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a b s t r a c t

An elastic continuum model with long-range forces is addressed in this study within the context of
approximate analytical methods. Such a model stems from a mechanically-based approach to non-local
theory where long-range central forces are introduced between non-adjacent volume elements. Specifi-
cally, long-range forces depend on the relative displacement, on the volume product between interacting
elements and they are proportional to a proper, material-dependent, distance-decaying function.
Smooth-decay functions lead to integro-differential governing equations whereas hypersingular, frac-
tional-decay functions lead to a fractional differential governing equation of Marchaud type. In this paper
the Galerkin and the Rayleigh–Ritz method are used to build approximate solutions to the integro-differ-
ential and the fractional differential governing equations. Numerical applications show the accuracy of
the proposed approximate solutions as compared to the finite difference approximation and to the frac-
tional finite difference approximation.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

In the last decades experimental results which cannot be ex-
plained by classical local continuum mechanics have forced scien-
tists and engineers to formulate alternative theories which may
better fit to observed phenomena. These include shear bands in
tensile specimens, acoustic wave dispersion in granular materials,
softening phenomena and smoothing effects of concentrated stress
at crack tips.

It is generally believed that most of these phenomena may be
given an exhaustive explanation at a microstructural level and,
since the end of the 1950s, a first approach to this problem has
been then framed in the context of atomic theory and lattice
mechanics. However, the strong computational effort involved by
the use of such theories has soon motivated an increasing interest
towards continuum formulations where microstructural effects are
accounted for by properly modified constitutive relations, includ-
ing non-local terms as weighted integrals (Kroner, 1967; Eringen,
1972) or gradients (Aifantis, 1994; Polizzotto, 2003). These ap-
proaches enjoy the beauty of a constitutive relation that does not
involve additional state variables of the elastic problem. On the
other hand, approaches involving non-local weighted integrals
lead to non-convex potential energy functions, while approaches
involving non-local gradients may experience inherent difficulties
ll rights reserved.

: +39 0965875201.
in deriving the boundary conditions. As an alternative to modified
constitutive relations, microstructural effects have been accounted
for in the equilibrium equation (i) by including non-local forces in
an integral form (Silling, 2000; Silling et al., 2003); (ii) by the so-
called continualization, where a continuum model is built based
on higher-order differential operators ensuring that the continuum
behaviour approximates the behaviour of the discrete lattice
(Metrikine and Askes, 2002a,b; Andrianov and Awrejcewicz, 2005).

Recently, a non-local continuum model has been proposed for a
1D bar using a mechanically-based approach (Di Paola and
Zingales, 2008; Di Paola et al., 2009). The 1D bar has been modelled
as the continuum limit of a discrete ensemble of distinct volume
elements. Adjacent elements exert mutual classical contact forces
while non-adjacent elements exert mutual, distance-decaying,
central forces. The latter are taken to be proportional to the inter-
acting volumes and to their relative displacement. As the size of
the volume elements reduces to zero, the resulting 1D continuum
is found to be governed by an integro-differential equation for
long-range forces with a smooth decay or by a fractional differen-
tial equation for long-range forces with a fractional decay. In both
cases either mechanical or kinematic boundary conditions may be
consistently enforced. It may be also shown that the mechanically-
based approach enjoys all the features of the elasticity theory since
the associated elastic potential energy is convex and positive
definite.

The solution to the integro-differential equation has been built
based on a standard finite difference approximation (FDA),
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suggested by the underlying physical model of distinct volume ele-
ments itself (Di Paola et al., 2009). Similarly, a fractional finite dif-
ference approximation (FFDA) (Shkanukov, 1996) has been
adopted to solve the fractional differential equation (Di Paola and
Zingales, 2008). However, in both cases all the advantages of the
continuum representation are lost since, depending on the prob-
lem at hand, a relevant number of volume elements may be re-
quired to attain convergence and at the expense, obviously, of an
increasing computational effort. This may be typically the case
not only of statics but also of dynamics applications where, for in-
stance, building the eigensolution of large size matrices does in-
volve significant computational costs.

In this study the authors aim to show that the solution for the
proposed non-local bar, when long-range forces feature either a
smooth or a fractional decay, may be built by well-known approx-
imate methods of classical elasticity theory, such as the Galerkin
method and the Rayleigh–Ritz method, both formulated based on
variational principles. The results obtained prove that accurate
solutions for the proposed non-local bar may be built in a contin-
uum setting, without resorting to back-discretization of the gov-
erning equations. Also, it is seen that the two methods lead to
the same governing equations yet following a different approach,
proving that the operators are self-adjoint and a convex elastic po-
tential energy function is associated to the proposed non-local
model.

The mechanics of the proposed non-local bar is described in
Section 2. The variational formulation of the governing equations,
including the derivation of pertinent boundary conditions, is pre-
sented in Section 3. Also, in Section 3 it is shown that the proposed
model of non-local elasticity is thermodynamically consistent and
that no thermodynamic restrictions hold on the derived boundary
conditions. Then the formulation of the Galerkin method and the
Rayleigh–Ritz method to solve the elastic problem formulated in
Section 2 is given in Section 4. Numerical results are presented in
Section 5, where the FDA and the FFDA are used as benchmark
solutions. For completeness, in the Appendix some final remarks
about the relation between the proposed model of non-local bar
and the well-known Eringen theory are reported.
2. A model of 1D elastic continuum with long-range forces

The fundamental concepts are introduced considering the sim-
ple bar in Fig. 1. Be x an axis coinciding with the geometrical axis of
the bar and positive rightward. Be L the length, E and A the Young
modulus and the cross-sectional area, respectively; also, be uðxÞ
the axial displacement and f ðxÞ the external force per unit volume,
both positive rightward.

Let us introduce a discrete model of the bar into n small finite
volumes Vj ¼ ADx, where n ¼ L=Dx. Any volume Vj is in equilib-
rium under the external body force fjADx, where fj ¼ f ðxjÞ, being
jN

jV

0F

hV

hV jV

( ),h jQ( ),h jQ

jQx

Fig. 1. (a) Discretized elastic bar loaded by an external volume
xj ¼ ð2j� 1ÞDx=2ðj ¼ 1;2; . . . ;nÞ;Nj�1 and Nj are the axial contact
forces exerted by the adjacent volumes Vj�1 and Vjþ1, respectively.
Further, within the theoretical framework of continuum mechanics
with long-range forces, it may be consistently assumed that any
volume Vj is acted upon by the resultant Q j of long-range forces
due to surrounding, non-adjacent volume elements. Specifically,
Qj is taken as the resultant of long-range central forces applied
to the centroid of the volume elements (see Fig. 1), given by:

Qj ¼
Xn

h¼jþ1

Q ðh;jÞ þ
Xj�1

h¼1

Q ðh;jÞ; ð1Þ

where Q ðh;jÞ ¼ qðh;jÞVhVj, for qðh;jÞ given as

qðh;jÞ ¼ ½uðxhÞ � uðxjÞ�gðxh; xjÞ: ð2Þ

In Eq. (2) gðxh; xjÞ ¼ gðjxh � xjjÞ is an appropriate material-depen-
dent and distance-decaying positive function, taken to be monoton-
ically decreasing.

The static equilibrium equation of the volume element Vj in
Fig. 1 is then written as

DNj þ Q j þ fjADx ¼ DNj þ
Xn

h¼jþ1

qðh;jÞðADxÞ2

þ
Xj�1

h¼1

qðh;jÞðADxÞ2 þ fjADx ¼ 0; ð3Þ

where DN ¼ Nj � Nj�1. Dividing Eq. (3) by ADx and letting Dx! 0
yields the equilibrium equation of the 1D non-local bar in the form

drlðxÞ
dx

þ A
Z L

0
qðx; nÞdn ¼ �f ðxÞ; for qðx; nÞ ¼ gðx; nÞgðx; nÞ; ð4Þ

where gðx; nÞ ¼ uðnÞ � uðxÞ; rlðxÞ ¼ NðxÞ=A is the local stress due to
the contact forces (i.e., the Cauchy stress) and the integral terms in
Eq. (4) are the resultants (per unit volume) of the long-range forces
due, respectively, to the volume elements to the right and to the left
of the location x. Based on the resultant non-local stress rnlðxÞ, gi-
ven as

rnlðxÞ ¼ A
Z L

n¼x

Z x

1¼0
qðn; 1Þdnd1; ð5Þ

it may be proved that Eq. (4) reverts to

drðxÞ
dx

¼ drlðxÞ
dx

þ drnlðxÞ
dx

¼ �f ðxÞ; ð6Þ

where rðxÞ ¼ rlðxÞ þ rnlðxÞ is the overall axial stress. In passing it has
to be remarked that the resultant non-local stress in Eq. (5) is ob-
tained by cutting the bar into two parts and evaluating the resultant
of the long-range forces exchanged by the volume elements to the
right and to the left of the location x.
jf A xΔ
LF

1jN +

hV
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force field f ðxÞ; (b) Equilibrium of the volume element Vj.
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The solution for the non-local bar is sought based on the equi-
librium equation (6) along with the following equations:

drðxÞ
dx ¼

drlðxÞ
dx þ A

R L
0 qðx; nÞdn ¼ �f ðxÞ;

duðxÞ
dx ¼ eðxÞ; gðx; nÞ ¼ uðnÞ � uðxÞ;

rðxÞ ¼ rlðxÞ þ rnlðxÞ
¼ EðxÞeðxÞ þ A

R L
n¼x

R x
1¼0 gðn; 1Þ½uðnÞ � uð1Þ�dnd1:

8>>>>><>>>>>:
ð7a — dÞ

The reason for which equation gðx; nÞ ¼ uðnÞ � uðxÞ can be consis-
tently considered among the equations governing the non-local
bar will appear more clear in the following developments in Sec-
tion 3, where the governing equations will be derived within a var-
iational framework. Also, note that in Eq. (7d) the constitutive
equation for the local stress rlðxÞ in terms of the strain eðxÞ is taken
to be rlðxÞ ¼ EeðxÞ, for E ¼ b1E, being b1 a positive dimensionless
constant introduced, as in the integral model of non-local elasticity
(Fuschi and Pisano, 2003), to weigh the amount of local stress. The
latter equation (7d) represents the constitutive equation relating
the local and non-local contribution to the overall stress. Also it is
to be observed that the contribution provided by the long-range
forces at the location x is in integral form. This consideration is nec-
essary since it is used to specify the static boundary conditions
associated to the elastic problem. Note in fact that the boundary
conditions for the non-local bar are given as

uð0Þ ¼ u0; uðLÞ ¼ uL; ð8a;bÞ

rð0ÞA ¼ rlð0ÞA ¼ �F0; rðLÞA ¼ rlðLÞA ¼ FL; ð9a;bÞ

where F0 and FL are the end forces at x ¼ 0 and x ¼ L, respectively;
further, recognize that in Eq. (9) rnlð0Þ ¼ rnlðLÞ ¼ 0, as it may be de-
rived from Eq. (7c).

Based on Eq. (7), the equilibrium equation may be rewritten in
terms of displacement as

E
d2uðxÞ

dx2 þ A
Z L

0
gðx; nÞ uðnÞ � uðxÞ½ �dn ¼ �f ðxÞ: ð10Þ

For completeness it is noted that, based on the same reasoning fol-
lowed above, Eq. (10) generalizes for an infinite bar in the form

E
d2uðxÞ

dx2 þ A
Z 1

�1
gðx; nÞ uðnÞ � uðxÞ½ �dn ¼ �f ðxÞ: ð11Þ

It is now worth pointing out that Eqs. (10) and (11) involve an
integral term analogous to the integral term accounting for long-
range forces in a peridynamic bar (Silling et al., 2003). However
Eqs. (10) and (11) are integro-differential equations and, due to
the differential term, they yield continuous displacement fields un-
der concentrated forces. This is not the case in the peridynamic
solution (Silling et al., 2003).

Some interesting remarks on the relation between the proposed
model and the well-known Eringen theory of non-local elasticity
(Eringen, 1972) are given, in more details, in the Appendix.

Next some further comments are made about the specific func-
tional class to adopt for the distance-decaying function gðjx� njÞ. It
may be chosen as a smooth function without singularities (like
Gaussian-type or continuous with an isolated discontinuity like
the exponential decay) so that Eq. (10) is an integro-differential
equation. On the other hand an attractive choice for the distance
decaying function is related to the fractional power-law decay

gðjx� njÞ ¼ b2Ea
A2Cð1� aÞ

ca

jx� nj1þa ; ð12Þ

which may prove appropriate for materials involving long-range
interactions at a molecular level such as electrostatic, long-range
elastic bonds in next to the nearest next (NNN) lattices or magnetic
forces as Lorentz forces. More details about such a power-law decay
of the long-range interactions may be found in very recent litera-
ture (Laskin and Zaslavsky, 2006). Specifically, in Eq. (12) Cð�Þ is
the Euler–Gamma function; a is a real, material-dependent param-
eter ruling the decay of the interactions, being 0 6 a 6 1; ca is a
dimensional coefficient of fractional order, ½ca� ¼ La also depending
on the material; b2 ¼ 1� b1 is a positive dimensionless constant
introduced, as in the integral model of non-local elasticity (Fuschi
and Pisano, 2003), to weigh the amount of non-local stress. This
kind of distance-decaying function, if replaced for gðjx� njÞ into
Eq. (11), yields an hypersingular kernel that coincides with the
sum of Marchaud left and right fractional derivatives, leading to
the second-order fractional differential equation (Di Paola and Zin-
gales, 2008)

E
d2uðxÞ

dx2 � Ca Da
�u

� �
ðxÞ þ Da

þu
� �

ðxÞ
� �

¼ �f ðxÞ; ð13Þ

where Ca ¼ b2Eca=A2. In Eq. (13), the left and right Marchaud frac-
tional derivatives are defined as the convolution integrals (for de-
tails about fractional calculus see Samko et al., 1988)

Da
�u

� �
ðxÞ ¼ a

Cð1� aÞ

Z x

�1

uðxÞ � uðnÞ
ðx� nÞ1þa dn;

Da
þu

� �
ðxÞ ¼ a

Cð1� aÞ

Z 1

x

uðxÞ � uðnÞ
ðn� xÞ1þa dn: ð14Þ

For a finite domain such an equivalence between hypersingular ker-
nels and fractional operators does not hold and the governing equa-
tion of the axial displacement is obtained in terms of the truncated
Marchaud operators in the form

E
d2uðxÞ

dx2 � Ca
bDa

0þu
� �

ðxÞ þ bDa
L�u

� �
ðxÞ

h i
¼ �f ðxÞ; ð15Þ

where the truncated Marchaud operator is related to the integral
terms in the Marchaud fractional derivative on a finite domain, de-
fined as

Da
0þu

� �
ðxÞ¼ a

Cð1�aÞ
R x

0
uðxÞ�uðnÞ
ðx�nÞ1þa dnþ 1

Cð1�aÞ
uðxÞ
xa ¼ bDa

0þu
� �

ðxÞþ 1
Cð1�aÞ

uðxÞ
xa ;

Da
þu

� �
ðxÞ¼ a

Cð1�aÞ
R L

x
uðxÞ�uðnÞ
ðn�xÞ1þa dnþ 1

Cð1�aÞ
uðxÞ
ðL�xÞa¼ bDa

L�u
� �

ðxÞþ 1
Cð1�aÞ

uðxÞ
ðL�xÞa :

ð16a;bÞ

The non-integral terms in Eq. (16a,b) represent additional restraints
that are not included in the model and that are not present in the
infinite domain (see also Cottone et al., 2009).

3. Variational formulation to the proposed 1D elastic
continuum

Next it will be shown that the equations governing the pro-
posed non-local bar, including the boundary conditions, may be
derived within a consistent variational framework. Also, based on
the well-established procedure by Polizzotto (for details see Polizz-
otto, 2001), the thermodynamic consistency of the model will be
proved.

3.1. Total potential energy functional

The total potential energy functional can be cast in the follow-
ing form

Uðu; e;gÞ ¼ 1
2

Z L

0
EAeðxÞ2dxþ A2

2

Z L

0

Z L

0
gðx; nÞgðx; nÞ2dndx

( )

� uð0ÞF0 þ uðLÞFL þ A
Z L

0
f ðxÞuðxÞdx

� 	
;

ð17Þ
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where uðxÞ, eðxÞ and gðx; nÞ are kinematically admissible, that is they
satisfy Eq. (7b,c). The first two integral terms in the r.h.s. represent
the elastic potential energy of the solid, including the well-known
elastic potential energy due to the contact forces and defined in
terms of the state variable eðxÞ and the non-local elastic potential
energy due to the long-range forces and defined over the space of
the relative displacement function gðx; nÞ ¼ uðnÞ � uðxÞ, i.e. the kine-
matic state variable associated to the long-range force qðx; nÞ intro-
duced, on a mechanical basis, in Section 2. Note also that the elastic
potential energy of the solid is a quadratic form of the state vari-
ables and positive definite under the assumption of positive dis-
tance-decaying function.

It can be seen that the Euler–Lagrange equations associated to
Eq. (17) and the corresponding natural boundary conditions coin-
cide, respectively, with the equations reported in Section 2 on a
mechanical basis. To this purpose note that

dUðu; e;gÞ ¼ @U
@e

deþ @U
@g

dg

¼
Z L

0
rlA � dedxþ 1

2

Z L

0

Z L

0
A2 � gðx; nÞg � dgdxdn

� F0duð0Þ þ FLduðLÞ þ
Z L

0
fAdudx

� 	
: ð18Þ

Eq. (18) may be further simplified sinceZ L

0
rlA � dedx ¼ �

Z L

0

drl

dx
A � dudxþ rlðLÞA � duðLÞ � rlð0ÞA � duð0Þ

ð19Þ

and

1
2

Z L

0

Z L

0
A2gðx; nÞg � dgdxdn

¼ 1
2

Z L

0

Z L

0
A2gðx; nÞgdx

� 	
duðnÞdn

� 1
2

Z L

0

Z L

0
A2gðx; nÞgdn

� 	
� duðxÞdx

¼
Z L

0

Z L

0
A2gðx; nÞgdn

� 	
� duðxÞdx: ð20Þ

Specifically, note that Eq. (20) can be derived based on the following
relation:Z L

0

Z L

0
gðx; nÞgdx

� 	
duðnÞdn

¼
Z L

0
uðnÞ

Z L

0
gðx; nÞdx�

Z L

0
gðx; nÞuðxÞdx

� 	
duðnÞdn

¼ �
Z L

0

Z L

0
gðx; nÞgdn

� 	
duðxÞdx

¼ �
Z L

0

Z L

0
gðx; nÞuðnÞdn� uðxÞ

Z L

0
gðx; nÞdn

� 	
duðxÞdx; ð21Þ

which holds due to symmetry of the function gðx; nÞ with respect to
the arguments x and n, that is gðx; nÞ ¼ gðn; xÞ. Based on Eqs. (19)
and (20), Eq. (18) takes the form

dUðu; e;gÞ ¼
Z L

0
�E

d2u

dx2 þ
Z L

0
A � gðx; nÞgdn� f

" #
A � duðxÞdx

� ½F0 þ rlð0ÞA�duð0Þ � ½FL � rlðLÞA�duðLÞ; ð22Þ

where Eq. (7d) has been taken into account for rl in Eq. (19). It is
then readily seen that enforcing the stationarity condition
dUðu; e;gÞ ¼ 0 leads to the equilibrium equation (10) and the
mechanical (natural) boundary conditions (9).
3.2. Total complementary energy functional

The total complementary energy functional can be cast in the
following form:

Nðrl; qÞ ¼
1
2

Z L

0

A

E
r2

l ðxÞdxþ 1
4

Z L

0

Z L

0
A2 q2ðx; nÞ

gðx; nÞ dxdn

þ rlð0ÞA�u0 � rlðLÞA�uL: ð23Þ

In Eq. (23), the local stress rlðxÞ and the long-range forces
A2qðx; nÞdxdn are statically admissible, that is they satisfy the equi-
librium equation of the bar, Eq. (4). For generality, note that in Eq.
(23) both the ends of the bar are assumed to be constrained, that
is uð0Þ ¼ u0 and uðLÞ ¼ uL.

The first variation of Nðrl; qÞ with respect to rl and q writes

dNðrl; qÞ ¼
Z L

0

Arl

E
� drldxþ 1

2

Z L

0

Z L

0
A2 qðx; nÞ

gðx; nÞ � dqdxdn

þ Au0 � drlð0Þ � AuL � drlðLÞ ð24Þ

For later convenience, the first variation dN in Eq. (24) may be also
written as

dNðrl;qÞ ¼
Z L

0

Arl

E
� drldxþ1

2

Z L

0

Z L

0
A2 qðx;nÞ

gðx;nÞ � dqdxdn

þAu0 � drlð0Þ �AuL � drlðLÞ

�
Z L

0
A

d
dx
½uðxÞ � drl�dx�AuðLÞ � drlðLÞ þAuð0Þ � drlð0Þ


 �
�
Z L

0

Z L

0
A2½uðxÞ þ uðnÞ� � dqdxdn: ð25Þ

It is seen in fact thatZ L

0
A

d
dx
½uðxÞ � drl�dx ¼ AuðLÞ � drlðLÞ � Auð0Þ � drlð0Þ ð26Þ

andZ L

0

Z L

0
A2½uðxÞ þ uðnÞ�dqdxdn ¼ 0: ð27Þ

The latter equation may be readily demonstrated based on the con-
stitutive law for the long-range forces, qðx; nÞ ¼ gðx; nÞ½uðnÞ � uðxÞ�,
and the symmetry of gðx; nÞ ¼ gðn; xÞ (in this regard, see also Eq.
(21)).

Eq. (25) may be further simplified by noting thatZ L

0
A

d
dx
½uðxÞ � drl�dx ¼

Z L

0
A

ddrl

dx
uðxÞ þ duðxÞ

dx
drl

� 	
dx: ð28Þ

Based on Eqs. (4) and (6) it can be written thatZ L

0

Z L

0
A2uðxÞdqdxdn

¼
Z L

0

Z L

0
A2uðxÞgðx; nÞ½duðnÞ � duðxÞ�dxdn

¼
Z L

0
A
Z L

0
Agðx; nÞ½duðnÞ � duðxÞ�dn


 �
uðxÞdx

¼
Z L

0
A

ddrnlðxÞ
dx

uðxÞdx: ð29Þ

Also, based on Eq. (27)Z L

0

Z L

0
A2uðnÞ � dqdxdn ¼ 1

2

Z L

0

Z L

0
A2½uðnÞ � uðxÞ� � dqdxdn: ð30Þ

Due to Eqs. (28)–(30), taking into account the constitutive laws
e ¼ rl=E, g ¼ q=g, Eq. (25) may be then rewritten as
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dNðrl; qÞ ¼
Z L

0
A e� du

dx

� 
drldxþ 1

2

Z L

0

Z L

0
A2fgðx; nÞ

� ½uðnÞ � uðxÞ�gdqdxdn� A½uð0Þ � u0�drlð0Þ

þ ½uðLÞ � uL�drlðLÞ �
Z L

0
A

ddrl

dx
þ ddrnl

dx

� 	
uðxÞdx: ð31Þ

The latter term in Eq. (31) vanishes since drl and drnl are self-equili-
brated variations in the class of statically admissible functions, that is

ddrl

dx
þ ddrnl

dx
¼ 0: ð32Þ

herefore, it is seen that enforcing the stationarity condition
dNðrl; qÞ ¼ 0 for arbitrary drl and dq leads to Eqs. (7b and c), along
with the kinematic (essential) boundary conditions (8).

3.3. Thermodynamic consistency

Be _eðxÞ the internal energy density rate of the elastic solid. In
virtue of the first principle of thermodynamics in global form the
following relation can be written:Z

V

_eðxÞdVðxÞ ¼ A
Z L

0
_eðxÞdx

¼ A
Z L

0
f ðxÞ _uðxÞdxþ ½FL _uL � F0 _u0� þ A

Z L

0
r � dh

dx

� 
dx;

ð33Þ

where r is the heat source per unit volume and h is the heat conduc-
tion. It has been shown by the virtual work principle that the fol-
lowing identity holds (Paola et al., 2009):

A
Z L

0
f ðxÞ _uðxÞdxþ ½FL _uL � F0 _u0�

¼ A
Z L

0
rlðxÞ _eðxÞdxþ A2

2

Z L

0

Z L

0
qðx; nÞ _gðx; nÞdndx: ð34Þ

Eq. (33) is the global version of the first thermodynamic principle.
As already done in the literature for other models of non-local elas-
ticity, a point-wise version of such principle can be provided also for
the proposed model, specifically, in the following form:

_eðxÞ ¼ rlðxÞ _eðxÞ þ
A
2

Z L

0
qðx; nÞ _gðx; nÞdnþ r � dh

dx

� 
: ð35Þ

Note that the non-local integral residual in Eq. (35) has a mechanical
meaning since it represents half of the work done by the long-range
forces for the relative displacements between interacting elements.
In a thermodynamic context Eq. (35) shall be supplemented by the
second principle of thermodynamics, that holds both in its global
and local version. In global form the second principle of thermody-
namics readsZ

V

_sðxÞdVðxÞ ¼ A
Z L

0

_sðxÞdx P A
Z L

0

r
T
� d

dx
h
T

� � 	
dx; ð36Þ

where _s represents the rate of the entropy density and T is the abso-
lute temperature. Eq. (36) may also be stated in strong, point-wise
form stating that the rate of the entropy density must satisfy the
Clausius–Duhem condition for irreversible local thermodynamic
transformations, that is

_s P
r
T
� d

dx
h
T

� 
ð37Þ

or, alternatively, by introducing the rate of the internal entropy
density

_sint ¼ _s� r
T
� d

dx
h
T

� � 	
P 0: ð38Þ
The thermodynamic consistency of the proposed non-local bar can
be assessed based on Eq. (38). To this purpose the Helmoltz free en-
ergy functional is introduced by means of a Legendre transform of
the internal energy as a ¼ aðe; }ðgÞ; TÞ ¼ eðe; }ðgÞÞ � Ts that ac-
counts, separately, for the contributions of the local and the non-lo-
cal elastic energies, i.e.

eðe; }ðgÞÞ ¼ elðeÞ þ }ðgÞ ¼
Ee2

2
þ A

4

Z L

0
g2ðx; nÞgðx; nÞdn; ð39Þ

where

elðeÞ ¼
Ee2

2
; }ðgÞ ¼ A

2

Z L

0
enlðgÞdn ¼ A

4

Z L

0
g2ðx; nÞgðx; nÞdn:

ð40a;bÞ

Specifically, Eq. (40b) accounts for the non-local contribution to the
elastic energy density, evaluated at the spatial coordinate x, pro-
vided by the long-range forces. Simple manipulations on Eq. (38)
lead to the following relation:

T _sint ¼ _e� _a� _Ts� r � dh
dx

� 
þUT P 0; ð41Þ

where UT denotes the energy dissipation through thermal diffusion
process and defined as

UT ¼ �
h
T

dT
dx
: ð42Þ

Subsequently, taking into account Eq. (35), from Eq. (41) the Clau-
sius–Duhem inequality is derived in the form

T _sint ¼ rlðxÞ _eðxÞ þ
A
2

Z L

0
qðx; nÞ _gðx; nÞdn

� 	
� _a� _TsþUT P 0:

ð43Þ

Next, note that the first time-derivative _a takes the form

_a ¼ @a
@e

_eþ @a
@}ðgÞ _}ðgÞ þ @a

@T
_T ¼ @e

@e
_eþ @e

@}ðgÞ
@}ðgÞ
@g

_gþ @a
@T

_T: ð44Þ

The point-wise form of the second thermodynamic principle must
be satisfied for any thermomechanical process and henceforth also
for an uniform temperature field, that is for dT=dx ¼ 0. Then, based
on Eqs. (43) and (44), for dT=dx ¼ 0 it yields

rl �
@el

@e

� 
_eþ A

2

Z L

0
q� @enl

@g

� 
_gdn� sþ @a

@T

� 
_T P 0: ð45Þ

Eq. (45) must be fulfilled for any kind of thermodynamic transfor-
mation and, therefore, also for a reversible transformation corre-
sponding to the equality sign in Eq. (45), that yields

rl ¼
@el

@e
; q ¼ @enl

@g
; s ¼ � @a

@T
: ð46a;b; cÞ

If Eq. (46) are assumed to hold also for the most general case
dT=dx–0, the following relation is obtained:

UT ¼ �
h
T

dT
dx

P 0) h
T

dT
dx
6 0 ð47Þ

reflecting the circumstance that the heat flux is directed toward
negative gradients of the temperature. Eq. (46) are the state equa-
tions of the proposed non-local bar that, therefore, proves thermo-
dynamically consistent since the state variables eðxÞ and gðx; nÞ
satisfy Eq. (46). In this context it is worth pointing out that the ther-
modynamic consistency of the proposed non-local bar holds regard-
less of the boundary conditions, thus leading to conclude that no
thermodynamic restrictions hold on the boundary conditions (8)
and (9), as in the classical local theory.
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4. Approximate solutions of the elastic problem with long-
range forces

To the authors’ best knowledge, no exact, closed-form solution
can be found for the axial displacement field uðxÞ of the elastic
problem formulated in Section 2; only some approximate solutions
based on the FDA (Paola et al., 2009) and the FFDA (Di Paola and
Zingales, 2008) have been proposed. However such numerical
solutions required, for accuracy reason, a very fine discretization
grid thus leading to the need of developing alternative analytical
approaches to the problem, as it will be pursued in the following
sections. The solution strategies here proposed may be applied
for long-range forces with both smooth and fractional decay, so
that they may also represent a way to handle fractional differential
equations (see also Podlubny, 1993).

4.1. The Galerkin solution for the elastic continuum with long-range
forces

The Galerkin method to solve the elastic problem with long-
range forces may be formulated by resorting to the principle of vir-
tual displacements for the continuum mechanics with long range
forces, which may be written asZ L

0
duðxÞ dr

dx
þ f ðxÞ

� 	
Adxþ ½F0 þ rlð0ÞA�duð0Þ þ ½FL � rlðLÞA�duðLÞ

¼
Z L

0
duðxÞ E

d2u

dx2 þ A
Z L

0
gðx; nÞ½uðnÞ � uðxÞ�dnþ f ðxÞ

( )
Adx

þ ½F0 þ rlð0ÞA�duð0Þ þ ½FL � rlðLÞA�duðLÞ ¼ 0; ð48Þ

where duðxÞ is an arbitrary, but kinematically admissible, variation
of the displacement field. Let us assume that the displacement field
along the bar may be represented as

uðxÞ ffi uiðxÞci ði ¼ 1;2; . . . ;mÞ; ð49Þ

where uiðxÞ ði ¼ 1;2; . . . mÞ are trial, real-valued functions satisfying
the kinematic boundary conditions and ci are real, unknown coeffi-
cients; also, the Einstein summation convention has been used for
shortness. Replacing Eq. (49) for uðxÞ in Eq. (48) yieldsZ L

0
duðxÞ Eci

d2ui

dx2 þ ciA
Z L

0
gðx; nÞ½uiðnÞ �uiðxÞ�dnþ f ðxÞ

( )
Adx

þ ½F0 þ rlð0ÞA�duð0Þ þ ½FL � rlðLÞA�duðLÞ ¼ 0: ð50Þ

The approximate form in Eq. (49) adopted for uðxÞ does not allow to
satisfy Eq. (50) for every choice of the variation duðxÞ so that the
coefficients ci in Eq. (49) may be evaluated by requiring that the
variations of the displacement field coincide with the trial func-
tions, i.e. duðxÞ ¼ ujðxÞðj ¼ 1;2; . . . ;mÞ. Eq. (50) may be further sim-
plified by integration by parts of the first integral, which yields the
following set of m algebraic equations in the m unknown coeffi-
cients ci

ciEA
Z L

0

duj

dx
dui

dx
dxþ ciA

2
Z L

0

Z L

0
gðx; nÞujðxÞ½uiðnÞ �uiðxÞ�dndx

¼ ujðLÞFL þujð0ÞF0 þ
Z L

0
f ðxÞujðxÞdx: ð51Þ

The algebraic system of equations in Eq. (51) is cast in the matrix
form

KðGÞc ¼ KðG�lÞ þ KðG�nlÞ
� �

c ¼ F; ð52Þ

where KðGÞ is the stiffness matrix evaluated via Galerkin approxima-
tion and the coefficient vector cT ¼ ½c1; c2; . . . ; cm�.The load vector in
Eq. (52) reads Fj ¼ ujð0ÞF0 þujðLÞFL þ

R L
0 f ðxÞujðxÞdx and the ele-
ments of the local stiffness matrix KðG�lÞ and the long-range interac-
tions stiffness matrix KðG�nlÞ are, respectively,

kðG�lÞ
ji ¼ EA

Z L

0

dui

dx
duj

dx
dx;

kðG�nlÞ
ji ¼ A2

Z L

0

Z L

0
gðx; nÞujðxÞ½uiðnÞ �uiðxÞ�dndx: ð53Þ

The global stiffness matrix KðGÞ is symmetric (it is readily seen in
this case since duðxÞ ¼ ujðxÞ ðj ¼ 1;2; . . . ;mÞ) and positive definite.
It may be then inverted to derive the coefficient vector c, Eq. (52),
based on which the solution (49) may be computed.

4.2. The Rayleigh–Ritz method for the elastic continuum with long-
range forces

Based on the total potential energy functional (17), next a weak
formulation of the elastic equilibrium problem with long-range
forces is proposed, as in the classical Rayleigh–Ritz method. It in-
volves a series expansion similar to Eq. (49) as approximate solu-
tion for the displacement uðxÞ, where the trial functions uiðxÞ
shall satisfy the essential, kinematic, boundary conditions. Replac-
ing Eq. (49) for uðxÞ in Eq. (17) yields

UðcÞ ¼ 1
2

EA
Z L

0
ci

duiðxÞ
dx

� 	2

dxþ A2

2

Z L

0

Z L

0
gðx; nÞ½ci ~giðx; nÞ�2dndx

( )

� ci uið0ÞF0 þuiðLÞFL þ A
Z L

0
f ðxÞuiðxÞdx

� 	
;

ð54Þ

where ~giðx; nÞ ¼ uiðnÞ �uiðxÞ and again the Einstein summation
convention has been used. Eq. (54) is a quadratic functional of the
unknown coefficients of the expansion in Eq. (49), which may be
determined by minimizing the potential energy in Eq. (54) with re-
spect to the coefficients ci. This yields the system of algebraic
equations

@UðcÞ
@ci

¼ 0; i ¼ 1;2; . . . ;m; ð55Þ

that can be written in compact form as

KðRÞc ¼ ðKðR�lÞ þ KðR�nlÞÞc ¼ F; ð56Þ

where KðRÞ is the stiffness matrix evaluated via the Rayleigh–Ritz
method. In Eq. (56) the elements of the local KðR�lÞ and the non-local
KðR�nlÞ stiffness matrices are

kðR�lÞ
ij ¼ EA

Z L

0

dui

dx
duj

dx
dx;

kðR�nlÞ
ij ¼ A2

2

Z L

0

Z L

0
gðx; nÞ~giðx; nÞ~gjðx; nÞdndx: ð57Þ

As long as the same set of trial functions is used both in the Galerkin
and the Rayleigh–Ritz method, it is readily seen that the elements
of the local stiffness matrix KðR�lÞ in Eq. (56) coincide with the
corresponding elements of local stiffness matrix KðG�lÞ in Eq. (52).
Similarly, the elements of the non-local stiffness matrix KðR�nlÞ in
Eq. (56) may be recast exactly as the corresponding elements of
the non-local stiffness matrix KðG�nlÞ in Eq. (52). That is, the same
set of trial functions in both the Galerkin and the Rayleigh–Ritz
method yields the same solution for the elastic continuum with
long-range forces, exactly as in classical mechanics. This leads to
conclude that the used operators are self-adjoint and the introduced
elastic potential energy is a convex functional of the state variables.
In passing it is worth remarking that the Eringen model of non-local
elasticity cannot lead to the same result, since the related potential
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energy function is not convex for a bounded domain and a generic
attenuation function.

In the next section some numerical applications of the methods
here discussed will be reported, for long-range forces with both
smooth and fractional decay.
5. Numerical applications

Consider a uniform bar acted upon by two self-equilibrated
point forces F applied at the bar ends. As a first case, non-local ef-
fects are modelled based on long-range forces with the smooth
exponential decay

gðjx� njÞ ¼ C expð�jx� nj=kÞ; C ¼ b2E

2A2k
; ð58Þ

where k is the internal length, that is the influence distance beyond
which the non-local effects may be neglected (Marotti De Sciarra,
2008). Two solutions are then built to the integro-differential equa-
tion (11): (i) by the Galerkin method or, equivalently, by the Ray-
leigh–Ritz method developed in Sections 4 and 5, where

uiðxÞ ¼ b�1=2 sinðipx=LÞ; b ¼
Z L=2

�L=2
sin2ðipx=LÞdx ð59Þ

are taken as basis functions; (ii) by the FDA. Specifically, here the
FDA involves a discretized version of Eq. (10) given as

EA
uðxjþ1Þ � 2uðxjÞ þ uðxj�1Þ

Dx

þ C
XN

k¼0;k–j

½uðxkÞ � uðxjÞ� expð�jxj � xkj=kÞA2Dx2 ¼ �f ðxjÞADx;

ð60Þ

that can be cast in the matrix form

Ku ¼ ðKl þ KnlÞu ¼ f; ð61Þ

where fT ¼ Dx f ðx1ÞA � � � � � � f ðxmÞA½ �, and the stiffness matrices
are
(a)
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Fig. 2. Axial displacement in a uniform non-local bar in tension, for different dist
Kl ¼

Kl �Kl 0 0 � � � 0
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SYM 2Kl �Kl
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Knl ¼

Knl
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for Kl ¼ EA=Dx, for Knl
jj ¼

Pm
h¼1
h–j

Knl
jh and Knl

jh ¼ CA2Dx2 expð�jxj � xhj=kÞ.

That is, Kl and Knl can be interpreted, respectively, as the local and
non-local symmetric stiffness matrices of a consistent mechanical
point-spring model, from which the continuous model (10) is de-
rived as Dx! 0 (see Paola et al., 2009 for details).

As a second case, non-local effects are modelled based on long-
range forces with a fractional decay (12). Again, two solutions are
built to Eq. (15): (i) by the Galerkin method or, equivalently, by the
Rayleigh–Ritz method developed in Sections 4 and 5, where the ba-
sis functions (59) are used; (ii) by the FFDA (Shkanukov, 1996),
used by Di Paola and Zingales (2008) to achieve faster convergence
than by the standard FDA.

The Galerkin method, the FDA and the FFDA are all Fortran-
coded and run on a Intel(R) Core(TM)2 Duo 2.10 GHz, where
0.001 s is the CPU time resolution. Results are presented here for
the bar geometrical and mechanical parameters: A ¼ 1 cm2,
E ¼ 2:1� 106 da N cm�2, L ¼ 20 cm, F ¼ 103 da N. Also,
b1 ¼ b2 ¼ 0:5; a ¼ 0:5 and ca ¼ 1:0 cm0:5 are selected in Eq. (12);
k ¼ 2 cm in Eq. (58). Note that the numerical values for the above
parameters are theoretical values chosen to enhance non-local ef-
fects in the response, case in which it appears more meaningful to
assess the matching between the solution strategies proposed in
the paper.

Fig. 2 shows the axial displacement for gðjx� njÞ given as Eqs.
(12) and (58), respectively, when m ¼ 10 odd basis functions (59)
are considered to build the Galerkin solution (i) and n ¼ 4000 vol-
ume elements Vj are taken for the FDA and the FFDA solution. The
latter is taken as benchmark solution since, as shown in Fig. 3, as
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Fig. 3. Finite difference strain energy in a uniform non-local bar in tension, for different distance-decaying long-range forces: (a) exponential decay; (b) fractional decay.
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Fig. 4. Axial strain in a uniform non-local bar in tension, for different distance-decaying long-range forces: (a) exponential decay; (b) fractional decay.
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n P 4000 no significant changes are encountered in the strain en-
ergy of the discrete model. A very good agreement is encountered
between the Galerkin solution and, respectively, the FDA for expo-
nential decay and the FFDA for fractional decay. However, the
Galerkin solution proves more efficient. For long-range forces with
exponential decay (58), in fact, the required CPU times are equal to
7.1 s for the Galerkin solution (i) and to 53.83 s for the FDA solution
(ii). Further, for long-range forces with fractional decay (12), the
required CPU times are equal to 20.9 s for the Galerkin solution
(i) and to 52.51 s for the FFDA solution. Note finally that both
Fig. 3a and b shows an almost linear displacement function in a
central core of the bar, the size of the core being strictly influenced
by the values of internal length k and ca. At the limit k, ca ! 0 the
displacement field is linear throughout the whole bar with vanish-
ing non-local effects.

Based on the computed axial displacement, all the response
variables may be derived. For instance, the axial strain is shown
in Fig. 4. The values attained at the bar ends are equal to the local
contribution only, e ¼ F=ðEAÞ ¼ 9:52� 10�4; this is consistent with
Eq. (9), where rnlA ¼ 0 at the bar ends.
It is finally worth remarking that, for n > 4000, displacement
and strain responses do differ but not significantly from the dis-
placement and the strain responses obtained for n ¼ 4000 and re-
ported in Figs. 2 and 4. For shortness and to avoid almost
superposing lines, they have not been included in Figs. 2 and 4.
6. Concluding remarks

It has been shown that classical methods of linear elasticity the-
ory, such as the Galerkin method and the Rayleigh–Ritz method,
can be readily applied to solve a 1D non-local bar recently pro-
posed in the literature. In this manner accurate approximate solu-
tions have been obtained, with a significant reduction of
computational effort as compared to the numerical solutions pre-
viously built (Di Paola and Zingales, 2008; Di Paola et al., 2009).

It is worth remarking that the non-local elasticity model, here
formulated and solved for a 1D bar, lends itself to a straightforward
generalization to 3-D continua, based on the same concepts. Spe-
cifically, the 3D formulation will be pursued by modelling the
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long-range force between two volume elements as a force depend-
ing on the relative displacement measured along the line connect-
ing the two volume elements in the original configuration. Such 3D
non-local forces, under the assumption of small displacements,
prove invariant with respect to rigid-body motions, including ri-
gid-body rotations, thus ensuring the consistency of the 3D non-lo-
cal elasticity model. A detailed formulation and pertinent
numerical results will be presented in future self-contained
studies.

Appendix A

Some interesting conclusions may be drawn if a comparison is
sought between the proposed model of non-local bar and the one
based on the well-known Eringen theory (Eringen, 1972). For this
purpose it is here reminded that the Eringen theory of non-local
elasticity involves a constitutive law with a weighted average of
the strain field given as

rðxÞ ¼ EeðxÞ þ b2

Z
D

~gðjx� njÞeðnÞdn; ðA:1Þ

where ~gðjx� njÞ is the attenuation function. Specifically, assume
that the attenuation function is given as
~gðjx� njÞ ¼ eC expð�jx� nj=kÞ. Substituting Eq. (A.1) for rðxÞ in the
equilibrium equation drðxÞ=dx ¼ �f ðxÞ yields, after some manipula-
tions, the following governing equation:

d2uðxÞ
dx2 þ b2

eC
k2E

Z
D
½uðnÞ � uðxÞ� expð�jx� nj=kÞdn

� b2
eC

kE
½uðxÞ � uðDþÞ�e�ðDþ�xÞ=k þ ½uðxÞ � uðD�Þ�e�ðx�D�Þ=k
n o

¼ � f ðxÞ
E

; ðA:2Þ

where D� and Dþ are, respectively, the left and right end of the bar
domain. For an infinite bar, Eq. (A.2) is identical to Eq. (11) as long
as eC ¼ CAk2=b2 and is taken. That is, for exponentially-decaying
long-range forces, the proposed mechanical model is indeed the
mechanical model underlying the Eringen constitutive law. The
same equivalence can be demonstrated for the fractional model of
long-range forces (Cottone et al., 2009; Di Paola and Zingales, 2008).

If the bar is finite, however, Eqs (10) and (A.2) are not identical
but differ for the last two terms in the l.h.s. of Eq. (A.2). This differ-
ence allows to point out some mechanical inconsistencies of the
Eringen constitutive law that can be described by rewriting Eq.
(A.2) in a finite difference form as in Eq. (60). This yields

Ku ¼ Kl þ Knl þ Kr
� �

u ¼ f; ðA:3Þ

where the additional residual matrix Kr is written as

Kr ¼ b2
eCA �Dx

k

e�L=k 0 � � � 0 �e�L=k

�e�x2=k e�x2=k þ e�ðL�x2Þ=k
� �

� � � 0 �e�ðL�x2Þ=k

. . . � � � � � � � � � � � �
�e�L=k 0 � � � 0 e�L=k

26664
37775:
ðA:4Þ
The latter is not symmetric thus leading to conclude that no
consistent mechanical model may be associated to the non-local
elasticity model described by Eq. (A.1). In this regard, note that
the same conclusions have been previously drawn by several
authors (Borino et al., 2003; Marotti De Sciarra, 2008), who have
used a properly modified attenuation function to attain symmetry
of the considered matrices.
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