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Abstract
Purpose The matrix method for the solution of the so-
called inventory problem in LCA generally determines the
inventory vector related to a specific system of processes by
solving a system of linear equations. The paper proposes a
new approach to deal with systems characterized by a
rectangular (and thus non-invertible) coefficients matrix.
The approach, based on the application of regression
techniques, allows solving the system without using
computational expedients such as the allocation procedure.
Methods The regression techniques used in the paper are
(besides the ordinary least squares, OLS) total least squares
(TLS) and data least squares (DLS). In this paper, the
authors present the application of TLS and DLS to a case
study related to the production of bricks, showing the
differences between the results accomplished by the
traditional matrix approach and those obtained with these

techniques. The system boundaries were chosen such that
the resulting technology matrix was not too big and thus
easy to display, but at the same time complex enough to
provide a valid demonstrative example for analyzing the
results of the application of the above-described techniques.
Results and discussion The results obtained for the case
study taken into consideration showed an obvious but not
overwhelming difference between the inventory vectors
obtained by using the least-squares techniques and those
obtained with the solutions based upon allocation. The
inventory vectors obtained with the DLS and TLS
techniques are closer to those obtained with the physical
rather than with the economic allocation. However, this
finding most probably cannot be generalized to every
inventory problem.
Conclusions Since the solution of the inventory problem in
life cycle inventory (LCI) is not a standard forecasting
problem because the real solution (the real inventory vector
related to the investigated functional unit) is unknown, we are
not able to compute a proper performance indicator for the
implemented algorithms. However, considering that the
obtained least squares solutions are unique and their differ-
ences from the traditional solutions are not overwhelming, this
methodology is worthy of further investigation.
Recommendations In order to make TLS and DLS techniques
a valuable alternative to the traditional allocation procedures,
there is a need to optimize them for the very particular systems
that commonly occur in LCI, i.e., systems with sparse
coefficients matrices and a vector of constants whose entries
are almost always all null but one. This optimization is crucial
for their applicability in the LCI context.
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1 Introduction

The computational structure of life cycle inventory analysis
(LCI), although being of paramount importance for a deep
comprehension of the validity and reliability of the results
obtained in the inventory analysis phase, is rarely tackled in
scientific publications. Concerning the computational
aspects, practitioners generally limit themselves to rely on
the commercial LCA software used to accomplish the study
and rarely delve into the mathematical details.

The matrix method, commonly used to solve the
inventory problem in LCA, generally determines the
inventory table related to a specific single (or composite)
product system by solving a system of linear equations
using matrix algebra. To be specific, one has A � s ¼ f ,
where the technology matrix A represents the flows within
the economic system; the vector f, called final demand
vector or external demand vector, is an exogenously
defined set of economic flows whose amount is imposed
by the LCA analyst; the solution vector s is called scaling
vector (Heijungs and Suh 2002; Ardente et al. 2004). After
computing the scaling vector, it is possible to determine the
inventory table g (that is the vector of the environmental
flows associated with the reference flow under consider-
ation) as g ¼ B � s, where B (which is called intervention
matrix) represents the environmental interventions of the
system of unit processes.

The computation of the inventory table g associated with
the studied product is the aim of LCI. The scaling vector s
is only an intermediate result. Most LCA guidelines,
software, and case studies do not provide detail on the
value of s obtained, and on the method employed to
calculate it. This is a strange affair, since the calculation of
g requires the calculation of s, and this in turn requires the
solution of a system of equations A � s ¼ f , with A and f
given.

The underlying hypothesis of the matrix method for the
solution of the inventory problem is that the technology
matrix A is square and invertible, so that it is possible to
find a unique scaling vector s which solves the linear
system A � s ¼ f by means of a matrix inverse A�1 using
the formula s ¼ A�1 � f . However, when A is not square but
rectangular, the matrix method fails to give a solution,
because the inverse is only defined for square matrices.

A rectangular technology matrix is very common in
LCA studies. For instance, the unallocated version of the
ecoinvent v1.3 (http://www.ecoinvent.ch) data yields a
matrix A of 2,632 rows and 2,471 columns. It can
accordingly not be submitted to the matrix methods for
LCI. In order to understand why this is so, we have to
briefly discuss the architecture of the matrices and vectors.

A set of n unit processes can be connected by means of
m economic flows. For every unit process, coefficients

specify the quantity of each economic flow involved. For
instance, if process 4 (electricity production) requires
10 MJ of economic flow 6 (heavy fuel) for producing
1 kWh of economic flow 13 (electricity), the coefficient at
row 13 and column 4 (hence a13,4) is 1 and the coefficient
at row 6 and column 4 (hence a6,4) is –10, where the
convention is that negatives refer to inputs. Asking a
reference flow of 1,000 kWh economic flow 13 (electricity)
means putting f13=1,000. Intuitively, it is clear that we have
to scale process 4 (electricity production) by a factor 1,000
to accomplish this. Hence, we will find s4=1,000. For the
full system of connected processes, intuition does not
suffice, and a more formal method must be used to
calculate the scaling vector s.

However, it is well known that we can only (uniquely)
solve a set of equations when the number of equations is
equal to the number of unknowns. In a system of n unit
processes and m economic flows, we have m equations (a
balance for every flow) and n unknowns (a scaling factor
for every process). So when m 6¼ n, the matrix method will
not provide a (unique) solution.

There are various situations in which the number of rows
and columns may be unequal:

& we may have specified economic flows for which no
producing processes are available;

& we may have specified more than one process to
produce the same economic flow;

& we may have specified processes that produce more
than one economic flow.

Such cases have been identified and various solutions
have been discussed (Heijungs and Suh 2002). The first one
is commonly solved with cut-off, the second one by re-
specifying economic flows so that they match uniquely
with a process, and the third one by allocation. Such
approaches effectively add or remove rows and/or columns
so that, finally, a square system appears. The allocated and
cut-off version of the ecoinvent v1.3 data yields a matrix A
of 2,630 rows and columns (hence, removing two rows and
adding 159 columns), and can be processed by the matrix
method.

Technically, the tricks mentioned manage to reduce a
rectangular system to a square system. However, some
major controversies remain with the implementation of
these tricks, especially with the third one: allocation of
processes that produce more than one function.

In this paper, we will start to review briefly some of the
main issues involved, and then proceed to introduce a novel
approach to avoid allocation. This new approach, based on
the regression techniques called total least squares (TLS)
and data least squares (DLS), is a generalization of the
well-known ordinary least squares (OLS) technique for
fitting lines and curves to data. The assumed advantage of
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such least-squares techniques is that they seem to provide a
neutral approach and circumvent the subjective choice
between physical-based allocation, economic-based alloca-
tion, substitution, etc.

TLS and DLS are two of the several linear parameter
estimation techniques that have been devised to compensate
for data errors. The problem of linear parameter estimation
arises in a variety of scientific disciplines such as signal
processing, automatic control, system theory, and in general in
engineering, statistics, physics, economy, biology, medicine,
etc.

From the point of view of the system identification, very
interesting applications can be found in:

& Time-domain system identification and parameter estima-
tion: deconvolution techniques in renography (Van Huffel
et al. 1987): estimates of the autoregressive parameters of
an autoregressive moving average model from noisy
measurements (Stoian et al. 1990), structural identifica-
tion (Beghelli et al. 1987), modeling of industrial engines
(Jakubek et al. 2008), parameter estimation and control
of induction motors and machine drives (Cirrincione et
al. 2003; Cirrincione et al. 2006; Cirrincione et al. 2007),
modeling of proton exchange membrane fuel cells
systems (Blunier et al. 2008), chaotic time series
prediction (Li and Yu 2008), and parameter estimation
for statistical probability density functions (Marković and
Jukić 2010);

& Identification of state-space models from noisy input-
output measurements: examples, including the identifi-
cation of an industrial plant can be found in (Moonen et
al. 1989; Moonen and Vandewalle 1990; De Moor
1990)

& Signal processing: classical harmonic retrieval problem
(Rahman and Yu 1987; Roy and Kailath 1987;
Zoltowski and Stavrinides 1989); general class of
practical signal processing problems (Roy and Kailath
1989; Swindlehurst et al. 1992); minimum variance
distortionless response (MVDR) beamforming problem
(Zoltowski 1987); adaptive infinite impulse response
filtering problems (Dunne and Williamson 2003);
sensor array signal processing and high-resolution
frequency estimation (Zoltowski 1988); channel equal-
ization (Lim 2008; DeGroat and Dowling 1993). An
interesting array of environmental signal processing
problems based on the utilization of TLS and related
methods is presented in (Ramos 2007);

& Experimental modal analysis: estimation of frequency
response functions from measured input forces and
response signals applied to mechanical structures (Rost
and Leuridan 1985);

& Acoustic radiation: computation of the acoustic pressure
surface (Hall and Bernhard 1989);

& Geology: interpretation of metamorphic mineral
assemblages (Fisher 1989);

& Inverse scattering: inference of the shape, size, and
constitutive properties of an object from scattering
measurements that result from seismic, acoustic, or
electromagnetic probes (Silvia and Tacker 1982); Geo-
physical termographic imaging: geophysical monitoring
of hydrocarbon reservoirs (Justice and Vassiliou 1990).

The allocation problem Allocation is a recognized meth-
odological step in LCA. It is the procedure of assigning to
each of the processes of a multi-functional system only
those environmental burdens and impacts that were
generated by it (Azapagic and Clift 1999).

When a unit process provides more than one product, the
question arises on how the economic flows and environ-
mental burdens should be partitioned and distributed among
the multiple products. This has been one of the most
controversial issues in the development of LCA (Klöpffer
and Rebitzer 2000). In this case, the ISO standards on LCA
suggest a stepwise procedure consisting of three consecu-
tive steps (International Standard ISO 14044 2006).

Step 1 actually aims to avoid allocation “wherever
possible”, by either of two options: division of multifunc-
tional processes into two or more mono-functional sub-
processes each of which contributes only to one functional
output (step 1a), or expansion of the product system to
include the additional functions related to the co-products
(step 1b). However, the former step rarely avoids allocation
completely because most multiple-function systems include
processes which are common for some or all of its
functional outputs so that some kind of allocation will still
be necessary. The latter step essentially means redefining
the functional unit and the system boundaries to include the
additional functions related to the co-products (Ekvall
1994; Heijungs 1994; Heintz and Baisnee 1992; Tillman
et al. 1994). An equivalent approach is the already
mentioned “avoided burdens” or “avoided impacts” method
that consists in subtracting burdens arising from an
alternative way of producing a function (i.e., a stand-alone
process for the production of a sub-product of a main
process) from the main process (Heijungs and Suh 2002;
Azapagic and Clift 1999). When the allocation is unavoid-
able, ISO prescribes one of the following alternatives.

Step 2 states that system inputs and outputs should be
“partitioned on the basis of the underlying physical
relationships between them”, i.e., reflect the way in which
the inputs and outputs are affected by quantitative changes
in the products or functions delivered by the system.

If allocation based on physical, causal relationship is not
feasible or does not provide a full solution, step 3 of ISO
14044 is to be followed. According to this option, the
exchanges between the products and functions have to be
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partitioned “in a way which reflects other relationships
between them. For example, input and output data might be
allocated between co-products in proportion to the eco-
nomic value of the products”. However, it has to be borne
in mind that the market prices of every function can be
subject to significant fluctuations in time, thus affecting the
validity and credibility of the results of the LCA study. As a
consequence, it is of paramount importance to have correct
information about the relative prices of the functional flows
at stake. A way to handle fluctuations consists into basing
the allocation procedure on the shares in proceeds and not
on the absolute values. In fact, prices may fluctuate
considerably but, often, shares remain quite constant,
particularly in the longer term. However, for flows with
missing or distorted markets, it may also be difficult to
determine proceeds and shares. In Guinée et al. (2004), a
summary of the solutions that could be adopted to find
prices of products with missing or distorted markets was
shown: the authors establish a decision tree for the
economic allocation.

Generally speaking, the last option recommended in ISO
14044 allows also an allocation based on relationships that
are not causal. This includes allocation in proportion to an
arbitrary physical property of the products, such as mass,
volume, or energy content.

Allocation based on physical properties of the products
is the predominant allocation method in LCI practice
because data on these properties are generally readily
available and easily interpreted. However, when the
allocation is not based on an accurate model of causal
relationships, it will not provide accurate results.

The ISO hierarchy on allocation can be criticized on
providing too much freedom. For instance, what means
“wherever possible”, or when do we say that allocation
really “cannot be avoided”?

The matrix method provides insight into the mechanisms
of how multi-functional processes lead to problems
(Heijungs and Frischknecht 1998). But this comes at a
price, there are cases where the matrix method does not
work while there is in fact no real problem. As an example,
consider the case of closed-loop recycling, the situation that
a waste flow is processed and reused by the same system.
According to the logic of ISO, such a system produces just
one product, so there is nothing to be allocated. However,
the matrix method will fail, as the matrix A has more rows
than columns. The concept of pseudo-inverse of a matrix
(Golub and Van Loan 1989; Stewart and Sun 1990) has
been introduced to deal with this situation (Heijungs and
Suh 2002; Heijungs and Frischknecht 1998). It is based on
the generalization of the matrix inverse for non-square A.
Avoiding the formal mathematical details, it is possible do
define a matrix Ay ¼ AT � A� ��1 � AT, where AT is the
transpose of A. Using the pseudo-inverse of A, we can

calculate s ¼ Ay � f , also when A is rectangular. There is a
caveat, however. Although the pseudo-inverse gives an
answer to the inventory problem, it does not necessarily
provide an exact solution. That is, if we substitute the
obtained value of s back into the original system of
equations, we do not necessarily obtain the original final
demand f, but we may obtain a different result. This can be
interpreted as the final supply ef (Heijungs and Suh 2002).
The element-wise difference between what we ask (final
demand f) and what we get (final supply ef), has been
referred to as the discrepancy vector d ¼ ef � f (Heijungs
and Suh 2002). In the ideal situation, all elements of d are
equal to zero, indicating an exact solution, without
discrepancy. When we apply the pseudo-inverse to a case
with strict closed-loop recycling, we also find an exact
solution, with d=0. When we apply it to another rectangu-
lar system, e.g., with co-production or open-loop recycling,
the method gives an answer but with a non-zero discrep-
ancy. Some products will be produced in excess, some in a
too small amount.

The situation is summarized in Heijungs and Frisch-
knecht (1998):

& If the normal inverse of the technology matrix exists,
there is never an allocation problem;

& If the normal inverse of the technology matrix does not
exist because the matrix has more rows than columns,
the pseudo-inverse may in a substantial number of cases
provide an exact solution (e.g., in the case of internal
recycling, also called closed-loop recycling). If the
procedure with the pseudo-inverse does not produce an
exact solution, there is an allocation problem.

As a consequence, the allocation procedure should be
used only when strictly required, that is when an exact
solution cannot be found by using the pseudo-inverse of the
technology matrix. Moreover, it should be checked if the
solution obtained is satisfactory, in the sense of being exact,
i.e., yielding a zero discrepancy. But, and this is a crucial
observation, the use of the pseudo-inverse is able to solve a
rectangular LCI without allocation.

This observation forms the starting point of the new
approach of this paper. In the next section, we will further
generalize the pseudo-inverse, and show how these general-
izations can tackle an unallocated multi-functional system.

Allocation constitutes a crucial step in the LCI phase,
and the choices made in this phase of the study deeply
influence the obtained results and consequently the com-
parability between replaceable alternatives on the basis of
their inventory tables. It follows that, if the inventory table
of a product (good or service) can be found without
allocation, the influence of subjective choices has de-
creased, thus contributing to make the results of the study
more transparent. To a certain extent, the use of least-square
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techniques might be seen as a kind of “consensus
allocation”, which can be considered objective, and thus is
more prone to be accepted as “fair”. One could argue that
solving the inventory problem directly in its rectangular form
(without making the systemmatrix square) intrinsically leaves
unallocated the single functions of a multi-functional process
without actually solving the problem of allocation, but just
hiding it. However, in our view, making resort to allocation
has no other usefulness than allowing the transformation of a
rectangular system into a square one.

2 Methods

2.1 The solution of an over-determined system of equations

As noted in the introductory section, multi-functional
processes are associated with systems of equations that
are over-determined in the sense that there are more
equations than unknowns, reflected by a matrix with more
rows than columns. In this section, we will develop
strategies to deal with such over-determined systems in a
systematic way.

There is an interesting connection between the pseudo-
inverse and the ordinary least squares regression, where a
straight line is found that optimally fits a relationship
between empirical data. We will study this situation by
going to the very simple case of one process and many
economic flows. Suppose that we have coefficients a1, a2,…,
am, symbolizing the connection of m flows to the only
process, and that the reference flows for these m flows has
been specified as f1, f2,…, fm. There is only one unknown:
the scaling factor s for the only process. A regression
analysis determines the value of s that provides an optimal fit
(see Fig. 1).

Mathematically, we determine the coefficient s in the
equation f ¼ s � a. We do this in such a way that the sum of
squares of errors in the fit is minimal. That is, we determine

s such that
Pm
i¼1

fi � s � aið Þ2 is minimal. The estimated value

s provides an approximate fit, but the best fit, in a least
squares sense. Once the problem has been mathematically
formulated (the equations are defined and a set of unit of
measurements has been chosen), the method provides a
neutral (or, if one prefers, “fair”) answer. This is also the
reason why regression analysis is routinely applied for
fitting model parameters: it provides an optimal (neutral,
“fair”) fit.

One of the assumptions of this so-called OLS method is
that the independent variable(s), a in this example, is
assumed to be known without error, and that it is in fact the
dependent variable, f, which is subject to uncertainty. Thus,
adjustments in f are made so as to find the best line. In the
end, we can calculate what we have found: efi ¼ ai � s
instead of fi ¼ ai � s, thus changing the final demand f into
the final supply ef .

In a more general setting, multiple regression, there is
more than one independent variable (more than one a
variable), and there is more than one unknown (more than
one s). The assumed equation is f ¼ A � s. The estimation
procedure for finding the optimal values of s is by means of
the equation s ¼ AT � A� ��1 � AT

� �
� f (Dobson 1983).

For any m×n matrix A of rank n (i.e., of full column
rank) this is identical to s ¼ Ay � f(see Harville 1997, p. 495).
Thus, we see that the use of the pseudo-inverse is identical to
interpreting the inventory problem as an exercise in multiple
regression, where a least-squares minimization of the
discrepancy between final demand and final supply provides
the criterion of best fit.

As may be clear from the word “ordinary” in “ordinary
least squares” regression, there are more ways of solving an
over-determined system of equations by least-squares
techniques. Below, we will discuss DLS and TLS and
contrast them with OLS.

In the OLS approach, a solution is sought for the system
A � s ¼ f þ Dfð Þ, where Δf is the residual error vector (or
discrepancy vector in Heijungs and Suh 2002) corresponding
to a perturbation in f. The OLS solution vector is chosen so

that the Euclidean norm Dfk k2 ¼
Pm
i¼1

Dfið Þ2 is minimized. In

the classical OLS approach, there is the underlying assump-
tion that only the vector f is affected by noise or errors.
Furthermore, the OLS solution is optimal only if these errors
have a zero mean Gaussian distribution. In this case, the
OLS solution is identical to the maximum likelihood one
(Mendel 1987). If the errors have a different distribution, this
approach leads to a biased estimate of the solution vector
(Levin 1964). The use of the Euclidean norm relates to the S
in OLS: the sum of squares of residuals is minimized. There
is no fundamental objection to using a different norm than
the Euclidean one in OLS. This norm, however, makes the
problem more tractable, and also insensitive to an orthogonal
transformation.

f

aarctan(s)

Fig. 1 Interpretation of the inventory problem for one unit process as
fit of a straight line
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In the DLS approach, the error is assumed to lie in the
data matrix A, not in the vector f. The problem is thus
converted into the solution of the system Aþ DAð Þs ¼ f ,
where ΔA is the noise portion of the matrix A. The DLS
solution vector is usually chosen so that the Frobenius norm

DAk kF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
i¼1

Pn
j¼1

Da2
i;j

s
of ΔA is minimized. Again, a

different norm could be used for DLS.
The TLS approach, finally, combines the assumptions of

OLS and DLS. It is a linear parameter estimation technique
that has been devised to compensate for data errors (Golub
and Van Loan 1980). It is a natural generalization of the
OLS approximation method and it is used when the data
both in A and f are allowed to be perturbed. The classical
TLS problem searches the minimal corrections ΔA and Δf
on the given data A and f that make the corrected system of
equations Aþ DAð Þs ¼ f þ Dfð Þsolvable, i.e.,:

sTLS ;DATLS ;DfTLSf g
¼ arg min

s;DA;Df
DAjDf½ �k kF s:t: Aþ DAð Þs ¼ f þ Dfð Þ

ð1Þ
where, [ΔA|Δf] is the correction matrix ΔA augmented by
the column vector Δf. The Frobenius norm of this
augmented matrix is given by

jj½DAjDf �jjF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXm
i¼1

Xnþ1

j¼1

½DajDf �2i;j

vuut ð2Þ

The OLS, TLS, and DLS regression problems have been
formulated as minimization problems. Algorithms to carry
out these minimizations and obtain the optimal solutions
have been described in Van Huffel and Vandewalle (1991).
The appendix provides more details on these algorithms.

As described in Rao (1997) and resumed in Paige and
Strakos (2002), these approaches can be unified by using
the Frobenius norm and considering a very general Scaled
TLS problem.

Figure 2 shows a graphical interpretation of the differ-
ences between the three least-squares techniques in the
simplified case of only one independent variable. The three
methods assess the fitting accuracy in different ways. Being
based on the assumption that the errors are confined to the
observation vector (the vector of the known terms), OLS
minimizes the sum of squared vertical distances from the
data points to the fitting line (Fig. 2a). Whereas, since in
DLS, the errors are supposed to lie only in the matrix A, it
minimizes the sum of squares in the A direction (Fig. 2b).
Finally, TLS minimizes the sum of squares in the direction
orthogonal to the line (this means that the errors are
supposed to be both in A and f) and, for this reason, TLS is
also called orthogonal regression (Fig.2c).

In the classical inventory problem which typically occurs
in LCA, the external demand vector f is fixed by the
operator and thus it could be considered not to be affected
by uncertainty or noise, whereas the technology matrix A,
that represents the flows within the economic systems, is
the result of an estimation process or a measurement
campaign and it is consequently affected by several
uncertainties. As a consequence, if we accept the hypoth-
esis that the external demand vector is noise-free (that
means accepting that when the economic flows of the
system are exactly the ones described by the technology
matrix, the outputs of the system are exactly the ones
described by the chosen vector f) then the problem at hand
can be treated as a DLS problem. However, if we suppose
that, due to any kind of error, the output of the system can
be different than the one described by the chosen external
demand vector, the problem at hand becomes a TLS
problem.

2.2 Illustrative case study

In this paper, the authors present the application of the
above mentioned least-squares techniques to an illustrative
LCA case study investigating the process of production of
bricks in a Sicilian factory. The product system is modeled
in SimaPro; least squares calculations have been made in
Matlab.

In the first step, the assumption was made that the errors
lied only in the technology matrix and thus the problem
was tackled as a DLS one. In a second step, the authors also
made the assumption that both the technology matrix and
the final demand vector were affected by noise, and the
problem was solved by the TLS method.

It is important to underline that not all of the entries of
the technology matrix are realistic; the matrix was built
mostly to test the applicability and the numerical stability of
the investigated algorithms from the mathematical point of
view. The matrix was built starting from a real industrial
case study, subsequently adding some ad hoc processes as
well as modifying some realistic processes, such that the
resulting technology matrix was not too big and thus easy
to display, but at the same time, it could provide a valid

(a) (b) (c) 

arctan(s   )
A

ff

A

f

A(ai)

(fi) (fi)

(ai)

(fi)

(ai)

OLS arctan(s   )TLSDLSarctan(s   )

Fig. 2 Representation of the OLS (a), DLS (b), and TLS (c)
techniques in the mono-dimensional case
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demonstrative example for analyzing the results of the
techniques proposed in this paper.

The system consists of eight processes connected by 14
economic flows, and there are 21 environmental flows. A
flow chart is given in Fig. 3. Table 1 shows the process data
with respect to the economic flows (matrix A), Table 2 with
respect to the environmental flows (matrix B).

In the overall system, there are six multi-functional
processes:

1. Production of electricity and heat: it is a process of co-
generation, in which electricity and heat are produced
at the same time;

2. Production of clay (white and red): two kinds of clay
are produced in the same factory and both are used
within the bricks production process;

3. Production of sand and gravel: the sand production
process also produces gravel, that is one of the input
materials used to produce bricks;

4. Production of oil derivatives: the process of crude oil
refinery produces different co-products (namely oil
derivatives) some of which are used in the process of
bricks production;

5. Supply of biomass: two different kinds of biomass
(olive cake and straw) are used to produce bricks.

6. Production of bricks and inerts: along with bricks, some
low value recycled inerts are co-produced.

The final demand vector (or functional unit) f is defined as:

fi ¼ 0 for i ¼ 1 . . . 13
1 for i ¼ 14

�
ð3Þ

In the calculations below, least-squares techniques will
be used next to traditional allocation techniques. For these
latter, two alternative allocation principles have been tested.
First, a physical allocation has been applied, using the
choices of Table 3. Alternatively, economic allocation has
been used, based on price information in Table 4. In
addition, the economic allocation applies the substitution of
inerts recycling from Table 3.

Altogether, we do this case study according to five
calculation principles as summarized in Table 5.

3 Results

3.1 Case I, the original data

The physical allocation (substitution for the recycled inerts,
energy-based for the oil derivatives and “expert”-based for
the other processes) transforms the matrix A into a square
one A0 (see Table 6). The economic allocation (still
including the substitution for recycled inerts) transforms
the matrix A into a different square one A00 (see Table 7).

The environmental matrices B0 and B00 obtained after
physical-based allocation and economic allocation are
showed in Tables 8 and 9, respectively.

The solution vectors obtained by applying the OLS
method and the above mentioned DLS and TLS techniques
are showed in Table 10 along with the solutions obtained
with the two allocation methods.

Once the solution vector s has been computed, it is
possible to determine the inventory table g ¼ B � s of the
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Table 1 Process data (economic flows, i.e., only the technology matrix A 2 <14�8) for the case study

Production of
electricity and heat

Production of clay
(white and red)

Production of
sand and gravel

Production of
crude oil

Production of
oil derivatives

Production of
natural gas

Supply of
biomass

Production of
bricks and inerts

MJ of electricity 1 −7.20E−03 −1.80E−02 0 −3.20E−02 0 0 −3.69E+02
MJ of heat 2.48E+00 0 0 −4.87E−02 −1.13E+00 −4.87E−02 0 −1.01E+03
kg of white clay 0 1 0 0 0 0 0 −1.37E+03
kg of red clay 0 1 0 0 0 0 0 −8.51E+02
kg of recycled inerts 0 0 0 0 0 0 0 6.90E+01

kg of sand 0 0 1 0 0 0 0 −5.00E+02
kg of gravel 0 0 1 0 0 0 0 −3.47E+02
kg of olive cake 0 0 0 0 0 0 1 −1.53E+02
kg of straw 0 0 0 0 0 0 1 −1.92E+01
MJ of crude oil 0 0 0 1 −2.34E+00 0 0 0

MJ of diesel oil 0 −4.54E−03 −3.60E−02 −5.29E−03 1 −3.61E+01 −4.06E−01 −1.41E+03
MJ of fuel oil 0 0 0 0 1 0 0 −1.11E+03
MJ of natural gas −4.27E+00 0 0 0 0 1 0 −5.52E+03
Ton of bricks 0 0 0 0 0 0 0 1

The unit of measurement in which each economic flow in the table is expressed is defined at the beginning of the corresponding row

Table 2 Process data (environmental flows, i.e., only the intervention matrix B 2 <21�8) for the case study

Production of
electricity
and heat

Production of clay
(white and red)

Production of
sand and gravel

Production of
crude oil

Production of
oil derivatives

Production of
natural gas

Supply of
biomass

Production of
bricks and inerts

Resources and raw materials

MJ of coal −1.49E−03 −5.16E−03 −1.36E−02 −7.46E−07 −5.77E−02 −7.46E−07 −1.40E−03 0

MJ of lignite −2.74E−04 −6.46E−03 −1.63E−02 −1.77E−09 −2.68E−04 −1.77E−09 −8.32E−04 0

MJ of hydropower 0 −3.82E−04 −1.04E−03 −9.58E−08 −7.66E−03 −9.58E−08 −4.54E−04 0

MJ of geothermal energy 0 −2.80E−08 −1.17E−07 −6.08E−15 −1.05E−04 −6.08E−15 0 0

kg of water 0 −7.80E−03 −2.40E−02 −1.49E−02 −7.26E−03 −1.49E−02 0 −1.03E+03
kg of ores (sand, gravel, etc.) −2.20E−05 −2.00E+00 −2.00E+00 −3.51E−05 −4.55E−04 −3.51E−05 0 0

MJ of crude oil −1.21E−02 −1.82E−02 −1.43E−01 −1.02E+00 −2.34E+00 −1.02E+00 −4.15E−01 −1.27E+03
kg of other ores
(iron, copper, etc.)

−1.25E−04 −7.37E−06 −3.95E−05 −5.60E−10 −2.40E−04 −5.60E−10 0 0

Emissions to air

kg of CO2 8.32E−02 2.52E−03 1.33E−02 4.17E−03 2.88E−02 4.17E−03 4.93E+00 6.02E+02

kg of CO 1.63E−04 3.83E−06 2.79E−05 1.14E−05 3.34E−05 1.14E−05 2.70E−02 1.10E+00

kg of CH4 3.68E−04 2.97E−06 1.09E−05 7.13E−05 1.02E−04 7.13E−05 6.00E−03 1.18E+00

kg of SO2 2.96E−05 2.61E−06 1.64E−05 5.31E−06 2.69E−04 5.31E−06 7.43E−03 2.20E+00

kg of NMVOC 3.70E−05 4.20E−07 2.87E−06 1.93E−05 4.23E−05 1.93E−05 3.07E−02 1.13E+00

Emissions to water

kg of COD 6.25E−07 2.00E−07 1.11E−06 1.57E−11 6.75E−06 1.57E−11 2.21E−04 2.38E−01
kg of BOD 4.36E−08 6.11E−09 3.51E−08 4.41E−13 1.89E−07 4.41E−13 6.75E−06 2.25E−01
kg of P 3.27E−10 4.95E−11 3.91E−10 3.73E−18 9.84E−13 3.73E−18 0.00E+00 1.26E−03
kg of N 3.11E−08 2.91E−09 2.29E−08 2.19E−16 1.08E−10 2.19E−16 1.61E−04 6.00E−03
kg of AOX 5.78E−11 3.69E−12 2.90E−11 4.64E−18 2.01E−12 4.64E−18 2.95E−07 1.43E−05

Solid wastes

kg of ash 0 1.11E−04 2.83E−04 1.48E−08 2.56E−04 1.48E−08 0 0

kg of sludge 0 2.46E−07 1.93E−06 5.30E−14 2.10E−05 5.30E−14 0 0

kg of nuclear waste 0 2.54E−09 6.49E−09 8.82E−17 7.70E−10 8.82E−17 0 0

The unit of measurement in which each environmental flow in the table is expressed is defined at the beginning of the corresponding row
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product. The inventory tables obtained with the three least-
squares methods are reported in Table 11, where the ones
obtained with the two allocation methods are also showed.

The rightmost columns of Table 11 also shows the
percentage differences between the inventory vectors
obtained with the DLS and TLS solutions and those
obtained with the allocation-based solutions. The percent-
age differences related to the OLS solution are very close to
100% for every environmental intervention, so they were
not showed into the table.

By taking the absolute values of the entries in the last
four columns on the right of Table 11 and computing the
mean value of each column, one obtains the following
mean absolute values of the percentage differences: DLS-
ECN=91.9%; DLS-PHY=53.2%; TLS-ECN=91.0%; TLS-
PHY=54.0%.

Each of the three least squares methods produces an
array of economic flows that does not fully agree with the
final demand vector f. The discrepancy vectors obtained

with the five explored methods are listed in Table 12 along
with their Euclidean norms.

As we can observe in Table 12, the discrepancies
associated with the OLS method are quite low, except for
the last component (i.e., the one corresponding to the flow
associated to the chosen functional unit), that is equal to −1.
It means that the last element of the final supply vector
found with the OLS method is equal to 0 (instead of the
desired value 1). In contrast, the discrepancies associated
with the DLS and TLS methods are much higher for all the
components, except for the last one. It means that these last
two methods (in particular DLS) deliver a flow of the
investigated product (bricks) which is very close (exactly
equal in this case for the DLS solution) to the quantity
established in the choice of the functional unit. However,
they also deliver undesired amounts of the other flows
(electricity, heat, and so forth). The discrepancies related to
the traditional solutions based on allocation are instead all
very low and can be explained as artifacts due to round-off
(Heijungs and Suh 2002).

On the basis of the observation of the discrepancy
vectors alone, the traditional allocation-based solutions
may therefore appear to be preferred to the solutions
obtained using the regression techniques. However, a
complete judgment should also take into account the
observation of the differences among the inventory
vectors since the inventory vector is the final goal of
the LCI phase. From the observation of the last four
columns on the right of Table 11, we can infer that the
difference between the inventory vectors of the DLS and
TLS solutions and the inventory vectors of the traditional
solutions is not overwhelming., It is worth noting that
while the solutions based on allocation can vary signifi-
cantly with the choice of the allocation factors, the
solutions based on the presented least-squares techniques
have the advantage of being unique. Clearly, this calls for
more work on the use of regression techniques vis-à-vis
allocation in LCI.

3.2 Case II, a sensitivity analysis on changing the units
of measurement

Minimization of a sum of squares is a procedure that may
be sensitive to the coordinate system selected. In particular,
the choice of units may affect the result (Heijungs and Suh
2002). We will study this below.

Changing the unit of the 14th product flow from tons of
bricks into kg of bricks will change the 14th row of A and f
by a factor 1,000.

In Table 13, the scaling factors now obtained applying
allocation is compared with those obtained applying the
least-squares techniques to the rectangular matrix. Note
that the scaling vector obtained with the DLS technique

Table 3 Allocation principles for the six multi-functional processes,
used for the physical allocation

Process Allocation

Production of
electricity and heat

0.8 for electricity and 0.2 for heat

Production of clay
(white and red)

0.5 for with clay and 0.5 for red clay

Production of sand and
gravel

0.5 for sand and 0.5 for gravel

Production of oil
derivatives

Allocation following the energy criterion

Supply of biomass 0.8 for olive cake and 0.2 for straw

Production of bricks
and inerts

The output of recycled inerts is treated with the
substitution method: it is considered as equivalent
to sand, but obviously only a certain percentage of
the inert materials produced by the mining activity
can be really used as sand. For this reason an
estimated correction factor of 0.85 was applied in
order to account for the difference in quality
between the mass of inert materials and an
equivalent mass of sand obtained from them

Product Price Unit

Electricity 0.034 €/MJ

Heat 0.013 €/MJ

White clay 2.2 €/kg

Red clay 2.0 €/kg

Sand 0.015 €/kg

Gravel 0.011 €/kg

Olive cake 0.16 €/kg

Straw 0.065 €/kg

Diesel oil 0.025 €/MJ

Fuel oil 0.4 €/MJ

Table 4 Prices of the commod-
ities used for the economic
allocation
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for this new system is identical to the one obtained with
the original system (see Table 10). Moreover, for this
particular choice of the technology matrix and the final
demand vector, the DLS solution is also identical to the
TLS solution. This is just a particular case and does not
have to be considered as a general behavior. In fact, even
for this case, if the normalization procedure showed in
Section 3.3 is applied, the obtained DLS and TLS
solutions differ from each other (the results are not
showed in the paper because we are here keeping separate
the effects of changing the unit of measurement and
rescaling the entries of A and f). A general mathematical
condition for the equality of the DLS and TLS solutions
could be derived from the expression obtained putting
Eq. 10 equal to Eq. 12 in Electronic Supplementary Material.

The inventory tables now obtained with the five
methods applied are listed in Table 14. The right hand
side of Table 14 also shows the percentage differences
between the inventory vectors obtained with the OLS and
TLS solutions and those obtained with the allocation-
based solutions. Because of the equality of the DLS and
TLS scaling vectors, their inventory vectors (and the
consequent differences from the traditional solutions) are
also equal. Also in this case, the percentage differences
related to the OLS solution are very close to 100% for
every environmental intervention and thus they were not
showed into the table.

The mean absolute values of the percentage differences
are in this case: DLS-ECN=91.9%; DLS-PHY=53.2%;
TLS-ECN=91.9%; TLS-PHY=53.2%.

TThe discrepancy vectors obtained are reported in
Table 15. Like before, also in this case, the last element of
the discrepancy vector obtained with the three least
squares methods is different than 0 (i.e., the last value of
the final supply vector is different than the desired value,
namely 1,000 in this case). Differently than for the
previous case, now, also the other elements of the
discrepancy vector related to the OLS solution are
substantially higher than the corresponding elements of
the discrepancy vectors obtained applying the allocation
procedures.

3.3 Case III, sensitivity analysis on changing the rescaling

TRelated to a change in the unit is the issue of rescaling or
normalization (Heijungs and Suh 2002). In physical problems
influenced by variables of different nature, these variables are,
in the most general case, expressed by numbers whose range
of variation can differ by several orders of magnitude. For this
reason, when any approach is used to solve a multiple-input
problem, the solution could be polarized by those variables
expressed by extreme values (the highest or the lowest ones).
In order to prevent this, normalization is often used to reduce
all numbers to the same range of variation.

In our case, an experiment was tried by applying a
suitable normalization algorithm both to the technology
matrix and the final supply vector. The normalization
procedure used is explained in the following.

Let us consider the linear system A � s ¼ f , with A 2
<m�n and f 2 <m�1. Let H be the diagonal square matrix
defined as:

H ¼

1
max ai1j j;i¼1;...;m 0 . . . 0

0 . .
.

. . . ..
.

..

.
. . . . .

.
0

0 . . . 0 1
max ainj j;i¼1;...;m

0
BBBB@

1
CCCCA ð4Þ

Let An be the normalized matrix A. It is defined as:

An ¼ A �H ð5Þ
Let fn be the normalized vector f, obtained by dividing each
element of f by the maximum absolute element:

fn ¼ f
max fij j; 8i ¼ 1; . . . ;mf g ð6Þ

If An.is invertible, the de-normalized solution Xden obtained
as follows:

sn ¼ A�1
n � fn ð7Þ

sden ¼ H � sn �max fij j; 8i ¼ 1; . . . ;mf g ð8Þ

Aspect LCI technique

ECN PHY OLS DLS TLS

Allocation of co-products Economic; see table 4 Physical; see table 3 – – –

Allocation of recycling Substitution Substitution – – –

Allow changes in – – f A f and A

Size of A 13×13 13×13 14×8 14×8 14×8

Size of B 21×13 21×13 21×8 21×8 21×8

Table 5 Overview of the main
characteristics of the five differ-
ent LCI techniques in the case
study on bricks
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is the same of the solution obtained as s ¼ A�1 � f . In
practice, however, An may be a more stable matrix to invert
than A. For this reason, this normalization procedure is
suitable for the application that we want to realize.

We applied this normalization algorithm to our case study.
The traditional solutions (i.e., those obtained with the physical-
based allocation and the economic value-based allocation) and
the OLS solution found after de-normalization resulted to be

Table 11 Inventory table g of the production of 1 ton of bricks for the five different methods of calculating the inventory and percentage
differences between the inventory vectors obtained with the DLS and TLS solutions and those obtained with the allocation-based solutions

Elementary flow LCI technique % difference

ECN PHY OLS DLS TLS DLS-ECN DLS-PHY TLS-ECN TLS-PHY

Resources and raw materials

MJ of coal 1.22E+04 8.56E+02 4.77E−06 3.18E+02 2.50E+02 −97.39 −62.85 −98.0 −70.8
MJ of lignite 4.36E+01 −9.28E+00 −1.02E−06 −1.36E+01 −1.07E+01 −131.19 46.55 −124.5 15.3

MJ of hydropower 1.62E+03 1.14E+02 6.67E−07 4.26E+01 3.35E+01 −97.37 −62.63 −97.9 −70.6
MJ of geothermal energy 2.22E+01 1.57E+00 1.01E−08 5.97E−01 4.69E−01 −97.31 −61.97 −97.9 −70.1
kg of water 1.00E+03 −4.03E+02 −7.63E−05 −7.55E+02 −5.93E+02 −175.50 87.34 −159.3 47.1

kg of ores (sand, gravel, etc.) −2.95E+03 −3.00E+03 −2.33E−04 −3.38E+03 −2.66E+03 14.58 12.67 −9.8 −11.3
MJ of crude oil 5.30E+05 7.05E+04 3.61E−04 2.93E+04 2.30E+04 −94.47 −58.44 −95.7 −67.4
kg of other ores (iron, copper, etc.) 5.12E+01 3.76E+00 3.06E−08 1.54E+00 1.21E+00 −96.99 −59.04 −97.6 −67.8

Emissions to air

kg of CO2 −5.30E+03 5.27E+02 6.68E−05 7.51E+02 5.90E+02 −114.17 42.50 −111.1 12.0

kg of CO −3.70E+00 3.37E+00 2.31E−07 3.24E+00 2.55E+00 −187.57 −3.86 −168.9 −24.3
kg of CH4 −2.32E+01 −2.70E+00 7.30E−08 −5.71E−01 −4.49E−01 −97.54 −78.85 −98.1 −83.4
kg of SO2 −5.41E+01 −1.11E+00 1.86E−07 1.31E+00 1.03E+00 −102.42 −218.02 −101.9 −192.8
kg of NMVOC −5.06E+00 3.63E+00 2.62E−07 3.66E+00 2.87E+00 −172.33 0.83 −156.7 −20.9

Emissions to water

kg of COD −1.17E+00 1.64E−01 1.90E−08 2.22E−01 1.74E−01 −118.97 35.37 −114.9 6.1

kg of BOD 1.86E−01 2.23E−01 1.74E−08 2.25E−01 1.77E−01 20.97 0.90 −4.8 −20.6
kg of P 1.26E−03 1.26E−03 9.67E−11 1.26E−03 9.87E−04 0 0 −21.7 −21.7
kg of N 2.44E−02 2.64E−02 1.44E−09 2.25E−02 1.77E−02 −7.79 −14.77 −27.5 −33.0
kg of AOX 4.76E−05 5.15E−05 2.89E−12 4.45E−05 3.49E−05 −6.51 −13.59 −26.7 −32.2

Solid wastes

kg of ash −5.40E+01 −3.60E+00 −6.12E−09 −1.19E+00 −9.35E−01 −97.80 −66.94 −98.3 −74.0
kg of sludge −4.45E+00 −3.14E−01 −1.93E−09 −1.18E−01 −9.30E−02 −97.35 −62.42 −97.9 −70.4
kg of nuclear waste −1.58E−04 −6.15E−06 3.48E−13 1.73E−06 1.36E−06 −101.09 −128.13 −100.9 −122.1

The unit of measurement in which each elementary flow in the table is expressed is defined at the beginning of the corresponding row

Process LCI technique

ECN PHY OLS DLS TLS

Production of electricity 1.47E+00 −9.52E+01 −7.55E−05 −1.58E+03 −1.24E+03
Production of heat −5.73E+03 −7.14E+03
Production of white clay 1.37E+03 1.37E+03 8.51E−05 1.24E+03 9.72E+02
Production of red clay 8.51E+02 8.51E+02

Production of sand 4.41E+02 4.41E+02 3.16E−05 4.57E+02 3.59E+02
Production of gravel 3.47E+02 3.47E+02

Production of crude oil −2.80E+04 −3.51E+04 −2.31E−04 −1.68E+04 −1.32E+04
Production of diesel oil −2.25E+05 −3.11E+04 −9.59E−05 −5.69E+03 −4.47E+03
Production of fuel oil 1.11E+03 1.11E+03

Production of natural gas −6.26E+03 −8.97E+02 −5.66E−06 −1.97E+02 −1.55E+02
Supply of olive cake 1.53E+02 1.53E+02 6.07E−06 1.03E+02 8.07E+01
Supply of straw 1.92E+01 1.92E+01

Production of bricks 1.00E+00 1.00E+00 7.70E−08 1.00E+00 7.86E−01

Table 10 Scaling factors s for
the five different methods of
calculating the inventory for the
production of 1 ton of bricks
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the same as those obtained without using any normalization
procedure, whereas the TLS and DLS solutions are slightly
different than those that had been obtained without normali-
zation. This behavior of the solutions holds both for the system
in which the amount of bricks is expressed in tons (case I) and
for the system in which it is expressed in kilograms (case II).
The scaling factors obtained with the TLS and DLS methods
in both cases are showed in Table 16. The two DLS solutions
are identical and the two TLS solutions are nearly identical.
The observation of Table 16 thus suggests that DLS and TLS
regression techniques, if applied after the rescaling of the

technology matrix and the final demand vector, are insensi-
tive to this change of unit of measurement.

The corresponding inventory tables are reported in
Table 17. The discrepancy vectors obtained are reported
in Table 18.

4 Discussion

The solution of the inventory problem in LCA is a very
complicated task, especially in presence of multi-functional

Table 12 Discrepancy vectors (and corresponding Euclidean norms) for the five different methods of calculating the inventory for the production
of 1 ton of bricks

Product flow LCI technique

ECN PHY OLS DLS TLS

1 MJ of electricity −1.14E−13 2.27E−13 −1.02E−04 −1.78E+03 −1.40E+03
1 MJ of heat 1.14E−13 −1.71E−12 −1.45E−04 2.34E+03 1.84E+03

1 kg of white clay 0 0 −2.04E−05 −1.34E+02 −1.05E+02
1 kg of red clay 0 0 1.96E−05 3.86E+02 3.03E+02

1 kg of recycled inerts - - 5.31E−06 6.90E+01 5.42E+01

1 kg of sand 0 0 −6.86E−06 −4.32E+01 −3.39E+01
1 kg of gravel 0 0 4.92E−06 1.10E+02 8.63E+01

1 kg of olive cake 0 0 −5.74E−06 −5.08E+01 −3.99E+01
1 kg of straw 0 0 4.60E−06 8.35E+01 6.56E+01

1 MJ of crude oil 1.36E−12 6.82E−13 −7.08E−06 −3.48E+03 −2.74E+03
1 MJ of diesel oil −3.21E−11 5.46E−12 −2.80E−06 2.63E+01 2.07E+01

1 MJ of fuel oil 0 0 −1.81E−04 −6.80E+03 −5.34E+03
1 MJ of natural gas 2.73E−12 −9.09E−13 −1.08E−04 1.02E+03 8.02E+02

1 ton of bricks 0 0 −1.00E+00 0 −2.14E−01
Euclidean norm 3.22E−011 5.83E−012 1.00E+00 8.26E+03 6.49E+03

The unit of measurement in which each product flow in the table is expressed is defined at the beginning of the corresponding row

Process LCI technique

ECN PHY OLS DLS TLS

Production of electricity 1.47E+00 −9.52E+01 −7.01E+01 −1.58E+03 −1.58E+03
Production of heat −5.73E+03 −7.14E+03
Production of white clay 1.37E+03 1.37E+03 7.90E+01 1.24E+03 1.24E+03
Production of red clay 8.51E+02 8.51E+02

Production of sand 4.41E+02 4.41E+02 2.94E+01 4.57E+02 4.57E+02
Production of gravel 3.47E+02 3.47E+02

Production of crude oil −2.80E+04 −3.51E+04 −2.15E+02 −1.68E+04 −1.68E+04
Production of diesel oil −2.25E+05 −3.11E+04 −8.90E+01 −5.69E+03 −5.69E+03
Production of fuel oil 1.11E+03 1.11E+03

Production of natural gas −6.26E+03 −8.97E+02 −5.25E+00 −1.97E+02 −1.97E+02
Supply of olive cake 1.53E+02 1.53E+02 5.64E+00 1.03E+02 1.03E+02
Supply of straw 1.92E+01 1.92E+01

Production of bricks 1.00E+00 1.00E+00 7.15E−02 1.00E+00 1.00E+00

Table 13 Scaling factors for the
five different methods of
calculating the inventory after
changing the units of
measurement (1,000 kg of
bricks)
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processes or open-loop recycling, where the system is
characterized by a rectangular and thus, non-invertible
technology matrix. In these cases, the LCA analyst has to
make many subjective assumptions, for example the choice
of the allocation factors. Even though different criteria can
be followed to make this choice, there is no precise rule for
it and this increases the subjectivity in LCA studies. It
therefore represents one of the Achilles’ heels of the LCA
methodology.

The application of the DLS and TLS methods to the
solution of the inventory problem, as described for an
illustrative case study concerning the process of bricks
production, could represent an alternative way to compute

the inventory vector of any product/process. It can be useful in
presence of multi-functional processes and in all those cases in
which the technology matrix is rectangular but the pseudo-
inverse method does not provide an acceptable solution. The
substantial advantage in using these techniques lies into the
possibility to circumvent the drawback of the traditional
solution of the inventory problem, which needs the use of
some computational expedients (such as substitution and
allocation) to transform the rectangular technologymatrix into
a square and invertible matrix.

The case study tackled in this paper shows that the
scaling factors (and, consequently, the inventory vectors)
obtained applying the DLS and TLS methods to the 14×

Product flow LCI technique

ECN PHY OLS DLS TLS

MJ of electricity −1.65E−12 2.27E−13 −9.48E+01 −1.78E+03 −1.78E+03
MJ of heat −2.05E−12 −1.71E−12 −1.35E+02 2.34E+03 2.34E+03

kg of white clay 0 0 −1.89E+01 −1.34E+02 −1.34E+02
kg of red clay 0 0 1.82E+01 3.86E+02 3.86E+02

1 kg of recycled inerts - - 4.93E+00 6.90E+01 6.90E+01

kg of sand 0 0 −6.37E+00 −4.32E+01 −4.32E+01
kg of gravel 5.68E−14 5.68E−14 4.57E+00 1.10E+02 1.10E+02

kg of olive cake 0 0 −5.33E+00 −5.08E+01 −5.08E+01
kg of straw 0 0 4.27E+00 8.35E+01 8.35E+01

MJ of crude oil −6.37E−12 6.82E−13 −6.57E+00 −3.48E+03 −3.48E+03
MJ of diesel oil 2.89E−11 5.46E−12 −2.60E+00 2.63E+01 2.63E+01

MJ of fuel oil 0 0 −1.68E+02 −6.80E+03 −6.80E+03
MJ of natural gas 9.09E−13 −9.09E−13 −1.00E+02 1.02E+03 1.02E+03

t of bricks 0 0 −9.29E+02 0 0

Euclidean norm 2.97E−011 5.83E−012 2.57E+02 8.26E+03 8.26E+03

Table 15 Discrepancy vectors
(and corresponding Euclidean
norms) for the five different
methods of calculating the in-
ventory after changing the units
of measurement (1,000 kg of
bricks)

Process LCI technique

Case I Case II

DLS TLS DLS TLS

Production of electricity −1.41E+03 −1.26E+03 −1.41E+03 −1.26E+03
Production of heat

Production of white clay 1.17E+03 1.05E+03 1.17E+03 1.05E+03
Production of red clay

Production of sand 4.42E+02 3.97E+02 4.42E+02 3.97E+02
Production of gravel

Production of crude oil −9.67E+03 −8.68E+03 −9.67E+03 −8.61E+03
Production of fuel oil −3.71E+03 −3.33E+03 −3.71E+03 −3.31E+03
Production of diesel oil

Production of natural gas −1.60E+02 −1.44E+02 −1.60E+02 −1.43E+02
Supply of olive cake 2.20E+02 1.97E+02 2.20E+02 1.96E+02
Supply of straw

Production of bricks 1.00E+00 8.98E−01 1.00E+00 8.98E−01

Table 16 Scaling factors for the
DLS and TLS cases applied
after rescaling of the original
matrix (case I) and of the matrix
with changed unit of measure-
ment (case II)
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Elementary flow LCI technique

Case I Case II

DLS TLS DLS TLS

Resources and raw materials

MJ of coal 2.04E+02 1.83E+02 2.04E+02 1.82E+02

MJ of lignite −1.35E+01 −1.21E+01 −1.35E+01 −1.22E+01
MJ of hydropower 2.75E+01 2.46E+01 2.75E+01 2.45E+01

MJ of geothermal energy 3.90E−01 3.50E−01 3.90E−01 3.48E−01
kg of water −8.75E+02 −7.85E+02 −8.75E+02 −7.87E+02
kg of ores (sand, gravel, etc.) −3.21E+03 −2.88E+03 −3.21E+03 −2.89E+03
MJ of crude oil 1.73E+04 1.55E+04 1.73E+04 1.54E+04

kg of other ores (iron, copper, etc.) 1.04E+00 9.35E−01 1.04E+00 9.29E−01
Emissions to air

kg of CO2 1.43E+03 1.28E+03 1.43E+03 1.28E+03

kg of CO 6.58E+00 5.90E+00 6.58E+00 5.87E+00

kg of CH4 9.04E−01 8.12E−01 9.04E−01 8.13E−01
kg of SO2 2.75E+00 2.47E+00 2.75E+00 2.47E+00

kg of NMVOC 7.47E+00 6.71E+00 7.47E+00 6.67E+00

Emissions to water

kg of COD 2.61E−01 2.34E−01 2.61E−01 2.34E−01
kg of BOD 2.26E−01 2.03E−01 2.26E−01 2.03E−01
kg of P 1.26E−03 1.13E−03 1.26E−03 1.13E−03
kg of N 4.13E−02 3.71E−02 4.13E−02 3.69E−02
kg of AOX 7.90E−05 7.09E−05 7.90E−05 7.05E−05
Solid wastes

kg of ash −6.96E−01 −6.25E−01 −6.96E−01 −6.19E−01
kg of sludge −7.69E−02 −6.90E−02 −7.69E−02 −6.85E−02
kg of nuclear waste 2.97E−06 2.67E−06 2.97E−06 2.68E−06

Table 17 Inventory tables for
the DLS and TLS cases applied
after rescaling of the original
matrix (case I) and of the matrix
with changed unit of measure-
ment (case II)

The unit of measurement in
which each elementary flow in
the table is expressed is defined
at the beginning of the
corresponding row

Product flow LCI technique

Case I Case II

DLS TLS DLS TLS

1 MJ of electricity −1.67E+03 −1.50E+03 −1.67E+03 −1.50E+03
1 MJ of heat 1.80E+02 1.62E+02 1.80E+02 1.40E+02

1 kg of white clay −2.05E+02 −1.84E+02 −2.05E+02 −1.84E+02
1 kg of red clay 3.15E+02 2.83E+02 3.15E+02 2.83E+02

1 kg of sand 6.90E+01 6.19E+01 6.90E+01 6.20E+01

1 kg of gravel −5.81E+01 −5.22E+01 −5.81E+01 −5.24E+01
1 kg of olive cake 9.49E+01 8.52E+01 9.49E+01 8.50E+01

1 kg of straw 6.61E+01 5.93E+01 6.61E+01 5.81E+01

1 MJ of crude oil 2.00E+02 1.80E+02 2.00E+02 1.79E+02

1 MJ of diesel oil −9.78E+02 −8.78E+02 −9.78E+02 −8.69E+02
1 MJ of fuel oil 6.01E+02 5.39E+02 6.01E+02 5.34E+02

1 MJ of natural gas −4.82E+03 −4.33E+03 −4.82E+03 −4.30E+03
1 t of bricks 3.28E+02 2.94E+02 3.28E+02 2.78E+02

1 MJ of electricity −1.11E−16 −1.02E−01 −9.99E+02 −1.02E+02
Euclidean norm 5.26E+03 4.73E+03 5.36E+03 4.70E+03

Table 18 Discrepancy vectors
(and corresponding Euclidean
norms) for the DLS and TLS
cases applied after rescaling of
the original matrix (case I) and
of the matrix with changed unit
of measurement (case II)

The unit of measurement in
which each product flow in the
table is expressed is defined at
the beginning of the
corresponding row
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8 economic matrix which describes the system at hand are
very close to each other, but they differ substantially from
the scaling factors obtained applying the OLS regression
method. A direct comparison with the scaling vectors
obtained with the allocation procedures is not possible,
because these latter have a different number of elements,
since allocation leads to a square matrix with a higher
number of columns. A direct comparison can instead be
made with the inventory vectors. From this case study,
it resulted that the inventory vectors obtained with the
DLS and TLS techniques are closer to the inventory
vectors obtained with the physical allocation than to
those obtained using the economic allocation. However,
this last property cannot be generalized to every inventory
problem in LCA, also taking into account that the system
tackled in this work was intentionally over-simplified
since our main concern was more on the investigation of
the numerical stability and applicability of the investigated
algorithms.

It is worth noting that in all the experiments accom-
plished, there is a large difference between the scaling
factors obtained by using TLS and those obtained by using
OLS. This is not surprising taking into consideration the
theoretical analysis of the TLS problems (see Van Huffel
and Vandewalle 1989).

Let A ¼ U0S0V0T be a SVD of A, where: A 2 <m�n;
S0 ¼ diag s

0
1; . . . s

0
n

� �
; s

0
1 � . . . � s

0
n are the singular val-

ues of A; U0 ¼ u
0
1; :::; u

0
m

� 	
(with ui 2 <m) and V

0 ¼
v
0
1; :::; v

0
n

� 	
(with v

0
i 2 <n) are the matrices of its left and

right singular vectors, respectively. As it is proved in Van
Huffel and Vandewalle (1989), the closer snþ1 (see
Appendix) is to zero and the larger is the difference
between snþ1 and s

0
n, the smaller the distance between

the OLS and the TLS solution.
As underlined in Van Huffel and Vandewalle (1988), when

snþ1 is close to s 0
n the TLS problem becomes close-to-

nongeneric. Nongeneric TLS problems occur whenever A is
(nearly) rank deficient (s 0

n � 0) or when the system A � s � f
is highly incompatible (large snþ1; Van Huffel and Vande-
walle 1989). In these cases, the generic TLS solution can still
be computed, but it becomes instable and very sensitive to
data errors (Golub and Van Loan 1980). Whereas, identifying
the problem as nongeneric and computing the nongeneric
TLS solution (see Van Huffel and Vandewalle 1991, pages
66-75) reduces the sensitivity considerably, “the solution error
is kept small and the stability is maintained” (Van Huffel and
Vandewalle 1991, page 210).

From the geometrical point of view, when the difference
s 0

n � snþ1 becomes very small (occurrence of the non-
generic TLS case) f is nearly orthogonal to unþ1 and
unþ1 � u0n (see Appendix).

As a consequence, the difference s 0
n � snþ1, or equiv-

alently the difference s 02
n � s2

nþ1, can be used as a measure

of how close the system A � s � f is to the class of
nongeneric TLS problems.

The expected distance between the standard (i.e., not
nongeneric) TLS solution and the OLS solution can
instead be inspected through the ratio sn s 0

n= . In this
case, the expected accuracy of the TLS solution with
respect to the OLS solution increases as this ratio
increases.

Resuming:

& The difference s 0
n � snþ1 (or s 02

n � s2
nþ1) is used to

assess whether or not the problem at hand is to be
considered as a nongeneric TLS problem. The smaller is
this difference, the closer the problem at hand is to the class
of nongeneric TLS problems, for which the specific
nongeneric TLS solution (described in Van Huffel and
Vandewalle 1991, Theorem 3.12, pag. 72) must be applied;

& The ratio sn s 0
n= is the indicator to be used to assess

the distance between the standard TLS solution and the
OLS solution. The larger this ratio, the higher the
expected accuracy of the TLS solution with respect to
the OLS one;

In our case, snþ1 is equal to 0.46 in both cases when the
amount of bricks is expressed in tons (case I) and in
kilograms (case II) and s 0

n is equal to 0.46 for case I and to
0.47 for case II. As a consequence, the difference between
s 0

n and snþ1 is exactly zero for case I and is 0.01 for case II
and the problem is close to nongeneric. This finding, on
one hand, justifies the significant differences between the
TLS and the OLS solutions; on the other hand, it opens
interesting perspectives for a further investigation of the
problem and the search for its solution as a nongeneric TLS
problem.

A last observation concerns the consistency of the TLS
solution, related to the number of rows of the matrix A. The
TLS solution vector es of the over-determined system A �
s ¼ f computes a strongly consistent estimate of the true
but unknown parameter s, i.e., it converges to s with
probability one as the number of equations m tends to
infinity (Van Huffel and Vandewalle 1991; Markovsky
and Van Huffel 2007). In our case, the number of
equations is as low as 14, that is very far from justifying
the assumption that m ! 1. In those cases in which the
inventory matrices has a high number of rows (like
the aforementioned case of the unallocated version of the
ecoinvent v1.3, with 2632 rows) the use of the TLS
technique is fully justified by its higher accuracy with
respect to the OLS method.

Finally, if one rescales the economic matrix applying the
normalization procedure described in Section 3.3, the
traditional solutions (i.e., those obtained with the allocation
based on physical relations among products or the
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allocation based on the economic value of the products) and
the OLS solution found after de-normalization result to be
the same as the corresponding solutions obtained without
using any normalization procedure, whereas the DLS and
TLS solutions are different from those that were obtained
without normalization. This behavior of the solutions holds
both for case I and case II.

The conclusion that is possible to draw from the
interpretation of the results obtained in our paper is that
the observation of the discrepancy vector is important but
it should not be used as the unique inspection criterion
for the assessment of a solution method. Of course, when
the application of a least-square technique yields an
acceptable solution (with low discrepancies between the
desired and the final demand vector), allocation can be
avoided. However, for those cases in which very high
discrepancies are obtained, allocation procedures are still
necessary.

If one decides to make resort to the least squares solutions,
the choice of the most suitable one can be driven by the
observation of some “quality” indicators like the ratio sn s 0

n=

and the difference s 0
n � snþ1 (or, equivalently, the differ-

ence s 02
n � s2

nþ1; Van Huffel and Vandewalle 1989).
The application to LCA of the least-squares techniques

described in the paper is absolutely innovative and liable to
further developments.

5 Conclusions and recommendations

In order for the least-squares techniques (in particular TLS and
DLS) to became a valuable alternative to the traditional
allocation procedures, there is a need for an optimization of
these techniques for the very particular systems that com-
monly occur in LCI, i.e., systems with sparse coefficients
matrices and with a vector of the constants f which is always
defined as a vector of null entries, except for the one
referring to the investigated reference flow. Furthermore,
for those TLS problems which are identified as nongeneric,
the application of a nongeneric TLS solution could signif-
icantly reduce the sensitivity to data errors (Van Huffel
1987) and thus is worth of being investigated also in the field
of LCI.

The future optimization of the above mentioned algo-
rithms could mark the route for a novel approach to the
solution of the problem of allocation in LCA. In fact, the
described approach requires only a minimal intervention by
the LCA analyst. He/she has only to apply a codified (and
thus repeatable) mathematical procedure which does not
allow enough degrees of freedom to overwhelmingly affect
the final results according to his/her personal choices. This
also makes it easier to accomplish an eventual sensitivity
analysis.
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