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Contrast coding choices in a decade of mixed models 
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A B S T R A C T   

Contrast coding in regression models, including mixed-effect models, changes what the terms in the model mean. 
In particular, it determines whether or not model terms should be interpreted as main effects. This paper 
highlights how opaque descriptions of contrast coding have affected the field of psycholinguistics. We begin with 
a reproducible example in R using simulated data to demonstrate how incorrect conclusions can be made from 
mixed models; this also serves as a primer on contrast coding for statistical novices. We then present an analysis 
of 3384 papers from the field of psycholinguistics that we coded based upon whether a clear description of 
contrast coding was present. This analysis demonstrates that the majority of the psycholinguistic literature does 
not transparently describe contrast coding choices, posing an important challenge to reproducibility and repli
cability in our field.   

Introduction 

In 2008, there was a special issue of the Journal of Memory and 
Language dedicated to mixed effect models (MEMs) and other statistical 
advances, designed for the target audience of cognitive psychologists 
and psycholinguists. There were two highly influential papers in this 
issue: Baayen, Davidson, and Bates (2008) and Jaeger (2008). Each of 
these papers has been cited over a thousand times to date, and these two 
papers in particular seem to serve as primers on mixed models for many 
psycholinguists. 

Both papers have a similar focus, which is to motivate an ANOVA- 
using audience to switch analysis methods. In so doing, both papers 
highlight ways in which MEMs are superior analysis methods for the 
types of data used in psycholinguistic studies: data with crossed random 
effects (two sets of repeated measures, such as participants and items) 
and data that is not necessarily normally distributed, such as binary 
(binomial) responses. The influence that these papers and the special 
issue they appear in has had on the field of psycholinguistics cannot be 
overstated: this special issue initiated a sea change in analysis tech
niques, such that the dominant analysis tool in the field is no longer 
ANOVA but MEM. 

However, some additional choices do need to be made in MEMs that 
are not applicable to ANOVAs, meaning that the push to switch analysis 
methods has created a likely learning curve for statistical novices—even 
at the software level, MEMs generally require more coding and more 

analytic choices than ANOVAs. A now substantial literature has devel
oped on some of the unique features of MEMs and the best practices that 
should be used in psycholinguistics. This includes approaches to random 
effect selection (see e.g. Barr, Levy, Scheepers, & Tily, 2013; Matuschek, 
Kliegl, Vasishth, Baayen, & Bates, 2017), how to estimate degrees of 
freedom for p-value calculations (e.g., the infinite degrees of freedom 
approximation in Baayen et al. (2008), and discussion around the Sat
terthwaite and Kenward-Roger approximations implemented in the 
lmerTest package in R, Kuznetsova, Brockhoff, & Christensen, 2017), 
and the best optimizers to use to fit MEMs in R (see e.g. Bates et al., 
2015, the lme4 documentation (https://cran.r-project.org/web/pac 
kages/lme4/lme4.pdf) and the GLMM FAQ (Bolker, 2021( ). 

Mixed models are also now handled in a number of introductory 
statistical textbooks (e.g., McElreath’s Statistical Rethinking, Fox’s 
Applied Regression Analysis and Generalized Linear Models, and 
Kretzschmar & Alday (to appear)), in several more advanced textbooks 
(Pinheiro & Bates, 2000; Zuur, Ieno, Walker, Saveliev, & Smith, 2009; 
Gelman & Hill, 2006), and in a recent textbook designed specifically for 
linguists (Winter, 2019). We recommend these resources, in addition to 
Jaeger (2008) and Baayen et al., 2008), for learning how to use mixed 
models. Two recent papers are also especially good resources for be
ginners: Meteyard and Davies (2020) use a meta-analytic approach to 
showcase the uncertainties that researchers have about using mixed 
models and present a set of clear reporting guidelines, and Brown (2021) 
presents a complete MEM tutorial in the R programming language. 

Abbreviations: MEM, mixed-effect model. 
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Within this ever-growing literature, one topic has received limited 
attention: how to code fixed effects in MEMs. This is likely because fixed 
effect coding generalizes from ordinary least-squares regression. How
ever, since MEMs are often used as a replacement for ANOVA, which 
does not require the same type of coding choices, it is important to 
address how and why coding choices for fixed effects are made.1 Most 
importantly, we note that the default behavior in R (and other statistical 
software) can mislead novice users who are looking to treat MEMs as a 
drop-in replacement for ANOVA. 

We focus in the current paper on the topic of contrast coding. In 
MEMs (and all other regression analyses), one needs to make a choice in 
how to treat categorical predictors. Contrasts are the numeric values 
assigned to categorical variables in order to enter them into a regression 
model. There are multiple sensible ways to perform contrast coding, but 
the choice that is made has implications for the interpretation of effects 
in a model. Both Baayen et al. (2008) and Jaeger (2008) explicitly stated 
that they used treatment coding. While this is a common choice in 
regression models, this contrast coding scheme does not line up with the 
inferences afforded by ANOVA models (under the most common Type II 
or Type III sums of squares), and neither paper dedicated much space to 
the logic behind their choices. This means that MEMs, as used in these 
two 2008 papers, do not serve as the drop-in replacement for ANOVA 
that a naive individual may wish for. When combined with the fact that 
the default in most statistical software is to use treatment coding, the 
implication is that individuals in our field may be particularly suscep
tible to incorrect model interpretation. 

The question we ask in this paper is whether the psycholinguistic 
community understands contrast coding, as measured by whether the 
papers in the citation network of Baayen et al. (2008) and Jaeger (2008) 
provide sufficient detail to reconstruct their contrast coding choices. To 
motivate the problem, we begin with a simulated case study on contrast 
coding in order to highlight the different inferences afforded for model 
effect terms under two different coding schemes – treatment coding 
versus sum coding. This is followed by a series of analyses on how 
contrast coding is described in the psycholinguistic literature published 
from 2009 to 2018. These analyses highlight that individuals do not, in 
general, describe their contrast coding choices in sufficient detail to 
reconstruct their analyses, but that there are some journals and some 
sub-topics that do better than others in clear description of contrast use, 
implying a role for individual researchers, journal editors, and reviewers 
in promoting best practices. More pessimistically, we find that a large 
proportion of the psycholinguistic literature does not report contrast 
coding and therefore is uninterpretable in a strict sense. We end with a 
set of best practice recommendations and a discussion of the conse
quences that these practices have had on the field. 

What’s a contrast? 

A linear mixed effect model can be expressed mathematically as: 

y = Xβ+ Zu+ ∊  

In other words, a response vector y is equal to a vector of fixed effects β 
times a model matrix X built from numeric values of predictors, plus a 
vector of random effects u times a matrix Z of indicators for the grouping 

variables (e.g. which observations belong to a given participant or item), 
plus a vector of observation-level errors (‘noise’) ∊. Or in other, other 
words: a mixed model is a mathematical description of a set of lines.2 

Fitting a regression line is conceptually and statistically easy with 
predictors that are numbers. In this case, the elements entered into the 
model matrix X are also numbers: the values associated with indepen
dent variables. A regression line with only a single continuous fixed 
effect (only the Xβ and error portions of the equation) is exactly what it 
looks like in a simple x-y plot: a line that minimizes the vertical distance 
between values of x and observed values of y for all observations; in a 
technical sense, the line is the expected values for y for all values of x. 

One can also perform a regression analysis— in other words, fit a 
line— on data that are categorical by selecting some numeric values to 
apply to the categories. These values are entered in the model matrix X in 
the equation above. The numeric values chosen to represent comparisons 
between categorical predictors are contrasts, and these serve the same 
purpose as the values associated with any numeric variable: to find the 
line that minimizes error between values of x and observed values of y. 
Contrasts allow comparisons to be made between one or more levels of a 
variable – comparing levels to each other, to the mean value of the var
iable, or to various combinations of other variable levels. The number of 
comparisons that can be made for a variable depends on how many levels 
there are: For any categorical variable with N levels, N-1 contrasts are 
used in a contrast matrix. This is because there are only N-1 ways of 
creating independent (orthogonal) comparisons between the groups. 

For a model containing a single two-level variable, there are two 
straightforward contrast coding choices to make up the single contrast 
vector in the contrast matrix. One choice is to use treatment (or dummy) 
coding: setting one level as the reference level for the model by assigning 
it zero and setting one level as the treatment level by assigning it one to 
make the contrast vector (0,1). The other is to use sum (or effect) coding: 
setting one level as negative and one positive, with zero as the mean of 
the two levels, to make the contrast vector (-1,1).3 

Contrast coding changes what the model intercept reflects, since the 
model intercept is the y value when all predictors are zero. In sum 
coding, the intercept is the y value associated with the grand mean of the 
two cells (the average of the two cells), whereas in treatment coding, the 
intercept is the y value associated with the reference (zero) level. The 
effect term in a one-predictor model is then interpreted accordingly. For 
a model containing a single two-level variable, the predictor term when 
(-1, 1) sum coding is used will reflect half the change in the y value 
between the two levels, whereas in treatment coding, it will reflect the 
increase in the y value associated with the treatment level. 

The implications of contrast coding become more striking in more 
complex models. For a three-level factor A, treatment coding creates two 
contrast vectors: if the first level is the reference, these would be (0,1,0) 
and (0,0,1); the model intercept reflects the y value at the reference level. 
This means that any interactions between A and any other factors also need 
to be evaluated at the reference level of factor A. Sum coding for factors 
with more than two levels also requires setting a reference level: if the first 
level is the reference, the two contrasts would be (-1,1,0) and (-1,0,1). The 
intercept in this model reflects the grand mean of the three factor levels, 
and the comparisons reflect the difference between each (non-reference) 
level and the grand mean. A worked example using sum coding in a more 
complex model appears in the metascientific study below. 

Note that more complex comparisons also become available with 
factors that have three levels or more, including Helmert and difference 
(or repeated) contrast coding for ordered factors. Selecting among these 
various options strategically can eliminate the need to perform post hoc 

1 There is an analog of contrast coding in ANOVA: the type of sums of 
squares. In many ways, this presents a parallel problem: model results are not 
interpretable without this information, yet they are often unreported, and the 
defaults in much statistical software, e.g. Type I SS in base R, are often not 
desirable for psycholinguistic analyses. The different types of sums of squares 
can also be expressed as different contrast coding schemes for the regression 
model underlying ANOVA. 

2 This also holds for a generalized linear mixed model, but the lines are 
transformed via a link function before the observation-level variability is 
considered, and the observation-level variability may not be Gaussian.  

3 (-.5,.5) is another variant of sum coding. Results are interpreted in the same 
way: all that differs is the magnitude of beta values, which are twice as large. 
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tests, as nicely highlighted by Schad, Vasishth, Hohenstein, & Kliegl 
(2020). Helmert coding tests whether the differences between 
increasing or decreasing ordered factor levels are uniform. For example, 
to examine the interference in picture naming that comes from simul
taneously listening to Dutch speech, Chinese speech, or noise, He, 
Meyer, and Brehm (2021) used Helmert coding to compare the average 
of the two (more challenging) language conditions to the (easier) noise 
condition and to then compare the two language conditions to each 
other. Difference coding is also used for ordered factors, but instead 
isolates the most theoretically useful pairwise comparisons (the adjacent 
ones). For example, Breen (2018) used backwards difference coding to 
test how word durations change when reading the children’s book The 
Cat in the Hat aloud based upon decreases in the metric hierarchy level 
(the combination of syllable stress and word position). 

Less intuitively, when a model contains multiple variables, contrast 
coding for one variable also changes the interpretation of other vari
ables. This is the problem we want to highlight in this paper. Because 

contrast coding changes the interpretation of the intercept, it therefore 
also changes the interpretation of all main effects, and all interactions 
except the highest-order one. This is because effect terms in a model are 
evaluated when the intercept is equal to zero– so a contrast coding 
scheme where zero is set to reflect one particular factor level will have a 
radically different interpretation than one in which zero reflects a 
combination of several factor levels. 

In a sum-coded model (-1, 1 coding), the fact that zero is the average 
of the two levels means that the effect of factor A is evaluated at the 
average of the factor B levels. This means that in a sum-coded model, the 
effect of each factor is coded to reflect how it influences the DV while 
collapsing across any other factors. This is easier to understand in an 
example. If, in a model of the time it takes to eat a meal, factor A is 
Utensils and factor B is Foods, then the model effect terms will describe 
the effect of each factor, averaging across both levels of the other. These 
effects will correspond to the main effects in an ANOVA model: the in
fluence of Utensils on eating time, regardless of which food was eaten, 
and the influence of Foods on eating time, regardless of which utensil 
was used. This type of hypothesis testing is often desired: Main effects 
are often what psycholinguists wish to evaluate statistically. 

In comparison, in a treatment-coded model where one level is set to 
zero (1, 0 coding), the effect of factor A is evaluated at the reference 
level (zero level) of factor B. This means that the model effect terms are 
not main effects, but simple effects. Setting the reference level of factor A 
Utensils to Fork and the reference level of factor B Foods to Salad 
means that the model intercept will be evaluated at the combination of 
(Fork + Salad), the effect of Utensils on eating time will be evaluated 
when salad was eaten, and the effect of Foods on eating time will be 
evaluated when a fork was used. Importantly, for many research designs, 
simple effects are not equivalent to main effects. This means that one 
must know the contrast coding scheme used in order to interpret a 
regression model. 

Case study: Why contrast coding matters 

It’s easier to see the impact of contrast coding schemes in a fully- 
worked example. The R code below generates some simulated data 
where there is a crossover interaction of factors A (Utensils) and B 
(Foods) on a dependent measure RT, (speed of eating, in minutes). This 
data pattern has no reliable main effects (there is no overall effect of 
utensil choice, averaged across levels of foods) but does have reliable 
simple effects (there is an overall effect of utensil choice on the speed of 
eating when looking at one food at a time, and an overall effect of food 
choice on the speed of eating when looking at one utensil at a time). 

We begin the example by loading four packages: lme4 (Bates et al., 
2015) is the package for mixed models, car (Fox and Weisberg, 2019) is 
a package for setting nicely-labeled contrasts (among other things), 
jtools (Long, 2020) and kableExtra (Zhu, 2021) provide nicely 
readable model outputs. We also set a random seed so that results will 
replicate when the code is re-run. 

Next, we set some function inputs. We will draw random values from 
distributions centered around condition means SpoonSoup, Fork
Soup, SpoonSalad, and ForkSalad, representing the four combi
nations of two two-level factors Utensils and Foods. These will all 
have the same standard deviation Groupsd, corresponding to the usual 
homoskedacity assumption (the same variance in all conditions). We 
also define that we want the code to generate 20 participants (ps, the 
eaters in our experiment) and 10 items (ii, the different main in
gredients in each soup and salad–such as potatoes, beets, pasta, etc.).  

We build the structure of a data frame containing ps by ii observa
tions in each cell of Utensils and Foods by repeating elements the 
correct number of times and binding them together as columns in a data 
frame. Participants are numbers proceeded by p and items are numbers 
proceeded by i.4 

4 This will force these to be coded as characters in the data frame and then as 
factors when used as random intercepts, which is the desired outcome. 

L. Brehm and P.M. Alday                                                                                                                                                                                                                     



Journal of Memory and Language 125 (2022) 104334

4

Then, we create some simulated data by drawing from a random 
normal distribution ps by ii times for each cell of the design. 

We also create some random effects – random variance attributed to 
each participant (each eater) and each item in the study (each main 
ingredient, here used in both soup and salad), centered around zero, of a 
magnitude that is a fraction of the overall variance. The overall DV is 
then composed by adding the original random draw with the random 
effects per participant and per item for a given observation. 

Finally, we make sure that R is appropriately treating our variables as 
factors.  

Next, we run two linear mixed effect regression models using the 
function lmer() from the R package lme4 with the predictors of 
Utensils and Foods, and random intercepts for participants and items. 
(In real data, one also needs to consider whether random slopes are 

justified– we set this issue aside for the current paper. See e.g. Barr et al., 
2013; Matuschek et al., 2017). 

In the first model, we do not set any contrasts, but we do use the base 
R function contrasts() to look up what they are. The default coding 
scheme in R is to use treatment coding with the first level alphabetically 
as the reference. In this model, there appear to be main effects of 
Utensils and Foods such that spoons and soup lead to slower eating 
overall– but note that these are actually simple effects, because the 

intercept is set to reflect the zero-level for both variables (the Fork +
Salad cell of the design). The correct interpretation of this model is that 
there is an effect of Utensils when eating salad (spoons are a slower 
way to eat it), and an effect of Foods when using a fork (soup is slower 
to eat with it). There is also an interaction between them, such that it is 
slower to eat salad with a spoon and soup with a fork. The model is 
summarized using the jtools() function summ() which creates 
formatted model tables; we suppress the R2 and p values because 
defining these requires additional assumptions for linear mixed models.  
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In the second model, we set sum contrasts. The function contr.Sum 
() from the car package is used to do this because as it provides a useful 
label set. Here, the label [S.Fork] reminds us that we are using sum 
coding with the Fork level as the positive value. In this model, the ‘main 
effects’ disappear– because in the first model, what looked like main 
effects were actually simple effects. On average, it takes the same 
amount of time in this simulation to eat with a spoon as a fork, and the 

same amount of time to eat soup as salad. However, the interaction is 
still present, corresponding with the fact that it is slower to eat salad 
with a spoon and soup with a fork. Importantly, the random effect terms 
are also identical in both models. That is because contrast coding does 
not change the random effects (so long as both models converge), nor 
does it change the highest-order interaction: only the intercept and other 
lower-order fixed effect terms. 

Fixed Effects  

Est. S.E. t val. 

(Intercept) 4.81 0.21 23.45 
UtensilsSpoon 5.06 0.20 25.19 
FoodsSoup 5.13 0.20 25.52 
UtensilsSpoon:FoodsSoup − 10.10 0.28 − 35.52   

Random Effects 

Group Parameter Std. Dev. 

Participant (Intercept) 0.46 
Item (Intercept) 0.33 
Residual  2.01   

Grouping Variables 

Group # groups ICC 

Participant 20 0.05 
Item 10 0.03   
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This pair of models highlights the general problem: running a model 
without knowing the contrast coding leads to results that it is impossible 
to draw inferences from. Most problematically, what appear to be main 
effects can be interpreted by a naive reader or experimenter as simple 
effects, and vice versa. This is especially the case in analyses that rely on 
significance testing (instead of a model-fitting approach) when no post 
hoc testing (i.e., with the lsmeans or emmeans R packages) is done.5 In 
comparison, when the contrasts are clearly described– no matter what 
they are– then the correct inferences can always be drawn by the reader 
about the model, and post hoc testing typically is no longer necessary. 

Metascientific study 

Taking a metascientific approach, we next examined the use of 
contrasts in the citation network of the two influential 2008 papers 
(Baayen et al., 2008 & Jaeger, 2008J). This allowed us to compile a set of 
literature with a psycholinguistic focus using mixed models. Within this 
sample, we coded whether the authors provided details on their contrast 
coding choices. We asked how patterns changed over time, whether 
journals differed, and whether certain sub-fields, as indexed by 
keyword, have more success than others in correct contrast use. 

Method 

The first step was to compile a database of papers that used mixed 
models. We performed a search in the Web of Science database on May 
05, 2019 for all papers published in the years 2009 to 2018 that cited 
either Baayen et al. (2008; N = 2294), only Jaeger (2008; N = 803), or 
both (N = 520). For each paper, one of the authors or a research assistant 

assessed (i) whether the paper was accessible by our library, (ii) whether 
it was in English, and (iii) whether it contained any mixed model ana
lyses. At this stage, 233 papers were excluded (14 were inaccessible, 15 
were not in English, and 204 did not contain mixed models), leaving 
3384 papers. 

Next, the papers were all coded by the first author, or coded by a 
research assistant and then checked by one of the two authors. The first 
step was to code whether categorical variables were present (N = 3125 
yes, 259 no), These 3125 papers are those for which contrast coding is 
relevant, and make up the data reported in the rest of the paper. In these 
papers, we then coded if contrasts were explicitly described for one or 
more variables (N = 1069 yes, 2056 no) by skimming the methods and 
results section and performing word searches for the following terms: 
contrast, code, level, reference, treatment, dummy. 

We counted contrast descriptions as present if a coding scheme was 
named (“We used deviation/Helmert/sum coding”), if a reference level 
was marked in the text or in a table (“The reference level of factor A was 
Y”), or if numeric values were mentioned (“We contrast coded all factors 
as 0.5, − 0.5”). Contrast descriptions were coded as present even when 
the coding scheme was nonsensical, if it met the guidelines above (e.g., 
polynomial contrasts for a variable with two levels). 

Contrast descriptions were not coded as present if the authors simply 
said that they “performed contrast coding” or “centered variables” 
without any further details, as this does not allow reconstruction of the 
analysis. The first statement is problematic because it does not describe 
the contrast coding procedure in sufficient detail to reconstruct the 
analysis. The term ‘contrast coding’ is sometimes used as a shorthand 
notation for ‘sum coding’ (as opposed to leaving the default treatment 
contrasts), but note that multiple different contrast coding schemes are 
always available for variables with more than two levels. Statements like 
this are therefore needlessly confusing, even when they are correctly 
used to describe that a two-level variable was sum coded. Especially to a 
naive user, we believe this to be too opaque to be useful. The second 
statement is problematic because it is unclear which variables it applies 
to. Continuous variables are centered by subtracting the mean from each 
value; this sets the intercept (zero) level to the average value of the 
variable. In terms of category levels, it is typically not clear what the 
“center” would be (e.g. what is the center of the variable common pets 
with levels cat, dog, goldfish?): centering in this sense is fairly nonsen
sical. In terms of contrast values, the term centering is sometimes used to 
mean that a weighted contrast coding scheme was used. In this case, the 
resulting comparisons are data dependent instead of design dependent. 
While there are a few cases where it makes sense to adjust the contrasts 
for the data (i.e. for certain types of unbalanced data that are missing not 
at random), weighted contrast coding should be done intentionally and 
transparently (see Sweeney & Ulveling, 1972; Nieuwenhuis, te Gro
tenhuis, & Pelzer, 2017). 

All data and the code to perform the following analyses appear on htt 
ps://osf.io/jkpxt/. Note that the data are de-identified in order to pro
tect author identities. 

Results 

Less than a third of papers describe contrasts clearly 
Of the 3125 papers in our data set which used one or more cate

gorical variables, and therefore needed to make a choice about contrast 
coding, only 1069 described their choice explicitly. In other words: only 
34% of papers in a large sample of psycholinguistic literature were fully 
explicit about which choices were made in their data analysis. The 
overwhelmimg majority of papers either did not describe their contrasts at 
all, or did so insufficiently. This suggests the potential for an enormous 
replicability problem: readers cannot tell what choices were made about 
data analysis, nor whether all conclusions drawn about the data were 
correct. 

In a very strict sense, the lack of clear contrast coding choices means 
that the the statistics in these 2056 papers– 66% of the psycholinguistic 

Fixed Effects  

Est. S.E. t val. 

(Intercept) 7.38 0.16 44.97 
Utensils[S.Fork] − 0.01 0.07 − 0.09 
Foods[S.Salad] -0.04 0.07 -0.57 
Utensils[S.Fork]:Foods[S.Salad] − 2.52 0.07 − 35.52   

Random Effects 

Group Parameter Std. Dev. 

Participant (Intercept) 0.46 
Item (Intercept) 0.33 
Residual  2.01   

Grouping Variables 

Group # groups ICC 

Participant 20 0.05 
Item 10 0.03   

5 As discussed elsewhere: we endorse a priori sensible contrast coding over 
post hoc testing. Post-hoc testing is a solution to the problem of incorrect model 
inference, but comes at the cost of introducing multiple comparisons. Moreover, 
omnibus post hoc testing is often symptomatic of exploratory research, which 
needs to be interpreted and reported fundamentally differently from confir
matory research (cf. Wagenmakers, Wetzels, Borsboom, van der Maas, & Kievit, 
2012). Nearly all sets of a priori hypotheses can be tested using N-1 compari
sons when these are chosen carefully. 
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literature sampled– cannot be interpreted. Without knowing the 
contrast scheme, it is not possible to interpret the model coefficients and 
associated significance tests – even without interaction terms – because 
the contrasts are what encodes the hypothesis under consideration. In a 
loose sense, there is reason for optimism: treatment coding and sum 
coding, for example, only give different results when interactions are 
present, and the results are most strikingly different in the presence of 
crossover interactions, as outlined in the case study above. The larger 
issue is that we do not know which of these papers make valid conclu
sions: the statistics presented in the majority of the psycholinguistic 
literature are, strictly speaking, uninterpretable, because contrast cod
ing choices are not sufficiently described. 

Patterns over time are improving 
We did observe a general increasing trend over time, as shown in 

Fig. 1. The contrast description rate has increased to 38.6% by 2018, 
with the maximum year being 2017 (with 39.4% of papers explicitly 
describing their contrasts). The implication is that authors may be 
changing their behavior for the better over time. 

We tested this pattern with a generalized linear model, coding year 

as an ordered factor with orthogonal polynomial contrasts. We selected 
this contrast coding scheme because it allowed us to test whether trends 
over time are best described as linear (steadily increasing or decreasing), 
quadratic (increasing, then decreasing, or vice versa), or some other 
more complex non-linear pattern (polynomials of third degree and 
higher). This model appears in Table 1. In this analysis, there was only a 
significant positive linear trend, such that we would expect future pa
pers from an analogous sample (i.e., those that cite Baayen et al., 2008 or 
Jaeger, 2008, and which use categorical variables) to be ever more 
precise with their description of contrast coding. 

Patterns by journal are varied 
To look at how choices about contrast coding might be influenced by 

journal editors and reviewers, we looked at patterns by journal. There 
were 567 journals included in the data set, and we extracted the 34 for 
which we had at least 20 observations. These are shown in Table 2, 
alongside the abbreviations used in our tables and figures. We selected 
20 as our cutoff simply because it is a standard ‘large-enough’ number 
for many statistical purposes; a higher threshold would have made the 
sample less reflective of the field as a whole, and a lower one might risk 
issues with model convergence or overfitting. 

This subset of journals was entered into a generalized linear mixed 
model in which we predicted explicit contrast description by journal 
with a random intercept for year. Because we treat year in all analyses as 
a categorical variable, and because it has relatively few levels, it is a 
valid grouping variable for random intercepts: see e.g. Onkelinx (2017). 
Within this model, the predictor journal was sum coded, with the me
dian level of journal, when ordered by contrast description rates, set as 
the (omitted) reference level for the model (this was Cognitive Science). 

In sum coding with more than two levels, the intercept reflects the 
grand mean (the mean of all levels of the variable), and each effect re
flects whether the level is reliably different from the grand mean; one 
level must be omitted as a reference level. Setting the reference level as 
something close to the grand mean means that this omitted comparison 
is one of the least important ones, and so little relevant information is 
lost. Using this contrast coding scheme therefore allows us to test 
whether each journal performs differently than the average of all jour
nals. Model output can be found in Table 3; each contrast in the model is 

Table 1 
By-year contrast description analysis. Model intercept reflects the grand mean of 
contrast description (mean of mean descriptions per year), and effects reflect 
polynomial patterns between year and contrast description, from linear to a 9th 
degree polynomial. Model formula is: glm(ContrastsUse ~ Year, 
family=‘binomial’)   

Est. S.E. z val. p 

(Intercept) − 0.78 0.05 − 14.68 0.00 
Year.L 0.74 0.21 3.57 0.00 
Year.Q 0.10 0.20 0.51 0.61 
Year.C − 0.18 0.19 − 0.95 0.34 
Year̂4 − 0.07 0.18 − 0.40 0.69 
Year̂5 − 0.00 0.16 − 0.03 0.98 
Year̂6 − 0.04 0.15 − 0.27 0.79 
Year̂7 0.12 0.14 0.86 0.39 
Year̂8 − 0.06 0.13 − 0.42 0.67 
Year̂9 0.09 0.12 0.71 0.48 

Standard errors: MLE. 

Fig. 1. Proportion of explicit contrast use by year, with loess smooth.  
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labeled with the level that is being compared to the grand mean. A plot 
of the modeled data transformed into proportions can be found in Fig. 2; 
in this plot, the grey horizontal line reflects the model intercept (grand 
mean), and each point reflects the estimate for a particular journal. 

Four journals are reliably better than average: these are Bilingualism, 
Language, and Cognition, Journal of Phonetics, Journal of Memory and 
Language, and Journal of Experimental Psychology: Learning, Memory, and 
Cognition. Two journals are reliably worse: Frontiers in Psychology and 
Frontiers in Human Neuroscience. 

The differences between journals suggest that there is a crucial role 
for journals—and the editors and reviewers that contribute to the review 
process—in how models are reported and whether in-depth contrast 
description is encouraged or overlooked. We would like to applaud the 
journals that are at the top of best-practices in this domain and the in
dividuals that have helped make this happen. 

Patterns by keyword are varied 
In order to examine the role of topic-specific conventions, we next 

examined the keywords associated with contrast description. We used 
the spell-check procedure in MS Excel to correct any misspellings and to 
Americanize all words, and replaced all punctuation and spaces with ‘_’ 
in order to collapse similar terms for analysis e.g. eye-tracking and eye 
tracking. After doing this, there were 6758 unique keywords associated 
with 2553 unique papers. 

We filtered the full data set (including all journals) for the 29 key
words with at least 30 observations each. We selected 30 as our cutoff 
because we desired to use a model with a more complex random effect 
structure than the by-journal analysis; requiring a larger sample size per 
keyword helps avoid any convergence issues. These data were submitted 
to a generalized linear mixed model with a random intercept for the 
journal that the keyword appeared in and for the year of publication. In 
this analysis, the factor keywords was again sum-coded, with the median 
level ‘language production’ as the reference (the omitted level). This 
again allows us to test whether each keyword is associated with a reli
ably different outcome than the grand mean of all keywords. Results of 
this model can be found in Table 4, and plot of the modeled data 
transformed into proportions can be found in Fig. 3; again, the grey 
horizontal line reflects the model intercept (grand mean), and each point 

Table 2 
Journals appearing in by-journal analysis, with abbreviations and counts of 
observation.  

Journal Full Name Journal 
Abbreviation 

Observations 

ACTA PSYCHOLOGICA Acta Psychol 49 
APPLIED PSYCHOLINGUISTICS Appl 

Psycholinguist 
30 

ATTENTION PERCEPTION & 
PSYCHOPHYSICS 

AP&P 35 

BILINGUALISM-LANGUAGE AND 
COGNITION 

B:L&C 44 

BRAIN AND LANGUAGE Brain Lang 22 
COGNITION Cognit 105 
COGNITIVE PSYCHOLOGY Cog Psychol 20 
COGNITIVE SCIENCE Cog Sci 55 
FRONTIERS IN HUMAN NEUROSCIENCE Front Hum 

Neurosci 
28 

FRONTIERS IN PSYCHOLOGY Front Psychol 170 
JOURNAL OF CHILD LANGUAGE J Child Lang 28 
JOURNAL OF COGNITIVE PSYCHOLOGY J Cog Psych 26 
JOURNAL OF EXPERIMENTAL CHILD 

PSYCHOLOGY 
J Exp Child 
Psychol 

24 

JOURNAL OF EXPERIMENTAL 
PSYCHOLOGY-GENERAL 

JEP:G 29 

JOURNAL OF EXPERIMENTAL 
PSYCHOLOGY-HUMAN PERCEPTION 
AND PERFORMANCE 

JEP:HPP 48 

JOURNAL OF EXPERIMENTAL 
PSYCHOLOGY-LEARNING MEMORY AND 
COGNITION 

JEP:LMC 123 

JOURNAL OF MEMORY AND LANGUAGE J Mem Lang 150 
JOURNAL OF PHONETICS J Phon 47 
JOURNAL OF PSYCHOLINGUISTIC 

RESEARCH 
J Psycholing Res 28 

JOURNAL OF SPEECH LANGUAGE AND 
HEARING RESEARCH 

J SLHR 26 

JOURNAL OF THE ACOUSTICAL SOCIETY 
OF AMERICA 

JASA 52 

LANGUAGE AND SPEECH Lang & Speech 28 
LANGUAGE COGNITION AND 

NEUROSCIENCE 
Lang Cogn Neuro 120 

LANGUAGE LEARNING Lang Learn 28 
LINGUA Lingua 28 
MEMORY & COGNITION M&C 43 
NEUROIMAGE Neuroimage 27 
NEUROPSYCHOLOGIA Neuropsychologia 37 
PLOS ONE Plos One 144 
PSYCHOLOGICAL SCIENCE Psych Sci 25 
PSYCHONOMIC BULLETIN & REVIEW PBR 48 
QUARTERLY JOURNAL OF EXPERIMENTAL 

PSYCHOLOGY 
QJEP 84 

READING AND WRITING Read Writ 27 
SCIENTIFIC REPORTS Sci Rep 32  

Table 3 
By-journal contrast description analysis. Model intercept reflects the average 
level of contrast description and each effect reflects whether a journal is reliably 
different from average. Reference (omitted) level is ‘Cognitive Science’. Model 
formula is: glmer(ContrastsUse ~ Journal + (1|Year), family=‘binomial’)  

Fixed Effects  

Est. S.E. z val. p 

(Intercept) − 0.71 0.10 − 6.79 0.00 
B:L&C 1.05 0.31 3.40 0.00 
JEP:LMC 0.67 0.19 3.56 0.00 
Cog Psychol 0.65 0.44 1.47 0.14 
J Phon 0.65 0.29 2.21 0.03 
J Mem Lang 0.60 0.17 3.42 0.00 
J Child Lang 0.42 0.38 1.12 0.26 
Lang Learn 0.47 0.37 1.24 0.21 
Lingua 0.51 0.38 1.36 0.17 
AP&P 0.31 0.34 0.90 0.37 
JEP:HPP 0.22 0.30 0.74 0.46 
Lang & Speech 0.22 0.38 0.58 0.56 
J SLHR 0.12 0.40 0.31 0.76 
Lang Cogn Neuro 0.19 0.19 0.95 0.34 
Sci Rep − 0.03 0.37 − 0.10 0.92 
Cognit 0.12 0.21 0.56 0.58 
Neuroimage 0.10 0.39 0.26 0.79 
JASA 0.11 0.29 0.37 0.71 
QJEP − 0.01 0.23 − 0.05 0.96 
J Exp Child Psychol − 0.15 0.43 − 0.34 0.73 
Read Writ − 0.08 0.40 − 0.20 0.84 
Psych Sci − 0.06 0.42 − 0.13 0.90 
Plos One − 0.11 0.19 − 0.58 0.56 
PBR − 0.14 0.31 − 0.46 0.65 
JEP:G − 0.19 0.40 − 0.47 0.64 
Acta Psychol − 0.28 0.32 − 0.88 0.38 
J Psycholing Res − 0.42 0.41 − 1.02 0.31 
J Cog Psych − 0.45 0.44 − 1.04 0.30 
Appl Psycholinguist − 0.41 0.41 − 1.00 0.32 
Neuropsychologia − 0.52 0.38 − 1.38 0.17 
M&C − 0.52 0.36 − 1.46 0.14 
Front Psychol − 0.63 0.19 − 3.33 0.00 
Brain Lang − 0.84 0.54 − 1.56 0.12 
Front Hum Neurosci − 1.52 0.60 − 2.55 0.01  

Random Effects 

Group Parameter Std. Dev. 

Year (Intercept) 0.23  

Grouping Variables 

Group # groups ICC 

Year 10 0.02  
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Table 4 
By-keyword contrast description analysis. Model intercept reflects the average level of contrast description and each effect reflects whether a keyword is reliably 
different from average. Reference (omitted) level is ‘language production’. Model formula is: glmer(ContrastsUse ~ Keyword + (1 |Journal) + (1|Year), 
family=‘binomial’).  

Fixed Effects  

Est. S.E. z val. p 

(Intercept) − 0.44 0.15 − 2.86 0.00 
structural_priming 1.04 0.36 2.89 0.00 
individual_differences 0.77 0.32 2.41 0.02 
eye_tracking 0.55 0.23 2.41 0.02 
morphology 0.63 0.36 1.74 0.08 
speech_perception 0.34 0.29 1.16 0.25 
spoken_word_recognition 0.26 0.32 0.82 0.41 
reading 0.29 0.20 1.51 0.13 
sentence_processing 0.42 0.26 1.61 0.11 
priming 0.25 0.34 0.72 0.47 
working_memory 0.49 0.30 1.65 0.10 
eye_movements 0.04 0.20 0.19 0.85 
prediction 0.13 0.37 0.34 0.74 
attention − 0.08 0.34 − 0.23 0.82 
bilingualism − 0.01 0.26 − 0.03 0.97 
syntax 0.12 0.34 0.34 0.73 
memory 0.04 0.33 0.12 0.90 
language_comprehension − 0.12 0.31 − 0.39 0.70 
speech_production − 0.23 0.37 − 0.63 0.53 
psycholinguistics − 0.36 0.39 − 0.90 0.37 
language_acquisition − 0.17 0.38 − 0.44 0.66 
lexical_access − 0.21 0.36 − 0.59 0.55 
emotion − 0.36 0.38 − 0.95 0.34 
word_recognition − 0.45 0.35 − 1.27 0.20 
masked_priming − 0.52 0.36 − 1.45 0.15 
prosody − 0.43 0.32 − 1.33 0.18 
language − 0.89 0.43 − 2.07 0.04 
visual_word_recognition − 0.87 0.38 − 2.29 0.02 
lexical_decision − 0.92 0.41 − 2.21 0.03  

Random Effects 

Group Parameter Std. Dev. 

Journal (Intercept) 0.83 
Year (Intercept) 0.28  

Grouping Variables 

Group # groups ICC 

Journal 161 0.17 
Year 10 0.02  

Fig. 2. Results from by-journal analysis, back-transformed into proportions.  
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reflects the estimate for a particular keyword. 
Examining differences by keyword, while controlling for differences 

by journal and year, reveals a few differences by journal topic. Three 
keywords, structural priming, eye tracking and individual differences are 
better than the average, and three, language, visual word recognition and 
lexical decision are reliably worse. This suggests that idiosyncratic dif
ferences between fields matter: a few discrete areas have con
ventionalized on reporting contrasts, but most have not. While there are 
some bright spots, the implication is that any distortion of results due to 
a misunderstanding of contrast coding is spread across much of the field. 
In other words: a lack of understanding in contrast coding is likely a 
problem across most of psycholinguistics. 

How much does it matter? Potentially, a lot 
The analyses in this paper so far have focused on whether contrasts 

were sufficiently described for later reproducibility. In a strict and 
technical sense, models with unknown contrast coding schemes are 
uninterpretable: contrasts outline the hypotheses being tested when 
modeling, and not knowing these hypotheses means that the model 
should not be interpreted. Setting this aside, one can think about the 
inferences that would be licensed under various coding schemes. Here, it 
becomes clear that the wrong conclusions can be drawn about data when 
the researcher believes they are using sum coding but are actually using 
treatment coding. In this case, simple effects would be mistakenly 
interpreted as main effects. As demonstrated in the case study at the 
beginning of the paper, simple and main effects show different patterns 
in the presence of a reliable interaction: this suggests that analyses with 
significant main effects and significant interactions are places where 
model misinterpretation is especially likely. 

To examine the rate of this type of mistaken inference in the litera
ture, we performed a finer-grained coding of the 605 papers from the 
‘keywords’ analysis that did not describe their contrasts. We chose this 
subset because it was of a tractable size and allowed us to examine 
further differences across subfields. For each of these papers, the first 
author coded whether any analysis in the paper included an interaction 
term, whether the interaction was significant, and whether any main 
effects were also significant.6 

Of these 605 papers, 503 reported at least one analysis with an 
interaction term, and of those, 400 included a significant interaction. Of 
these 400 papers, 364 also report significant main effects. Under the 
hypothesis that when contrasts are not adequately described, authors 
typically use dummy coding but interpret results as sum coding, these 
364 papers are highly likely to include false significant effects (type I 
errors). In other words: three-fifths of all analyses where contrasts are 
not reported meet the preconditions for a misinterpretation problem. 
Applying these proportions to the literature as a whole suggests that 
about 40% of the papers in the recent psycholinguistic literature are 
likely to contain one or more type I errors about a main effect. 

Rates of papers meeting the preconditions for misinterpretation also 
vary by keyword, and this scales with rates of explicit contrast 
description by topic. These are reported in Table 5. Only 16% of papers 
with the keyword ‘structural priming’ are flagged as possibly erroneous, 
compared to 46% of papers with the keyword ‘word recognition’. This 
suggests that while the contrast reporting problem occurs across the 

Fig. 3. Results from by-keyword analysis, back-transformed into proportions. Note that visual comparison does not necessarily reflect significance level because of 
the model random effects. 

Table 5 
Rates per keyword of papers that do not transparently describe contrasts, and 
contain at least one analysis with a significant interaction and significant main 
effect.  

Keyword Proportion Problematic Cases 

attention 0.279 
bilingualism 0.375 
emotion 0.368 
eye_movements 0.311 
eye_tracking 0.272 
individual_differences 0.217 
language 0.344 
language_acquisition 0.412 
language_comprehension 0.333 
language_production 0.357 
lexical_access 0.351 
lexical_decision 0.371 
masked_priming 0.447 
memory 0.429 
morphology 0.343 
prediction 0.250 
priming 0.256 
prosody 0.431 
psycholinguistics 0.419 
reading 0.281 
sentence_processing 0.242 
speech_perception 0.255 
speech_production 0.286 
spoken_word_recognition 0.341 
structural_priming 0.158 
syntax 0.366 
visual_word_recognition 0.357 
word_recognition 0.462 
working_memory 0.269  

6 Thanks to Lotte Meteyard for inspiring this analysis. 
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field as a whole, it may have larger impacts on some sub-fields than 
others. 

Discussion 

We have presented evidence that the field of psycholinguistics does 
not provide sufficient detail about contrast coding for replicability, nor 
strictly speaking, for interpretability. Close to two-thirds of the over 
3000 papers in our sample, regardless of the journal they appeared in or 
the research topic they focused on, did not describe their contrast use 
adequately. As we demonstrated in the case study presented above, 
failing to explicitly describe contrasts means that simple effects and 
main effects can be confounded with each other – if not by the author, 
then by the reader. This means that in the majority of the psycholin
guistic literature sampled here, there are doubts about whether the re
ported effects can be replicated. 

In this paper, we focused on coding the literature for whether 
contrast description was present in order to examine the boundary 
conditions of the replication problem. For the majority of the literature 
investigated, we did not assess whether reported results would be 
interpreted differently under different coding schemes, as we deter
mined this was too time-consuming for a large sample and we believed 
that establishing the boundary conditions for the problem was most 
important. To get a more precise view on the problem, we then aimed to 
identify cases in a sub-sample of the data that were particularly likely to 
be problematic: papers containing at least one analysis with a significant 
interaction and at least one significant main effect. The rate of these 
cases is quite high, representing about 40% of all papers and 
approaching half of the literature in some domains. This implies that 
Type I errors about main effects are likely to be extremely common in 
the recent psycholinguistic literature. 

Note however, some caveats about the magnitude of the problem. 
First, the same inferences can sometimes be made regardless of contrast 
coding choice. As we highlighted in the final analysis, it is important to 
remember that when simple and main effects show identical results (e. 
g., for main effects with no interaction), then confounding the two does 
not lead to an incorrect inference. Models with only one predictor will 
also always afford the same conclusions for sum and treatment coding. 
Similarly, the highest-level interaction in a model is invariant to contrast 
choice: if this term is the one for which the key predictions are made, 
correct conclusions will be made regardless of contrast coding. Finally, 
for models in which likelihood ratio testing is used to determine sig
nificance, contrast coding also makes much less difference, especially if 
Type II tests are run (where for any term, all of the effects it participates 
in are removed from the model; note that these are less popular than 
Type III tests).7 

As such, it is certainly likely that of the sample reported here, many 
of the papers which did not report contrast coding did correctly interpret 
their conclusions – but given the low base rate of contrast reporting and 
the frequent use of study designs containing interactions in psycholin
guistic studies, it is also likely that many false conclusions have been 
made, published, and cited over the past decade because of a misun
derstanding of statistics. This means that we have established that many 
purported effects are impossible to replicate due to poor reporting and 

misinterpretation of contrasts, and have provided strong evidence that 
there is a fundamental problem in reporting and interpreting a now- 
standard statistical tool. 

In our analysis, we showed three positive trends. Over time, contrast 
use has been increasing. This suggests that a deeper understanding of 
mixed models is being attained in our field, and that more transparent 
conventions are being adopted about model reporting. Literature on 
mixed modeling written for psychologists, such as Barr et al. (2013), 
Brown (2021), Matuschek et al. (2017), Meteyard and Davies (2020), 
Schad, Vasishth, Hohenstein, and Kliegl (2020), is likely contributing 
towards this upwards trend. We hope that this paper serves as part of a 
further change towards clear reporting of data analysis choices. Simi
larly, there is a role for journal-specific and topic-specific practices in 
explicit contrast description. This suggests that the influence of journal- 
specific practices, journal editors, and journal reviewers in particular 
topics has promoted behavioral change in the field. This is important, 
especially at the individual level: the review process should correct 
oversights in manuscripts in order to have the most rigorous, scientifi
cally valid literature we can have. The downside of this fact is that when 
a paper appears in print with incorrect or opaque methodology, the 
authors and the reviewers may have not had a full understanding of the 
methods used. We hope that the tutorial presented above makes clear 
why it is important to specify contrast coding choices precisely, and 
point readers towards the textbook written by Winter (2019) and to the 
tutorial written by Schad et al. (2020) for more information. The UCLA 
Institute for Digital Research and Education has also written a document 
on contrast schemes in the R programming language that is quite 
approachable (UCLA IDRE, 2011) /. 

We end with some recommendations for best practice regarding 
contrast coding. First, authors should in general, be able to describe and 
justify all choices made in analyzing data. This requires understanding 
the modeling procedure being used, rather than simply adopting the 
procedure that one ‘should’ use; however, note that even ANOVA 
models are more complex than they might seem on the surface. This 
means that we, as a field, may need to place more value in providing 
statistical training to students, and in employing statistical consultants 
for researchers to rely on when in doubt. We also suggest that it is better 
to use a tool that is well understood than to default to a tool that is 
popular, and caution reviewers and editors not to unduly pressure re
searchers to use MEM instead of other suitable techniques. 

Models should be reported in full, including all fixed and all random 
effects, where present, and the choices made in selecting random effect 
structures, where present, should be clearly described in text (see 
Meteyard & Davies, 2020, for a comprehensive and clear set of guide
lines for reporting models).8 

When using a regression model (including an MEM), authors should 
clearly describe the contrasts associated with any categorical predictors, 
even if using the default treatment coding scheme, by either naming the 

7 We thank Dale Barr for pointing out rather important fine print on this 
statement. For Type III tests, where only the relevant term is dropped and not 
all associated higher level interactions, the choice of contrast coding does make 
a difference. In other words, comparing the full model y ã * b * c to y ã * c 

as a test of b is invariant to contrast coding, but comparing y ã * b * c to 
y ã * c + a:b + b:c (where : denotes an interaction without accompanying 
lower-level terms) is sensitive to choice of contrast, because the contrast de
termines the meaning of the b-terms left in the model. These types of “para
doxes” are part of the reason why Type-III tests are viewed as problematic 
(Venables, 1998). 

8 We should note we disagree with Meteyard and Davies on a few points. 
Their cited forum communication from Douglas Bates (Bates, 2006) states an 
opinion that has evolved over time: he currently argues that R2-like measures 
are problematic for mixed models and should probably not be used (Bates, 
personal communication). Likewise, the interpretation of correlation parame
ters in mixed models is problematic because a large number of groups (e.g., 
subjects or items) are required, because correlation estimates require a large 
number of samples before they stabilize (Schönbrodt & Perugini, 2013) and 
because the relevant sample size for the random effects is the number of groups, 
not the number of observations within them; nonetheless, given that they are 
part of the model’s output, it may still be advisable to report them, though not 
to interpret them. Finally, we believe the notion of “convergence” was not 
sufficiently handled because lme4 tends to also issue convergence warnings for 
singular models, even when those models have converged, since the gradient- 
based convergence test is not valid for singular models. Nonetheless, we 
agree that because singular models are indicative of overfitting and present 
other inferential difficulties, it is often prudent to avoid them. 
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coding scheme or specifying the contrast matrix (e.g. Factor A (magenta, 
green) was treatment coded or the three levels of Factor B, coffee, tea, and 
cocoa, were coded with two contrasts: (.25,.25, -.5) and (.5, -.5.0)). Au
thors should also paraphrase what comparisons the contrasts make for 
easy interpretation of results by novices (e.g., The model intercept there
fore reflects the reference level of factor A, magenta or The first contrast tests 
caffeinated versus non-caffienated beverages, and the second tests coffee 
versus tea), as we have aimed to do throughout this paper. Providing 
these two pieces of information, in text or in the caption to a model 
table, safeguards against the issues presented in the metascientific study 
above. A convention of interpreting contrasts directly also makes clear 
how the careful setting of contrasts eliminates most need for post hoc 
testing; additional post hoc tests (e.g., via emmeans in R) could still be 
done if necessary. If so, these should be clearly documented in the text 
(e.g. An additional set of pairwise comparisons was performed to directly 
compare tea versus cocoa using the R package emmeans.). 

Finally, open science practices such as code and data sharing 
currently act as a last safeguard, allowing a dedicated reader to answer 
the question themself: we believe the results presented here emphasize 
the importance of open materials and especially, open data. We believe 
that the data are what is truly most important: the code and the data are 
the actual research, and publications are only the advertisement for it.9 

As such, the research product itself (code and data) should be made 
freely available and openly examinable and the associated advertise
ment (publication) should commit to full disclosure and truth in 
advertising (e.g., the full and transparent reporting of model structure 
and modeling decisions). However, this is the case only with one final 
caveat: The code that is used to conduct the analysis is per definition 
completely unambiguous, as long as full version information is provided 
(Simonsohn, 2021). As such, we recommend that authors use an 
appropriate environment tracker (e.g. renv, groundhog, packrat in 
R) to track versions and use software features for full-version reporting 
(e.g. sessionInfo() in R). 

Conclusion 

In 2008, a new method was presented to the field of psycholinguistics 
in a sufficiently compelling way that it became effectively mandatory to 
use mixed models in papers. However, the current results show that this 
change in analysis strategies was made without a full understanding of 
its implications. This means that as a field, we need to learn our methods 
better, and we need to be more cautious about ensuring we use methods 
that we understand. This suggests the further importance of methods 
training for researchers, especially when new tools emerge in the field. It 
also suggests that the field should in some cases be less dogmatic about 
the use of certain tools: while we believe that the virtues of MEM make it 
a method worth learning and understanding in full, it is not the drop-in 
replacement for ANOVA that some believe it to be, and should be 
properly understood before it is used. We hope that this paper increases 
the field’s understanding of MEM, and we hope that it serves as a 
cautionary tale for what can happen with future adoption of new 
methods. 
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