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S1. Experimental Setup1

S1.1. X-ray source and mechanical isolation of X-ray pulses2

The European Synchrotron Radiation Facility (ESRF) operates its electron storage ring at3

6 GeV. With this electron energy, a U17 in-vacuum undulator (17 mm period; SmCo magnets)4

set to 9 mm gap produces an X-ray spectrum that is sharply peaked at 18.25 keV, but has a5

long wavelength tail (Figure S1). The spectrum is quasi-monoenergetic with a relative bandwidth6

of 3.5%. In order to reduce the acquisition time, we took advantage of the full X-ray spectrum7

which is 250 times more intense compared to a standard monochromatic beam. Note that the8

loss of information in relaxing the bandwidth to 3.5% is minor due to the orientational disorder9

of molecules in solution [1]. A Pt-coated toroidal mirror, set at the incidence angle 2.668 mrad,10

focuses the radiation onto the sample. To minimize distortion of the toroidal mirror from the heat11

load from the undulator (∼100 W) and ti void overheating of the fast (un-cooled) high speed rotor,12

a synchronous heat-load chopper was positioned upstream of the mirror; it reduces the average heat13

load on the mirror and high-speed chopper (see below) by a factor 20 without affecting the pulses14

used in the pump probe experiment. When operated in 16-bunch mode, the ID09B beamline optics15

focuses 109 X-ray photons in a single pulse down to an elliptical spot as small as 0.06x0.1 mm2
16

(vertical x horizontal, FWHM) at the sample position. Quasi-monochromatic X-ray pulses (100 ps17

long) can be extracted from the high frequency pulse train when the storage ring is filled with18

either 4 or 16 electron bunches by using a high speed synchronized rotor (high-speed chopper)19

[2] spinning at ∼1 kHz (360th sub-harmonic of the time needed for a single electron bunch to20

complete the storage ring orbit). To be able to measure time-delays longer than 1 ms, and to21

allow our sample positioning system to move the sample into a fresh position at every shot, the22

repetition rate is further reduced by using a “millisecond” shutter. This lowers the repetition rate23

from 1 kHz down to 0-20 Hz.24

S1.2. Laser photolysis25

The protein sample was photolyzed with a circularly-polarized (via λ/4 waveplate), 527 nm26

laser pulse (DM-50, Laser Photonics). At this excitation wavelength, the decadic extinction coef-27

ficient for HbCO and deoxyHb are respectively: εCO = 2.77 and εdeoxy = 1.87 (mM−1 cm−1, Hb28

concentration in tetramers). The temporal and spatial profile of the photolysis laser are shown in29

Figure S2. Samples were loaded into X-ray capillaries (wall thickness = 10 µm) as shown in Figure30

S3. Two CO-bubbles of about 1 cm each surrounded the sample to ensure full saturation of the31

solution. A “protective plug” of CO-saturated glycerol was used to slow down diffusion of gases32

that might leak through the capillary sealing wax. To maximize the overlap between the pump-33

and probe-illuminated volumes, orthogonal pump-probe geometry was employed. The X-ray beam34

penetrated the 2 mm diameter capillary 0.2 mm below its top edge, its path length through the35

capillary was 1.2 mm. The energy of the laser pulse for the different experiments is reported in36

Table S1. The sample was maintained at 22 ◦C. To dilute any X-ray radiation damage over a37

large sample volume, the sample was translated back and forth along its long axis over a 25 mm38
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buffer concentration (M) 0.1 0.1 0.1 0.1 0.1
kind of buffer HEPES HEPES K-pho K-pho K-pho

Hb concentration (mM of tetramers) 0.57 0.70 0.25 0.50 1.00
pH of the solution 8.5 7.0 7.0 7.0 7.0
Laser energy (mJ) 1.0 1.2 0.54 1.0 2.1

Table S1: Parameters of the data collection.

range. To ensure that successive pulses in the 5-10 Hz pulse train excite adjacent but spatially-1

separated sample volumes in the capillary, the latter was translated by 0.35 mm after each probe2

pulse. While translating, the cylindrical quartz capillary containing the sample undergoes small3

(micrometric) vibrations (perpendicularly with respect to the incoming X-rays direction). The4

scattering signal is affected by these vibrations since the pathlength of X-rays through the sample5

changes if the capillary gets lower or higher. In order to test this hypothesis, we have measured6

the static scattering pattern of a sample as a function of the capillary position with respect to the7

X-ray beam without translating the capillary. The difference between two such scattering patterns8

resembles the fourth SVD component.9
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Figure S1: Spectrum of the X-ray beam produced by the U17 undulator operated with a 9 mm gap.

S2. Data collected under different experimental conditions and relative analysis10

Typical difference signals (laser on - laser off) obtained at selected time delays after photolysis for11

the various samples investigated are reported in Figure S4. Fits obtained by using the two-state12

kinetic model described in the main text and in Section S3 of this document are shown in Figures13

S5-S8.14
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Figure S2: Left panel: temporal profile of the laser pulse used to photolyze the sample. The trace has been recorded
with a nominal laser–to–Xray pulse time delay of zero; the spike represents the X-ray pulse (100 ps long). Right
panel: spatial profile of the laser beam; right scale: energy density (mJ/mm2) at the sample surface; the white
rectangle represents the X-ray probed region. Lower panels: normalized cuts along the x and y directions.
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Figure S3: Example of HbCO sample loaded into the capillary

S3. Two-state kinetic model and numerical routines1

This kinetic model is adapted from [3]. It is described by the following equations:2



∂[CO]/∂t = −
∑3

k=0 −kDR[CO][Ri] −
∑3

k=0 −kDT [CO][Ti]

∂[R0]/∂t = −KR0→T0
[R0] −4DR[CO][R0] +

(
KR0→T0

/L
)
[T0]

∂[R1]/∂t = −
(
KR0→T0

/s1
)
[R1] +4DR[CO][R0] −3DR[CO][R1] +

(
KR0→T0

/L
)
·
(
1/ (s c)1

)
[T1]

∂[R2]/∂t = −
(
KR0→T0

/s2
)
[R2] +3DR[CO][R1] −2DR[CO][R2] +

(
KR0→T0

/L
)
·
(
1/ (s c)2

)
[T2]

∂[R3]/∂t = −
(
KR0→T0

/s3
)
[R3] +2DR[CO][R2] −1DR[CO][R3] +

(
KR0→T0

/L
)
·
(
1/ (s c)3

)
[T3]

∂[R4]/∂t = −
(
KR0→T0

/s4
)
[R4] +1DR[CO][R3] +

(
KR0→T0

/L
)
·
(
1/ (s c)4

)
[T4]

∂[T0]/∂t = +KR0→T0
[R0] −4DT [CO][T0] −

(
KR0→T0

/L
)
[T0]

∂[T1]/∂t = +
(
KR0→T0

/s1
)
[R1] +4DT [CO][T0] −3DT [CO][T1] −

(
KR0→T0

/L
)
·
(
1/ (s c)1

)
[T1]

∂[T2]/∂t = +
(
KR0→T0

/s2
)
[R2] +3DT [CO][T1] −2DT [CO][T2] −

(
KR0→T0

/L
)
·
(
1/ (s c)2

)
[T2]

∂[T3]/∂t = +
(
KR0→T0

/s3
)
[R3] +2DT [CO][T2] −1DT [CO][T3] −

(
KR0→T0

/L
)
·
(
1/ (s c)3

)
[T3]

∂[T4]/∂t = +
(
KR0→T0

/s4
)
[R4] +1DT [CO][T3] −

(
KR0→T0

/L
)
·
(
1/ (s c)4

)
[T4]

(1)

3
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Figure S4: Example of data measured at selected time delays for the different samples.
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Figure S5: Left panel: fits of data relative to the 0.25 mM Hb sample in 0.1 M phosphate buffer at pH 7. Right
panels: (top) time dependence of R-like, T-like, and ∆T (see main text) as calculated from the best fit parameters;
(bottom) corresponding basis spectra.
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Figure S6: Fittings of data relative to the 1.00 mM Hb sample in 0.1 M phosphate buffer at pH 7; panels as in
Figure S5.
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Figure S7: Fittings of data relative to the 0.57 mM Hb sample in 0.1 M HEPES buffer at pH 7.4; panels as in Figure
S5.
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Figure S8: Fittings of data relative to the 0.7 mM Hb sample in 0.1 M HEPES buffer at pH 8.5; panels as in Figure
S5.

The above system has been solved numerically with the following initial parameters:1 {
[Ri](t = 0) = n!·i!

(n−i)!N
i
0 · (1−N0)n−i

[Ti](t = 0) = 0
(2)

where N0 is the fraction of deoxyhemes after the pump pulse, using the explicit Jacobian and a
requested absolute precision of 10−15. The time dependence of the temperature jump has been
assumed to be [4]:

Temp(t) =
1

1 + t/τT
(3)

The fitting program has been implemented in C++ and used the following libraries:2

• LSODE as provided by Octave 3.0 (to solve the system of differential equations) [5]3

• Newmat 11 (for matrix calculation/inversion) [6]4

• Minuit 1.7.9 (for χ2 minimization) [7]5

A block diagram of the fitting approach is shown in Figure S9.6

The fitting program calculates all Ri(t) and Ti(t) and the concentration of CO in solution.7

These quantities are used to calculate the Rlike(t) and Tlike(t) as discussed in the main text. As8

an example, Figure S10 shows Ri(t), Ti(t), and [CO](t) obtained by fitting the data relative to the9

0.5 mM Hb sample in 0.1 M phosphate buffer at pH 7.10

6
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Figure S9: Scheme of the fitting procedure
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S4. Three state kinetic model1

In the simple two state kinetic model discussed in the main text and in the preceding section,2

the change in microscopic CO bimolecular rebinding rate from “fast” to “slow” was assumed to3

occur simultaneously with the main structural change (dimers rotation) from R to T, i.e. at ∼24

µs. Such assumption can be questioned since many time-resolved optical studies suggest that the5

change in CO bimolecular rebinding rate occurs at ∼20 µs, i.e. a factor 10 slower. Moreover, it is6

important to check how a different model may influence the time scale of the structural transition7

obtained from the data analysis. To answer these questions, we developed a three-state kinetic8

model as shown in Figure S11. The basic idea is the following: a new set of species TR has9

been added, whose quaternary structure is ”T-like” (i.e. structurally indistinguishable, within the10

current S/N ratio of TR-WAXS data, from the canonical “T”) but whose CO bimolecular rebinding11

rate is still ”R-like”, i.e. fast. The WAXS-silent transition from fast to slow rebinding species12

is assumed to occur with a rate K2; suitable scaling and allosteric parameters are introduced13

as shown in Figure S11. These ”three-state” kinetic model can be easily implemented in the14

fitting routine; in analogy with the two-state kinetic model, the following relations have been used:15

cT (t) =
∑
i=0,4 Ti(t) +

∑
i=0,4 TRi

(t) and cR∗(t) =
∑
i=0,4(4 − i)/4Ri(t). The three-state kinetic16

model is able to give good fitting of the data with reasonable parameters value (Table S2). In17

particular, the fitting shown in Figure S12 has a 20 µs time scale for the TR0 to T0 transition,18

while the time scale for the main structural transition, R0 to TR0 , remains 2.1 µs (see Table S2).19

Use of different time scales for the TR0
to T0 transition gives fits of comparable quality; however,20

in all these fittings, the time scale of the main structural transition, R0 to TR0
, remains ∼2 µs.21

We conclude that our TR-WAXS data are not able to give definitive information on the time scale22

of the change in the CO rebinding rate from ”fast” to ”slow”; however, they unambiguously set23

the time scale of the main structural transition to ∼2 µs.24

parameter value error
τ1 = 1/k1 2.1 µs 0.1 µs
τ2 = 1/k2 20 µs —
DR 4.7 µM−1s−1 0.3 µM−1s−1

DT 0.038 µM−1s−1 0.001 µM−1s−1

L1 10 —
L2 103 —
c1 0.18 0.01
c2 0.15 0.01
s1 5 —
s2 1.2 —

Table S2: Parameters obtained by the fitting procedure using the three state model, long dash in the error column
indicates that the parameters has been kept fixed.

Figure S11: Scheme of the three-state kinetic model. Deoxy subunits are indicated as squares, CO-bound subunits
as red circles. The border of the squares indicates the “fast-” (black) or “slow” (blue) recombining Hb subunits.
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S5. Assignment of the 147 ns signal to tertiary relaxations1

S5.1. Time dependence2

The intensity differences following photolysis by 2 ns laser have been collected for few time3

delays. Figure S13 shows them after subtraction of the heating signal; although some differences4

can be clearly seen (also thanks to the high S/N of the data) the curves are quite similar; assuming5

that the quaternary structure cannot have the time to change in few nanoseconds, these data6

suggest that the main origin of the signal at 147 ns is of tertiary origin.7

S5.2. Dependence upon the percentage of deoxy hemes8

A classical test to discriminate between tertiary and quaternary relaxations is their dependence9

upon the initial extent of photolysis; in fact, the amplitude of a tertiary event is expected to10

depend linearly on the percentage of deoxy hemes, while – before saturation – a more-than-linear11

dependence is expected for quaternary events, due to hemoglobin cooperativity. The data reported12

in Table 1 of the main text are of course indecisive in this respect, since variations in the parameter13

N0 are too small to make meaningful comparisons. In view of its relevance, we made an “ad hoc”14

experiment to further investigate this point. To this purpose we repeated the experiment with 0.515

mM Hb in 0.1 M phosphate buffer pH 7, using the ∼2 ns pulses from a Nd:Yag laser to photolyze16

the sample. In the absence of multiple photolysis from a “long” laser pulse, a substantially lower17

percentage of deoxy hemes at ∼300 ns is expected, due to geminate rebinding. The results of18

this test experiment are reported in Figure S14. In panels a) and b) we report the difference19

signals at selected time delays measured with the “long” (∼230 ns) and with the “short” (∼2 ns)20

laser pulses, respectively.Note the different ordinate scales that evidence the different N0 values21

in the two experiments; note also that in both panels the signal is fully developed already at22

10 µs, indicating that the time scale of the quaternary transition is largely unaffected. In panel23

c) the signal measured at 300 ns with the 2 ns laser pulse (black curve) is multiplied by 1.3324

and superimposed to the signal measured at the same time delay with the 230 ns laser pulse25

(red curve); the excellent agreement confirms the assignment of the difference signal to tertiary26

structural changes and indicates that about 60% of deoxy hemes is achieved (at 300 ns) with27

the 2 ns laser pulse. The same scaling factor was adopted for the data at 100 µs measured after28

photolysis by the 2 ns laser; this is reported in panel d) and clearly shows that the amplitude scales29

more than linearly with the extent of photolysis, in line with the cooperativity of the R0 → T030

transition.31

9
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Figure S14: Comparison of data collected with 2 and 230 ns long laser photolysis pulse.
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S6. Oxygen binding curves1

Oxygen equilibrium curves of Hb in 0.1 M potassium phosphate at pH 7 were determined with
standard spectrophotometric/tonometric methods at two different Hb concentrations, 25 µM and
0.5 mM (in tetramers), respectively. Other experimental condition were identical to those used
for TR-WAXS measurements, except that a small amount (0.05% by weight) of Na-EDTA was
added to reduce oxidation of the protein to the met-Hb form. A solution (4 ml) of oxyhemoglobin
was introduced in a glass tonometer having the lower part sealed to a fused silica optical cuvette
(cuvette light path = 1 cm, tonometer volume = 205 ml). The system was deoxygenated by
alternatively exposing it either to vacuum or to pure nitrogen, while the tonometer (placed in a
horizontal position) was slowly rotated inside a thermostated bath at 22 ◦C. Periods of 1.5 min were
allowed between evacuation steps. Complete deoxygenation was checked spectrophotometrically
with a Jasco V-570 spectrophotometer equipped with a Peltier thermostatted cell regulated so
as to maintain the sample at 22 ◦C. Oxygenation of the sample was achieved by introducing in
the tonometer known volumes of air at atmospheric pressure with a gas-tight syringe. After each
addition, the solution was left to equilibrate with the gas phase for at least 10 min while slowly
rotating the tonometer inside a water bath at 22 ◦C. After equilibration, the absorption spectrum
of the sample was recorded in the desired wavelength range (470-670 nm or 600-830 nm depending
on the Hb concentration used). Complete oxygenation of the sample was achieved by opening the
tonometer and exposing the sample to air at atmospheric pressure. For samples at low (25 µM)
Hb concentration, the percentage saturation (y) at a given oxygen partial pressure (pO2) was
calculated with the method of Benesch & Benesch [8], i.e. by averaging the results of the following
two equations:

y =
(OD540 −ODdeoxy

540 ) + (OD560 −ODdeoxy
560 )

(ODoxy
540 −OD

deoxy
540 ) + (ODoxy

560 −OD
deoxy
560 )

(4)

and

y =
(OD576 −ODdeoxy

576 ) + (OD560 −ODdeoxy
560 )

(ODoxy
576 −OD

deoxy
576 ) + (ODoxy

560 −OD
deoxy
560 )

(5)

where ODdeoxy
λ and ODoxy

λ are the optical densities of the sample (background subtracted optical
absorption) at complete deoxygenation and complete oxygenation, respectively. For the experi-
ments at high (0.5 mM) Hb concentration, the spectral region extending between 600 and 830 nm
was used. The percentage saturation was calculated from the optical densities at 670 and 760 nm.
by using equation 4. The oxygen partial pressure inside the tonometer was calculated from the
amount of air introduced (Vsyr), the partial pressure of oxygen in the air (psyr), and the volume
of the gas phase in the tonometer (Vgas). For samples at high Hb concentrations, a correction for
the amount of oxygen bound to the protein was introduced. Including this correction term, one
has that:

pO2 =
psyrVsyr
Vgas

− nheme y R T

Vgas
(6)

where nheme is the number of moles of hemes contained in the sample, and R and T are the gas2

constant and absolute temperature respectively. The amount of met-Hb contained in the sample3

was estimated spectrophotometrically (from the absorption at 630 nm) and was found to be always4

less than 5%.5
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