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Summary 

Box girder, due to its high torsional stiffness, is very appropriate for railway and highway long-
medium span bridges. This type of cross section, subjected to transversely non-uniform loads, 
present warping and distortion phenomena. Accurate but time-consuming numerical procedures are 
available for determination of further strains and stresses caused by cross-section deformation. In 
this paper warping and distortion of box girders is evaluated through BEF analogy, by writing a 4

th
 

order differential equation. The problem is solved for practical cases of box girders by considering 
internal diaphragms stiffness. Graphs are supplied to designers and main design parameters 
affecting cross section deformation are underlined. The proposed methodology is shown through 
the use of graphs by developing numerical examples on actual bridge girders. 
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1. Introduction 

Concrete box girders are common in beam bridges for their efficient cross section with high 
torsional stiffness. They can be built by cantilever method, by incremental launching or through 
gantries but in all these cases deck presents internal diaphragms in order to transversely stiffen the 
box section. These diaphragms are generally placed on piers and abutments, to drive the flow of 
forces in support regions. But they have also the function of reducing cross section deformability, so 
they can be placed also into the span, between two supports. In every cases each section of girder, 
resting between two stiffened sections by diaphragms, can be considered as a deformable frame in 
its plane. For current widths of served roads, the tendency is to have deck composed of unicellular 
hollow boxes; they are much higher for railway bridges and less for road bridges. Multi-cellular 
boxes are used in the case of very large decks or for particular purposes, because in this case 
formworks and casting are much more complicated.  
Classical beam theory does not consider the deformation of box section but as a matter of fact cross 
sections do not remain stiff in their plane. In addition they present warping phenomena, i.e. 
deformation of slabs and webs in longitudinal direction (section does not maintain itself into the 
plane in the deformed configuration). When warping is prevented, normal stresses born in addition 
to those associated with bending, already found with the classical beam theory. Moreover for 
transversely eccentric loads, cross section distortion born. These phenomena have been studied by 
different authors [1-8]. Theory of non-uniform torsion faces the problem by maintaining the 
stiffness of section in its plane, with the addition of normal longitudinal stresses depending on 
prevented warping. A classical way to study box distortion, instead, is to consider girders as tubular 
frames composed of walls as membrane elements [8]; in this case, due to eccentricity of loads, slabs 
and webs do not maintain a rigid angle between themselves and a relative rotation between 
elements occurs, with the result of cross section distortion. A more complete theory that takes into 
account globally these phenomena is that of folded plates, in which box is considered and 
calculated as a deformable frame with symmetric and anti-symmetric loads. This approach is more 
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effective for concrete box girders in which joints between section walls have to be considered rigid. 
From this kind of analysis normal stresses due to pure bending can be found separately from those 
due to prevented warping and from effects induced by cross section distortion [2]. Folded plate 
analysis can be developed through the Beam on Elastic Foundation (BEF) Analogy, deriving a 4

th
 

order differential equation, to solve the problem of cross section deformability under anti-
symmetric loads. 
Wright et al. [9] developed the BEF analogy for analysis of box girders underlining torsional and 
distortional components for concentrated and distributed eccentric loads. They draw useful graphs 
of BEF solution. Stefanou et al. [10] discussed the influence of geometric parameters involved in 
the solution of BEF for box girders, giving tables and graphs for different positions of load. Even if 
these last papers have been presented many years ago, the followed approach has the aim to provide 
a useful tool for dimensioning and choosing geometrical and mechanical parameters in the first 
stage of design. The development of numerical solutions by FE models lead researchers and 
designers to forget these valuable approaches and today these contributions are difficult to be found 
in literature. Authors think instead that this kind of studies are fundamental in order to evaluate the 
influence of many parameters, avoiding time-consuming numerical simulations. 
In this paper the solution of BEF analogy is given for a number of practical cases of box girders and 
reported in form of graphs. The target is to supply a useful tool for the designer, who needs a fast 
and simple procedure to take into account effects of concrete box deformability in the analysis of 
bridge structures. Even if the problem can be faced by the Finite Element Method, a 3-D FE model 
of a bridge is always very difficult to manage and it implies a big computational burden. A 
simplified but rigorous procedure can give instead useful indications to designers and immediate 
numerical results for practical cases in preliminary phases. FE analyses can be carried out only in 
the final stage of design. The followed procedure starts from the position of the problem, by 
considering eccentric loads on the deck and by writing the 4

th
 order differential equation of 

deformable boxed concrete cross section [1]. The study is extended to a large range of unicellular 
boxes for beams with different restraint conditions. Results are shown through a number of graphs 
and the main parameters involved are explained, together with applications to real cases.  
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Figure 1. Symmetric and anti-symmetric loads on box girder 

2. Position of the problem 

2.1 Deformability of box cross section 

Consider a unicellular concrete hollow box girder with the transverse section deformable in its 
plane. Generally high stiffness in plane is assured by internal diaphragms or very thick slabs and 
webs. Deformability of current cross sections depend on slabs and webs bending stiffness. Rigid 
joints connect box section concrete walls, allowing flexural deformations of each element as it 
occurs for frames in bending. Consider a transverse eccentric distribution of loads on the top slab 
(fig. 1a). It can be studied by fictitiously restraining joints: reactions can be found through the 
classical beam theory and re-applied with the opposite sign to the unrestrained joints, converting 
loads to concentrated nodal forces at the top of webs [1]. This scheme can be decomposed into two 
different schemes: one with symmetric loads and another with anti-symmetric loads (fig. 1b). 
Effects of symmetric loads can be studied by the classical beam theory giving mainly vertical 
displacements, longitudinal normal stresses into slabs and webs due to bending, tangential stresses 
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due to shear. Anti-symmetric loads can be regarded as those causing torsion, warping and distortion. 
If section is considered stiff in its plane, anti-symmetric load causes only a rotation along the beam 
axis and the result is only torsion. It can be studied by Bredt theory but prevented warping has to be 
accounted by the non-uniform torsion theory. On the contrary, if section is considered deformable in 
its plane, an anti-symmetric load causes longitudinal and transverse deformations of slabs and webs; 
in this case transverse bending has to be considered in addition to prevented warping. Normal 
stresses increase with respect to those derived by pure bending. The final result is warping and 
distortion of cross section (fig. 2). It has been shown [1,3] that effects of non-uniform torsion for 
box sections, in terms of longitudinal stresses, are evident only in limited regions where the value of 
prevented warping is high, as it occurs near supports or for thick diaphragms. Along the beam 
instead warping can be disregarded while effects of distortion are much more significant. 
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Figure 2. Cross section deformation and normal stresses due to anti-symmetric loads 
 
In figure 3, forces into box girder walls are shown. Being qa and ma the distributed anti-symmetric 
nodal loads, stress resultants Ma, Ms and Mi give the transverse flexure of webs and slabs, while 
forces Va, Vs and Vi give the resultants of tangential stress flow. 
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Figure 3. Forces into box girder walls under anti-symmetric loads 
 
Figure 4 shows that anti-symmetric load that leads to a flow of tangential stresses (torsion) and to a 
couple of forces Q whose only effect is box section distortion [5]. Some authors choose the relative 
displacement between top-right and bottom-left joints, along the diagonal of hollow box, as the 
unknown parameter to study distortion of box sections. It is a good choice when torsional effects 
are separated from those due to distortion, by introducing fictitious stiff diagonals, in order to 
evaluate force Q. In this way torsion and prevented warping are separated from distortion. 
Other authors [1, 4] do not make this distinction between torsion and distortion. In this last case, 
force Q is not found and the chosen displacement parameter is different. It is possible to write the 
differential equation in terms of the relative rotation between vertical axis of section and web axis 
[4] or in terms of the vertical displacement of upper web-flange joint yA(x) [1], but all these last 
approaches are equivalent. In the present paper the chosen parameter is displacement of upper web-
flange joint yA(x), by following the procedure given by Calgaro and Virlogeux [1]. 
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Figure 4. Decomposition of distortion forces. 
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2.2 BEF analogy 

By applying anti-symmetric loads qa and ma and by considering the equilibrium and compatibility 
equations between elements of fig. 3, it is possible to solve the problem through the 4

th
 order 

differential equation of Winkler’s beam. Through symbols of figure 5 and with the positions [1]: 
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the differential equation of BEF analogy can be written: 
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in which E is the elastic modulus of concrete section and ν is the Poisson coefficient. 
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Figure 5. Geometric characteristics of box section 
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in which ρ is the parameter related to cross section rigidity, equation (2) can be written as: 
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k q
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+ =    (4) 

Equation (4) represents the 4
th

 order differential equation of a BEF characterized by the Winkler soil 
constant kw, by the beam stiffness EIw and by the distributed load qw. In this way the BEF analogy is 
established: by solving equation (4) related to an equivalent fictitious Winkler beam, equation (2) is 
solved. Solution of BEF is given by one of literature methods [11-13]. Bending moment in webs is: 

2 26
( ) ( ) ( )

2

a s i
a

w s

I
M x M x M x

I k

α +α β + β
= =    (5) 

from which normal stresses at the top and bottom of webs are: 
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from which longitudinal normal stress diagram of box section is known (fig. 6a). 
Transverse bending moments, depending on yA(x), are: 

A A
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6 6
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that have to be added to the local effect of nodal moment ma(x) (fig. 6b).  
From eqn. (7) it is evident that BEF displacements yA(x) are directly related to transverse moments 
into the section, while bending moment M(x) in each section is directly related to longitudinal 
stresses at top and bottom. The parameter related to the characteristic length λ = 2π/α of BEF is: 

4

4

w

w

k
L L

EI
α =    (8) 

34TH INTERNATIONAL SYMPOSIUM ON BRIDGE AND STRUCTURAL ENGINEERING, VENICE, 20104



σ sup

σ inf

σ sup/β

σ sup/βσ sup

σ inf

ms ms

mimi

-qwqw mama

a b
 

Figure 6. Normal stresses and transverse bending moments in the section 
 
Another consideration can be done about transverse diaphragms. When there are no diaphragms, 
beam lies on Winkler soil, free at the ends, i.e. no external restraints have to be considered. When 
diaphragms are infinitely stiff in their plane, instead, cross section deformation is not allowed in 
those points. The related BEF lies on Winkler soil with external rigid supports. This is the case of a 
diaphragm that closes the hollow section or with only a little manhole. When diaphragms are very 
thick or in presence of counterweight at the ends of girder, warping is prevented and BEF has to be 
considered embedded. When diaphragm is composed of slabs and webs with increased thickness, 
warping and distortion are not totally prevented in those sections; so analogous BEF lies on Winkler 
soil with concentrated external elastic restraints. In this study deformable diaphragms have been 
considered through the ratio γ=ρd /ρ between diaphragm stiffness value ρd, given by relations (1) re-
written with the thickness of slabs and webs of diaphragm zone, and current box section stiffness 
value ρ. Value γ = 1 means the girder has not diaphragms along its axis, while γ →∞  means 
infinitely stiff diaphragms. Stiffness of the concentrated elastic restraint, for an intermediate 
situation, is given by the product 4ρdh td/bi, in which td is diaphragm thickness. From BEF solution 
support reactions can be found, i.e. shear forces useful to calculate reinforcement into diaphragms.  
 

LcL cL

qw

kw EIw

 
 Figure 7. Geometry of a three-span BEF.  

3. Solution of BEF analogy for concrete box girders  

3.1 Construction of graphs 

On the base of previous equations, solution of BEF analogy is given in this section for the case of a 
BEF with span length L. Calculus has been repeated for different values of parameters αL and 
qw,ref/kw, with qw,ref = 10 KN/m. Solution of 4

th
 order differential equation is shown through values of 

displacement yA(x) and bending moment ratio M(x)/kwL
2
, put in semi-logarithmic graphs. Variation 

range of chosen parameters is related to real box girder sections and typical lengths of bridge spans. 
Entire beam is uniformly loaded by qw,ref. Values of bending moment M(x) are significant in the 
midspan section and at the ends of embedded BEF.  
Three-span continuous beams with central span length L and lateral spans cL have been analysed by 
varying ratio c between span lengths (fig. 7). It can be seen that the influence of c is very little 
significant for purposes of this study. Moreover when c → 0 three-span beam degenerates to an 
embedded simple span, while for c >> 1 the beam degenerates into a simple supported span. As a 
consequence, each span between subsequent diaphragms can be studied with one of the single-span 
schemes of fig. 8, depending them only on the boundary conditions. In figure 8 beam i) refers to a 
span without diaphragms, beam ii) refers to a span between two stiff diaphragms preventing 
distortion, while beam iii) refers to a span between diaphragms preventing torsion warping and 
distortion. In the first case, for given values of qw, kw and EIw, displacements of BEF are equal in 
every sections and no bending moment appears. Diaphragm in the real girder can be placed over 
supports or at the centre of spans. When diaphragms are put in intermediate sections between two 
supports, the span length influenced by distortion is reduced to that between two successive 
diaphragms. It is so possible to reduce these effects in long spans by placing diaphragms in 
intermediate sections between piers. So length L of BEF is that between two diaphragms and if they 
are over supports, L coincides with the entire girder span length. In this way transverse moments in 
webs can be reduced by adding diaphragms along the beam. On the other hand, in diaphragm 
sections warping is prevented and longitudinal normal stresses become significant.  
Designer has then to take decisions regarding the presence, number and position of internal 
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diaphragms, the thickness of slabs and webs and the span lengths, in the conceptual design stage.  
qw qw

kw kwEIw EIw

qw

kw EIw
i ii

iii

  
Figure 8. Simple span schemes of BEF between two diaphragms. 
 

In this study the parameter of diaphragms stiffness γ varies from 100 (deformable) to 10000 
(infinitely rigid). Figures 11-15 show graphs of yA and M/kwL

2 
in midspan section of simply 

supported span and at the end of embedded span. Designer can apply the following procedure: 
1) values of kw, αL and γ have to be calculated for the beam, by eqns. (1), (3) and (9); 
2) graphs have to be entered with these values (for a fixed value of diaphragm stiffness γ), in 

order to found yA and M/kwL
2
 in the desired section; 

3) values of normal stresses and transverse bending moments are then found by eqns. (6), (7). 
Graphs for midspan are useful in order to evaluate maximum transverse moments. Graphs for end 
section of embedded span are useful in order to evaluate maximum values of stress due to prevented 
warping. Length L is always the distance between two subsequent diaphragms. Influence of 
diaphragms has been addressed by Sana et al. in [14].  
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Figure 9. Displacements and bending moments in BEF with concentrated load. 
 
Figure 9 shows the effect of concentrated forces in BEF. It can be seen that the effect of 
concentrated loads, in terms of transverse moments, disappears at a distance of 3λ/8, with λ the 
characteristic BEF length. Effect of concentrated loads in terms of longitudinal stresses disappear 
instead at a distance λ/8. Functions of displacements and moments [11] are: 

( ) ( )A ( ) cos sin ;  ( ) cos sin
2 4

x x

w

P P
y x e x x M x e x x

k

−α −αα
= α + α = α − α

α
   (10) 

3.2 Discussion and numerical application 

By the observation of graphs, it can be seen that effect of diaphragms is important only when ratio 
αL is small, while this effect becomes less and less fundamental for higher values αL. In the same 
way a higher value of γ is remarkable only for low values of αL, by contributing to limit the 
magnitude of displacement yA in a drastic way. When the characteristic BEF length λ is exceeded, 
value of yA becomes practically constant, depending only on qw,ref /kw and it doesn't result influenced 
by the presence and by diaphragms stiffness. Besides, for increasing value of αL, bending moment 
M decreases, both in midspan and near diaphragms, independently from the boundary conditions.  
Two numerical examples are considered here, in order to make comparisons with literature data. 
First application is carried out on a simply supported span with length L = 30 m [4]; bs =9,00 m,     
bi = 6,00 m, h= 1,50 m, ea = 0,35 m, ei = es = 0,25 m, qw = 50 kN/m (uniformly distributed only on 
the central span). Solution is found in midspan section. From relations (1), (3) and (9) we have: 
kw = 31,822 MN/m

2
, αL = 4,40, qw,ref /kw = 0,000314 m. From graph of figure 11, with γ = 10000, 

the value of yA is found: yA = 0,035 cm. From graph of fig. 12, with γ = 10000, the value of M is 
found: M/kwL

2
 = 0,00017 cm. By relating these values (found with qw,ref = 10 kN/m) to the real 

value of qw, results in terms of stresses at top and bottom of webs are: σsup = -0,20 MPa; σinf = 0,42 
MPa, while transverse moments are: ms = mi = 0,0417 MNm/m. 
Second numerical application consists of an embedded beam[1]. It has L = 50 m, bs =11,00 m,        
bi = 5,50 m, h= 3,00 m,   ea = ei = es = 0,30 m, qw=1MN/m. Solution is found in midspan section. 
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Remembering that graphs have been drawn with the reference load value qw,ref = 10 kN/m, from 
relations (1), (3) and (8) we have: kw = 70,0 MN/m

2
, αL = 5,0, qw,ref/kw = 0,000143 m. From graph 

of figure 13, with γ = 10000 (infinitely rigid diaphragms) the value of yA is found: yA = 0,014 cm. 
From graph of figure 14, with γ = 10000, the value of M is found: M/kwL

2
 = 0,00006 cm. 

Being qw = 1 MN/m, results in terms of stresses at top and bottom of webs are: σsup = -1,64 MPa; 
σinf = 6,00 MPa, while transverse moments are: ms = mi = 0,722 MNm/m 
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Figure 10. Examples of paths for different values of αL. 

 

Let see now the influence of internal diaphragms in the middle of span (fig. 10). If cross section of 
girder is maintained constant and one or more stiff diaphragms are put in intermediate sections, 
length L between two subsequent diaphragms decreases as well as value αL, but the curve qw,ref /kw 
of graphs is the same. In this way, by reducing αL, displacement yA in midspan section reduces too. 
It means that by adding diaphragms into the beam, values of transverse moments reduce. 
Alternatively designer can choose to modify cross section rigidity by varying web and slab 
thickness and by maintaining diaphragms spacing. In this case both values αL and qw,ref /kw change.  
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Figure 11. Graphs of yA in midspan section. Simple supported beam. 
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Figure 12. Graphs of M in midspan section. Simple supported beam. 
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Figures 13 and 14. Graph of yA and M in midspan section. Embedded beam. 
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Figure 15. Graph of M at the end section of embedded beam.  

4. Conclusions 

In this study deformation of concrete box girders has been addressed in order to apply the Beam on 
Elastic Foundation Analogy and to find longitudinal stresses and transverse bending moments due 
to single cell box warping and distortion. The solution has been shown for a large range of practical 
cases through general graphs, taking into account rigidity of box cross section and diaphragms 
stiffness in beams with different restraints. A useful tool for designers has been supplied, avoiding 
time-consuming and complicated finite element analyses of bridges. Influence of main parameters 
involved has been discussed and numerical examples have been presented.  
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