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Heat shock proteins (HSPs) are induced in response to many injuries including stroke, neurodegenerative disease, epilepsy, and
trauma. The overexpression of one HSP in particular, Hsp70, serves a protective role in several different models of nervous
system injury, but has also been linked to a deleterious role in some diseases. Hsp70 functions as a chaperone and protects
neurons from protein aggregation and toxicity (Parkinson disease, Alzheimer disease, polyglutamine diseases, and amyotrophic
lateral sclerosis), protects cells from apoptosis (Parkinson disease), is a stress marker (temporal lobe epilepsy), protects cells from
inflammation (cerebral ischemic injury), has an adjuvant role in antigen presentation and is involved in the immune response in
autoimmune disease (multiple sclerosis). The worldwide incidence of neurodegenerative diseases is high. As neurodegenerative
diseases disproportionately affect older individuals, disease-related morbidity has increased along with the general increase in
longevity. An understanding of the underlying mechanisms that lead to neurodegeneration is key to identifying methods of
prevention and treatment. Investigators have observed protective effects of HSPs induced by preconditioning, overexpression,
or drugs in a variety of models of brain disease. Experimental data suggest that manipulation of the cellular stress response may
offer strategies to protect the brain during progression of neurodegenerative disease.

1. Introduction to Heat Shock Proteins

In vitro protein folding is a self-sufficient process as fold-
ing information are intrinsic to the polypeptide primary
sequence [1]. On the contrary, folding in vivo is a biological
problem for many reasons. During translation, since all
the interacting residues are not yet present prior to chain
termination, it is not possible for the new polypeptide chain
to form all the amino acid contacts that determine protein’s
native structures. Additionally, the hydrophobic stretches
that are normally hidden inside the three-dimensional
structure of a correctly folded protein are not shielded
from the environment and increase the tendency to form
nonnative contacts. Another impediment to correct protein
folding is the highly crowded nature of the extracellular
milieu. In fact, high-protein concentration dramatically
increase intermolecular association constants for unfolded
polypeptides. This process is therefore assisted by molec-
ular chaperones. Molecular chaperones are proteins which
recognize and selectively bind nonnative proteins to form
stable complexes [2]. They play an essential role in protein

folding by preventing misfolding and aggregation of folding
intermediates [3–5], and keep proteins on the productive
folding pathway. However, they only transiently interact with
their substrate protein and are not present in the final folded
product.

Molecular chaperones comprise several highly conserved
families of unrelated proteins and many of them are
ubiquitous and belong to the HSP family.

HSPs are molecular chaperones which assist in the proper
folding of newly synthesized proteins as well as those subject
to stress-induced denaturation. HSPs also exhibit a variety
of cytoprotective functions [6, 7]. In addition to their role as
chaperones, HSPs inhibit the apoptosis cascade [8].

In the nervous system, HSPs are induced in a variety
of pathological states, including cerebral ischemia, neu-
rodegenerative disease, epilepsy, and trauma [9]. Their
expression has been detected in multiple cell types, including
neurons, glia, and endothelial cells [10]. HSPs also exist as
extracellular proteins, released both through physiological
secretory mechanisms and during necrotic cell death. HSPs
in the extracellular milieu can increase stress resistance as a
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consequence of binding to stress-sensitive recipient cells such
as neurons. HSPs can also signal danger to inflammatory cells
and aid in immunosurveillance by transporting intracellular
peptides to immune cells [11].

HSPs are classified into different families on the basis
of molecular mass: Hsp100, Hsp90, Hsp70, Hsp60, Hsp40,
and the small Hsp families. One of the most conserved is
the Hsp70 family [12]. Almost all HSPs have a constitutively
expressed member that plays a housekeeping role, and a
stress-induced member that plays a crucial role in recovery
after cellular stress. The feature common to both constitutive
and inducible and HSPs is that they bind solvent-exposed
hydrophobic segments of nonnative polypeptides permitting
folding, transport, and assembly of the polypeptide through
a cycle of binding and release [13–15].

The transcription factor responsible for HSP transcrip-
tional activation is the heat shock transcription factor 1
(HSF1) [16–19]. According to the chaperone-based model,
HSF1 in unstressed cells is maintained in an inactive complex
with Hsp90, Hsp40, and Hsp70. When HSP levels are
required in response to cellular stress, HSF1 is released
from the complex and migrates to the nucleus. The active
homotrimeric, hyperphosphorylated HSF1 binds heat shock
elements (HSEs) in the promoter of HSP genes, leading to
their upregulation [17, 19].

2. The Hsp70 Family

In contrast to other HSPs (e.g., Hsp90), Hsp70 proteins
were found in almost the intracellular compartments. In
humans, the Hsp70 multigene family includes the cytosolic
and nuclear localized Hsc70 and Hsp70, endoplasmic reticu-
lum localized Grp78, and mithochondrial MtHsp75. Hsc70,
Grp78 and MtHsp75 are abundantly expressed during nor-
mal growth condition. In contrast, Hsp70 levels are growth
regulated [20, 21] and induced in response to a variety of
stressful stimuli in all living organisms (e.g., hyperthermia,
oxidative stress, heavy metals, amino acid analogs, and
mechanical stress). This protein and its constitutive form
(Hsc70) are involved in different chaperoning processes,
such as refolding of misfolded or aggregated proteins,
preventing protein aggregation, folding and assembly of
nascent polypeptides, and promoting the ubiquitination and
degradation of misfolded proteins. They are also involved
in protein translocation through the intracellular membrane
and interactions with signal transduction proteins [22–24].
Chaperones of the Hsp70 family act by holding nascent and
newly synthesized chains in a state competent for folding
upon release into the medium (i.e., they are holders and not
folders). The Hsp70 preferentially bind unfolded or partially
folded proteins via an interaction between the chaperone and
an extended polypeptide segment with a net hydrophobic
character, and do not bind normal active proteins, with the
exceptions of clathrin and σ32 [25, 26].

The role of Hsp70 in the folding of nonnative proteins
can be divided into three related activities: prevention of
aggregation, promotion of folding to the native state, and
solubilization and refolding of aggregated proteins [27].

3. Structural Features of Hsp70

Hsp70 and its homologs are composed of two major
functional domains whose cooperation is needed for pro-
tein folding. They have an N-terminal nucleotide-binding
domain (NBD) of 45 kDa, with a weak ATPase activity which
can be stimulated by binding to unfolded proteins and
synthetic peptides [28], and a C-terminal substrate-binding
domain (SBD) of ca. 25 kDa, which is further subdivided
into a β-sandwich subdomain of 15 kDa and a C-terminal
α-helical subdomain. Hsp70 requires specific monovalent
and divalent metal ions (K+ and Mg2+) for ATP binding
and hydrolysis [29]. The NBD is structurally similar to actin
and hexokinase, and it consists of four smaller domains
forming two lobes with a deep cleft within which the MgATP
and the MgADP bind [30]. The NBD and the SBD are
connected by a short linker [31] (Figure 1). Crystal structure
suggests that the α-helical subdomain of the SBD acts as
a lid that can adopt two different states, open and closed
[27, 32]. Polypeptides bind to the β-sandwich in an extended
conformation, whereas the lid has no direct contact with
the substrate. In addition, deletion mutagenesis studies have
demonstrated that the C-terminal EEVD sequence motif
plays an important role in cochaperone binding.

Hsp70 adopts three different conformations, one in the
absence of nucleotide, one with ADP bound, and one with
ATP bound. Many of the functions of Hsp70 depend on
crosstalk between the SBD and NBD, and ATP influences
substrate binding. In particular, ATP binding increases the
on- and off-rates of peptide binding in the adjacent SBD.
Subsequently, nucleotide hydrolysis to ADP closes the lid
and enhances substrate affinity [33]. Thus, in the ATP-
bound state peptides can easily bind and dissociate (open
lid), while in the ADP-bound state the complex with the
peptide is more stable (closed lid) (Figure 2). This is a two-
way communication, as interactions between SBD and its
substrates increase the rate of ATP hydrolysis.

4. Hsp70s and Cochaperones

Since Hsp70 plays many roles within the same cellular
compartment, regulation of substrate binding and/or release
is essential. Hsp70 nucleotide turnover in vivo is regulated by
cochaperones. In particular, Hsp40 represents a large protein
family that stimulates ATP hydrolysis through a J domain
(Figure 2). According to their domain composition, the
members of J proteins have been subdivided into three classes
based on their similarity to E. coli DNAJ, the prototype for
all the J domain containing proteins (JDPs). Hsp70 family
members often colocalize with multiple members of the
Hsp40 family, which have specialized functions. Members
of Hsp40 regulate substrate-Hsp70 complex formation via
three mechanisms. Hsp40 proteins have unique classes of
polypeptide-binding domains (PPDs) that are responsible
for the selective binding of client proteins to Hsp70 [34–36].
It is reasonable to think that under in vivo conditions, Hsp70
is in the ATP-bound form, that is, in the open state. In this
condition a stable binding with substrates is not possible,
and experimental data suggest that J proteins first bind
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Figure 1: Domain structure of Hsp70.
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Figure 2: Schematic of ATP hydrolysis and the role of cochaper-
ones.

the substrate. This complex binds Hsp70-ATP and partially
transfers the polypeptide to Hsp70. J proteins also stabilize
Hsp70-polypeptides complexes by driving the conversion
from the Hsp70-ATP to the Hsp70-ADP, which binds
protein substrate tightly [37–39]. This Hsp40 effect may be
particularly important for the Hsp70 binding of extended
sequences not containing hydrophobic acid residues, such as
PolyQ [40]. Finally, different Hsp40 proteins are localized
to different sites within the same cellular compartment,
enabling unique client binding at these sites [41–43]. On the
other hand, the ADP-bound (closed lid) state is stabilized by
the cochaperone Hip (or ST13), which serves to increase the
half-life of substrate complexes [44] (Figure 2).

To complete the ATPase cycle, a distinct class of cochap-
erones, the nucleotide exchange factors (NEFs), catalyze
the release of ADP. The major NEF families include the
GrpE-like family, BAG family proteins, HspBP1 [45–47]. All
known NEF proteins bind NBD and promote ADP release
(Figure 2). By regulating ATP cycling, J-domain proteins and
NEFs also control substrate binding.

All cells have evolved two mechanisms for the degrada-
tion of unfolded protein: the ubiquitin-proteasome pathway
and lysosome-mediated autophagy [48]. Another group of

cochaperones is represented by the tetratricopeptide repeat
(TPR)-containing proteins, which bind to the EEVD
sequence of the Hsp70 C-terminus. These include Hop and
CHIP. The former bridges Hsp70 and Hsp90 and assists
substrate transfer between the two chaperones, while the
latter competes with Hop for binding the C-terminus of
Hsc70 and Hsp90 [49]. CHIP also contains a U-box and acts
as E3-ubiquitin ligase that ubiquitylates Hsc70 substrates,
promoting their degradation by the proteasome [50–52].
Therefore, CHIP determinates whether proteins enter the
productive folding pathway or the degradation pathway.
In addition to catalyzing ubiquitylation of Hsp/Hsc70 and
Hsp90 substrates, CHIP also ubiquitylates Hsc70 in a
noncanonical manner, as it is not a degradation signal [53].

5. Hsp70-Mediated Protection:
A Chaperone Role

Under certain pathological conditions the protein quality
control machinery is not sufficient to prevent the accumu-
lation of misfolded proteins. A common feature among vari-
ous neurodegenerative diseases, including Alzheimer disease
(AD), Parkinson disease (PD), amyotrophic lateral sclerosis
(ALS), and the inheritable polyglutamine (PolyQ) diseases
(e.g., Huntington disease (HD); spinocerebellar ataxia (SCA)
type 1, 2, 3, 6, 7, and 17; spinobulbar muscular atrophy
(SBMA); dentatorubral pallidoluysian atrophy (DRPLA)) is
the accumulation and deposition of misfolded proteins in
the brain (inside and outside neurons) and selective neuronal
loss in the central nervous system (CNS) [54] (Table 1). For
all of these conformational/misfolding diseases, misfolded
proteins are considered a common therapeutic target [12],
and many studies have focused on the neuroprotective role
of HSPs.

It has been demonstrated that neurons are particularly
vulnerable to misfolded proteins, as they are postmitotic
cells and are unable to dilute misfolded or aggregated
proteins through cell division [12]. The aggregates are
immunoreactive for ubiquitin, and most have been reported
to contain molecular chaperones and components of the
proteasome (see [55–60] for a summary). Molecular chap-
erones and components of the proteasome can also be
found in aggregates formed in transgenic animal models
and transfected cell cultures by various polypeptides with
expanded polyQ [61–66], mutant SOD1, (familial ALS) [67],
α-synuclein (α-Syn), (PD) [68], intracellular tau tangles, and
extracellular plaques formed in AD [69]. The presence of
these proteins suggests that protein aggregates are recognized
as misfolded conformers and that cellular protein quality
control mechanisms are activated in an attempt to prevent
their accumulation [60].

These neurodegenerative disorders impact different
classes of neurons. For example, in AD neuronal loss is
prominent in the entorhinal cortex and hippocampus and is
accompanied by neuronal loss and dementia [70]. PD is char-
acterized by a loss of dopaminergic neurons in the substantia
nigra and is accompanied by muscle rigidity, bradykinesis,
and resting tremors [71]. In ALS, neuronal death involves
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Table 1: Neurodegenerative diseases and protein deposits.

Disease Inclusion Abnormal protein

Alzheimer disease
Extracellular neuritic plaque Aβ peptide

Cytosolic neurofibrillatory tangles Tau

Parkinson disease Lewy bodies α-synuclein

Familial amyotrophic lateral sclerosis Intracellular inclusions SOD1

Huntington disease Nuclear, cytosolic inclusion Huntingtin

Spinocerebellar ataxia 1, 2, 3 Nuclear inclusions Ataxin 1, 2, 3

Spinobulbar muscular atrophy Nuclear inclusions Androgen receptors

motoneurons of the spinal cord and motor cortex, resulting
in progressive muscle wasting and weakness [72]. In polyQ
diseases, different regions of the brain are affected [73]. It
has also been demonstrated that in rat brain these different
classes of neurons show different levels of Hsc70. Spinal
motoneurons, which are impacted in the low frequency
disease ALS, have a very high level of Hsc70, whereas neurons
in the hippocampus and entorhinal cortex, affected in the
high frequency disease AD, show comparatively low levels
of Hsc70. An intermediate Hsc70 levels have been found
in neurons of the substantia nigra impacted affected in PD,
a disease that occurs with intermediate frequency [74, 75]
(Table 2).

Although the specific proteins that aggregate in a given
neurodegenerative disease are different, they all organize in
amyloid-like structures with common biochemical features,
such as detergent insolubility, high β-sheet content, and
protease resistance [12, 76]. Protein deposition in β-sheet-
rich amyloid fibrils characterizes the pathological state of
these diseases, but growing evidence indicates that the toxic
agents are the oligomeric and protofibrillar intermediates
of the aggregation process [12, 77]. These toxic diffusible
oligomers share conformational similarities, as a single
monoclonal antibody can block their toxicity when applied
to cultured cell models of AD, PD, and HD [78].

In recent years several studies have demonstrated that
activation of the heat shock response (HSR), and in partic-
ular elevation of Hsp70 levels, has a neuroprotective effect in
several models of neurodegeneration. The protective effect is
believed to be related principally to its chaperone role. One
example is represented by polyQ diseases. The polyQ diseases
are inherited neurodegenerative diseases caused by expan-
sion of polyQ stretches in several proteins as a result of a
genetic defect characterized by a repeating trinucleotide CAG
motif. CAG repeats results in expanses of glutamine, and this
expansion is responsible for self-aggregation or aggregation
with other proteins and for the formation of inclusion bodies
in the affected neurons, leading to toxicity and cell death
[79, 80]. In fact, in all cases the neuropathology of these
diseases is characterized by the presence of nuclear, and
sometimes extranuclear, aggregates that are immunoreactive
for the mutant protein and for ubiquitin. Members of the
Hsp40 and Hsp70 chaperone families have also been found to
colocalize with nuclear aggregates in several polyQ diseases,
both in human and mouse brains [63, 81–84]. Expression
of polyQ proteins is responsible for endogenous chaperone
induction in cell culture models [63, 82], while this induction

is controversial for in vivo systems. For example, expression
levels of Hdj1, Hdj2 (J proteins), and Hsp70 have been shown
to decrease along with disease progression in the HD mouse
brain, with a possible implication in the pathogenesis of
the disease [66, 85]. In the same way, expression of Hsp70
in the SCA 3 Drosophila model, after an initial induction
at larval stage, declines progressively with age [86]. On the
contrary, induction levels of Hsp70 in response to mutant
huntingtin protein with an expanded polyQ stretch differ
according to subtypes of primary neuronal cultures [87].
In vitro and in vivo studies investigating the role of Hsp70
in suppressing toxicity caused by mutant polyQ proteins
have been performed in cell-, yeast-, worm-, and fly-based
models of polyQ disease [61, 63, 82, 88–94]. Warrick and
colleagues demonstrated in a Drosophila model of polyQ
disease (SCA 3) that overexpression of Hsp70 reduced the
toxicity of the disease protein, but this suppression of toxicity
occurred in the absence of an observable effect on protein
aggregation [61]. A similar result was also observed in SCA1-
and SBMA-mouse models [95, 96]. On the contrary, only
modest effects on neuropathological features were observed
as a consequence of Hsp70 overexpression in R6/2 HD mice
[97]. Despite this result, the absence of even one allele
of the hsp70.1/hsp70.3 gene significantly exacerbated the
severity of the symptoms in those mice. An increase in the
size of mutant protein inclusion bodies was observed, but
there were no changes in the levels of fibrillar aggregates
[80]. The demonstration that Hsp70, either endogenous
or overexpressed, is an integral component of the in vivo
physiological response to misfolding and aggregation protein
disease highlights the importance of this chaperone, in view
of its potential use in management of neurodegenerative
disorders. In vitro and in vivo studies have demonstrated
that inhibition of aggregate formation and prevention of
cell toxicity is enhanced when Hsp70 and members of the
Hsp40 chaperone families are overexpressed in combination
and are able to work synergistically. Overexpression of these
two chaperones reduced aggregate formation and apoptosis
in cultured neuronal cell models of SBMA [90, 98]. In
a similar manner, atomic force microscopy in aggregation
experiments demonstrated that the huntingtin fragment
with an expanded polyQ repeat assembles into spherical
and annular structures, and molecular chaperones Hsp70
and Hsp40 act cooperatively in an ATP-dependent fash-
ion to attenuate the assembly of these structures, thereby
accelerating fibrillization [99]. Moreover, suppression of
polyQ inclusion formation was also observed both in cell
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Table 2: Hsc70 and neurodegenerative diseases.

Disease Neurons affected Hsc70 levels Frequency

Alzheimer disease entorhinal cortex and hippocampus Low High

Parkinson disease dopaminergic neurones in the substantia nigra pars compacta Intermediate Intermediate

Amyotrophic lateral sclerosis motor neurons of the spinal cord and motor cortex High Low

culture and a mouse HD model, after genetic expression of
constitutively active mutants of HSF1, responsible for the
induction of multiple molecular chaperone [100, 101].

A similar neuroprotective role for Hsp70 was observed
in PD. PD is a neurodegenerative, multifactorial movement
disorder affecting about 3% of the population over 65
years old, and is second only to AD as the most common
and debilitating age-associated human neurodegenerative
disorder [102]. PD is characterized mainly by progressive
and selective loss of dopaminergic neurons in the substantia
nigra pars compacta, with subsequent dopamine (DA)
decline in the nigrostriatal pathway, and by the presence
of intracytoplasmic fibrillar α-Syn protein aggregates (Lewy
Bodies, LB) in the remaining nigral neurons. α-Syn is a 140-
amino acid neuronal protein probably involved in regulating
cell differentiation, synaptic plasticity, and dopaminergic
neurotransmission. This protein is intrinsically unfolded
in aqueous solution and forms differently sized soluble
prefibrillar species as well as insoluble β-sheet-rich fibers
[103–105]. It has been demonstrated that Hsp70 overex-
pression reduced α-Syn accumulation and toxicity in both
mouse and Drosophila models of PD [106, 107]. In vitro
studies have also demonstrated that Hsp70 can prevent α-Syn
fibrillar assembly [107]. In particular, in vitro aggregation
experiments have demonstrated that nucleotide-free Hsp70
inhibited amyloid formation, stimulating the formation of
amorphous aggregates [108, 109]. A different result was
observed in the presence of physiological ATP. In fact, as
initially observed in a nucleotide-free system, Hsp70 was
found to inhibit α-Syn aggregation, but at longer time
points aggregation was evident. This result was explained by
Roodveldt and colleagues [110] by demonstrating that α-Syn
mediated Hsp70 depletion in an ATP-dependent manner.

The addition of Hip, a cochaperone which is underex-
pressed in PD patients [111], to Hsp70 in the presence of
ATP results in the abrogation of Hsp70 depletion and the
suppression of the conversion of α-Syn into amyloid species.
Small amorphous aggregates without fibrils are instead
present. These data suggest that Hip exerts a stabilization
of Hsp70, which supports chaperone-mediated inhibition
of amyloid formation [110]. To get better insight into the
process involved in vivo and investigate the interactions of
chaperones constituting Hsp70 system with α-Syn, Ahamad
[112] used the model of DNAK/DNAJ/GrpE. Studying the
whole system is more likely to obtain information on
the use of chaperone machinery to inhibit in vivo α-Syn
fibril formation. Although α-Syn fibrillar assembly has been
demonstrated to be inhibited by Hsp70, an active refolding
process mediated by Hsp70 is unlikely [113]. A hypothesis
that summarizes many of the results of PD studies obtained

in recent years predicts that Hsp70 solubilizes α-Syn and
promotes the degradation of its insoluble forms, both via
chaperone-mediated autophagy and the proteasome [114].

A protective chaperone role was also observed in models
of AD. The major pathological features of AD are the
extracellular accumulation of amyloid-β peptide (Aβ) in
the senile plaque and the intracellular accumulation of
abnormally phosphorylated tau protein as neurofibrillary
tangles. Self-assembly of Aβ produces dimers, oligomers,
unstructured aggregates, and characteristic amyloid fibrils.
Of these structures, oligomers are believed to be the most
neurotoxic and important in the development of disease
[115]. Evans and colleagues [116] observed the interaction of
HSPs with various types of Aβ structures. They used freshly
prepared samples and oligomers as representatives of early
stages of fibril formation, and fibrils. They found that the
early stages were more susceptible than fibrils to Hsp70-
mediated inhibition of protein aggregation [116]. A role in
AD protection was also observed when exogenous Hsp70
was administrated to rat microglial cultures. In fact, Hsp70-
activated microglia showed an increase in Aβ clearance [117].

A new neuroprotective role related to the chaperone
function of Hsp70 may have been identified in ALS. ALS
is a neurodegenerative disorder affecting upper and lower
motoneurons, resulting in gradual muscle weakening and
loss of motoneuron function, leading to paralysis and death
of afflicted individuals [118]. Some evidence suggests a link
in this pathology between HSR activation and motoneuron
degeneration. Twenty percent of familial ALS is due to
a mutation in the gene encoding SOD1 [119]. For this
reason, transgenic mice and in vitro motoneurons expressing
the mutant human SOD1 are used as models of familial
ALS. Studying the heat shock response in these models
has demonstrated that Hsp70 levels increase during dis-
ease progression [120]. In analogy with the other con-
formational/misfolding diseases, overexpression of Hsp70
reduces aggregate formation in SOD1 transfected cells.
Hsp70 overexpression protected motoneurons only partially
in dissociated cultures of embryonic murine spinal cord from
SOD1G93A mutant mice [121]. Batulan and coworkers [122]
demonstrated that a more effective result is obtained with
coordinate upregulation of HSPs (e.g., Hsp70 and Hsp40).

However, HSPs may also protect the nervous system by
a mechanism unrelated to their chaperone function. Recent
studies indicate that Hsp70 can also prevent the occurrence
of apoptosis in the brain. For example, the protective effects
of Hsp70 in models of PD were also due to its ability to
interfere with the death cascade, protecting the integrity of
dopaminergic neurons from the toxic effects of 1-methyl-
4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) [123, 124]. In
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fact, Hsp70 promotes cell survival at different levels via the
regulation of apoptosis-related proteins (e.g., by interacting
with p53 or AIF) [125, 126], for a recent review see [127].

6. Hsp70 Overexpression: A Protective or
Nonprotective Role?

With the demonstration that HSP overexpression can be
neuroprotective, the search for a way to pharmacologically
induce the overexpression of Hsp70 and associated chaper-
ones may lead to a promising approach for the treatment of
neurodegenerative diseases [128]. In particular, there have
been investigations of pharmacologically active molecules
that modulate HSF1, the master stress-inducible regulator
[17, 19]. To this aim, collaborative drug screens to identify
therapeutic agents to prevent or treat neurodegenerative
diseases have been performed by different groups, using a
panel of 1040 existing drugs [129, 130].

In 2001 Sittler and colleagues demonstrated for the first
time that geldanamycin (GA) suppresses aggregation of
mutant huntingtin through the induction of molecular chap-
erones in cell culture [128]. GA is a naturally occurring
benzoquinone ansamycin that has been shown to be active
in tumor cell lines. Biochemical studies have demonstrated
that GA binds specifically to Hsp90, inhibiting its function
[131–133]. GA also disrupts the complex between Hsp90
and HSF1, resulting in activation of the heat stress response
(HSR) in mammalian cells [134–137]. Treatment with GA,
through Hsp70 and Hsp40 induction, inhibits huntingtin
aggregation in a cell-culture model of HD [128]. A similar
protective result was obtained in a primary culture model
of familial ALS [122]. GA is also responsible for affecting
αSyn pathology and solubility. It prevents α-Syn aggregation
in neuroglioma-transfected cells and protects them against
toxicity, if cells are pretreated before transfection [138].
The protective effects of GA have also been observed in a
Drosophila model of PD [139]. In vivo results were also
obtained in a mouse MPTP model of PD [140].

Despite all of these positive results, it is well known
that GA even at low concentrations is toxic to cells, and
this toxicity may limit its suitability for long-term use
[141]. For this reason, more extensive investigations are
currently under way with GA derivatives, such as 17-ally-
lamino-17-demethoxygeldanamycin (17-AAG) and 17-dy-
imethylaminoethylamino-17-demethoxygeldanamycin (17-
DMAG). 17-AAG is an analogue of GA that shows less
hepatotoxicity in vivo [142]. However, controversial results
have been obtained with this drug in some models. Batulan
and colleagues [122] observed that 17-AAG, despite having
biological efficacy in tumors at doses similar to those for GA
[143] and being able to enhance androgen degradation in a
mouse model of SBMA [144–146], requires high and toxic
concentrations to induce HSPs synthesis in a familial model
of ALS [122]. On the contrary, it has been demonstrated
that 17-AAG treatment successfully suppresses neurodegen-
eration in a Drosophila model of SCA3 and HD, and it
is the most effective agent among other HSF1-activating
compounds in suppressing polyQ-related neurodegenera-
tion in Drosophila models [79]. It was demonstrated recently

that 17-AAG reduced toxicity in the SBMA model through
solubilization and increased clearance of the mutant protein.
This clearance is mediated by the autophagic system and
has no impact on the activity of the proteasome system
[147]. A similar result was obtained studying α-Syn clearance
in cellular model. In this system 17-AAG attenuates the
formation of small aggregates through induction of the
autophagic pathway [148]. These results suggest that Hsp70
may contribute to α-Syn aggregate degradation, but is not the
major player. This is in accordance with results obtained in
Drosophila model where a concentration of GA that did not
induce Hsp70 expression was sufficient to protect neurons
against α-Syn toxicity [106].

The GA derivative 17-DMAG, which is more potent
than 17-AAG [149, 150], is also more water soluble and
can be administered orally [151], making it possibly more
feasible as a long-term therapeutic agent. In the SBMA model
system 17-DMAG was shown to have two major activities,
preferential Hsp90 client protein degradation and HSPs
induction. 17-DMAG induced the upregulation of Hsp70
and Hsp40 to a greater extent than 17-AAG [146, 152]. On
the other hand, treatment with 17-DMAG shifted the AR-
Hsp90 chaperone complex from a mature stabilizing form
with p23 to a proteasome-targeting form with Hop [153]. A
marked decrease of the mutant AR polyQ was observed even
without Hsp70 induction, as detected using siRNA [146].

Another compound which is able to activate HSF1 and
upregulate HSP gene expression is celastrol. Celastrol is a
pentacyclic triterpenoid obtained from root of Tripterygium
wikfordii Hook, a perennial vine of Celastraceae family
[154]. Therapeutic studies have underscored its role in the
prevention of inflammatory diseases and cancer. During a
screening for inhibitors of androgen signaling, it was discov-
ered that celastrol is also an Hsp90 inhibitor. Unlike GA and
its derivatives, celastrol does not compete with ATP-binding
sites. Celastrol inhibits the interaction between Hsp90 and
its cochaperone cdc37 [155]. This complex is involved in
the stability of the IKK signalosome and, as a consequence,
regulation of NF-κB, a key mediator of inflammatory gene
expression. Celastrol is also responsible for HSF1 hyper-
phosphorylation and the induction of DNA-binding activity
[156]. Hsp70 induction by celastrol has several therapeutic
benefits (e.g., maintaining cellular protein control status and
inhibiting inflammatory responses by reducing IKK complex
activation) [154]. In neurodegenerative diseases celastrol was
shown to protect against polyglutamine toxicity, both in
vivo and in vitro. Its protective effects are associated with
decreased numbers of cells containing aggregates as well as
increased SDS-solubility of the mutant polyQ protein [157].
Celastrol is also neuroprotective in vivo in models of AD
and HD. Its neuroprotective effects may be due to Hsp70
induction and prevention of Hsp70-dependent activation of
nuclear factor (NF)-κB and tumor necrosis factor (TNF)-
α. This inhibition reduces proinflammatory cytokine release
and astrogliosis [158]. Moreover, celastrol is neuroprotective
in G93SOD1 mice (i.e., ALS model) [159] and in transgenic
mice models of AD [160].

Another category of compounds which share neuropro-
tective activity are the coinducers of the heat shock response,
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Figure 3: Pharmacological activation of HSF1 by small chemical activators and induction of molecular chaperones genes (hsp). 17-AAG:17-
(allylamino)-17-demethoxygeldanamycin, 17-DMAG: 17-dyimethylaminoethylamino-17-demethoxygeldanamycin.

that is, compounds that amplify HSP gene expression only in
the presence of a concomitant stress. One such coinducer is
arimoclomol, an analogue of bimoclomol, a hydroxylamine
derivative [161]. These hydroxylamine derivatives have been
shown to coinduce HSP expression by prolonging activation
of HSF1 [162]. Kieran and colleagues showed that arimo-
clomol treatment significantly delays disease progression in
SOD1G93A mice [163]; see Figure 3. These results are sum-
marized in Table 3.

Hsp70 overexpression, however, is not beneficial in all
instances. Recently Kalmar and Greensmith [164] demon-
strated that an increase in intracellular HSPs in vitro is
not always beneficial for the survival of motoneurons. For
example, celastrol and arimoclomol both induce Hsp70
synthesis, but they have opposite effects on motoneuron
survival. In fact, whereas treatment with arimoclomol was
clearly neuroprotective [163, 164], celastrol not only showed
no beneficial effects on motoneurons, but actually induced
caspase-mediated apoptosis [164]. The two agents, although
similar in their capacity to induce Hsp70, have some
important differences. In particular, as described above,
arimoclomol can only function as a coinducer of the HSR
[161, 162], whereas celastrol can directly induce Hsps in
vitro, even in the absence of a stressor [75]. The result of
this study emphasizes that caution is needed when proposing
drugs that upregulate HSP levels as potential therapeutic
agents for neurodegenerative disorders.

An uncertain role for Hsp70 was also observed in an
epilepsy model. A model used widely for studying the patho-
logical changes of human temporal lobe epilepsy (TLE) is the
kainic acid- (KA-) induced seizure model in rodents [165],
which reproduces many of the clinical features of TLE [165–
168]. KA induces Hsp70 expression in hippocampal neurons
or more broadly throughout the brain, depending on the
dose of KA [169, 170]. Despite the expression of Hsp70,
neuroprotection was not observed during an epileptogenic
state, and Hsp70 overexpression in this scenario served

only as an indicator of neuronal stress in the acute phase
of epilepsy [171, 172]. A different result was obtained
previously by Yenari and coworkers [173]. This study showed
that overexpression of Hsp70 prior to neuronal insult
improves cell survival in both stroke and epilepsy models.
This result demonstrated that using gene transfer for Hsp70
overexpression improved neuronal survival, although for
gene therapy to have significant clinical relevance, future
studies should explore whether the Hsp70 overexpression
can protect neurons when administered after insult [173].

7. Extracellular Hsp70

HSPs exist not only as intracellular proteins, but also as
extracellular proteins [11], and several reports have shown
that HSPs can be released from mammalian cells [174, 175].
In recent years an extracellular role for Hsp70 has been
demonstrated, and numerous functions have been attributed
to it: cytokine production and release, microglial activation,
induction of IL-6 and TNF-α, stimulation of phagocytosis,
and clearance of Aβ [116, 176, 177].

Although the protective system based on Hsp70 exists in
all tissue and organs, some cell types do not appear to express
the protein. Among these are certain types of neurons [178].
For example, stress was shown to significantly increase Hsp70
mRNA expression in neurons in the cerebellum, but not in
hippocampal neurons [179]. It is now well known that Hsp70
can be released from some cells and taken up by others in
a biologically active form [178, 180, 181]. Although there
is no evidence on how Hsp70 works extracellularly, there is
evidence that Hsp70 can be internalized and imported into
the cytoplasm and nucleus of many cell types to promote cell
survival [176, 182–187].

Most neurons contain high levels of Hsc70 and low
levels of Hsp70 [188]. In motoneurons both HSP forms
are present, but no increase in endogenous expression is
observed in the face of either insufficient trophic factors or
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Table 3

Drug Neurodegenerative disease Reference

Cell culture model of Huntington Disease [112]

Mouse model of Huntington Disease [52]

GA Drosophila model of Parkinson Disease [123]

Mice MPTP (Parkinson Disease) [124]

Cell culture model of α-synuclein aggregation [122]

SODG93A cells (Amyotrophic Lateral Sclerosis) [106]

Drosophila model of PolyQ [131]

17-AAG Cell culture model of Huntington Disease [135]

Cell culture model of α-synuclein aggregation [133]

Spinobulbar Muscular Atrophy transgenic mice [128, 129]

SODG93A cells [106]

17-DMAG Mouse model of Spinobulbar Muscular Atrophy [130, 137]

Cell culture model of PolyQ [142]

Celastrol
Mice MPTP (Parkinson Disease),

[143]

Mice 3-NP (Huntington Disease)

SODG93A transgenic mice [144]

Transgenic mouse model of Alzheimer Disease [145]

Arimoclomol SOD1G93A mice (Amyotrophic Lateral Sclerosis) [148]

heat shock. This apparent inability to increase Hsp70 expres-
sion may render motoneurons vulnerable to metabolic stress.
Extracellular Hsp70 may, therefore, play a compensatory
role after stress to promote survival, inhibit apoptosis, or
both. The first observation of the stress tolerance-enhancing
activity of exogenous Hsc/Hsp70 was reported by Johnson
and coworkers, who showed that Hsc/Hsp70 added to the
culture medium in vitro can bind to arterial smooth muscle
cells and improve their resistance to nutrient-deprivation
stress [182, 183]. A protective effect was also observed in
cultured monocytes [184].

Extracellular Hsp70 has also been shown to enter human
motoneurons [178, 189, 190]. There are several reports
substantiating the protective role of exogenous Hsc/Hsp70 in
the CNS. Tidwell and coworkers showed that administration
of a mixture of Hsc/Hsp70 in vivo inhibits motor and
sensory neuron degeneration after sciatic nerve axotomy
[186]. A protective effect of exogenous recombinant human
Hsp70 (rhHsp70) on motoneurons was also demonstrated
by Robinson et al. (2005) [190]. They demonstrated that
Hsp70 protects motoneurons deprived of trophic factors in
vitro as well as those undergoing natural cell death in vivo.
rhHSC70 confers protection to motoneurons subjected to
the oxidative stress common in neurodegenerative diseases
such as SBMA, AD, PD, and ALS [190]. Moreover, Guzhova
et al. (2001) [178] demonstrated that cultured glioma cells,
an in vitro model of glia-like cells, released Hsp70 in the cul-
ture medium. Furthermore, a mixture of bovine Hsc/Hsp70
was taken up by cultured neuroblastoma cells, an in vitro
model of neuron-like cells. Numerous observations indicate
that glial cells supply neighboring neurons with specific
proteins and trophic factors, and may be a means by which
motoneurons obtain Hsp70 during stressful conditions [180,
191, 192].

A protective role for extracellular Hsp70 was also
observed in brain disease. In particular, Hsp70 has been
demonstrated to be involved in protecting motoneurons
against degeneration in a mouse model of ALS [193]. In
fact, treatment of mice with rhHsp70 delayed symptom onset
and increased lifespan. This rhHsp70 localized primarily to
skeletal muscle and was not found in the CNS, suggesting
a potential peripheral mode of action for the survival-
promoting effect. The effect of rhHsp70 may be mediated
by its action to help maintain motoneuron innervation
in skeletal muscle. Furthermore, a protective effect of
exogenous Hsc/Hsp70 was demonstrated in cells containing
polyQ inclusions. The exogenous HSPs penetrate the cell and
colocalize with inclusions. The chaperone also decreased the
number of apoptotic cells [189].

Epilepsy, for which the underlying neuronal defects are
distinct from those in conformational/misfolding diseases,
has also been used to demonstrate an Hsp70-mediated
neuroprotective effect. In two different models of epilepsy,
Ekimova et al. [194] demonstrated that exogenous Hsc and
Hsp70 can penetrate into brain areas (e.g., cortex, hip-
pocampus, thalamus, hypothalamus, and pontine reticular
formation) involved in the initiation and propagation of
generalized tonic-clonic seizures [195–197], where it acts to
attenuate the severity of chemically induced seizures [194].
This study demonstrated for the first time that exogenous
Hsc and Hsp70 have anticonvulsant properties and are able
to pass through the cerebrospinal fluid-brain barrier and
cross the plasma membrane of neurons.

In summary, there is evidence that Hsp70 is not only
an intracellular chaperone but has also extracellular func-
tions. Many papers have demonstrated that the extracellular
Hsp70/Hsc70 have protective role on neurons, and they
have also a neuroprotective effect in many brain diseases
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(e.g., ALS, epilepsy, PolyQ). This role opens a new scenario
in brain disease therapy.

8. Hsp70 and Immunomodulation: A Negative
Role in Autoimmune Diseases

Immune activation within the CNS is a classical feature of
ischemia, neurodegenerative diseases, immune-mediated
disorders, infections, and trauma, and may often contribute
to neuronal damage. It has been demonstrated that HSPs
are able to induce the innate immune system through their
interactions with cell surface receptors, leading to the expres-
sion of proinflammatory cytokines [177, 198], chemokines
[199, 200], and activation of dendritic cells (DCs) [201, 202].
Hsp70 is the principal HSP implicated in the formation of
the immunogenic complex [203]. In fact, a role for Hsp70
as facilitator of immune response to proteins and peptides
has been demonstrated both in vivo and in vitro [204–208].
For an immune response to be activated, an antigen must
be processed to lymphocytes in the context of accessory
molecules expressed on the surface of antigen-presenting
cells (APCs). For most T cells, these accessory molecules
are represented by either class I or class II components of
the major histocompatibility complex (MHC). Many reports
showed that Hsp70 enhances antigen presentation through
the MHCI antigen presentation pathway. In addition, Mycko
and coworkers [209] demonstrated that Hsp70 is also able
to promote antigen presentation by the MHC class-II-
dependent pathway. It has been demonstrated for both MHC
class-I- and II-dependent systems that Hsp70-associated
peptides are more immunogenic than the peptides alone
[209–212].

Multiple sclerosis (MS) is a chronic inflammatory CNS
disease of autoimmune etiology, caused by an inappropriate
immune T-cell-mediated response to CNS myelin antigens
[213, 214]. In this disease, myelin antigens such as myelin
basic protein (MBP), one of the most immunogenic proteins
of the CNS and synthesized in the CNS only by oligoden-
drocytes, proteolipid protein (PLP), myelin oligodendrocyte
glycoprotein (MOG), myelin-associated glycoprotein, and
nonmyelin antigens such as αβ-crystallin, transaldolase, and
CNPase, are believed to be targets of pathogenic T cells [215–
222]. Once activated, these cells breach the bloodbrain bar-
rier and migrate into the CNS, mediating the development of
inflammatory foci and myelin destruction [213]. Cumulative
data indicate that once damage to the CNS has occurred,
sensitization to other antigens can occur, contributing to the
chronic disease.

HSPs are also believed to be permissive factors in various
autoimmune diseases. In particular, anti-Hsp70 autoanti-
bodies were found to be significantly higher in the cere-
brospinal fluid of patients with multiple sclerosis (MS)
than in cerebrospinal fluid from patients with motoneuron
disease. Moreover, Hsp70 was found in and around MS
lesions [220, 223–225], often in association with PLP [226],
as well as in experimental autoimmune disease (EAE), which
can be induced in rodents by myelin antigens administration
(e.g., MOG, PLP, and MBP) [227, 228] and is considered a
model of MS [229].

Myelin represents a complex multilamellar membrane,
containing many myelin-specific proteins. The two major
myelin proteins of the myelin sheath are PLP and MBP.
PLP is an intrinsic membrane protein assembled in the
endoplasmic reticulum into vesicles targeted for the cell
membrane and not likely to require chaperoning by Hsc70.
In contrast, MBP is synthesized on free polysomes found
mostly in oligodendrocyte processes, and a possible role for
Hsc70 as chaperone has been postulated [230]. It is also
reasonable to hypothesize that Hsc70 should be similarly
required for remyelination during the process of lesion
repair. The association of Hsc70 with myelin proteins on cell
membrane during this phase of the disease could function as
an additional target of the immune response. Remyelination
could also be impaired by a reduction in Hsc70. In fact,
the Hsc70 content in autopsy tissue of MS lesions has been
found 30% to 50% below that in normal brain tissue, with
chronic lesions showing the lowest expression [224, 231].
This reduction could be responsible for permanent loss of
myelin from the lesion [230]. On the contrary, analysis of
expression and distribution of HSPs in MS lesions indicates a
significant upregulation of most classes of HSPs, both within
the lesion and at the lesion edge [222, 224, 226, 232]. In
early active and chronic active lesions, immunoreactivity
for Hsp70 was strongly positive on reactive astrocytes
and some macrophages at the leading edge [230]. Hsp70
upregulation was also observed in the inflammatory lesions
in the CNS of EAE animals [230]. To determine whether
Hp70 overexpression is restricted to the CNS, Cwiklinska
et al. 2010 [233] assessed Hsp70 expression in PBMCs from
MS patients. They observed no general upregulation in
these patients compared to healthy donors, but upon cell
stress Hsp70 was found to be significantly overexpressed.
Despite this upregulation, whether Hsp70 plays a protective
or pathological role is still controversial. Hsp70 was found
to be associated with MBP and PLP in CNS from MS, but
not in control tissue [226]. A similar result was obtained
in EAE, indicating that the demyelination process favors the
physical association of HSP with myelin proteins [226]. In
the bound form, Hsp70 with myelin proteins may be targeted
to APC and, using an adjuvant-like mechanism, enhance
an immune reaction to myelin antigens. This assumption
was confirmed by the data obtained by Chen et al. [234].
They demonstrated that Hsp70 overexpression significantly
enhanced the uptake of MBP by APC. Similarly, Mycko
et al. [203] demonstrated that Hsp70 overexpression in vitro
leads to enhanced presentation of MBP in a MHC class-II-
dependent manner [203, 208, 235–239]. Hsp70 have also
been shown to stimulate immune cells to produce cytokine
and chemokines, which activate APC [240].

In vivo experiments also demonstrated that Hsp70 is
involved in EAE resistance. In fact, hsp70.1−/− mice were
resistant to EAE after immunization with MOG peptide, and
reduced clinical signs were also evident [203]. The results
obtained by Mycko and coworkers [203] using hsp70.1−/−

mice demonstrated that Hsp70 is essential for the induction
of the autoimmune response to the peptide MOG35−55.
A similar result was obtained by Lund et al. [241]. They
demonstrated that Hsp70 was associated with MBP peptides
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in normal-appearing white matter of both MS and normal
human brain. They also found an adjuvant-like effect of
Hsp70-associated MBP-derived peptides. Based on these
results, they hypothesize that a small dose of Hsp70-MBP
peptide secreted by stressed oligodendrocytes stimulated an
in vivo adaptive immune response specific for the associated
autoantigen. This event could be the mechanism responsible
for the initiation of MS and could be responsible for
the subsequent immune-mediated destruction of myelin
characteristic of the disease.

A different results was obtained by Galazka et al. [242].
They demonstrated that mouse immunization with an
Hsp70 fraction associated with peptide complexes (pc)
isolated from animals with EAE reduced the subsequent
induction of EAE. According to this work, Hsp70 complexed
with an endogenous peptide is able to regulate the immune
process in a MHC class-II-dependent disease, but no results
were obtained by using Hsp70-pc isolated from healthy
donors. The different results between immunization with
Hsp70-pc from healthy donors or Hsp70-pc from EAE
donors suggests substantial differences in the peptide that
binds Hsp70 in normal versus pathological CNS. As no
resistance to EAE induction was obtained by immunization
with a pure peptide fraction or pure Hsp70 preparation,
the authors concluded that Hsp70 serves as a natural
adjuvant, and that the Hsp70-pc complex is able to induce
a pathway involving NK cells, inhibiting autoreactive T cells
[242]. In conclusion, Hsp70 is thought to contribute to
the induction and development of EAE [203], and peptides
derived from inflamed CNS tissues bind to Hsp70 and inhibit
EAE development [242]. Moreover, an Hsp70 protective
effect was observed in celastrol-treated mice. Celastrol is
responsible for Hsp70 induction and for its nuclear translo-
cation. Furthermore, a direct interaction between NF-kB and
Hsp70 was observed, leading to a decreased recruitment of
inflammatory cells into the CNS [243].

9. Conclusions

In this paper, we have briefly focused on some of the
current areas of research on molecular role of Hsp70 in
nervous system diseases. Many neurodegenerative disorders
are linked together by the presence and accumulation of
misfolded proteins. Several works have demonstrated that
Hsp70 may have a neuroprotective role in several model of
neurodegeneration both in vivo and in vitro. Its beneficial
effects could be due both to its chaperone role and to
its ability to protect against various kinds of potentially
toxic factors. These apparently positive results prompted
pharmacological studies on active molecules which act on
HSP modulation. However, Hsp70 protects against some
but not all kinds of CNS injury and the protective effects
may be related to the nature and the severity of the
insults. An uncertain role on beneficial effects of Hsp70
was observed in some cases of its overexpression or in
some models of brain disorders. Furthermore, HSPs are also
believed to be permissive in various autoimmune diseases.
In this situation either beneficial or harmful effects could
be hypothesized. In particular, in MS beneficial effects could

be due to mechanisms which downregulate the immune
response. On the other hand, harmful effects might include
the development and/or recruitment of additional antigenic
targets within the lesion with the consequent amplification of
the immunological response. Further studies will be required
to describe the apparently contradictory roles of Hsp70 in
nervous system diseases.
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[51] J. Höhfeld, D. M. Cyr, and C. Patterson, “From the cradle
to the grave: molecular chaperones that may choose between
folding and degradation,” EMBO Reports, vol. 2, no. 10, pp.
885–890, 2001.

[52] P. Connell, C. A. Ballinger, J. Jiang et al., “The co-chaperone
CHIP regulates protein triage decisions mediated by heat-
shock proteins,” Nature Cell Biology, vol. 3, no. 1, pp. 93–96,
2001.

[53] J. Jiang, D. Cyr, R. W. Babbitt, W. C. Sessa, and C.
Patterson, “Chaperone-dependent regulation of endothelial
nitric-oxide synthase intracellular trafficking by the co-
chaperone/ubiquitin ligase CHIP,” Journal of biological chem-
istry, vol. 278, no. 49, pp. 49332–49341, 2003.

[54] A. Kakizuka, “Protein precipitation: a common etiology in
neurodegenerative disorders?” Trends in Genetics, vol. 14, no.
10, pp. 396–402, 1998.

[55] S. W. Davies, M. Turmaine, B. A. Cozens et al., “Formation of
neuronal intranuclear inclusions underlies the neurological
dysfunction in mice transgenic for the HD mutation,” Cell,
vol. 90, no. 3, pp. 537–548, 1997.

[56] M. DiFiglia, E. Sapp, K. O. Chase et al., “Aggregation of hunt-
ingtin in neuronal intranuclear inclusions and dystrophic
neurites in brain,” Science, vol. 277, no. 5334, pp. 1990–1993,
1997.

[57] H. L. Paulson, M. K. Perez, Y. Trottier et al., “Intranuclear
inclusions of expanded polyglutamine protein in spinocere-
bellar ataxia type 3,” Neuron, vol. 19, no. 2, pp. 333–344,
1997.

[58] F. Elefant and K. B. Palter, “Tissue-specific expression
of dominant negative mutant Drosophila HSC70 causes
developmental defects and lethality,” Molecular Biology of the
Cell, vol. 10, no. 7, pp. 2101–2117, 1999.

[59] M. D. Kaytor and S. T. Warren, “Aberrant protein deposition
and neurological disease,” Journal of Biological Chemistry, vol.
274, no. 53, pp. 37507–37510, 1999.

[60] P. Kazemi-Esfarjani and S. Benzer, “Genetic suppression of
polyglutamine toxicity in Drosophila,” Science, vol. 287, no.
5459, pp. 1837–1840, 2000.

[61] J. M. Warrick, H. Y. E. Chan, G. L. Gray-Board, Y. Chai, H. L.
Paulson, and N. M. Bonini, “Suppression of polyglutamine-
mediated neurodegeneration in Drosophila by the molecular
chaperone HSP70,” Nature Genetics, vol. 23, no. 4, pp. 425–
428, 1999.

[62] D. L. Stenoien, C. J. Cummings, H. P. Adams et al.,
“Polyglutamine-expanded androgen receptors form aggre-
gates that sequester heat shock proteins, proteasome com-
ponents and SRC-1, and are suppressed by the HDJ-2
chaperone,” Human Molecular Genetics, vol. 8, no. 5, pp. 731–
741, 1999.

[63] N. R. Jana, M. Tanaka, G. H. Wang, and N. Nukina, “Polyg-
lutamine length-dependent interaction of Hsp40 and Hsp70
family chaperones with truncated N-terminal huntingtin:
their role in suppression of aggregation and cellular toxicity,”
Human Molecular Genetics, vol. 9, no. 13, pp. 2009–2018,
2000.

[64] S. T. Suhr, M. C. Senut, J. P. Whitelegge, K. F. Faull,
D. B. Cuizon, and F. H. Gage, “Identities of sequestered
proteins in aggregates from cells with induced polyglutamine
expression,” Journal of Cell Biology, vol. 153, no. 2, pp. 283–
294, 2001.

[65] K. Mitsui, H. Nakayama, T. Akagi et al., “Purification of
polyglutamine aggregates and identification of elongation
factor-1α and heat shock protein 84 as aggregate-interacting
proteins,” Journal of Neuroscience, vol. 22, no. 21, pp. 9267–
9277, 2002.

[66] D. G. Hay, K. Sathasivam, S. Tobaben et al., “Progressive
decrease in chaperone protein levels in a mouse model of
Huntington’s disease and induction of stress proteins as a
therapeutic approach,” Human Molecular Genetics, vol. 13,
no. 13, pp. 1389–1405, 2004.

[67] M. Watanabe, M. Dykes-Hoberg, V. Cizewski Culotta, D. L.
Price, P. C. Wong, and J. D. Rothstein, “Histological evidence
of protein aggregation in mutant SOD1 transgenic mice and
in amyotrophic lateral sclerosis neural tissues,” Neurobiology
of Disease, vol. 8, no. 6, pp. 933–941, 2001.

[68] M. Tanaka, Y. M. Kim, G. Lee, E. Junn, T. Iwatsubo, and
M. M. Mouradian, “Aggresomes formed by α-synuclein
and synphilin-1 are cytoprotective,” Journal of Biological
Chemistry, vol. 279, no. 6, pp. 4625–4631, 2004.

[69] F. Dou, W. J. Netzer, K. Tanemura et al., “Chaperones increase
association of tau protein with microtubules,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 100, no. 2, pp. 721–726, 2003.

[70] J. B. Martin, “Molecular basis of the neurodegenerative
disorders,” New England Journal of Medicine, vol. 340, no. 25,
pp. 1970–1980, 1999.

[71] A. H. V. Schapira and C. W. Olanow, “Neuroprotection in
parkinson disease: mysteries, myths, and misconceptions,”
Journal of the American Medical Association, vol. 291, no. 3,
pp. 358–364, 2004.

[72] L. I. Bruijn, T. M. Miller, and D. W. Cleveland, “Unraveling
the mechanisms involved in motor neuron degeneration in
ALS,” Annual Review of Neuroscience, vol. 27, pp. 723–749,
2004.

[73] Y. Nagai, N. Fujikake, H. A. Popiel, and K. Wada, “Induction
of molecular chaperones as a therapeutic strategy for the
polyglutamine diseases,” Current Pharmaceutical Biotechnol-
ogy, vol. 11, no. 2, pp. 188–197, 2010.

[74] S. Chen and I. R. Brown, “Neuronal expression of constitu-
tive heat shock proteins: implications for neurodegenerative
diseases,” Cell Stress and Chaperones, vol. 12, no. 1, pp. 51–58,
2007.

[75] A. M. Chow and I. R. Brown, “Induction of heat shock
proteins in differentiated human and rodent neurons by
celastrol,” Cell Stress and Chaperones, vol. 12, no. 3, pp. 237–
244, 2007.

[76] C. M. Dobson, “Protein folding and misfolding,” Nature, vol.
426, no. 6968, pp. 884–890, 2003.

[77] T. F. Outeiro, P. Putcha, J. E. Tetzlaff et al., “Formation of toxic
oligomeric α-synuclein species in living cells,” PLoS ONE, vol.
3, no. 4, article e1867, 2008.

[78] R. Kayed, E. Head, J. L. Thompson et al., “Common structure
of soluble amyloid oligomers implies common mechanism of
pathogenesis,” Science, vol. 300, no. 5618, pp. 486–489, 2003.

[79] N. Fujikake, Y. Nagai, H. A. Popiel, Y. Okamoto, M.
Yamaguchi, and T. Toda, “Heat shock transcription factor
1-activating compounds suppress polyglutamine-induced
neurodegeneration through induction of multiple molecular
chaperones,” Journal of Biological Chemistry, vol. 283, no. 38,
pp. 26188–26197, 2008.

[80] J. L. Wacker, S. Y. Huang, A. D. Steele et al., “Loss of Hsp70
exacerbates pathogenesis but not levels of fibrillar aggregates
in a mouse model of Huntington’s disease,” Journal of
Neuroscience, vol. 29, no. 28, pp. 9104–9114, 2009.



Biochemistry Research International 13

[81] C. J. Cummings, M. A. Mancini, B. Antalffy, D. B. DeFranco,
H. T. Orr, and H. Y. Zoghbi, “Chaperone suppression of
aggregation and altered subcellular proteasome localization
imply protein misfolding in SCA1,” Nature Genetics, vol. 19,
no. 2, pp. 148–154, 1998.

[82] Y. Chai, S. L. Koppenhafer, N. M. Bonini, and H. L.
Paulson, “Analysis of the role of heat shock protein (Hsp)
molecular chaperones in polyglutamine disease,” Journal of
Neuroscience, vol. 19, no. 23, pp. 10338–10347, 1999.

[83] G. Yvert, K. S. Lindenberg, S. Picaud, G. B. Landwehrmeyer,
J. A. Sahel, and J. L. Mandel, “Expanded polyglutamines
induce neurodegeneration and trans-neuronal alterations in
cerebellum and retina of SCA7 transgenic mice,” Human
Molecular Genetics, vol. 9, no. 17, pp. 2491–2506, 2000.

[84] T. Schmidt, K. S. Lindenberg, A. Krebs et al., “Protein
surveillance machinery in brains with spinocerebellar ataxia
type 3: redistribution and differential recruitment of 26S pro-
teasome subunits and chaperones to neuronal intranuclear
inclusions,” Annals of Neurology, vol. 51, no. 3, pp. 302–310,
2002.

[85] T. Yamanaka, H. Miyazaki, F. Oyama et al., “Mutant Hunt-
ingtin reduces HSP70 expression through the sequestration
of NF-Y transcription factor,” EMBO Journal, vol. 27, no. 6,
pp. 827–839, 2008.

[86] N. Y. M. Huen and H. Y. E. Chan, “Dynamic regulation of
molecular chaperone gene expression in polyglutamine dis-
ease,” Biochemical and Biophysical Research Communications,
vol. 334, no. 4, pp. 1074–1084, 2005.

[87] K. Tagawa, S. Marubuchi, M. L. Qi et al., “The induction
levels of heat shock protein 70 differentiate the vulnerabilities
to mutant huntingtin among neuronal subtypes,” Journal of
Neuroscience, vol. 27, no. 4, pp. 868–880, 2007.

[88] J. M. Warrick, H. L. Paulson, G. L. Gray-Board et al.,
“Expanded polyglutamine protein forms nuclear inclusions
and causes neural degeneration in Drosophila,” Cell, vol. 93,
no. 6, pp. 939–949, 1998.

[89] S. Krobitsch and S. Lindquist, “Aggregation of huntingtin in
yeast varies with the length of the polyglutamine expansion
and the expression of chaperone proteins,” Proceedings of the
National Academy of Sciences of the United States of America,
vol. 97, no. 4, pp. 1589–1594, 2000.

[90] P. J. Muchowski, G. Schaffar, A. Sittler, E. E. Wanker, M. K.
Hayer-Hartl, and F. U. Hartl, “Hsp70 and Hsp40 chaperones
can inhibit self-assembly of polyglutamine proteins into
amyloid-like fibrils,” Proceedings of the National Academy of
Sciences of the United States of America, vol. 97, no. 14, pp.
7841–7846, 2000.

[91] Y. Kobayashi and G. Sobue, “Protective effect of chaperones
on polyglutamine diseases,” Brain Research Bulletin, vol. 56,
no. 3-4, pp. 165–168, 2001.

[92] H. Zhou, S. H. Li, and X. J. Li, “Chaperone suppression of cel-
lular toxicity of huntingtin is independent of polyglutamine
aggregation,” Journal of Biological Chemistry, vol. 276, no. 51,
pp. 48417–48424, 2001.

[93] S. Gunawardena, L. S. Her, R. G. Brusch et al., “Disruption
of axonal transport by loss of huntingtin or expression of
pathogenic polyQ proteins in Drosophila,” Neuron, vol. 40,
no. 1, pp. 25–40, 2003.

[94] E. A. A. Nollen, S. M. Garcia, G. van Haaften et al., “Genome-
wide RNA interference screen identifies previously unde-
scribed regulators of polyglutamine aggregation,” Proceedings
of the National Academy of Sciences of the United States of
America, vol. 101, no. 17, pp. 6403–6408, 2004.

[95] C. J. Cummings, Y. Sun, P. Opal et al., “Over-expression of
inducible HSP70 chaperone suppresses neuropathology and
improves motor function in SCA1 mice,” Human Molecular
Genetics, vol. 10, no. 14, pp. 1511–1518, 2001.

[96] H. Adachi, M. Katsuno, M. Minamiyama et al., “Heat shock
protein 70 chaperone overexpression ameliorates phenotypes
of the spinal and bulbar muscular atrophy transgenic mouse
model by reducing nuclear-localized mutant androgen recep-
tor protein,” Journal of Neuroscience, vol. 23, no. 6, pp. 2203–
2211, 2003.

[97] O. Hansson, J. Nylandsted, R. F. Castilho, M. Leist, M.
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