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Little is known about tendon adaptations induced by
mechanical loading. Our goal was to evaluate the effects
of two different exercise training protocols on adult rat
patellar tendon. Ninety-six male Wistar rats were divided
into a sedentary group (control), a resistance-trained group
and an endurance-trained group. The examinations were
performed after 15, 30 and 45 days of training and after
2 weeks of rest since training was stopped. The content of
collagen fibers and the cell nuclei number were quantified on
tendon cross sections. In order to assess the training effec-
tiveness, we evaluated the heart/body weight ratio, which
was higher in 45 day-trained rats than their controls

(Po0.01), showing the presence of cardiac hypertrophy.
An increase in the content of collagen fibers was observed in
the 45 day-trained groups and after 2 weeks of rest in the
endurance group. Moreover, both trained groups showed a
decrease in cell nuclei number after 30 and 45 days of
training and 2 weeks of rest (Po0.05). Endurance and
resistance training induces a tendon tissue remodeling that
depends on the length and intensity of workload rather than
the training type. Further studies are necessary to evaluate
whether these structural modifications are associated with
an increase in the mechanical strength of tendon.

Tendon is mainly composed by fibrous connective
tissue and connects muscle to bone. In particular,
elements making up mammalian tendons are cells and
extracellular matrix (ECM) including collagen fibers
and ground substance (Kannus, 2000; Magnusson
et al., 2003). Collagen molecules assemble into fila-
mentous collagen fibrils, formed by microfibrils
(Raspanti et al., 1990; Ottani et al., 2001) that
aggregate to form collagen fibers, the main structural
components (Silver et al., 2003; Provenzano & Van-
derby, 2006).
Tendon responds to mechanical loading, and ani-

mal studies have provided some evidence that endur-
ance training may influence the morphology and
mechanical properties of tendons (Viidik, 1967;
Woo et al., 1980, 1981; Kubo et al., 2000; Buchanan
& Marsh, 2001). Several studies have compared the
biochemical composition and mechanical properties
of tendons and ligaments from exercised animals
with those from sedentary controls (Inglemark,
1948; Woo et al., 1980; Wren et al., 2000). In some
cases, exercise training results in improved tensile
strength, elastic stiffness, weight and cross-sectional
area of tendons in animal experiments and their
effects can be explained by an increase in collagen

and ground substance synthesis by tenocytes (Woo
et al., 1980; Kannus & Natri, 1997). In other cases,
exercise has no effect on these properties (Woo et al.,
1981; Vailas et al., 1985). Similarly, exercise before
maturity may lead to an increase in mature tendon
weight (Inglemark, 1948), or it may not affect mature
tendon weight (Kiiskinen, 1977; Suominen et al.,
1980; Curwin et al., 1988). These inconsistencies
may stem from differences in the magnitude of
loading applied to various structures during general
exercise programs (Tipton et al., 1986).
Only a few studies have addressed the effect of

training on intratendinous structures (Davanker
et al., 1996), and although one very early study has
not demonstrated any intratendinous fibril increase
as a result of training in rats (Inglemark, 1948), a
subsequent study has shown increased fibril diameter
after training in mice (Mischna, 1984; Mischna &
Hartmann, 1989).
Tendon properties and function also deteriorate

with aging. The decline in muscle strength and power
(Macaluso & De Vito, 2004) is thought to be due to a
loss of collagen and an increased tendon stiffness
(Bailey et al., 1984). Resistance training in old age
can partly reverse the deteriorating effect of aging on
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tendon properties and function (Reeves et al., 2003;
Maganaris et al., 2004).
The purpose of this study was to evaluate the

effects of two different training protocols (endurance
and resistance) of 6 weeks’ length on the structure of
the patellar tendon in adult rats. In particular, we
evaluated the content of collagen fibers and cell
nuclei number on tendon cross sections.

Materials and methods
Experimental design

This experiment was carried out on 96 male, 6-month-old
Wistar rats (315.4 � 30.3 g body weight). The investigation
conforms with the Guide for the Care and Use of Laboratory
Animals (Clark, 1996). All animals were randomly divided into
three groups: (1) sedentary control (C, 312.4 � 25.9 g body
weight), (2) resistance training (R, 319.5 � 27.6 g body weight)
and (3) endurance training (E, 314.3 � 35.4 g body weight).
The sedentary group rats remained in their cages for the entire
duration of the experiment. Every 2 weeks of training (15, 30
and 45 days), eight rats from each group were weighed and
then euthanized. After 45 days, the trained rats were allowed 2
weeks of rest and then they were euthanized (C60; R60; E60).

Animals were housed in cages and were allowed food and
water ad libitum. The daily light cycle extended from 7 a.m. to
7 p.m. and the room temperature was maintained at 21.6 �
0.5 1C. Training was performed in the morning. We did not
use unnatural incentives such as cold water, forced air or
electrical stimulation in order for the rats to perform the
exercise.

Resistance training protocol

An exercise consisting in climbing a 1m ladder with a 2 cm
grid ladder and weights attached to the rats’ tails was used as
resistance training (Fig. 1a). Rats were familiarized with the
exercise for 3 days. The first week after familiarization, the
exercise was performed at a natural load. In order to increase
the workload, from the second week, increasing weights were
attached to the base of the tail with a Velcro strap (Table 1).
The initial weight was 50% of the rat body weight and
gradually increased throughout the subsequent 6-week train-
ing period.

The resistance training consisted of 1 set of 10 repetitions
(reps) with a 1-min (min) rest interval among the reps, for
5 days/week (Table 1). When the rats reached the top of the
ladder, they were allowed to recover in the resting area.

Endurance training protocol

A Rota-Rod Treadmill (Fig. 1b) was used for endurance
training. Treadmill exercise regimes produce varying intensi-
ties of exercise by adjusting the treadmill speed and duration
of exercise.

In the first week, rats ran 10min at a speed of 2.88m/min
(16 laps/min) for 5 days/week and gradually increased through-
out the 6-week training period (Table 1).

Histological examination

The trained and control rats were anesthetized with ether and
their hearts and patellar tendons were carefully excised. The
hearts were weighed on an analytical balance (LA120S Sar-
torius, Chicago, Illinois, USA). Patellar tendons were fixed
with 10% formalin, embedded with paraffin and sectioned into
serial cross sections (6 mm). In order to examine the tendon in
its entire length and obtain a real count of the cell nuclei
number and collagen fiber content, we performed 68 cross
sections for each tendon. We analyzed 20 of these sections,
which had an 18mm distance from each other. Sections were
stained with hematoxylin and eosin, observed with the light

Fig. 1. Photographs of the two
methods of training. (a) Resistance
training: photograph of the ladder
and weight suspension on the tail
of a rat. (b) Endurance training:
photograph of the rota-rod tread-
mill.

Table 1. Training protocols

Groups Week Resistance Endurance

Sets
(reps)

Weight (g) Time
(min)

Speed
(m/min)

15 Days 1st 1 (10) – 10 2.88
2nd 1 (10) 150 30 3.60

30 Days 3rd 1 (10) 300 45 4.32
4th 1 (10) 360 50 4.32

45 Days 5th 1 (10) 380 60 5.04
6th 1 (10) 380 60 5.76

60 Days 7th Rest – Rest –
8th Rest – Rest –
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microscopy (DM5000B Leica, Wetzlar, Germany) and the
images were acquired with a digital video-camera (DC300F
Leica). All images were taken with a � 20 objective and a
0.733mm2 area was selected (Fig. 2a and b), where the content
of collagen fibers (Fig. 2d) and cell nuclei number (Fig. 2c)
were evaluated by ‘‘Image J’’ (Media Cybernetics, Silver
Spring, Maryland, USA) image software (Bellafiore et al.,
2007).

Statistical analysis

All data are expressed as means � standard deviations (SD).
A one-way ANOVA test with Bonferroni’s multiple compar-
ison test was used to analyze significant differences between
groups and within groups. Values were considered signifi-
cantly different at Po0.05.

Results

All of the trained rats successfully completed the
6-week training program without injury and need for

any form of artificial encouragement such as electric
shock incentive.
Rat body and heart weight measurements from the

C, R and E groups are shown in Table 2. No
difference in body weight was observed between the
trained groups and the C group after 15 days of
training. The body weight of the E30 group was
significantly lower than the C30 (19%) and R30
(10%) groups (Po0.05) and the body weight of
E45 animals was significantly lower than the C45
(16%) and R45 (15%) rats (Po0.001). There was no
difference between the trained and the C group after
2 weeks of rest (Table 2). A statistical analysis was
also carried out within the same group. The body
weight of the C0 group was significantly lower than
the C30 (18%), C45 (22%) and C60 (21%) groups
(Po0.05) and the body weight of the C15 group was
significantly lower than the C30 (11%), C45 (15%)
and C60 (14%) groups (Po0.05). The body weight
of E60 animals was significantly greater than the E0
(17%), E30 (18%) and E45 (11%) rats (Po0.05) and

Fig. 2. Histological examination.
(a) Cross sections (6 mm) of patel-
lar tendon stained with haematox-
ylin & eosin ( � 20 objective); (b)
area of 0.733mm2 selected, where
cell nuclei number (c) and content
of collagen fibers (d) were evalu-
ated by image software.

Table 2. Morphometric measurements from the three experimental groups

Measurement Control Endurance Resistance P

Body weight (g) 15 days 340.2 � 08.94 351.0 � 24.05 324.7 � 22.10 –
Body weight (g) 30 days 383.3 � 23.44 308.1 � 12.08 344.2 � 19.35 C30 vs E30: o0.01

R30 vs E30: o0.05
Body weight (g) 45 days 402.1 � 23.66 336.7 � 22.95 399.3 � 54.86 C45 vs E45: o0.001

R45 vs E45: o0.001
Body weight (g) 60 days 395.7 � 61.53 377.2 � 06.75 383.3 � 18.74 –
Heart weight (g) 15 days 1.16 � 0.08 1.24 � 0.11 1.13 � 0.07 –
Heart weight (g) 30 days 1.37 � 0.03 1.18 � 0.05 1.29 � 0.03 C30 vs R30: o0.05

C30 vs E30: o0.01
R30 vs E30: o0.01

Heart weight (g) 45 days 1.36 � 0.08 1.40 � 0.14 1.68 � 0.17 C45 vs R45: o0.001
R45 vs E45: o0.001

Heart weight (g) 60 days 1.35 � 0.17 1.31 � 0.06 1.35 � 0.04 –
Heart /Body weight 15 days 3.42 � 0.22 3.62 � 0.21 3.47 � 0.16 –
Heart/Body weight 30 days 3.60 � 0.29 3.84 � 0.06 3.76 � 0.30 –
Heart/Body weight 45 days 3.38 � 0.02 4.15 � 0.12 4.29 � 0.73 C45 vs R45: o0.001

C45 vs E45: o0.01
Heart/Body weight 60 days 3.41 � 0.13 3.47 � 0.17 3.52 � 0.14 –
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the body weight of the E30 group was significantly
lower than the E15 (12%) group (Po0.05). R45
animals showed a significant increase in body weight
compared with R0 (20%), R15 (19%) and R30
(14%) rats (Po0.01). The body weight of the R60
group was significantly greater than the R0 (17%),
R15 (15%) and R30 (10%) groups (Po0.05).
Heart weight did not show any difference between

the trained groups and the C group after 15 days of
training. The cardiac weight of the C30 group was
significantly greater than the R30 (6%) and E30
(16%) groups (Po0.05) and the cardiac weight of
the R30 group was significantly greater than the E30
(9%) group (Po0.01). After 45 days of training there
was a significantly greater difference of cardiac
weight between the R45 group than the C45 (19%)
and E45 (17%) groups (Po0.001). There was no
difference between the trained groups and the C
group after 2 weeks of rest (Table 2).
The heart/body weight ratio of the C45 group was

significantly lower than the R45 (21%) and E45
(19%) groups (Po0.01) (Table 2).

Analysis of collagen fiber quantity

The content of collagen fibers did not show any
variation between the trained groups and the C
group after 15 days of training (Fig. 3a). The content
of collagen fibers of the R30 group was significantly
greater than the E30 (5%) and C30 (5%) groups
(Po0.01). After 45 days of training, the C45 group
showed a quantity significantly lower than the E45
(4%) and R45 (4%) groups (Po0.05) (Fig. 3a). After
2 weeks of rest, the content of collagen fibers was
significantly lower in the C60 group than the E60
(4%) group (Po0.001) (Fig. 3a).
A statistical analysis was also carried out within

the same group in order to verify any differences in
the content of collagen fibers compared with the time

factor variable in the C group and with the time
factor/training ratio in the trained groups. The con-
tent of collagen fibers was significantly greater in the
C60 group than the C15 (8%), C30 (5%) and C45
(4%) control animals (Po0.01). C45 rats showed
significantly (Po0.01) increased content collagen
fibers compared with the C15 (4%) group (Fig. 3b).
The content of collagen fibers of the E60 group was
significantly greater than the E15 (11%), E30 (9%)
and E45 (4%) animals (Po0.001). E45 rats showed
significantly (Po0.01) increased content collagen
fibers compared with E15 (7%) and E30 (5%) rats
(Fig. 3b). Finally, the collagen fiber content of the R15
group was significantly (Po0.001) lower than R30
(9%), R45 (8%) and R60 (10%) animals (Fig. 3b).

Evaluation of cell nuclei number

In all the tendon cross sections stained with hema-
toxylin and eosin, we did not observe any presence of
lymphocyte infiltration as shown in the Figs 2 and 4.
No difference in cell nuclei number was observed
between the trained groups and the C group after 15
days of training (Fig. 5a). Cell nuclei number of the
C30 group was significantly greater than the E30
(36%) and R30 (34%) groups (Po0.001) (Fig. 5a).
After 45 days of training, the cell nuclei number of
the C45 group was significantly greater than the E45
(38%) and R45 groups (42%) (Po0.001) (Figs 4 and
5a). After 2 weeks of rest, cell nuclei number of the
C60 group was significantly greater than the E60
(17%) and R60 (31%) groups (Po0.001). Moreover,
the E60 group showed a cell nuclei number signifi-
cantly greater than the R60 (17%) group (Po0.001)
(Fig. 5a).
The statistical analysis was also carried out within

the same group in order to verify any differences in
the cell nuclei number compared with the time factor
variable in the C group and with the time factor/

Fig. 3. Content of collagen fibers in patellar tendon sections. Column indicates means of collagen fiber content. Standard
Deviations are indicated as error bars. C stands for control group; E, endurance group; R, resistance group; 15, 15 days of
training; 30, 30 days of training; 45, 45 days of training; 60, 60 days (45 days of training plus 2 weeks of rest). (a) Comparison
between groups, the values in the column indicate the percentage of the collagen fiber content. (b) Comparison within group.
Differences between data sets with the same lowercase letter are significant (a–s): Po0.05.
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training ratio in the trained groups. The cell nuclei
number of the C15 group was significantly lower
than C30 (14%), C45 (20%) and C60 (14%) animals
(Po0.001) (Fig. 5b). The cell nuclei number of the
E15 group was significantly greater than E30 (21%)
and E45 (16%) animals (Po0.001). E60 rats showed
a significant increase in cell nuclei number compared
with the E30 (18%) and E45 (17%) groups
(Po0.001) (Fig. 5b). Finally, cell nuclei number of
the R15 group was significantly greater than R30

(19%), R45 (23%) and R60 (15%) animals
(Po0.001) (Fig. 5b).

Discussion

Prolonged and regular exercise induces body mor-
phological and physiological adaptations that are
different depending on the intensity, duration and
type of training (Curwin et al., 1988; Duncan et al.,
1998).
In the present study, structural adaptations of the

rat patellar tendon to different exercise training
protocols were investigated. We formulated a resis-
tance training program characterized by middle-
upper intensity and aimed to develop muscle mass
and strength in accordance to the studies of Klit-
gaard (1988) and Duncan et al. (1998). The other
type of exercise training (endurance protocol) was
predominately aerobic, characterized by moderate
intensity and rhythmic and continuous exercises.
The efficiency of our endurance and resistance pro-
grams was demonstrated by several factors. The
significant reduction in the body weight of E30 and
E45 groups with respect to C and R animals might be
due to the use of lipid as an energy source by aerobic
metabolism during endurance training. This hypoth-
esis is supported by increased body weight of control
rats because of their sedentary life, absence of diet
restriction and animal physiological growth. The
increase in body weight of sedentary rats was also
shown by Roy et al. (1997). The body weight of the
E15 group did not significantly differ from that of
R15 and C15 animals because the training intensity
was lower than 30 and 45 days and glycogen deposits
rather than lipids were probably used as energy
sources. Although E45 rats performed higher inten-
sity endurance training compared with E15 and
E30 animals, their body weight did not show any

Fig. 4. Evaluation of cell nuclei number on tendon cross
sections stained with hematoxylin and eosin. The images are
representative of a 0.733mm2 area from C45 (a), E45 (b) and
R45 (c) groups.

Fig. 5. Analysis cell nuclei number in patellar tendon sections. Column indicates means cell nuclei number. Standard
Deviations are indicated as error bars. C, control group; E, endurance group; R, resistance group; 15, 15 days of training; 30,
30 days of training; 45, 45 days of training; 60, 60 days (45 days of training plus 2 weeks of rest). (a) Comparison between
groups, the values in the column indicate the mean � SD of cell nuclei number. (b) Comparison within group. Differences
between data sets with the same lowercase letter are significant (a–s): Po0.001.
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difference with respect to the E15 and E30 groups
because the fat mass reduction of E45 rats might be
compensated by an enhancement in lean mass in-
duced by endurance training. The significant increase
in E60 rat body weight compared with E0, E30 and
E45 animals might be explained by the interruption
of endurance training for 2 weeks.
In addition, the absence of a significant variation

in the body weight of the resistance group compared
with controls confirms that the decreased body
weight in E30 and E45 animals is due mainly to
endurance training.
The increase in the heart weight of the C30 group

may be explained by an enhancement in its body
weight. Indeed, R45 and C45 rats presented a similar
body weight but the heart weight of the R45 group
was greater than that of the control showing the
efficiency of resistance training. Moreover, the sig-
nificant increase in the heart/body weight ratio of
endurance and resistance 45 day-trained rats com-
pared with their corresponding controls proves the
presence of cardiac hypertrophy in trained animals.
An increase in absolute and relative heart mass was
also observed in a study carried out by Duncan et al.
(1998) on 10 male Wistar rats trained by a 40 cm
vertical ladder while carrying progressively heavier
loads secured to their tails for 26 weeks. However,
the authors did not observe any difference in body
mass between trained and age-matched sedentary
rats (Duncan et al., 1998).
Tendon has been shown to undergo remodeling in

response to exercise; however, relatively few studies
have been published on the adaptations of tendon to
exercise (Buchanan & Marsh, 2002).
The response of tendon to exercise can be mea-

sured at the structural, mechanical and/or chemical
level; however, most studies have been limited to
measuring only one or two variables. This makes it
difficult to definitively associate mechanical proper-
ties with chemical composition and structure. Several
studies showed no difference in collagen concentra-
tion, respectively, in the peroneous brevis, patellar
and Achilles tendons of trained rabbits, rats and
chickens compared with sedentary animals (Viidik,
1967; Vailas et al., 1985; Curwin et al., 1988). Con-
versely, Woo et al. (1980) found that endurance
training increased the collagen content of digital
extensor tendons in swine; however, the same train-
ing regime had no effect on digital flexor tendons
(Woo et al., 1981). The authors suggested that the
different responses to exercise might be attributed to
the different biochemical composition of the muscles
examined (Woo et al., 1981).
In our study, the intensity and length of both

training protocols stimulate the increase in tendon
collagen fibers, which may be due to the mechanical
load on quadriceps muscle, provoking tendon strain.

The collagen content between endurance and resis-
tance groups changes according to the time course of
the training protocol and this phenomenon may be
due to motion biomechanics of posterior limbs. In
particular, the different synergism between quadri-
ceps muscle eccentric/concentric contractions per-
formed during resistance and endurance exercise
might be responsible for the different profiles in
collagen concentration. Although we observed an
increase in collagen fiber amount in the control
group, this variation is lower than trained animals
and may be due to the physiologic process of tendon
growth as shown by various authors (Parry et al.,
1978; Cetta et al., 1982; Nakagawa et al., 1994).
Indeed, they described that the average fibril dia-
meter and area increase during development and
with age in different animal models. The enhanced
content in collagen fibers might determine an im-
provement in tendon mechanical strength that may
be relevant to carry the workload induced by exercise
training in the trained groups as well as the body
weight of growing control rats.
Soslowsky et al. (2000) analyzed the effects of

an overuse activity on rats trained by treadmill
running for 16 weeks and they found an increased
cell nuclei number, tendon cells with a more rounded
appearance and an altered collagen fiber organiza-
tion in supraspinatus tendons. Also, Glazebrook
et al. (2008) observed similar histological changes
in Achilles tendon in rats trained for 12 weeks by the
same protocol of Soslowsky et al. (2000). Immuno-
histochemical cell typing indicated that the observed
increase in cellularity did not include a significant
amount of inflammatory cells (leukocytes) but was
mainly due to an increased number of endothelial
cells and fibroblasts. Therefore, the authors sug-
gested that these histological features could represent
a biological repair/remodeling response resulting
from overuse running (Glazebrook et al., 2008).
The studies of Glazebrook et al. (2008) and

Soslowsky et al. (2000) showed an increase in cellu-
larity after overuse exercise; what we observed in-
stead is a decrease in the cell nuclei number of rat
groups trained by endurance and resistance proto-
cols. This difference may be due to the middle-upper
intensity of our training protocols and the investiga-
tion methods used in our work. In particular, in
order to examine the tendon in its entire length and
obtain a real count, we evaluated the cell nuclei
number on tendon cross sections. Conversely, Gla-
zebrook et al. (2008) performed their experiments on
tendon longitudinal sections that might not guaran-
tee a real count of cell nuclei number because in
tendon the cells are arranged in a row between the
collagen fibers and, according to the kind of section
cutting, cell nuclei number may considerably vary.
On the other hand, cross sections performed at a
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specified distance from each other can provide real
counts. Until now, there are no data in the literature
concerning the counting of cell nuclei number on
tendon cross sections. Therefore, our work appears
to be innovative because it is the first to evaluate
structural modifications of tendon by a quantitative
analysis and mainly in response to exercise training.
This phenomenon is likely due to the difficulty in
finding methods suitable for obtaining undamaged
sections of tendon because of tissue hardness. Chuen
et al. (2004) identified a significant number of apop-
totic cells in healthy human tendon samples, in which
the apoptotic index was reported to be 35% and 26%
in the active remodeling sites and in tenocytes,
respectively. To our knowledge, in the literature,
there are no studies that have evaluated the number
of apoptotic cells in tendon in response to exercise.
Scott et al. (2005) showed the presence of apoptotic
cells in an ex vivo rat tibialis anterior tendon model
in response to short-term, high-strain mechanical
loading. In our study, the decreased cell nuclei
number in patellar tendons of trained rats might be
a consequence of tissue remodeling induced by
exercise. This hypothesis is supported by an increase
in cell nuclei number after 2 weeks of rest. Moreover,
this adaptation appears to be prolonged because
the cell nuclei number of trained rat tendons after
2 weeks of rest continues to be lower than that of the
control group.
In contrast to trained rat groups, we found a

significantly greater number of cell nuclei in tendons
of groups sedentary for 30, 45 and 60 days than for
the 15-day control group. This datum might be
explained by the increase in the dimensions of
patellar tendon during growth, in agreement with
Fujie et al. (2000). These authors showed the effects

of stress deprivation on the dimensions and mechan-
ical properties of the patellar tendon in 1-, 2- and
3-month-old Japanese white rabbits and found an
increase in fibroblast density during growth (Fujie et
al., 2000).
In conclusion, in this report we demonstrate that

endurance and resistance training induces the same
structural modifications in tendon tissue that appear
to be rather sensitive to the length and the intensity
of the workload than the training type.

Perspectives

In our study, we showed that endurance and resis-
tance training characterized by middle-upper inten-
sity and a length of 6 weeks causes a remodeling of
tendon tissue consisting of an increase in the collagen
fiber content and a reduction in the cell nuclei
number. These adaptations might vary according to
the animal model, motion biomechanics and tendon
stress straining. Further studies are necessary to
evaluate whether these structural modifications are
associated with an increase in the straining strength
of tendon. In the planning of training protocols, the
selection of proper workloads may represent a
method to provide an advantage to tendon tissue
and prevent overload injuries.

Key words: running, climbing, tenocytes, exercise.
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