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AIM: Highlighting the role of repulsive electrostatic interactions
in protein unfolding and self-assembly, with a focus on the
formation of elongated fibrillar aggregates.

AFM. Typical size of fibrils is 20 nm in
width, few microns in length, 50 nm in axial
periodicity.

At 70 °C amorphous aggregates are in
competition with fibrils.

Amorphous aggregation is enhanced if some
salt (20-200 mM) is added in solution. If
incubation temperature is lower fibrils are
formed even if salt is added [Hill et al. 2009]
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-LAG PHASE:
Coexistence of Monomers (Rh≈1nm) andOligomers (Rh≈10nm)
AFTER A FEW DAYS
Appearence of Fibrils and other big aggregates (Rh > 80 nm)

Intensity autocorrelation functions g2(t)

diffusion coefficient distribution P(D)

 High protein charge reduces protein stability towards unfolding.
 Self-assembly at high T due to the exposure of hydrophobic residues is slowed down by
the strong electrostatic repulsive interaction more stable solution and organized
aggregation.
 The coexistence of monomers and oligomers suggests a competing effect of hydrophobic
and electrostatic interaction
 The kinetics of fibril formation, their morphology and recent FTIR results [Freire et al.
2009] suggest that oligomers may be on-pathway fibril precursor.
 No relevant secondary mechanisms of fibrillation

Fibrillation kinetics by Static and Dynamic Light Scattering

M0= 14.3 kDa
4 S-S bonds
Z= +17 e (pH=2)
Z= +7.5 e (pH=7)

Hydrodynamic diameter 10n [nm]
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Slow conformational changes (60–65 °C): two-state transition

Secondary structure:
loss of α-structrure (isodichroic
point at 204 nm)

1) Study more deeply of the protein-protein interactions at different temperatures
and incubation times by SAXS

2) Characterization of structure by SAXS

Tertiary structure:
red-shidt of TRP emission
(isosbestic point at 368 nm)

70°C

dil. 1:10000 

Thermal stability at acidic pH

Above 45 °C lysozyme changes conformation reversibly .

DSC
pH=7: lysozyme is stabilized by surface
salt bridges.
pH=2: all protonable residues are positive, salt bridges are broken,
intramolecular repulsive interactions destabilize lysozyme.

CD and trp-PL spectra show respectively the
decrease of α-structure [Arnaudov et al. 2005]

and the concomitant exposure of trp to the
solvent above 60 °C.

Intermolecular interactions at high temperature

a) Experimental data: compressibility curves at different
temperatures.

b) 1st result: Swelling of lysozyme at high temperature.
c) 2nd result: Second virial coefficient (B2) has no dependence upon
temperature.

Lysozyme as a charged sphere with counterions collapsed on its
surface (Manning condensation).
Order of magnitude of B2 is explained by a screened intermolecular
electrostatic repulsion.

Model system:
Hen Egg-White Lysozyme
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