)

⎞
⎟⎟⎟⎟
⎠

//

q2C(1)
⊕

q2C(6)
⊕

q4C(1)
⎛
⎜⎜⎜⎜
⎝

(15)(65)(1235)
⎞
⎟⎟⎟⎟
⎠

T

// qC(5)
(51)

// C(1)

where

D2n = q
4n−1C(5)⊕ q4nC(1) D2n+1 = q

4n+1C(5)⊕ q4nC(1)
and

q4n+3C(5) (535)+(545)− 1

2
(515)

//

−(5321)
**❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

q4n+1C(5) (545)−(535) //

−(51)
**❯❯❯

❯❯❯❯
❯❯❯❯

❯❯❯❯
❯❯❯❯

q4n−1C(5)

q4n+4C(1)
(1535)

44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
q4nC(1)

(15)
44✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐✐
q4nC(1)

.

Corollary 71. In the category of C-modules, self extensions of L(1) are given by:

Ext0(L(1), L(1)) ≅ C, Ext−1(L(1), L(1)) = 0, Ext−2(L(1), L(1)) ≅ C⟨−2⟩⊕C⟨−4⟩,
Ext−2n(L(1), L(1)) ≅ C⟨−4n⟩ if n ≥ 2, Ext−(2n+1)(L(1), L(1)) ≅ C⟨−4n⟩ if n ≥ 2.

The Poincare series of this bigraded vector space is:

(58) 1 + (q−2 + q−4)t−2 + q−8t−4(1 + t−1)
1 − t−2q−4

.

Shifting this space by q2t2 yields the cohomology of the unknot coloured by V2:

(59) q2t2 + (1 + q−2) + q−6t−2(1 + t−1)
1 − t−2q−4

.

Under the transformation t ↦ T , q ↦ T −1Q−1, the series in (59) becomes

(60)
Q−2 + 1 −Q4T 2

+Q6T 3

1 − T 2Q4
.

This transformation comes from applying a Koszul duality functor to the homo-
logical and internal grading shifts respectively. The transformed Poincare series in
(60) is precisely the homology of the unknot coloured by the 3-dimensional rep-
resentation in [19, Section 4.3.1]. The fact that our calculation is related to the
calculation in [19] by Koszul duality also follows from [62] where it was shown
that the categorified projector considered in this paper is related to Cooper and
Krushkal’s via Koszul duality. The series in (60) also agrees with [26, Example 3.2]
up to an overall factor.
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9. Appendix: The (coloured) Reidemeister moves

(61) ☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷

☞☞☞☞☞☞☞

✷✷✷

✷✷
✷

m = m

OO

and

OO

☞☞☞☞☞☞☞

✷✷✷

✷✷
✷

=

OO

=

OO

✷✷
✷✷
✷✷
✷

☞☞☞

☞☞☞

(61∗)
☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷

☞☞☞☞☞☞☞

✷✷✷

✷✷
✷

m

❴❴❴❴

❴❴❴❴

❴❴❴❴

❴❴❴❴

❴❴❴❴

D1

D2

D3

D4

D5

D6

=

OO

m

(62)
☞☞☞

☞☞☞

✷✷✷✷✷✷✷ ��

OO

m n

= ☞☞☞☞☞☞☞

✷✷
✷

��✷
✷✷

✷✷
✷

OO

m n
☞☞☞

☞☞☞

✷✷✷✷✷✷✷

OO

OO

m n

= ☞☞☞☞☞☞☞ ✷✷
✷

✷✷✷

��

OO

m n

(63)
☞☞☞

☞☞☞

✷✷✷✷✷✷✷

☞☞☞☞☞☞☞

EE☞☞☞☞☞☞☞
✷✷✷

✷✷✷
YY✷✷✷

m n =

OO

m

OO

n =
☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷
☞☞☞☞☞☞☞

✷✷✷

✷✷✷
m n

(64)
☞☞☞

☞☞☞

✷✷✷✷✷✷✷

☞☞☞

☞☞☞

✷✷✷✷✷✷✷

☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷

OO

m n p
=

☞☞☞

☞☞☞

✷✷✷✷✷✷✷

☞☞☞

☞☞☞

EE☞☞☞
✷✷✷✷✷✷✷

YY✷✷✷✷✷✷✷

OO

☞☞☞

☞☞☞

✷✷✷✷✷✷✷

m n p

☞☞☞☞☞☞☞

✷✷✷

✷✷✷

☞☞☞☞☞☞☞

✷✷✷

✷✷✷

☞☞☞☞☞☞☞

EE☞☞☞☞☞☞☞
✷✷✷

✷✷✷
YY✷✷✷

OO

m n p
=

☞☞☞☞☞☞☞

✷✷✷

✷✷✷

☞☞☞☞☞☞☞

EE☞☞☞☞☞☞☞
✷✷✷

✷✷✷
YY✷✷✷

OO

☞☞☞☞☞☞☞

✷✷✷

✷✷✷m n p

(65)

OO

m

=

OO

m

=

OO

m

��
m

=

��
m

=

��
m
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(66)

��

✷✷
✷✷
✷✷
✷

☞☞☞

☞☞☞

☞☞☞☞☞☞☞

✷✷✷

✷✷
✷

OO

n m

=

OO

��
n m

=

��

✷✷
✷

✷✷
✷ ☞☞☞☞☞☞☞

☞☞☞

☞☞
☞✷✷✷✷✷✷✷

OO

n m
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