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The control systems applied on active magnetic bearing are several. A perfect levitation is characterized by maintaining the
operating point condition that is characterized by the center of stator coincident with the geometric center of shaft. The first
controller implemented for this purpose is PID controller that is characterized by an algorithm that leads the amplifier to produce
control current until the operating point condition is not reached, this is obtained by an integration operator. The effect of an
integrator is essential but not necessary for a centered levitation for example in the robust control characterized by a dynamic
model depended on plant of system so that it depends on angular speed as LQR controller does. In LQR there is not integrator so
there is not a perfectly centered section of shaft with center of stator. On contrary PID controller does not depend on angular speed
and it can be easily implemented according some simple rules. Predictive control is another interesting controller characterized
by a multiple controller operating in different condition in order to get the minimum of cost function, but also in this case the
angular speed is introduce for the same reason discussed before.

1. Introduction

Active Magnetic Bearings (AMBs) use electromagnets to
attract the ferromagnetic cape winding the rotor which is
free to rotate with no physical contact with the bearing.
This operation, called active magnetic levitation, is unstable
unless of a certain control’s algorithm performed respecting
the imposed constraining, [1]. In order to achieve a stable
levitation, an active feedback control of the current in the
magnetic coils is necessary. As it might be expected, a variety
of control schemes are used and a variety of studies have
been done for AMBs control. The dynamic system, however,
depends above all on the rotor’s angular speed, as the case for
any rotor dynamic system because of the gyroscopic effect
[2]. The gyroscopic effect leads the system into instability
phenomena which must be considered to achieve stable
levitation. The rotor motion is characterized by translation
along x-y directions and rotation of rotor around those axes

[1, 3, 4]. Moreover, the transformation coordinates allow
relating the displacements captured by the sensors and the
displacements of the section located on the middle plane
of the bearings location. Without a suitable control system,
no magnetic levitation is possible [1]. During last twenty
years, a fast number of control systems were applied on
magnetic levitation in order to provide enough acknowledge
about the capability of rotor to maintain the contactless
between the rotor and stator. Obviously while there are many
control systems which are not able to maintain the operating
point position of the controlled sections without a further
algorithm such as the integrator of a PID controller [5], some
other control systems need the entire state vector to create the
feedback such as the optimal control [3] characterized by a
matrix whose number of column is equal to the dimension
of state vector. The cutting edge of control systems is
represented by μ-synthesis, loop-shaping design procedure,
and H-infinity robust control, the latter with its variant
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Figure 1: Schematic view of 4-axis rotating shaft supported by two
radial active magnetic bearings with sensors.

sub(H)∞. The reason is not only the recovering of operating
point position without integrator but also the possibility to
delete the use of some sensors to capture further components
belonging to the state vector, a problem that is usually solved
by the introduction of an observer. There is something more
convenient than the previous simplification which is more
related to the performances of the machine in using robust
control. The advantages derived by using robust control are
its possibility in case of presence of dynamic perturbation
such as, no modeled dynamic, neglected nonlinearities,
effects of reduced-order models, system-parameter variation
due to environmental changes, hysteresis, and torn and worn
factors. Moreover, it is used also in case there is a presence
of sensor and actuator noise. An application of μ-synthesis
controller was for the Army’s weapon system. The test fixture
is patterned after the Apache helicopter’s 30 mm gun and has
tunable nonlinearities which may be representative not only
of the nonlinearities of the gun, but also to other mechanical
systems as well. The models of the test fixture which were
available at the time of the work are also described. The goal
of pointing the gun is to reduce dispersions of fired gun
rounds on targets. The resulting μ-synthesis design, when
connected with a nonlinear simulation, exhibited limit-
cycle behavior of unacceptable amplitude [6]. Due to high
surface speed and active control capabilities, active magnetic
bearings hold great promise for high speed machining
spindles. The control problem posed by this application is
examined, and the development of an advanced prototype
is reviewed. A μ-synthesis framework is proposed for this
problem, and it is shown that the minimization of the
susceptibility to machining chatter may be easily put into this
framework. In addition to handling uncertainties in sensor
and actuator components, this formulation may also include
an uncertainty representing the range of cutting tools for the
spindle, [7].

The proposed control algorithms are developed using μ-
analysis to obtain robust stability and robust performance
in simulation investigation. In simulations work, three
different active vibration control algorithms are used. A
similar approach was applied in [8] where a comparison
between three different controllers was performed in order
to analyze the differences on the dynamic behavior. Many
other applications of robust control which were performed
through loop-shaping design procedure such as in [9] where

an H∞ controller was performed by evolution optimization
to control a robot arm.

The loop-shaping method is commonly used also to
obtain tradeoffs of robust stability and robust performance.
This technique is a particular optimization problem to
guarantee closed loop stability at all frequencies [10].

The particular configuration shown in this work consid-
ers a rotor with four degrees of freedom with eight poles
for each active magnetic bearing, having a slope of 45◦ with
regard to horizontal direction so that the force’s resultant
supports the rotor along the x and y directions crossing the
center of mass and rotation around it as Figure 1 shows.

The system is subjected to a state of uncertainty about
its mass, cross, and polar moment of inertia dictated by
the parameters δm, δIP , and δIT in the ranges, respectively,
Pm,PIT , and PIP . The equation of motion is referred to the
center of gravity, and it has the following expression:

M
d2qg(t)

dt2
+ Ω ·G

dqg(t)

dt
= BΘmagBmagf

(
ic(t), qb(t)

)
, (1)

where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0 0

0 IT 0 0

0 0 m 0

0 0 0 IT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 −IP
0 0 0 0

0 IP 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

BΘmag =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(α) 0 − sin(α) 0

0 cos(α) 0 sin(α)

sin(α) 0 cos(α) 0

0 − sin(α) 0 cos(α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bmag =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 1 0

−lbA 0 lbB 0

0 1 0 1

0 lbA 0 −lbB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

f
(

ic(t), qb(t)
) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

FxA(icxA(t), xbA(t))

FyA

(
icyA(t), ybA(t)

)

FxB(icxB(t), xbB(t))

FyB

(
icyB(t), ybB(t)

)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

qg(t) =
[
xg(t) γ(t) yg(t) ϑ(t)

]T
,

m = m(1 + Pmδm) = m+m · Pmδm = m+Δm,

IT = IT
(
1+PIT δIT

) = IT +IT · PIT δIT T = IT +ΔIT ,

IP = IP
(
1 + PIPδIP

) = IP+IP · PIP δIP = IP+ΔIP.
(2)
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Figure 2: Block scheme of plant with the introduction of weighting
functions as further outputs.
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Figure 3: Block scheme of plant showing the new plant.

2. Mathematical Model

The last expression leads to structured uncertainties matrix
such as

M = M + MPMΔM ∈ R4×4,

G = G + GPGΔG ∈ R4×4,
(3)

where

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

m 0 0 0

0 IT 0 0

0 0 m 0

0 0 0 IT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, G =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 0 0 −IP
0 0 0 0

0 IP 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

MPMΔM = M

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Pm 0 0 0

0 PIT 0 0

0 0 Pm 0

0 0 0 PIT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

δm 0 0 0

0 δIT 0 0

0 0 δm 0

0 0 0 δIT

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

GPGΔG = G

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 PIP 0 0

0 0 0 0

0 0 0 PIP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 0

0 δIP 0 0

0 0 0 0

0 0 0 δIP

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(4)

respectively, the mass and gyroscopic nominal matrix and
structured uncertainties matrices relative to mass and gyro-
scopic effect.
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Figure 7: Robust stability, nominal and robust performance function described by μ value with LSDP controller.

By introducing a transformation of coordinates (5),
which has a great consideration in the relation of the
displacements between the section relative to bearing loca-
tion and the sensors, the system is analyzed according the
equation of motion (6):

qb(t) = BΘdispBT
magqg(t),

qsensor(t) =
(

BΘdispBsensor

)
qg(t),

qsensor(t) =
(

BΘdispBsensor

)(
BΘdispBT

mag

)−1
qb(t),

fmag to g(t) = BΘmagBmagf
(

ic(t), qb(t)
)
,

(5)

M
d2qg

dt2
+ Ω ·G

dqg

dt
= BΘmagBmagf

(
u(t), qb(t)

)
, (6)

where

BΘdisp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(α) sin(α) 0 0

− sin(α) cos(α) 0 0

0 0 cos(α) sin(α)

0 0 − sin(α) cos(α)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Bsensor =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −lsA 0 0

0 0 1 lsA

1 lsB 0 0

0 0 1 −lsB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(7)

qb(t) =
[
xbA(t) ybA(t) xbB(t) ybB(t)

]T
,

q(t)sensor =
[
xsA(t) ysA(t) xsB(t) ysB(t)

]T
.

(8)

The magnetic force (9a)–(9d) produced by an electromagnet
of active magnetic bearing is linearized by Taylor series
expansion which leads to the expression of the force (9a), [5]:

f
(
icc(ix,iy)(A,B)(t), qb(x,y)(A,B)(t)

)

= k

⎡

⎣
(
i0(A,B) ∓ ic(ix,iy)(A,B)

g0(A,B) ± qb(x,y)(A,B)

)2
⎤

⎦,

f
(

ic(t), qb(t)
) ≈ KSqb(t) + KI ic(t),

(9a)
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Figure 8: Robust stability, nominal and robust performance
function described by μ-value with μ-Synthesis.

where:

KS =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kxA 0 0 0

0 kyA 0 0

0 0 kxB 0

0 0 0 kyB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

KI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

kixA 0 0 0

0 kiyA 0 0

0 0 kixB 0

0 0 0 kiyB

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

ic(t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

icxA(t)

icyA(t)

icxB(t)

icyB(t)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(9b)

where the elements of KS and KI , respectively, displacement
and current gains matrices are

k(x,y)(A,B)

=
∂ f
(
icc(ix,iy)(A,B)(t), qb(x,y)(A,B)(t)

)

∂qb(x,y)(A,B)

∣
∣∣
∣
∣∣ ic(ix,iy)(A,B)=0
qb(x,y)(A,B)=0

= 2k

(
i0(A,B) −ic(ix,iy)(A,B)

)2(
g0(A,B) +qb(x,y)(A,B)

)

(
g0(A,B) +qb(x,y)(A,B)

)4

∣
∣
∣∣
∣
∣∣ ic(ix,iy)(A,B)=0
qb(x,y)(A,B)=0

= 2k(A,B)
i20(A,B)

g3
0(A,B)

,

k(ix,iy)(A,B)

=
∂ f
(
ic(ix,iy)(A,B)(t), qb(x,y)(A,B)(t)

)

∂ic(ix,iy)(A,B)

∣
∣∣
∣
∣
∣ ic(ix,iy)(A,B)=0
qb(x,y)(A,B)=0

= 2k

(
i0(A,B)−ic(ix,iy)(A,B)

)

(
g0(A,B) +qb(x,y)(A,B)

)2

∣
∣
∣∣
∣
∣
∣ ic(ix,iy)(A,B)=0
qb(x,y)(A,B)=0

= 2k(A,B)
i0(A,B)

g2
0(A,B)

,

(9c)

where

k(A,B) = 1
4
μ0N

2
(A,B)Ag(A,B) cosβ (9d)

is the multiplicative constant carried out from principle
of virtual work and β is the angle of two poles of one
electromagnet.
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Figure 9: Robust stability, nominal and robust performance function described by μ-value with Sub(H∞).

In this paper, the value of displacement and current gains
are taken from a real model of radial active magnetic bearing
produced by SKF. The physical meaning on these gain
matrices is related to the reaction force produced for the unit
of displacement and current, respectively, for displacement
and current gains

Due to the transformation coordinates (5), we transform
(9a)–(9d) in

f
(

ic(t), qb(t)
) ≈ KSBΘdispBT

magqg(t) + KI ic(t). (10)

But we do not have to forget that mathematical model in
a state space form considers the matrix product BΘmagBmag

before f(ic(t), qb(t)) as in (6).

3. Controller

In order to provide a stabilizing effect to control the
position of the rotor, a suitable control system must be
performed because no magnetic levitation can be stabilized
without controller [1, 4]. Here we performed three different
controllers or rather loop-shaping design, μ-synthesis, and

sub(H∞) robust control according to the mathematical
model (11) with the assumption

⎡

⎣
ẋ1(t)

ẋ2(t)

⎤

⎦ =
⎡

⎢
⎣

0 I4×4

(
M
−1

KS

)4×4 −M
−1
(
ΩG

)

⎤

⎥
⎦

⎡

⎣
x1(t)

x2(t)

⎤

⎦

+

⎡

⎣
0 04×4

−P4×4
M −ΩM

−1
PG

⎤

⎦

⎡

⎣
uM

uG

⎤

⎦ +

⎡

⎣
04×4

M
−1

KI

⎤

⎦u(t),

⎡

⎣
z1(t)

z2(t)

⎤

⎦ =
⎡

⎢
⎣

(
M
−1

KS

)4×4 −M
−1
(
ΩG

)

0
(
ΩG

)4×4

⎤

⎥
⎦

⎡

⎣
x1(t)

x2(t)

⎤

⎦

+

⎡

⎣
−P4×4

M −ΩM
−1

PG

0 04×4

⎤

⎦

⎡

⎣
uM

uG

⎤

⎦ +

⎡

⎣
M
−1

KI

04×4

⎤

⎦u(t),

y(t)sensor =
[(

BΘdispBsensor

)4×4
04×4

][
xT

1 (t) xT
2 (t)

]T
,

(11)
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x1(t) =
[
xg(t) γ(t) yg(t) ϑ(t)

]T
,

x2(t) =
[
ẋg(t) γ̇(t) ẏg(t) ϑ̇(t)

]T
,

u(t) = ic(t),

⎡

⎣
uM

uG

⎤

⎦ =
⎡

⎣
ΔM 04×4

04×4 ΔG

⎤

⎦

⎡

⎣
z1(t)

z2(t)

⎤

⎦.

(12)

For all kind of robust control systems performed in this
paper, a state space equation in a package form is adopted for
this purpose. The package form characterized by the intro-
duction of all inputs in terms of uncertainties, disturbances,
and control signal is introduced into plant as in

G =

⎡

⎢
⎢
⎢
⎣

A B1 B2

C1 D11 D12

C2 D21 D22

⎤

⎥
⎥
⎥
⎦

, (13)

where

A =
⎡

⎢
⎣

0 I4×4

(
M
−1

KS

)4×4 −M
−1
(
ΩG

)

⎤

⎥
⎦,

B1 =
⎡

⎣
0 04×4

−P4×4
M −M

−1
PG

⎤

⎦, B2 =
⎡

⎣
04×4

M
−1

KI

⎤

⎦,

C1 =
⎡

⎢
⎣

(
M
−1

KS

)4×4 −M
−1
(
ΩG

)

0
(
ΩG

)4×4

⎤

⎥
⎦,

D11 =
⎡

⎣
−P4×4

M −M
−1

PG

0 04×4

⎤

⎦, D12 =
⎡

⎣
M
−1

KI

04×4

⎤

⎦,

C2 =
[(

BΘdispBsensor

)4×4
04×4

]
,

D21 = 04×8, D22 = 04×8.

(14)

Usually a rotor supported by active magnetic bearing needs
to reach some desired performances that are described by
weighting functions. The weighting functions introduced
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Figure 11: Comparison via simulation for reference tracking test.

in the plant are relative to position and control signal
performances in order to impose limits in the current value
and maximum displacement of each rotor’s section. The
weighting functions are transfer functions in Laplace domain
describing the desired dynamic behavior of the rotor’s
section varying by the excitation frequency. The expressions
(15) and (16) are the weighting functions for position and
control input, respectively,

Wp = s2 + 1.8s + 10
s2 + 8s + 0.01

, (15)

Wu = 10−5. (16)

The weighting function described in (15) is applied to
the displacements of the rotor’s sections, while the control
signal is scaled according to (16). The transfer functions are
taken by considering that the system has to be subjected
to an attenuation of disturbances. This attenuation can be
developed by maintaining the frequency response of the
shaped plant by the controller well below the frequency
response of (15) in the frequency range of interest. The
expression of (15) can be obtained by MATLab commands
by specifying the upper and lower limits of range of
frequency. The block scheme is shown in the Figure 2, where
Gmds is the nominal plant meant without uncertainties, K is

the controller, d the disturbances, and ep and eu the outputs
of weighting function with regard to the position and control
signal, respectively.

The presence of weighting functions produces an
increase of state vector’s variables so that the new plant is P
as shown in Figure 3.

All controllers used in this paper are characterized by a
common concept or rather the robustness. The robustness
is meant in a double way: robust stability and robust per-
formance. The closed-loop system achieves robust stability
if it is internally stable for all possible plant models G =
F(Gmds, Δ). In the present case, this means that the system
must remain stable for any value of δm, IP , IP .

Since those weighting functions are introduced in order
to provide some characteristic on the system’s output, the
robust performance criterion (17) is introduced for all G =
F(Gmds, Δ)

∥∥
∥
∥
∥

[
Wp(I + GK)−1

WuK(I + GK)−1

]∥∥
∥
∥
∥
∞
< 1, (17)

⎡

⎣
ep

eu

⎤

⎦ =
⎡

⎣
Wp(I + GK)−1

WuK(I + GK)−1

⎤

⎦d, (18)

where Δ can be structured or unstructured uncertainty
matrix; in any case it must satisfy the norm condition or
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Table 1: Data for simulation.

Symbol Description S.I.

m mass of rotor 2.3 Kg

IP polar moment of inertia 8× 10−4 Kg·m2

IT transverse moment of inertia 6× 10−2 Kg·m2

lbA
distance bearing A from centre of
mass G

0.241 m

lbB
distance bearing B from centre of
mass G

0.139 m

lsA
distance sensor A from centre of
mass G

0.241 m

lsB
distance sensor B from centre of
mass G

0.119 m

Ag(A,B) pole surface 6.6× 10−5 m2

g0(A,B) nominal gap 3.81× 10−4 m

α slope of bearings axis 45◦

β angle of two electromagnet poles 45◦

α slope of bearings axis 45◦

Pm,IT ,IP uncertainties percentage 10%

δm,IT ,IP range of uncertainties [−1, 1]

k(x,y)(A,B) displacement gain 144000 N/m

k(ix,iy)(A,B) current gain 38 N/A

rather: ‖Δ‖∞ < 1 for robust performances and where vector
d in (18) is the disturbances on the system.

Hence, the performance criterion is that the transfer
functions from d to ep and eu should be small in the sense
of ‖‖∞for all possible uncertain transfer matrices Δ.

4. Results, Simulations, and Discussion

The simulations are performed by considering the data
contained in Table 1.

Another set of data are referred to the transfer function
introduced in the plant of our system. These transfer func-
tions are essential if a certain performance must be obtained;
these performances are usually referred in the frequency
domain for example. Some authors usually introduce scalar
weighting function in order to describe a certain constant
value they want to obtain as a particular output. In this
paper, we introduce a transfer function in the output
signals or rather the displacement. The introduction of
transfer function in Laplace domain “s” means that the
displacement must be characterized by a certain dynamic
behavior according the frequency variable. This technique is
commonly used above all when a flexible structure is taken
into account or when some nodes are subjected to vibrations
such as in this case. Figures 4, 5, and 6 show the frequency
response of weighting function relative to the displacement
performances in order to analyze the sensitivity function.
This is made for all controlled axis of each radial active
magnetic bearing. Figure 4 shows the sensitivity function for
the loop-shaping controller design, and we can see that the
system has a good attenuation of disturbances until a certain

value of frequency equals 103 Hz for Loop-Shaping Design
Procedure (LSPD) controller.

Figures 5 and 6 show that μ-synthesis and Sub(H∞)
robust control are not able to maintain a good rejection of
disturbances for the entire range of frequency required for
the system.

In a physical sense, the μ value represents an amplifi-
cation coefficient of the effect produced by an exogenous
excitation on the system. In a mathematical sense, it is
determined by the following expression:

μ(Δ, Gzw) = 1
min(σ(Δ) : det(I−GzwΔ))

, (19)

where σ(Δ) is the singular value of relative input-output
plant as a function of Δ.

Figure 7 discusses the robust stability condition for loop-
shaping design procedure and shows that system has robust
stability until a value of frequency of 103 Hz. After this value
of frequency, the system has a pick outside the unitary value
and goes back under one when the frequency approaches
to the value of 104 Hz (upper and lower bound). The loop-
shaping design shows good performances until 103 Hz for
upper and lower bound since μ < 1. The loop-shaping design
shows also a good rejection of disturbances as shown in the
sensitivity function in Figure 4; in fact it has maintained itself
well below the transfer function (15).

Figure 8 shows that robust stability for the μ-synthesis is
not maintained in the range of frequency near [100, 103] Hz
so that the system does not have robust stability in that range.
Figure 8 shows that, in the study of robust performances, the
μ value is more than one for all range of operating frequency.
This means the state of uncertainties introduced in this work
induces the system to have bad robust performances also for
the nominal plant. The same behavior is obtained by the
Sub(H∞) control.

Obviously the previous results affect the dynamic behav-
ior of the entire system. According to Figure 3, the study of
reference’s tracking and disturbances rejection is performed.
It is built for all studied controllers. In Figure 10, the
disturbance rejection test is performed according to a
simulation characterized by a range of time of sixty seconds
and a disturbance injection built as a square wave (black
line) with a period of 20 s and amplitude of 10−6 m. All
three controllers implemented are capable to support the
requirements to reject the disturbance in a different way. The
controllers Sub(H∞) and μ-Synthesis are characterized by the
same pattern and the same period of oscillation, and they are
perfectly superimposed. Their dynamic behavior is typical of
damped system where a certain overshoot’s value is present
and different from the previous controllers. The loop-
shaping controller (red line) provides a good performance
for the disturbance rejection due to the short period to
extinct the transient response and small overshoot’s value
if compared with those offered by the previous controllers;
it has a good disturbance rejection and good performance
because the it has a μ value lower than one. In all cases, the
controllers are able to reject the disturbances by leading all
suspended section to maintain the operating point position.
Figure 11 shows the reference’s tracking simulations.
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The controllers are characterized by state space repre-
sentation (20) with four input positions and four control
current outputs:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t),

u(t) = q(t)sensor,

y(t) = ic(t).

(20)

5. Conclusions

This paper shows that a comparison of three different control
systems is built for a suspended rotor by active magnetic
bearings. The comparison shows that loop-shaping design
procedure provides the best performance to eliminate the
disturbances and to follow the reference’s tracking when
a certain required performances on position and control
current are necessary. The present study shows that, once the
weighting functions are introduced, only the loop-shaping
design procedure is able to lead the system with robust
stability and robust performance. The next development is to
produce the previous discussion for the flexible rotor under
the assumption that sensors are not colocated and with a
state of uncertainties on displacement and current control
gains.
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