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Abstract

This review discusses the role of estrogens as pro- or antiinflammatory players in immune-inflammatory re-
sponses. In particular, their role in Alzheimer’s disease (AD), an example of immune-inflammatory disease, is
discussed briefly. AD is a progressive neurodegenerative disease, which in Western societies accounts for the
majority of cases of clinical senile dementia. However, sexual dimorphism of diseases may also depend on
factors independent of sex hormones (i.e., a gender effect), as demonstrated by our data on differential longevity
in females and males. In fact, differences in mortality between men and women are not only a question of sex
that refers to biological differences, but rather a question of ‘‘socially constructed sex,’’ a question of gender
(i.e., the characteristics that a society or culture delineates as masculine or feminine). In gender medicine, we
conclude that it is important to consider the role played both by hormones, customs, and educational levels
regarding the different propensity of males and females to fall ill. So, in programming antiaging strategies, we
have also to take these aspects into account.

Role of Estrogens in Immune
and Inflammatory Response

The severity of inflammatory diseases (e.g., athero-
sclerosis, neurological disorders, periodontitis, and

rheumatoid arthritis) is correlated with gender differences
(e.g., level of female sex hormones), suggesting that female
sex hormones modulate the inflammatory response.1 The
three major estrogens in women are estradiol, estriol, and
estrone. The main form of estrogen before menopause is
estradiol. The steroid hormone 17b-estradiol (E2) is produced
mainly by the ovaries and the placenta and is released into
the bloodstream.2 In normally cycling adult women, the
ovarian follicle secretes 70–500 mg of estradiol per day,
causing changes in plasma estrogen concentration from
210 pmol=L in the early follicular phase and 720 pmol=L in
the late follicular phase, to 490 pmol=L in the late luteal
phase. In menopausal women, ovarian production of E2 is
significantly diminished and the plasma estrogen concen-
tration is reduced to <100 pmol=L.3 E2 mediates its action
mainly through its intracellular receptors, ER-a and ER-b,
which are the two major forms of estrogen receptor (ER) that
belong to a large family of transcription factors, the nuclear
receptor family. Apart from the two classical receptors, there
is at least one other functional estrogen known as GPR30,
which is expressed in various cancers and tumor line cells.4

Estrogen transmits its signal through different pathways.
According to the classical mode of estrogen signaling, estro-
gens diffuse through cell membranes into the cytoplasm, bind
to and dimerize their receptor (ER-a or ER-b), and finally
migrate into the nucleus where the estrogen-bound receptor
binds to the estrogen response elements (ERE) of target genes
and induces gene expression. Estrogen also mediates non-
genomic effects through activation of signaling kinases.2,4

Estrogen receptors have been detected not only in classical
reproductive tissue, but also in immune cell populations, in-
cluding lymphocytes, monocytes, and macrophages, and
even within brain glial cells.5

Evidence suggests that estrogens affect the immune sys-
tem and the processes associated with inflammation.6 There
is still an unresolved paradox with respect to the immuno-
modulating role of estrogens. E2 at periovulatory to preg-
nancy levels most often has antiinflammatory effects by
inhibiting many proinflammatory pathways of innate im-
munity, adaptive immunity, and inflammatory tissue re-
sponses.7 Arguments in favor of a proinflammatory response
are the antiapoptotic effects on immune cells, promotion of
neoangiogenesis, and stimulation of B cells, which has been
delineated to be an unfavorable factor in B cell-driven dis-
eases such as systemic lupus erythematosus. If B cells are
dominant in an inflammatory disease, estrogens at all levels
stimulate the disease process. In chronic inflammatory
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diseases, where monocytes, macrophages, dendritic cells,
T cells, fibroblasts, and neutrophils play a dominant role,
estrogens demonstrate a dual role: At low concentrations
estrogens stimulate, and, at high levels, estrogens inhibit the
disease process. B cells, T cells, and macrophages are decisive
for the initiation of autoimmune diseases7. Hence, estrogens
can have quite opposite roles depending on involved cells. If
B cells play a central role by antigen presentation, autoanti-
body production, and=or bystander cytokine secretion, E2
will probably speed up the outbreak of the disease in the
early reproductive years. On the other hand, if T cells play an
equal or more important role than B cells, the onset of disease
in a woman will be delayed because E2 inhibits T cell auto-
immunity. In that situation, the onset of the disease might be
shifted to the late reproductive phase or postmenopausal
period.

Thus, the effects of estrogens are dependent on criteria such
as: (1) the immune stimulus (foreign antigens or autoantigens)
and subsequent antigen-specific immune responses (e.g.,
T cells inhibited by estrogens vs. activation of B cells); (2) the
cell types involved during different phases of the disease; (3)
the target organ with its specific microenvironment; (4) the
concentration of estrogens; (5) the variability in expression of
ER-a and ER-b, depending on the microenvironment and the
cell type; and (6) intracellular metabolism of estrogens leading
to important biologically active metabolites with quite dif-
ferent anti- and proinflammatory functions.

A uniform concept for the action of estrogens cannot be
found for all known chronic inflammatory diseases. Never-
theless, for strictly B cell-dependent diseases, the female-to-
male preponderance can be explained by the propagating
effects of estrogens. The smaller the influence of B cells and
the bigger the weight of T cells and other cells, the less evi-
dent is the sex dimorphism in chronic inflammatory dis-
eases.7 Finally, sexual dimorphism of diseases may also
depend on factors independent of sex hormones (i.e., a
gender effect; see below).

Alzheimer Disease: A Model of Inflammatory
Disease and Estrogen Therapy

Estrogens are thought to play a role in the sex difference
observed in many neurological diseases with inflammatory
components, including stroke, Alzheimer’s and Parkinson’s
diseases, multiple sclerosis, or amyotrophic lateral sclerosis.5

Alzheimer’s disease (AD) is a progressive neurodegenerative
immune-inflammatory disease, which in Western societies
accounts for the majority of cases of clinical senile demen-
tia.8–10 AD is characterized by global cognitive dysfunction,
especially memory loss, behavior or personality changes, and
impairments in the performance of activities of daily living.
Neuropathological hallmarks of AD are neuritic plaques and
neurofibrillary tangles.11,12 Neuritic plaques are extracellular
deposits of the b-amyloid peptide (Ab); these plaques are
usually in a milieu of reactive astrocytes, activated microglia,
degenerating axons, and dendrites.13 Neurofibrillary tangles
are intracellular deposits of hyperphosphorylated degenerate
filaments, which result from aggregations of the microtubular
protein tau, frequently conjugated with ubiquitin.11,13 As
these cellular changes progress, brain atrophy and neuronal
loss in the hippocampus, temporal cortex, and limbic area are
observed.14

Age is the first and foremost risk factor in AD. The preva-
lence of AD is approximately 1% between age 65 and 69 and is
higher than 60% in individuals over age 80–85.15 Although the
mean age of AD onset is around 80, early-onset disease, de-
fined arbitrarily as the illness occurring before the age of 60,
can occur, although it is rare. Thus, early-onset cases make up
about 6–7% of all cases of AD. A significant number of early-
onset cases are inherited, with an autosomal dominant pattern
of high penetrance. AD may not be an inevitable element of
the aging process, but it is a disease with significant genetic
roots. Genetics is important not only in predicting suscepti-
bility, but also age of onset in the elderly.12,13,16 In most
studies, women were found to be at greater risk for AD (a ratio
of 1.2 to 1.5). This datum seems to be robust even after ad-
justment for the well-known differences in survival rates and,
reciprocally, for education level. However, it is not clear if this
effect is due to genetic or hormonal differences between males
and females or it is a surrogate marker of other unmeasured
socioeconomic factors.17–19

A possible factor influencing AD incidence in women is the
loss of ovarian estrogen production after menopause. In fact,
cumulative evidence from basic science and clinical research
suggests that estrogens play a significant neuromodulatory
and neuroprotective role in the brain, which underlies the
ability of estrogens to ameliorate symptoms associated with
Parkinson’s disease and tardive dyskinesia20–22 and to de-
crease the incidence and delay the onset of AD.23–25 Subsets of
neurons possess intraneuronal receptors for estrogen.26 The
complex of estrogens and its receptor translocates into the cell
nucleus, where it regulates transcription of target genes.
Through interactions with membrane receptors, estrogens
also influence neuronal functions in ways that do not require
genomic interactions.27 A number of estrogen actions have the
potential to affect AD incidence or AD symptoms.28 Estro-
gens, for example, are neuroprotective against a variety of
experimental insults, including oxidative stress, excitatory
neurotoxicity, and ischemia29,30; they can promote the growth
of nerve processes and modulate synaptic plasticity.31,32

Other putatively benefical actions include increase of cerebral
blood flow, enhancing glucose transport into the brain, and
reductions in b-amyloid formation.33–35

The cessation of ovarian estrogen production in post-
menopausal women might facilitate Ab deposits by
increasing the local concentrations of Ab in the brain. In
addition, 17 b-estradiol treatment is associated with dimi-
nution of brain Ab levels, suggesting that modulation of Ab
metabolism may be one of the ways by which estrogen re-
placement therapy might prevent or delay the onset of AD or
both in postmenopausal women (see below).35. However,
some estrogen actions might be harmful. Pro-inflammatory
effects could be deleterious,36 and the prothrombotic prop-
erties of some estrogens could adversely affect the cerebral
vasculature.37

As mentioned above, oxidative stress and mitochondrial
defects have also been implicated in the pathogenesis of
AD.38 The formation and resulting effects of both senile
plaques and neurofibrillary tangles have been associated
with oxidative stress.38 There are reciprocal actions between
oxidative stress and both tau hyperphosphorylation and
amyloid b pathology. The interplay between the three actors
in AD pathology converge on the mitochondria, resulting in
disruption of the electron transport chain production of
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adenosine triphosphate (ATP), release of proapoptotic pro-
teins, and substantial alterations in the cellular reduction–
oxidation (redox) potential of the cell, which in turn can feed
back to increase the pathological load by further altering the
tau, amyloid b, and reactive oxygen species (ROS) balance.

These findings, which provide evidence for interplay be-
tween neuronal oxidative stress and AD pathology, indicate
a common point of action for protection against neurode-
generation.39 Estradiol reduces the peroxide production and
decreases the amount of oxidative damage to mitochondrial
DNA in synaptic and nonsynaptic brain mitochondria from
female rats.40 Another effective means of preventing the
mitochondrial spiral is by preventing the initial ROS pro-
duction induced by toxic insults. One such target is the ROS
production induced by calcium overload associated with
disruption of mitochondrial calcium-buffering capabilities,
as seen in many neurodegenerative diseases.41

With the loss of ovarian estrogen production after meno-
pause, estrogen-containing hormone therapy (HT) might be
expected to influence the risk of AD.19 A plethora of in vitro
and in vivo studies have supported the neuroprotective role
of estrogens and their impact on the neurotransmitter sys-
tems implicated in cognition.42 Recent hormonal replacement
therapy (HRT) trials in nondemented postmenopausal
women suggest a temporary positive effect (notably on
verbal memory), and four meta-analyses converge to suggest
a possible protective effect in relation to AD (reducing risk
by 29–44%).43–46 However, data from the only large ran-
domized controlled trial published to date, the Women’s
Health Initiative Memory Study, did not confirm these ob-
servations and have even suggested an increase in dementia
risk for women using HRT compared to controls.47,48 Apart
from methodological differences, one key shortcoming of
this trial has probably been the focus on late-onset (post-
menopausal) hormonal changes, i.e., at a time when the
neurodegenerative process has already begun and without
taking into account individual lifetime exposure to hormone
variability.19 Multifactorial models based on an exhaustive
view of all hormonal events throughout the reproductive life
(rather than on a specific exposure to a given steroid) to-
gether with other risk factors (notably genetic risk factors
related to estrogen receptor polymorphisms) should be ex-
plored to clarify the role of hormonal risk factors, or pro-
tective factors for cognitive dysfunction and dementia.

Longevity in Females As an Example of Gender
Effect on Human Life

In the Western world, the average life span is 78.8 years
for men and 84.1 years for women.49 Females also live lon-
ger than males in many other species, suggesting that
this phenomenon cannot be attributed only to cultural=
anthropological habits, but rather may be a sign of specific
biological uniqueness of both sexes, such as hormone pro-
duction. As an example, testosterone decreases blood con-
centrations of high-density lipoprotein (HDL) and increases
that of low-density lipoprotein (LDL), making males more
prone to cardiovascular diseases. Conversely, estrogens re-
duce LDL and increase HDL, with beneficial effects on the
cardiovascular system.50 On the other hand, the role played
by oxidative damage in reducing lifespan is well known,
because oxidative damage directly influences lifespan. In-

terestingly, estrogens display antioxidant properties by up-
regulating the expression of the genes encoding antioxidant
enzymes. Hence, they are responsible for the lower mito-
chondrial free-radical production observed in females as
compared with males.51 If males and females suffer differing
levels of oxidative insult, the resultant damage may therefore
be sufficient to explain at least a part of sex-specific lifespan
difference observed between the sexes.52

Because of the continuation of the decline in mortality at
older ages in the Western world, an increasing number of in-
dividuals are becoming centenarians.53 Women are more likely
to cross this threshold, and to such an extent that in low-
mortality western countries, such as Italy, there are 5–7 women
per man beyond this age. In addition to the role of estrogens in
decreasing the levels of oxidative insults, 5 or 6 extra years
might be ascribed to differences in social behavior between the
sexes, because men take more risks. In fact, differences in
mortality between men and women are not only a question of
sex that refers to biological differences, but rather a question of
‘‘socially constructed sex’’—a question of gender (i.e., the
characteristics that a society or culture delineates as masculine
or feminine). Behavioral and environmental factors clearly
play a role in determining excess male mortality. Beyond a
slight biological advantage for females, excess male mortality
results from the emergency of typically male ‘‘man-made dis-
eases.’’ Work-related risk in industrial activity, alcoholism,
smoking, and car accidents are the main factors contributing to
excess male mortality. An aspect to be highlighted is that the
attitude women generally have concerning their body, their
health, and their lifestyle is very different from that of men.52

Furthermore, a positive association between genetic variants
and longevity is often found only for males and rarely for both
genders. This suggests that the longevity trait is more depen-
dent on genetics in men than in women. So, a complex inter-
action of environmental, genetic, and historical factors likely
plays an important role in determining the gender-specific
probability of achieving longevity.54

Some years ago, we showed in our Sicilian population the
presence of a female-specific gene–longevity association that
paradoxically supports the role of sociocultural habits in
female longevity. This concerns the HFE gene, localized on
chromosome 6. Mutations in the class I-like major histo-
compatibility complex gene HFE are associated with hered-
itary hemochromatosis (HH), a disorder caused by excessive
iron uptake. Three common mutations have been found in
this gene: C282Y, H63D, and S65C. In particular, the C282Y
mutation (a cysteine-to-tyrosine mutation at amino acid
282) destroys its ability to make up a heterodimer with b2-
microglobulin. The defective protein fails to associate to the
transferring receptor, and the complex cannot be transported
to the surface of the duodenal crypt cells. As a consequence,
in homozygous people, two to three times the normal
amount of iron is absorbed from food by the intestine. We
observed that this mutation is associated with longevity in
Sicilian subjects. But analyzing data according to gender, we
observed this mutation in old Sicilian women. Thus, the
C282Y mutation may confer a selective advantage in terms of
longevity in Sicilian women. Considering the historical and
social context in which the generation of women under study
lived, we have suggested that possession of iron-sparing
alleles significantly increases the possibility for women to
reach longevity. For instance, in Sicily, many pregnancies
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and an iron-poor diet, consisting mainly in grains, vegeta-
bles, and fruits, were still the rule for women born at the
beginning of last century. In fact, meat was available for men
but not for women; this clearly explains how genetic back-
ground also interacts with culture habits rather than sex.55–57

Further evidence for the role of cultural=anthropological
habits (and therefore of gender) in achieving longevity is
provided by epidemiological demography. In Italy, there is a
north-to-south gradient in the female-to-male ratio in cente-
narians: 6 in the north, 3 in the center, and 2 in the south. In
southern Italy, fewer women have become centenarians. To
gain insight into the role of gender and environment, a de-
mographic study has begun in Sicily. Demographers apply an
indicator of mortality between the ages 80 and 100 to define
the longevity of a population. Results obtained in Sicily
highlight an area of longevity for men but not for women.
The municipalities concerned do not include polluted areas
and are small, with the lowest number of inhabitants. The
reason for such a gradient is at present unknown. But it is
likely that an important role might be played by the different
rates of mortality between men and women, as well as social
and anthropological differences. It has been reported that this
ratio is higher in populations where life expectancy increases
for economic and social reasons.58

Hence, a complex interaction of environmental, historical,
and genetic factors, differently characterizing the various parts
of Italy, likely plays an important role in determining the
gender-specific probability of attaining longevity. In Sicily,
longevity concerns men living in a small town, without pol-
lution (different working conditions; different life style, i.e.,
smoking and alcohol abuse; Mediterranean diet). Why is there
reduced longevity for women? Probably different social con-
ditions and different educational levels might produce differ-
ential access to prevention or health facilities. Besides there is
no longevity in polluted areas as expected, and longevity is
represented in small municipalities. It is well established that
old individuals with greater access to social support and
family networks have better health and lower levels of mor-
tality, particularly when adult daughters are present.52,59

In conclusion, in gender medicine it is important to con-
sider the role played by hormones, customs, and educational
levels in the different propensity of males and females to fall
ill. These aspects must be taken into account in programming
antiaging strategies.60,61

Acknowledgments

This work was supported by grants from the Ministry of
Education, University and Research ex 60% to G. Candore
and C. Caruso.

References

1. Angele MK, Frantz MC, Chaudry IH. Gender and sex hor-
mones influence the response to trauma and sepsis: Potential
therapeutic approaches. Clinics 2006;61:479–488.

2. Raju R, Bland KI, Chaudry IH. Estrogen: A novel therapeutic
adjunct for the treatment of trauma-hemorrhage-induced
immunological alterations. Mol Med 2008;14:213–221.

3. Qiao X, McConnell KR, Khalil RA. Sex steroids and vascular
responses in hypertension and aging. Gend Med 2008;
5(Suppl A):S46–S64.

4. Chakrabarti S, Lekontseva O, Davidge ST. Estrogen is a
modulator of vascular inflammation. IUBMB Life 2008;60:
376–382.

5. Członkowska A, Ciesielska A, Gromadzka G, Kurkowska-
Jastrzebska I. Gender differences in neurological disease:
role of estrogens and cytokines. Endocrine 2006;29:243–256.

6. Nilsson BO. Modulation of the inflammatory response by
estrogens with focus on the endothelium and its interactions
with leukocytes. Inflamm Res 2007;56:269–273.

7. Straub RH. The complex role of estrogens in inflammation.
Endocr Rev 2007;28:521–574.

8. Candore G, Balistreri CR, Grimaldi MP, Vasto S, Listı̀ F,
Chiappelli M, Licastro F, Lio D, Caruso C. Age-related in-
flammatory diseases: Role of genetics and gender in the
pathophysiology of Alzheimer’s disease. Ann NY Acad Sci
2006;1089:472–486.

9. Di Bona D, Scapagnini G, Candore G, Castiglia L, Colonna-
Romano G, Duro G, Iemolo F, Lio D, Pellicanò M, Scafidi V,
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