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Abstract
We report on the magnetic-field-induced variations of the microwave surface resistance, Rs, in
a polycrystalline MgB2 sample, at different values of temperature. We have detected a magnetic
hysteresis in Rs, which exhibits an unexpected plateau on decreasing the DC magnetic field
below a certain value. In particular, at temperatures near Tc the hysteresis manifests itself only
through the presence of the plateau. Although we do not quantitatively justify the anomalous
shape of the magnetic hysteresis, we show that the results obtained in the reversible region of
the Rs(H ) curve can be quite well accounted for by supposing that, in this range of magnetic
field, the π gap is almost suppressed by the applied field and, consequently, all the π -band
charge carriers are quasiparticles. On this hypothesis, we have calculated Rs(H ) supposing that
fluxons assume a conventional (single core) structure and the flux dynamics can be described in
the framework of conventional models. From the fitting of the experimental results, we
determine the values of H π

c2(T ) at temperatures near Tc. In our opinion, the most important
result of our investigation is that, at least at temperatures near Tc, the value of the applied field
that separates the reversible and irreversible regions of the Rs(H ) curves is just H π

c2(T ); a
qualitative discussion of the possible reasons for this finding is given.

1. Introduction

A suitable method to investigate fluxon dynamics in type-
II superconductors consists in measuring the magnetic-
field-induced variations of the microwave (mw) surface
resistance, Rs [1–4]. Indeed, the field dependence of Rs

in superconductors in the mixed state is determined by the
presence of fluxons, which bring along normal fluid in their
cores, as well as the fluxon motion. The experimental results
are generally discussed in the framework of the two-fluid
model, including the field dependence of the quasiparticle
density and the effects of the fluxon motion [5–7].

Studies reported in the literature on the field-induced
variations of Rs in MgB2 have highlighted several anomalies,
especially at applied magnetic fields much lower than the
upper critical field, among which are unusually enhanced

field-induced mw losses [8–11] and a magnetic hysteresis of
unconventional shape [11–13]. It has been suggested that
these anomalies are strictly related to the peculiarities of the
fluxon lattice in MgB2. On the other hand, it is by now
accepted that fluxons in MgB2 have a composite structure,
being constituted of two concentric cores, one of radius ξσ

(small core), associated with the σ gap (�σ ), and the other of
radius ξπ (giant core), associated with the π gap (�π ) [14–16].
Moreover, the gaps depend very differently on the magnetic
field: while the σ gap closes at the macroscopic upper
critical field, Hc2, the π gap is almost closed at magnetic-
field values much lower than Hc2. This crossover field, at
which the contribution to the superconductivity due to the
π superfluid is negligible, has been highlighted in several
experiments [14, 17–19] and is indicated as H π

c2. Because of
the different magnetic-field dependence of the two gaps, on
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varying the field, the structure of the vortex lattice evolves in
an unusual way. At low magnetic fields, quasiparticles from
π and σ bands are trapped within the vortex core, even if on
different spatial scales. On increasing the field, though σ -band
quasiparticles remain localized in the small core, giant cores
start to overlap because of the field-induced suppression of
�π ; eventually, when H π

c2 is reached, π -band quasiparticles are
spread over the whole sample [14]. On further increasing the
field, the π -quasiparticle density remains almost unchanged,
while the σ -quasiparticle density continues to increase up to
the macroscopic Hc2 [20]. Only at applied fields higher than
H π

c2 do fluxons assume a more conventional shape (single
core), but they are surrounded by both the condensed fluid of
the σ band and the normal fluid of the π band. This field-
induced evolution of the vortex structure is expected to affect
both the vortex–vortex and the vortex–pinning interactions,
making the standard models inadequate to describe the fluxon
dynamics in MgB2 in a wide range of magnetic fields. Sarti
et al [21], investigating the mw surface impedance of MgB2

films, have shown that at low fields, when the contribution
of the π -band superfluid cannot be neglected, the magnetic-
field dependence of the real and imaginary components of the
surface impedance exhibit several anomalies. However, they
have shown that for fields higher than a threshold value, lower
than Hc2(T ), the experimental results can be justified in the
framework of a generalized two-fluid model in which, under
the hypothesis that the π -quasiparticle density has reached
the saturation value, the contribution of quasiparticles coming
from the π band is kept constant.

In this paper, we report on the magnetic-field dependence
of the mw surface resistance of a polycrystalline sample
of MgB2. The field-induced variations of Rs have been
investigated by the cavity-perturbation technique, using a
copper cavity, at increasing and decreasing DC magnetic field,
H0. The Rs(H0) curves exhibit several anomalies that cannot
be justified in the framework of the standard theories for
the fluxon dynamics, among which is a magnetic hysteresis
of unconventional shape: in the decreasing-field branch of
the Rs(H0) curve, we have detected an unexpected plateau
extending from a certain value of the magnetic field down to
zero. The hysteresis is detectable up to temperatures close
to Tc (T/Tc ≈ 0.95); however, the extension of the plateau
depends on T and, in particular, for T � 0.77Tc the hysteresis
manifests itself only through the presence of the plateau. In
a previous paper [11], we have extensively discussed the
anomalies of the Rs(H0) curves in MgB2 obtained at low
temperatures and we have ascribed them to the unusual vortex
structure in this compound. In this paper, we devote our
attention to the range of fields at which the superconductivity
coming from the π band is almost suppressed. In this
region (H0 � H π

c2), we expect that the flux lines assume
a conventional single-core structure and that all the charge
carriers coming from the π band are quasiparticles. On
this hypothesis, we have modified the expression of the
complex penetration depth of the mw field, considering that
the contribution of the π band to the field-induced energy
losses is merely due to the presence of the π quasiparticles
and that of the σ band is due to both the σ quasiparticles and

Figure 1. SEM micrograph of the sample surface.

the fluxon motion. We will show that the experimental results
can be quite well justified, in the framework of the proposed
model, for fields greater than a threshold field, which we infer
to be H π

c2. The fitting of the experimental data allows us to
determine with good accuracy the temperature dependence of
H π

c2 at temperatures near Tc, where other techniques fail in
giving accurate results. Furthermore, our results show that, at
least at temperatures near Tc, the values of H π

c2(T ) coincide
with the values of the applied magnetic field below which
the decreasing-field branch of the Rs(H0) curve exhibits the
plateau.

2. Experimental apparatus and sample

The field-induced variations of the mw surface resistance have
been investigated in a bulk sample of Mg10B2 prepared at
the INFM-LAMIA/CNR laboratory in Genova using the so-
called one-step method [22]. The sample has a parallelepiped
shape with approximate dimensions 2 × 3 × 0.5 mm3; it
undergoes a sharp superconducting transition with onset Tc ≈
38.9 K and �Tc ≈ 0.3 K. Figure 1 shows the scanning
electron microscope (SEM) micrograph of the characteristic
morphology of the sample surface; it highlights pores of the
order of ∼1 μm.

The mw surface resistance has been measured by the
cavity-perturbation technique. A copper cavity, of cylindrical
shape with golden-plated walls, is tuned in the TE011 mode
resonating at ω/2π ≈ 9.6 GHz (Q ≈ 40 000 at liquid
helium (LHe) temperature). The sample is located in the
centre of the cavity, by a sapphire rod, where the mw magnetic
field is maximum. The cavity is placed between the poles
of an electromagnet which generates DC magnetic fields up
to 1 T. Two additional coils, independently fed, allow us to
compensate the residual field and working at low magnetic
fields. A LHe cryostat and a temperature controller allow us
to work either at fixed temperatures or at temperatures varying
at a constant rate.

The sample and the field geometries are schematically
shown in figure 2(a); the DC magnetic field, �H0, is
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Figure 2. (a) Field and current geometry at the sample surface;
w ≈ 2 mm, t ≈ 0.5 mm, h ≈ 3 mm. (b) Schematic representation of
the motion of a flux line.

perpendicular to the mw magnetic field, �Hω. When the sample
is in the mixed state, the induced mw current causes a tilt
motion of the vortex lattice [6]; figure 2(b) schematically
shows the motion of a flux line.

The surface resistance of the sample is given by

Rs = �

(
1

QL
− 1

QU

)
,

where QL is the quality factor of the cavity loaded with the
sample, QU that of the empty cavity and � the geometry factor
of the sample.

The quality factor of the cavity has been measured by an
hp-8719D Network Analyzer. All the measurements have been
performed at very low input power; the estimated amplitude of
the mw magnetic field in the region in which the sample is
located is of the order of 0.1 μT.

3. Experimental results

The field-induced variations of Rs have been investigated for
different values of the temperature. For each measurement,
the sample was zero-field cooled (ZFC) down to the desired
temperature; the DC magnetic field was increased up to a
certain value and, successively, decreased down to zero.

Figure 3 shows the field-induced variations of Rs at T =
4.2 K, obtained by sweeping H0 from 0 to 1 T and back.
In the figure, �Rs(H0) ≡ Rs(H0, T ) − Rres and �Rmax

s ≡
Rn − Rres, where Rres is the residual mw surface resistance
at T = 2.5 K and H0 = 0, and Rn is the normal-state
surface resistance at T = Tc. The inset shows the results
of the increasing-field branch in a logarithmic scale, which
allows identification of the value of the applied magnetic field
at which Rs deviates from its zero-field value; this value should
be the first-penetration field of vortices, Hp. The decreasing-
field branch is characterized by two characteristic fields: (i)
Hirr, which indicates the value of the applied field that separates
the reversible and irreversible part of the Rs(H0) curve; (ii)
H ′, which identifies the beginning of a plateau in the curve.
Magnetic hysteresis in Rs is expected as a consequence of
the critical state of the vortex lattice; it has been detected in
other superconductors [4, 23, 24] and has been ascribed to the
different B value at increasing and decreasing fields. However,

Figure 3. Field-induced variations of Rs at T = 4.2 K obtained by
sweeping H0 from 0 to 1 T (circles) and back (triangles). The inset
shows the results in a logarithmic scale to better identify Hp.

Figure 4. Field-induced variations of Rs obtained by sweeping H0

from 0 to 1 T (circles) and back (triangles). The continuous lines are
the best-fit curves obtained as described in section 4.2.

as we will discuss in more detail in section 4, the presence
of the plateau is puzzling because it should indicate that the
trapped flux does not change anymore on decreasing the field
below H ′.

For T � 0.77Tc, the decreasing-field branch of the Rs(H0)

curve shows peculiarities similar to those of figure 3, with the
two characteristic fields, though they decrease on increasing
T . For T � 0.77Tc, Hirr(T ) coincides with H ′(T ), i.e. the
hysteresis manifests itself only through the presence of the
plateau below H ′(T ); figures 4 and 5 show the field-induced
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Figure 5. Field-induced variations of Rs obtained by sweeping H0

from 0 to Hmax (circles) and back (triangles), with Hmax > Hc2(T ).
The continuous lines are the best-fit curves obtained as described in
section 4.2.

variations of Rs, just in this range of temperatures. In all the
figures, �Rs(H0) ≡ Rs(H0, T )− Rres and �Rmax

s ≡ Rn− Rres.
The continuous lines reported in the figures are the best-fit
curves obtained as described in section 4.2.

The zero-field value of the increasing-field branch of
the Rs(H0) curve is determined by the contribution of
quasiparticles due to thermal breaking of Cooper pairs. At
H0 = Hp, vortices start to penetrate the sample giving rise
to an increase of Rs. When the applied magnetic field reaches
the value of the upper critical field, Rs assumes its normal-
state value, Rn . Figure 6 shows the temperature dependence of
Hp and Hc2 deduced from the isothermal Rs(H0) curves. The
values indicated in panel (b) as full circles have been deduced
by measuring the magnetic field at which Rs reaches Rn , those
indicated as open circles have been obtained by fitting the
experimental data as discussed in section 4.2. In any case,
since our sample is a polycrystal the upper critical field so
determined coincides with H ⊥c

c2 . The dashed line is the curve
calculated by the generalized two-band Eliashberg theory, as
reported in the appendix.

From figure 6(a), one can see that Hp exhibits a
linear temperature dependence down to low temperatures,
consistently with results in MgB2 samples reported by different
authors [33–35]. As is known, the first-penetration field
may differ from Hc1 if demagnetization and/or surface-barrier
effects come into play; however, our results are consistent with

Figure 6. The temperature dependence of the first-penetration field
(a) and the upper critical field (b), deduced from the isothermal
Rs(H0) curves. Full circles have been directly deduced from the
experimental data; open circles have been determined by fitting the
data. In any case, they identify H⊥c

c2 (T ). The dashed line is the curve
calculated by the generalized two-band Eliashberg theory, as reported
in the appendix.

the lower critical field for MgB2 bulk samples reported in the
literature [35].

By looking at figures 4 and 5, one can see that the
hysteretic behaviour of the Rs(H0) curve is detectable up to
temperatures very close to Tc, although restricted in a narrow
field range; only at T � 37.5 K is the Rs(H0) curve reversible
in the whole range of fields investigated. This result suggests
that pinning is effective up to temperatures close to Tc.

4. Discussion

Models for the electrodynamics of superconductors in the
mixed state have been proposed by several authors [3–7],
who discuss the field-induced mw losses in different
approximations. Coffey and Clem (CC) have elaborated a
comprehensive theory, in the framework of the two-fluid model
of superconductivity, in which, besides the effects of the fluxon
motion, the field dependence of the densities of the normal
and condensed fluids are considered [5]. The CC theory
has been developed under the basic assumption that vortices
generate a magnetic induction field, B , uniform in the sample.
On this hypothesis, the mw surface impedance in the linear
approximation (Hω � H0) is given by

Rs = −μ0ω Im[̃λ(ω, B, T )], (1)
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with

λ̃(ω, B, T ) =
√

λ2(B, T ) + (i/2)̃δ2
v(ω, B, T )

1 − 2iλ2(B, T )/δ2
nf(ω, B, T )

. (2)

In equation (2), δ̃v(ω, B, T ) is the effective complex skin depth
arising from the vortex motion [5, 25], while the temperature
and field dependences of the two fluids are taken into account
through λ(B, T ) and δnf(ω, B, T ), given by

λ(B, T ) = λ0√
ns(B, T )

, (3)

δnf(ω, B, T ) = δ0√
nn(B, T )

=
√

2

μ0ωσn(B, T )
, (4)

where λ0 is the London penetration depth at T = 0; δ0 is the
normal skin depth at T = Tc; ns(B, T ) and nn(B, T ) are the
condensed- and normal-fluid fractions, respectively; σn(B, T )

is the normal-fluid conductivity in the superconducting state.
Equations (1)–(4) have been obtained under the hypothesis

that B is uniform inside the sample. When the fluxon lattice is
in the critical state, the assumption of uniform B is no longer
valid; as a consequence, the hysteresis in the Rs(H0) curve
cannot be justified by equations (1)–(4). In our field geometry
(see figure 2(a)), the effects of the non-uniform B distribution
on Rs are particularly enhanced because in the two sample
surfaces normal to the external magnetic field the mw current
and fields penetrate along the fluxon axis and, consequently,
the mw losses involve the whole vortex lattice. However, in
this case, one can easily take into account the non-uniform B
distribution by calculating a proper averaged value of Rs over
the whole sample as follows [3, 4]

Rs = 1

S

∫



Rs(|B(�r)|) dS, (5)

where 
 is the sample surface, S is its area and �r identifies the
surface element.

It is worth noting that, in order to use equation (5) to
take due account of the critical-state effects, it is essential to
know the B profile inside the sample, determined by the field
dependence of the critical current density.

Recently, using this method, we have investigated the
effects of the critical state on the field-induced variation of Rs,
at increasing and decreasing fields [3, 4]. We have shown that
the parameter that mainly determines the peculiarities of the
Rs(H0) curve is the full penetration field, H ∗. In particular,
H ∗ strongly affects the amplitude of the hysteresis loop and
the shape of the increasing-field branch of the Rs(H0) curve.
However, independently of the H ∗ value, the shape of the
decreasing-field branch, being strictly related to the shape of
the magnetization curve, should exhibit a negative concavity,
with a monotonic reduction of Rs from H0 = Hmax down to
Hc1.

The Rs(H0) curves we have obtained cannot be justified
in the framework of the model mentioned above, for several
reasons. From figure 3, one can see that the application of a
magnetic field of ≈1 T, which is of the order of Hc2/10, causes

a Rs variation larger than 30% of the maximum variation.
These field-induced variations of Rs are much greater than
those expected from the models reported in the literature [3–7]
and detected in other superconductors [4, 25, 26]. Another
anomaly concerns the shape of the magnetic hysteresis and,
in particular, the presence of the plateau in the decreasing-field
branch. As mentioned above, the decreasing-field branch of
the Rs(H0) curve is expected to exhibit a monotonic reduction
of Rs down to Hc1. The presence of the plateau is puzzling;
indeed, it would suggest that the trapped flux does not change
anymore on decreasing the field below H ′, although this value
is much larger than the first-penetration field.

We would like to remark that results similar to those
reported in this paper have been observed in other MgB2

bulk samples, produced by different methods [11, 13]. We
have extensively discussed the anomalies of the Rs(H0) curve
in [11, 13], and we have suggested that they are ascribable
to the unusual properties of the fluxon lattice in two-gap
MgB2. This hypothesis has been corroborated by the fact
that the results obtained in a strongly irradiated MgB2 sample,
in which the two gaps merged into a single value, have
been quite well accounted for in the framework of the model
discussed above, using equations (1)–(5) [11, 27]. In two-gap
MgB2 samples, according to [8], the unusually enhanced field-
induced variations of Rs at applied fields much lower than Hc2

have been qualitatively ascribed to the presence and motion of
the giant cores due to the π -band quasiparticles. However, the
origin of the anomalous shape of the Rs(H0) curve is so far not
understood. Only in finely powdered MgB2 samples does the
hysteresis assume a more conventional shape (without plateau),
suggesting that the presence of the plateau is related to a bulk
process [13].

By looking at figures 4 and 5, one can see that the
hysteretic behaviour of the Rs(H0) curve is detectable up
to T ≈ 0.95Tc, suggesting that pinning is effective up
to temperatures very near Tc. However, on increasing the
temperature the irreversibility is restricted in a narrow range
of fields and, for T � 0.77Tc, it manifests itself by the mere
presence of the plateau; in the following, we will focus on the
analysis of the results obtained just in this temperature range.

4.1. The model

The study of the field-induced variations of Rs in MgB2 is
made particularly complex by the unconventional structure
of vortices, which is expected to affect both the vortex–
vortex and the vortex–defect interactions. However, for
H0 � H π

c2, vortices are expected to assume a ‘single-core’
structure; indeed, giant cores overlap and σ quasiparticles
remain localized within the small cores, which will overlap at
H0 = Hc2. Starting from this picture, we have modified the
expression of the complex penetration depth of the mw field;
we have considered that the contribution of the π band to the
field-induced energy losses is merely due to the presence of
the π quasiparticles and that of the σ band is due to both the
σ quasiparticles and the fluxon motion. We can neglect the
effects of the critical state if we look at the reversible region of
the Rs(H0) curve.
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Since in MgB2 the superconductivity is due to the charge
carriers coming from the two different bands, one can write:
ns = nπ

s + nσ
s and nn = nπ

n + nσ
n . For H π

c2 � H0 � Hc2, the
superelectron fraction, ns, reduces to nσ

s because nπ
s = 0. So,

λ(B, T ) is determined by the σ band and equation (3) can be
rewritten as

λ(B, T ) = λσ
0√

nσ
s (B, T )

= λσ
0√

nσ
s (0, T )[1 − B/Bc2(T )] . (6)

In MgB2, due to the presence of normal fluid coming
from the two bands, the overall normal-state conductivity
can be reasonably considered as the sum of the normal-state
conductivities of the π and σ bands: σn = σπ

n + σσ
n .

Consequently, the normal skin depth can be written as

δ0 =
√

2

μ0ωσn
=

√
2

μ0ω(σπ
n + σσ

n )
. (7)

Sarti et al [21] have suggested that, since the two bands interact
very weakly with each other [28], when superconductivity
arising from the σ band is suppressed the conductivity of the
quasiparticle fraction can be written as

σnf(B, T ) = σπ
n +σσ

nf(B, T ) = σπ
n +[1 − nσ

s (B, T )]σσ
n . (8)

It follows that, in the range of fields considered, equation (4)
can be modified as

δnf(ω, B, T ) = δ0√
σnf(B,T )

σn

= δ0√
1 − nσ

s (B, T )
σσ

n
σn

. (9)

In order to calculate the complex penetration depth of the
mw field, besides λ(B, T ) and δnf(ω, B, T ), it is necessary to
determine the effective complex penetration depth due to the
vortex motion (see equation (2)). δ̃v(ω, B, T ) depends on the
relative magnitude of the viscous and restoring-pinning forces
through the depinning frequency [29]. Since we are analysing
the results in a restricted range of temperature near Tc, and
considering the values of the depinning frequency reported in
the literature for MgB2 [10, 30], it is reasonable to assume
that the vortex motion at our working frequency is ruled by
the viscous drag force, i.e. vortices move in the flux-flow
regime. The hypothesis is strengthened by the consideration
that for H0 � H π

c2 vortices are surrounded by the σ -band
condensed fluid and π -band normal fluid; this should reduce
the stabilization energy and, consequently, the pinning efficacy.
In the flux-flow regime, the expression of δ̃v reduces to

δ̃v(ω, B, T ) = δ0

√
B/Bc2(T ). (10)

The equations reported up to now do not explicitly
consider the anisotropy properties of MgB2. In order to
take into account the anisotropy, one can assume that the
polycrystalline sample is constituted of grains with the c-
axis randomly oriented and suppose that at fixed temperatures
the anisotropic Ginzburg–Landau theory can be used. By
indicating with θ the angle between �H0 and the c-axis of the

Figure 7. Temperature dependence of nσ
s at zero magnetic field,

calculated by the generalized two-band Eliashberg theory, using the
procedure reported in the appendix.

generic crystallite, the upper critical field is given by

Hc2(θ) = H ⊥c
c2√

γ 2 cos2(θ) + sin2(θ)
,

where γ is the anisotropy factor of the upper critical field.
Also the anisotropy of the penetration depth plays a role

because it determines the sample surface layers in which the
mw energy losses occur. Indicating with α the angle between
�Hω and ĉ one can write

λσ
0 (α) = (λσ

0 )ab
4

√
cos2(α) + γ 2

λ sin2(α),

where

γλ = (λσ
0 )c

(λσ
0 )ab

.

It is worth noting that, since in our field geometry �H0 ⊥
�Hω, α �= θ . Supposing �H0 ≡ ẑ and �Hω ≡ x̂ , one can easily

find α = arccos(sin θ cos ϕ), θ and ϕ being the polar and
azimuthal angles. The mw surface resistance of the generic
crystallite depends on the angles θ and α between its c-axis and
the directions of �H0 and �Hω, respectively; the overall surface
impedance of the sample can be obtained by integrating over
the whole solid angle.

4.2. Analysis of the results

The expected results of the normalized Rs(H0) curves depend
on (λσ

0 )ab/δ0, H ⊥c
c2 , nσ

s (0, T ), σσ
n /σn, γ and γλ. Most of these

quantities are known and/or deducible from the experimental
data.

The anisotropy of λσ
0 can be determined using the

results of first-principles band-structure calculations [36]; in
particular, from the values of the plasma frequencies reported
by Brinkman et al [37], one obtains γλ = 6.1. The temperature
dependence of nσ

s at zero magnetic field has been obtained by
using the generalized two-band Eliashberg theory, which has
already been used with success to study the MgB2 system [38].
Figure 7 shows the calculated temperature dependence of
nσ

s ; details of the calculation procedure are reported in the
appendix. In the analysis of our experimental results, we have
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Table 1. Values of the parameters that best fit the experimental data
of figures 4 and 5; the values reported without uncertainty have been
imposed. For all the temperatures, we have used γλ = 6.1 and
nσ

s (0, T ) of figure 7.

T (K) (λσ
0 )ab/δ0 γ σ σ

n /σn H⊥c
c2 (T)

37.5 0.22 ± 0.02 2.3 ± 0.2 — 0.10 ± 0.01
37 0.22 ± 0.02 2.3 ± 0.2 — 0.35 ± 0.03
36 0.22 ± 0.02 2.4 ± 0.2 — 0.50 ± 0.05
35 0.22 ± 0.02 2.4 ± 0.2 — 0.90 ± 0.07
34 0.22 ± 0.02 2.5 ± 0.2 — 1.0 ± 0.1
33 0.22 2.5 ± 0.2 — 1.35 ± 0.14
30 0.22 2.7 ± 0.3 0.10 ± 0.05 2.4 ± 0.3

used for nσ
s (0, T ) the values reported in figure 7 and for the

anisotropy of λσ
0 the value γλ = 6.1.

The anisotropy of the upper critical field, γ , has been
determined both experimentally and theoretically [31–33]; at
temperatures near Tc, it should be in the range 2–3. In the
temperature range 34–37.5 K, H ⊥c

c2 (T ) has been deduced from
the experimental data (full circles in figure 6); for T < 34 K it
has to be taken as a parameter. Moreover, we have found that
for T � 33 K the value of σσ

n /σn has very little effect on the
expected curves; this finding can be ascribed to the fact that at
temperatures close to Tc, δnf(ω, B, T ) ≈ δ0.

In order to fit the results obtained in the temperature
range 34–37.5 K, we have used for H ⊥c

c2 the values reported
in figure 6 as full circles, letting them vary within the
experimental uncertainty; we have let γ vary in the range 2–
3; we have taken (λσ

0 )ab/δ0 as a free parameter. The best-fit
curves are shown as continuous lines in figure 5; the values of
the best-fit parameters are reported in table 1.

For T < 34 K, our apparatus does not allow measuring
the upper critical field, which has to be taken as a parameter
as well; on the other hand, we can use for (λσ

0 )ab/δ0 the
value we have already determined by fitting the data at higher
temperatures. At T = 30 K, also the value of σσ

n /σn affects, to
a non-negligible extent, the expected curve, so the parameters
necessary to fit these data are σσ

n /σn, H ⊥c
c2 and γ . The best-fit

curves obtained at T = 30 and 33 K are shown in figure 4 and
the parameters are listed in table 1.

In the framework of the Eliashberg theory, we have
calculated the temperature dependence of the upper critical
field. We have used the linearized gap equations under
magnetic field for a superconductor in the clean limit [39];
details of the calculations are reported in the appendix. In this
calculation, the only input parameters are the Fermi velocities
in the two bands. The calculated values of H ⊥c

c2 (T ) are reported
as dashed line in figure 6. They have been obtained with
vσ

Fab = 4.4 × 105 m s−1 and vπ
Fab = 20 × 105 m s−1. vσ

Fab is
equal to that used in the band-theory calculation of Brinkman
et al [37], but vπ

Fab is larger than that reported by Brinkman
et al, as obtained also by other authors [39].

From the deduced value of (λσ
0 )ab/δ0, one can estimate

(λσ
0 )ab if δ0 is known. The value of the normal-state mw

surface resistance we have measured at T = Tc, is Rn ≈
40 m�. From the estimated Rn we deduce δ0 = 2Rn/μ0ω ≈
1 μm and, consequently, (λσ

0 )ab ≈ 220 nm. This value
of (λσ

0 )ab is larger than the expected value calculated for a

Figure 8. Temperature dependence of Hπ
c2. Open circles are the

results we have obtained as described in the text; full triangles and
full squares are the results obtained by Daghero et al [18] and
Samuely et al [19], respectively.

single crystal; we think that this is due to the porosity of
the sample and/or the roughness of its surface (see figure 1).
Indeed, the surface roughness enlarges the effective area of the
sample in which the mw energy losses occur, giving rise to an
overestimated Rn value, with a consequent enlarged value of
the deduced δ0 and (λσ

0 )ab.
Although the values of the best-fit parameters have been

obtained by fitting the results for H0 > H ′, the expected
curves of figures 4 and 5 are reported in the whole range
of fields investigated. In the framework of our model, the
expected curves should properly describe the experimental
results only for H0 � H π

c2. At lower fields, it is expected
that the theoretical curve overestimates Rs(H0) because our
model assumes that all the π -band carriers are quasiparticles.
Therefore, the H0 value at which the theoretical curve begins
to fit the experimental data can be taken as H π

c2(T ). Using
this criterion, we have deduced the temperature dependence
of H π

c2 in the range of temperatures investigated. The results
are shown in figure 8 as open circles. In the same figure, we
report the values of H π

c2(T ) obtained by Daghero et al (full
triangles) [18] and Samuely et al (full squares) [19] from point-
contact spectroscopy.

The values we have obtained for H π
c2(T ) match with those

reported in [18] and [19] for lower temperatures; they give
information on the temperature dependence of H π

c2 in a range
of temperatures close to Tc, where conventional techniques fail
to give accurate results.

As one can see from figures 4 and 5, we have obtained
good fits for H0 > H ′(T ); i.e. H π

c2(T ) coincide with the
values of H0 at which the decreasing-field branch of the
Rs(H0) curves deviates from the increasing-field one, within
the experimental uncertainty. This finding suggests that
the features of the Rs(H0) curves are strongly related to
the suppression of the π gap, due to the applied magnetic
field. This is a curious result that needs further investigation;
however, some considerations can be made.

As already mentioned, results very similar to those
reported in this paper have been obtained in all the MgB2 bulk
samples we have investigated [11–13], except in a strongly
irradiated MgB2 bulk sample, in which the two gaps merged

7
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into a single value [11]. Moreover, the anomalous plateau in
the decreasing-field branch of the Rs(H0) curve has not been
observed in samples of MgB2 consisting of fine powder [13].
In order to propose a possible explanation for the different
results in bulk and powder samples, it is worth recalling that, in
our field configuration ( �H0 ⊥ �Hω), the mw current induces a
tilt motion of the whole vortex lattice (see figure 2); so, our
measurements allow us to detect the response of the fluxon
lattice also in the interior of the sample (far from the edges
from which the DC magnetic field penetrates). On the other
hand, in the framework of the critical state, the main property
distinguishing the magnetic response of samples having small
or large dimensions is the residual magnetic induction far
from the edges, after the applied magnetic field has reached
values larger than the full penetration field. We infer that the
anomalous shape of the hysteresis in Rs(H0) detected in the
MgB2 bulk samples is related to a process occurring in the
interior of the sample, probably due to the higher value of the
local magnetic field.

The finding that the value of the applied field that separates
the reversible and irreversible regions of the Rs(H0) curves
coincides with H π

c2(T ) can be justified by the consideration that
for H0 � H π

c2 vortices are surrounded by σ -band condensed
fluid and π -band normal fluid. This should reduce the
stabilization energy and, consequently, the pinning efficacy.
The hysteretic behaviour at H0 � H π

c2 could be justified by
supposing that, after the sample has been exposed to fields
higher than H π

c2, on reducing H0, the induction field inside
the sample, far from the surface, is large enough to destroy
the superconductivity in the π band but, contemporaneously,
the pinning is effective in the sample regions near the surface,
where the local magnetic induction is smaller than μ0 H π

c2.
When the DC field is reduced below H π

c2, the vortices near
the surface experience the restoring-pinning force which,
hindering the free exit of fluxons, may keep the inner induction
field at values ≈μ0 H π

c2; this may imply high dissipation due
to both the high quasiparticle density and the free motion
of fluxons. These considerations, though they may justify
the presence of the magnetic hysteresis, do not quantitatively
account for the plateau; the latter can be justified only if one
assumes that the region of the sample in which the fluxon
lattice is in the critical state, after it has been exposed to applied
fields sufficiently higher than H π

c2, is much smaller than that in
which the local induction maintains the value μ0 H π

c2.

5. Conclusion

We have investigated the field-induced variations of the
microwave surface resistance of a polycrystalline sample of
MgB2, at fixed temperatures. The mw surface resistance
has been measured by the cavity-perturbation technique, at
increasing and decreasing DC magnetic field in the range
0–1 T. The Rs(H0) curves exhibit a magnetic hysteresis
of unconventional shape. In the decreasing-field branch of
the Rs(H0) curve, we have detected an unexpected plateau
extending from a certain magnetic-field value down to zero.
The hysteresis is detectable up to temperatures close to

Tc (T/Tc ≈ 0.95); however, for T � 0.77Tc the hysteresis
manifests itself only through the presence of the plateau.

It has been shown by different authors that the standard
models for the investigation of fluxon dynamics are inadequate
to justify the results in MgB2 in wide ranges of fields and
temperatures, due to the unusual vortex structure (double
core). Our results confirm this idea; however, in this paper,
we have devoted attention to the range of fields at which
the superconductivity coming from the π band is almost
suppressed. In this region (H0 � H π

c2), we expect that
the flux lines assume a conventional single-core structure
and all the charge carriers coming from the π band are
quasiparticles. On this hypothesis, we have modified the
expression of the complex penetration depth of the mw field,
considering that the contribution of the π band to the field-
induced energy losses is merely due to the presence of the
π quasiparticles and that of the σ band is due to both the
σ quasiparticles and the motion of conventional (single core)
fluxons. By using the generalized two-band Eliashberg theory,
we have calculated the temperature dependence of the σ -band
quasiparticle density, at zero field, which has been successfully
used for determining the expected Rs(H0, T ) curves. In
the framework of the same theory, we have also calculated
the temperature dependence of the upper critical field and
compared it with that deduced from the experimental results,
in the range of temperatures investigated.

We have quantitatively analysed the experimental results
obtained at temperatures near Tc (T/Tc � 0.77), where our
experimental apparatus allows us to reach DC magnetic fields
sufficiently larger than H π

c2. Since the used model is valid
only for H0 � H π

c2, by looking at the field range in which the
expected results fit the experimental data, we have determined
with good accuracy the temperature dependence of H π

c2 at
temperatures near Tc, where the standard techniques fail to give
accurate results. Our results show that the applied magnetic
field that separates the reversible and irreversible region of the
Rs(H0) curves is just H π

c2(T ). This interesting result seems to
link the magnetic field that suppresses the superconductivity of
the π band to the pinning efficacy. We have suggested that
for H0 � H π

c2 the Rs(H0) is reversible because the vortex
cores are surrounded by both σ -band condensed fluid and π -
band normal fluid. This reduces the stabilization energy and,
consequently, the pinning efficacy. The hysteresis observed
for H0 � H π

c2 can be justified assuming that vortex pinning is
effective up to temperatures near Tc when charge carriers from
both π and σ bands contribute to the condensed fluid.

The reason why the hysteretic behaviour of the Rs(H0)

curve at temperatures near Tc manifests itself only through the
presence of the plateau, extending from H π

c2 down to zero,
is not fully understood and further experimental as well as
theoretical investigation is necessary. A possible explanation is
that, after the sample has been exposed to DC magnetic fields
higher than H π

c2, on reducing H0 down to zero in a wide inner
region of the sample the local induction field maintains values
≈μ0 H π

c2 and only in a narrow region near the sample surface,
where the local magnetic field is lower than μ0 H π

c2, does the
critical state develop.

8
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Appendix A. Calculation of the superfluid density at
zero magnetic field

The generalization of the Eliashberg theory for systems with
two bands has already been used with success to study the
MgB2 system [38]. To obtain the gaps, and then the superfluid
densities nσ

s (T ), nπ
s (T ) and the critical temperature, within

the s-wave two-band Eliashberg model, one has to solve
four coupled integral equations for the gaps �i(iωn) and the
renormalization functions Zi(iωn), where i = σ, π is a band
index and ωn are the Matsubara frequencies. Including in
the equations the non-magnetic- and paramagnetic-impurity
scattering rates in the Born approximation, �

i j
+ and �

i j
− , one

obtains

ωn Zi(iωn) = ωn + πT
∑
m, j

�i j(iωn − iωm)N j
Z (iωm)

+
∑

j

(�
i j
+ + �

i j
− )N j

Z (iωn), (A.1)

Zi(iωn)�i(iωn) = πT
∑
m, j

[�i j(iωn − iωm) − μ∗
i j(ωc)]

× θ(|ωc| − ωm)N j
�(iωm) +

∑
j

(�
i j
+ − �

i j
− )N j

�(iωn),

(A.2)

where θ is the Heaviside function, ωc is a cut-off energy, and

�i j(iωn − iωm) =
∫ +∞

0
dω α2

i j F(ω)/[(ωn − ωm)2 + ω2],

N j
�(iωm) = � j(iωm)

/√
ω2

m + �2
j(iωm),

N j
Z (iωm) = ωm

/√
ω2

m + �2
j (iωm).

The solution of the Eliashberg equations requires as input:

(i) the four electron–phonon spectral functions α2
i j(ω)F(ω);

(ii) the four elements of the Coulomb pseudopotential matrix
μ∗(ωc);

(iii) the four non-magnetic-impurity scattering rates �
i j
+ ;

(iv) the four paramagnetic-impurity scattering rates �
i j
− .

In our calculations �
i j
+ = �

i j
− = 0 always. The four

spectral functions α2
i j(ω)F(ω), which were calculated for pure

MgB2 in [40], have the following electron–phonon coupling
constants: λσσ = 1.017, λππ = 0.448, λσπ = 0.213 and
λπσ = 0.156 [40].

As far as the Coulomb pseudopotential is concerned, we
use the expression calculated for pure MgB2 [41]

μ∗ =
∣∣∣∣ μ∗

σσ μ∗
σπ

μ∗
πσ μ∗

ππ

∣∣∣∣
= μ(ωc)N tot

N (EF)

∣∣∣∣∣
2.23

Nσ
N (EF)

1
Nσ

N (EF)

1
Nπ

N (EF)
2.48

Nπ
N (EF)

∣∣∣∣∣ (A.3)

where μ(ωc) is a free parameter, Ni
N(EF) is the normal density

of states at the Fermi level of the i -band and N tot
N (EF) =

Nσ
N (EF) + Nπ

N (EF). For obtaining the experimental critical
temperature we fix μ(ωc) = 0.031 53 with cut-off energy
ωc = 450 meV and maximum energy 500 meV. In all our
calculations we use Nσ

N (EF) = 0.30 states/(cell eV) and
Nπ

N (EF) = 0.41 states/(cell eV) [31].

Appendix B. Calculation of the temperature
dependence of the upper critical field

In order to calculate the upper critical field we have
used the linearized gap equations under magnetic field, for
a superconductor in the clean limit (negligible impurity
scattering) [39]

ωn Zi(iωn) = ωn + πT
∑
m, j

�i j(iωn − iωm)sgn(ωm) (B.1)

Zi(iωn)�i(iωn) = πT
∑
m, j

[�i j(iωn − iωm) − μ∗
i j (ωc)]

× θ(|ωc| − ωm)χ j (iωm)Z j (iωm)� j(iωm) (B.2)

χ j(iωm) = 2√
β j

∫ +∞

0
dq exp(−q2)

× tan−1 q
√

β j

|ωm Z j(iωm)| + iμB Hc2sgn(ωm)
(B.3)

with β j = π(v
j
F)2 Hc2/(2�0); v

j
F is the Fermi velocity of band

j and Hc2 is the upper critical field.
In these equations, the bare Fermi velocities are the input

parameters for calculating the upper critical field as a function
of temperature. To obtain the theoretical curve reported in
figure 6, we have used vσ

Fab = 4.4 × 105 m s−1 and vπ
Fab =

20 × 105 m s−1.
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