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Year‐Round Transpiration Dynamics Linked With Deep
Soil Moisture in a Warm Desert Shrubland
D. J. Szutu1,2 and S. A. Papuga1,3

1School of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USA, 2Department of
Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA, 3Department of Geology,
Wayne State University, Detroit, MI, USA

Abstract Ecohydrological processes in semiarid shrublands and other dryland ecosystems are sensitive
to discrete pulses of precipitation. Anticipated changes in the frequency and magnitude of precipitation
events are expected to impact the spatial and temporal distribution of soil moisture in these drylands,
thereby impacting their ecohydrological processes. Recent field studies have shown that in dryland
ecosystems, transpiration dynamics and plant productivity are largely a function of deep soil moisture
available after large precipitation events, regardless of where the majority of plant roots occur. However, the
strength of this relationship and how and why it varies throughout the year remains unclear. We present
eddy covariance, soil moisture, and sap flow measurements taken over an 18‐month period in conjunction
with an analysis of biweekly precipitation, shallow soil, deep soil, and stem stable water isotope samples
from a creosotebush‐dominated shrubland ecosystem at the Santa Rita Experimental Range in southern
Arizona. Within the context of a hydrologically defined two‐layer conceptual framework, our results support
that transpiration is associated with the availability of deep soil moisture and that the source of this moisture
varies seasonally. Therefore, changes in precipitation pulses that alter the timing and magnitude of the
availability of deep soil moisture are expected to have major consequences for dryland ecosystems. Our
findings offer insights that can improve the representation of drylands within regional and global models of
land surface atmosphere exchange and their linkages to the hydrologic cycle.

1. Introduction

The soil depth at which plants uptake soil moisture is commonly linked with the root distribution of the
plant. Walter's two‐layer hypothesis of niche partitioning (Walter, 1939), in which deeper‐rooted plants such
as trees use deep soil moisture and shallower‐rooted plants such as grasses use shallow soil moisture, has
dominated ecohydrological thinking (e.g., Germino & Reinhardt, 2014; Holdo, 2013; Ogle & Reynolds,
2004). However, Walter's hypothesis may not apply in warm water‐limited environments where soil moist-
ure distribution, and therefore transpiration dynamics and plant productivity, is strongly controlled by the
frequency and intensity of precipitation pulses. Many water‐limited ecosystems experience pulses of moist-
ure that drive plant productivity (Huxman et al., 2004; Loik et al., 2004). Pulse size and frequency vary, and
these variations affect biological and physical processes in the drylands such as potential for biomass produc-
tion (Sala & Lauenroth, 1982), net ecosystem exchange (Kurc & Small, 2007), and soil evaporation (Raz
Yaseef et al., 2010). Climate models project long‐term changes in the frequency and magnitude of precipita-
tion events in water‐limited ecosystems (Easterling et al., 2000; Seager et al., 2007). These changes are
expected to have an effect on moisture distribution in the soil profile (Loik et al., 2004; Weltzin et al.,
2003), which will likely exacerbate changes in vegetation dynamics and partitioning of water resources
(e.g., Potts et al., 2006) and affect the water supply in water‐limited ecosystems (e.g., Knapp et al., 2008).

Stable water isotopes are a common ecohydrological tool for understanding the source waters for plants (e.g.,
Brooks et al., 2010; Dawson et al., 1993; Ehleringer et al., 1991; Ehleringer & Dawson, 1992; Ellsworth &
Sternberg, 2015; Goldsmith et al., 2012; Schwendenmann et al., 2015; Schwinning et al., 2002; Snyder &
Williams, 2000; Williams & Ehleringer, 2000). Using this technique, isotopically distinct source water end‐
members such as groundwater or shallow soil moisture can be combined in a linear function to determine
the contribution of each end‐member to the isotopic composition of the mixed plant component (Corbin
et al., 2005; Dawson, 1998; Dawson et al., 2002; Phillips & Gregg, 2001). However, quantifying from where
in the soil profile roots extract moisture has been challenging due to limitations in monitoring technologies
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(e.g., Zarebanadkouki et al., 2013) and confounding physical processes such as hydraulic redistribution
(Burgess et al., 1998; Nadezhdina et al., 2010). In a highly cited study, Ehleringer et al. (1991) make use of
Walter's hypothesis to support that deep‐rooted desert plants make use of deep soil moisture and shallow‐
rooted desert plants make use of shallow soil moisture. Their analysis assumed that because deep‐rooted
desert plants look isotopically similar to winter rains, deep‐rooted plants use winter moisture available from
the deep soil layers; conversely, because shallow‐rooted desert plants look isotopically similar to summer
rains, shallow‐rooted plants use summer moisture available from the shallow soil layers. However, their
study did not measure the isotopic composition of the moisture in the shallow and deep soil layers and only
assumed the use of water at specific depths based on root profiles.

Recent research has demonstrated that in semiarid ecosystems the density profile of plant roots does not
necessarily correspond to the depth of soil moisture that the plants are actively using for photosynthesis
and transpiration (Cavanaugh et al., 2011; Kulmatiski et al., 2010; Kurc & Small, 2007). For example, regard-
less of their rooting profile, in shallow‐rooted desert grassland and deep‐rooted desert shrublands, plant
response was most strongly associated with moisture deep in the soil profile (i.e., >37.5 cm; Cavanaugh
et al., 2011; Kurc & Benton, 2010; Kurc & Small, 2007). Stable isotope research has illustrated that roots
can be hydraulically isolated from the soil; that is, root water was isotopically different from that of the sur-
rounding soil (Thorburn & Ehleringer, 1995). Plant roots can hydraulically redistribute soil water along a
moisture gradient (Richards & Caldwell, 1987), for example, to increase resilience against drought stress
(Beyer et al., 2016; Kulmatiski et al., 2010). Furthermore, plant rooting strategies may be driven by other lim-
iting growth factors such as nutrients (Brantley et al., 2017). Clearly, the presence of roots alone does not
indicate where plants are extracting water from in the soil profile, so understanding plant water use strate-
gies must go beyond the physical distribution of plant roots to understanding where in the soil profile plants
are most dependent on soil moisture and how this dependence varies throughout the year.

Based on previous ecohydrological research in water‐limited ecosystems, Sanchez‐Mejia and Papuga (2014)
proposed working within a hydrologically defined two‐layer framework in which shallow soil moisture (0‐20
cm) is primarily lost to evaporation (Gowing et al., 2006; Kurc & Small, 2004), while deep soil moisture
(20‐60 cm) is primarily used for transpiration (Cavanaugh et al., 2011; Kurc & Small, 2007). In this concep-
tual framework (Figure 1a), four soil moisture cases are always possible (Sanchez‐Mejia & Papuga, 2014):
Case 1 with a dry shallow layer and a dry deep layer, Case 2 with a wet shallow layer and a dry deep layer,
Case 3 with a wet shallow layer and a wet deep layer, and Case 4 with a dry shallow layer and a wet deep
layer (Figure 1a). We expect to see Case 1 (dry/dry) when there is no rain or a few days after a small storm
(<5 mm; Cavanaugh et al., 2011; Sala & Lauenroth, 1982), Case 2 (wet/dry) after a small storm; Case 3 (wet/
wet) after a large (>20mm; Cavanaugh et al., 2011) storm or a small storm following Case 4, and Case 4 (dry/
wet) a few days after a large storm. This framework shifts the focus of the two layers from the physical loca-
tion of the plant roots such as in Walter's hypothesis to the location of soil moisture availability and the phy-
sical processes dominating the movement of soil moisture.

Within the context of this hydrologically defined two‐layer conceptual framework, one can make the
assumption that there are measurable isotopic differences between the shallow and deep soil because of eva-
porative isotopic fractionation (Figure 1b). Evaporation will deplete shallow soil moisture and preferentially
evaporate isotopically lighter water molecules, thus leaving water with relatively higher δ18O and δ2H values
in the shallow soil layer (e.g., Kulmatiski et al., 2006; Newman et al., 2010). Through time, evaporation is
expected to shape a soil profile that has isotopically distinct shallow and deep soil moisture layers, with shal-
low soil moisture tending to be more enriched in 18O and 2H than deep soil moisture. If indeed shallow soil
moisture and deep soil moisture differ in their water isotopic signatures, the soil layer from which semiarid
plants are drawing their moisture can be identified. Further, the source of soil moisture can be potentially
linked to summer or winter precipitation (Ehleringer et al., 1991; Ingraham et al., 1991; Williams &
Ehleringer, 2000).

The objective of our study was to illustrate that dryland ecosystems tend to prefer deep soil moisture for their
ecohydrological processes year‐round, but that the strength of these relationships vary throughout the year
and that the reason for these differences is also variable. To do this, we looked at the differential use of
shallow and deep soil moisture of the semiarid Larrea tridentata (creosotebush), a widespread evergreen
shrub that dominates the three North American warm deserts. As an evergreen shrub, creosotebush has
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the potential to be actively transpiring throughout the year (Sharifi et al., 1988), allowing for the
quantification of year‐round differences in plant water use. We combined discrete isotopic sampling with
continuous measurements of transpiration and soil moisture through the rooting zone over an 18‐month
period in a semiarid creosotebush‐dominated shrubland of southeastern Arizona.

Wemade use of the hydrologically defined two‐layer conceptual framework to address the following hypoth-
eses: (1) shallow and deep soil moisture are isotopically distinct and that the reason behind these differences
varies throughout the year and (2) year‐round transpiration is limited to periods when deep soil moisture is
available, regardless of how or when the moisture got there. Preliminary work support that in semiarid
ecosystems, root density distribution does not necessarily correspond to the depth from which plants are
primarily using. Again, this is contrary to the widely used two‐layer paradigm where root distributions are

Figure 1. (a) An example of when the four Cases may occur relative to rain events: Case 1 (dry/dry) with dry shallow and
dry deep soil layers; Case 2 (wet/dry) with wet shallow and dry deep soil layer; Case 3 (wet/wet) with wet shallow and
wet deep soil layers; Case 4 (dry/wet) with dry shallow and wet deep soil layers. (b) Conceptualization of how the
hydrologically defined shallow and deep soil layers might become isotopically distinct through precipitation and
evaporation.
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assumed to govern resource partitioning (Ehleringer et al., 1991; Walter, 1939; Ward et al., 2013). Other
studies have highlighted the value of a hydrologically defined two‐layer soil conceptual framework in under-
standing how deep soil moisture affects land surface‐atmosphere interactions (Sanchez‐Mejia & Papuga,
2014; Sanchez‐Mejia & Papuga, 2017). Here we use this simple guiding conceptual framework to isotopically
isolate hydrologic conditions to better understand plant water use strategies in a semiarid ecosystem.

2. Methods
2.1. Study Site: Santa Rita Experimental Range

The Santa Rita Experimental Range (SRER) is located 60 km south of Tucson, Arizona. Our research was
conducted at The Santa Rita Creosote (US‐SRC) AmeriFlux Site (31.9083°N, 110.8395°W), located in the
northern portion of SRER. Creosotebush has been the dominant species near the northern border of
SRER (Humphrey & Mehrhoff, 1958). An eddy covariance tower provided half‐hourly micrometeorological
measurements (Sanchez‐Mejia & Papuga, 2014). The SRC experiences cool winters and warm summers,
with an average annual temperature of about 20 °C (Sanchez‐Mejia & Papuga, 2014). The SRC has an aver-
age annual precipitation of about 133 ± 38 mm (1923‐2013, Northeast Station; http://ag.arizona.edu/SRER/
data.html), which falls in a bimodal precipitation pattern, with about 52% of the precipitation falling during
the North American Monsoon (July through September) and about 23% of the precipitation falling during
the winter rainy season (December through February; Sanchez‐Mejia & Papuga, 2014). Vegetation cover
is about 22%, of which creosotebush is 14% cover, and 10% are small grasses, forbs, and cacti (Kurc &
Benton, 2010). Creosote canopy patches had the highest root densities (1‐1.5 g root/kg soil) at 25 cm, while
bare patches had highest root densities (~1 g root/kg soil) at 10 and 35 cm (Figure 2 in Sanchez‐Mejia &
Papuga, 2014). The soil type is sandy loam with no caliche layer within the first 1‐m depth (Kurc &
Benton, 2010). The estimated depth to groundwater near our site is greater than 70 m (Eastoe et al., 2004).

2.2. Soil Moisture

At SRC, six soil moisture profiles are located within the eddy covariance tower footprint. Three profiles are
located under creosotebush canopy and three are located in the inter‐canopy “bare” soil to account for dif-
ferent wetting and drying processes under the canopy and in the intercanopy patches (Newman et al., 2010).
Soil moisture was measured every 30 min with water content reflectometers (precision < 0.1%; CS616,
Campbell Scientific, Inc., Logan, UT, USA).

Five depths were used for each soil moisture profile: 2.5, 12.5, 22.5, 37.5, and 52.5 cm. At each depth, canopy
soil moisture sensor measurements were averaged together, and bare soil moisture sensor measurements
were averaged together. The site‐wide soil moisture measurement at each depth was then calculated by com-
bining the average canopy and average bare measurements with weights based on surveyed fractional cover
of canopy and inter‐canopy spaces (Cavanaugh, unpublished data). Average root zone soil moisture (θroot)
was calculated by averaging volumetric water content from all five depths. Then, the profiles were divided
into shallow (0‐20 cm) and deep (20‐60 cm) soil moisture layers per the two‐layer soil moisture conceptual
framework (Sanchez‐Mejia & Papuga, 2014). To calculate soil moisture in the two different soil moisture
layers, we used weighted averages based on the relative contribution of each sensor in the shallow or deep
layers of the soil layer (Sanchez‐Mejia & Papuga, 2014); for example, the soil moisture sensor at 22.5 cm
represents soil moisture between 15.5 cm and 29.5 cm and therefore contributes to both shallow and deep
soil moisture equation. Average soil water content in the shallow and deep layers was calculated with the
following equations (Sanchez‐Mejia & Papuga, 2014):

θshallow ¼ 0:33θ2:5 þ 0:5θ12:5 þ 0:17θ22:5 (1)

θdeep ¼ 0:25θ22:5 þ 0:375θ37:5 þ 0:375θ52:5 (2)

θ2.5 is the soil water content at 2.5 cm, θ12.5 is the soil water content at 12.5 cm, etc.

Soil moisture Cases for the conceptual framework are defined by soil moisture thresholds set in Sanchez‐
Mejia and Papuga (2014; 0.1229 % for θshallow and 0.1013 % for θdeep). Because shallow soil moisture is pri-
marily lost through evaporation, the shallow soil moisture threshold was based on soil moisture drydown
curves (Sanchez‐Mejia & Papuga, 2014). In comparison, deep soil moisture is lost primarily through
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transpiration, so the deep soil moisture threshold was based on site‐
specific carbon dynamics via net ecosystem exchange of CO2 measured
from an eddy covariance tower (Sanchez‐Mejia & Papuga, 2014).
Further, we divided each year into soil moisture seasons. Following
Sanchez‐Mejia and Papuga (2014), we defined two distinct seasons: winter
(December–February) and summer (July–September) to focus on the dis-
tinct bimodal precipitation regime at our study site.

2.3. Stable Water Isotopes

From July 2014 through March 2015, precipitation samples, plant tissue,
and soil samples were collected approximately every 2 weeks at three col-
lection sites within the footprint of the eddy covariance tower. These three
collections sites were co‐located with three permanently installed time‐
lapse phenological cameras (Kurc & Benton, 2010), and all isotopic sam-
ples were collected within 10 m of the phenological camera at each
collection site.

We placed four precipitation collection bottles within the tower footprint:
two bottles under the creosotebush canopy and two bottles in the interca-

nopy space (Figure 2). The collection bottles (250‐ml high‐density polyethylene bottles with a funnel
inserted into the cap) were prepped with a 5‐mm layer of mineral oil to minimize isotopic enrichment
through evaporation (e.g., West et al., 2007; Williams & Ehleringer, 2000). On each collection date, if there
had been rain since the previous collection date, we collected the four bottles and replaced them with new
collection bottles prepared with fresh mineral oil. All isotopic samples collected were placed immediately in
a cooler with ice until transported back to the lab where they were stored in a refrigerator until analysis (e.g.,
Hopkins et al., 2014). In the lab, approximately 20 ml of precipitation from each high‐density polyethylene
collection bottle was filtered through a cellulose filter into a 20‐ml glass vial with polycone cap. The vial was
wrapped with parafilm and stored in the lab refrigerator.

On each collection date, we sampled three plants of an intermediate size class (height between 1.5 and 2 m).
We clipped a mature, suberized stem to minimize effects of stem‐water evaporation (Dawson & Ehleringer,
1993). Since this was a destructive sampling technique, different plants were chosen on each collection date.
Soil samples were collected at every 5 cm down to a 45‐cm depth, using a 5‐cm diameter split‐core soil sam-
pler (AMS, Inc., American Falls, ID, USA; e.g., Williams & Ehleringer, 2000). Two soil cores were sampled
on each collection date, one under the canopy and one in the intercanopy space. The stem and soil samples
were immediately sealed in a 20‐ml glass vial with a polycone cap, and the vial was wrapped with parafilm.

We analyzed the precipitation, stem, and soil samples for stable water isotopes using an isotope ratio infrared
spectroscopy water analyzer (L2130‐i cavity ring‐down spectrometer, Picarro Inc., Santa Clara, CA) that was
calibrated against the primary isotopic standards of Vienna Standard Mean Ocean Water 2 and Standard
Light Antarctic Precipitation 2 (precision: ±0.35‰ for δ18O, ±1.5‰ for δ2H). This analyzer was used with
an integrated peripheral (A0213 Induction Module, Picarro Inc., Santa Clara, CA) that vaporizes the water
from the environmental matrix‐bound sample and passes it into the analyzer by a zero‐gas carrier. Stem and
soil subsamples were loaded directly into a metal sample holder, and precipitation subsamples were injected
onto a small piece of glass filter paper, which was then clamped into a metal sample holder. For all samples,
the sample holder was loaded into a vial with a septa cap and then quickly loaded into the Induction Module
vaporizer. The samples were heated in the Induction Module, and the vaporized water was passed into the
analyzer. An online Micro‐Combustion Module (Picarro Inc., Santa Clara, CA) oxidized some organic con-
taminants that could cause spectral interference (Berkelhammer et al., 2013; Martín‐Gómez et al., 2015).
Although some isotopic errors may still be present because of spectral interference (Johnson et al., 2017),
for our objectives we were interested in the relative rather than the exact isotopic values. To correct for mem-
ory effects common to gas analyzers, each sample was injected 10 times, and the sample result was calcu-
lated from the average of the last three injections. Three stem, two shallow soil (from ~10‐cm depth), two
deep soil (from ~40‐cm depth), and four precipitation samples were analyzed from each day and averaged
together to calculate a mean daily isotopic value for stem, shallow soil, deep soil, and precipitation samples.

Figure 2. Our creosote‐dominated site had precipitation collected at both
inter‐canopy and canopy locations.
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The detailed methodology for analyzing samples with the Induction Module‐cavity ring‐down spectrometer
system is described by Johnson et al. (2017).

2.4. Transpiration and Evaporation

Heat balance sap flow sensors (thermocouple precision 0.1 °C; Dynagauge, Dynamax Inc., Houston, TX,
USA) were used to measure half‐hourly sap flow rate and to estimate transpiration. These sensors use an
energy budget to interpret heat fluxes from a constant heat source (Senock &Ham, 1993). Eight sap flow sen-
sors were installed on four randomly chosen creosotebush shrubs within 10 m of the eddy covariance tower
and of the soil moisture profiles. The sensors were installed on separate branches of the shrub at 1‐m height.
To reduce the effect of irradiation heat on the sensors, the sensors were covered with reflective bubble wrap,
and the length of trunk below the sensor were wrapped with several layers of heavy‐duty aluminum foil (J.
Ji, personal communication Sept. 2013; Langensiepen et al., 2012). The sizes of the sensors were 5, 9, and 16
mm (designed to be installed on stems with the respective diameters). Two shrubs had two 16‐mm sensors
each, and the other two shrubs each had one 5 mm and one 9‐mm sensor. Sap flow velocity was calculated as
per cross‐sectional stem area. The average sap flow velocity was scaled up with a site‐specific average stem
density and percent cover to estimate shrub‐level transpiration (Cavanaugh et al., 2011). Evaporation was
estimated by subtracting transpiration measured from the sap flow system from evapotranspiration mea-
sured by the eddy covariance tower (Rana & Katerji, 2000). We made the assumption that creosotebush
water use was a proxy for ecosystem plant water use because creosotebush comprised the majority of vegeta-
tion biomass at the site (Kurc & Benton, 2010). We also assumed that our measurements of transpiration
represented the same source area as the eddy covariance tower. As such, our results should be considered
with these assumptions in mind.

2.5. Data Analysis

Daily averages of shallow and deep soil moisture were calculated from 30‐min means of soil moisture using
equations (1) and (2). Daily sums were calculated from the 30‐min measurements of sap flow transpiration,
evapotranspiration, and evaporation. To test for differences among normally distributed soil moisture and
transpiration data, we used unpaired t tests assuming unequal variance (MATLAB 2013b). To test for differ-
ences among isotopic data, we used the nonparametric Mann‐Whitney U test because of nonnormal distri-
butions and low sample numbers (e.g., Newman et al., 2010). Linear regression and other statistical analyses
were performed in MATLAB 2013b (The Mathworks, Inc., Natwick, MA).

3. Results
3.1. Precipitation

Our site received 237 mm of precipitation during the summer (July 2014 through August 2014), nearly dou-
ble the long‐term annual average precipitation received at the site. Our observation period included two win-
ter seasons (December 2013 through February 2014; December 2014 through February 2015). These two
winter seasons had different precipitation patterns. In winter 2013‐2014, the total precipitation was about
25 mm, distributed across 3 days of precipitation, but in winter 2014‐2015, the total precipitation was about
115 mm, distributed across 18 days of precipitation (Figure 3a). Winter 2014‐2015 had more frequent rain
events with an average smaller magnitude (Figure 3a). Vapor pressure deficit (VPD) was low during and
immediately following rainfall and was generally higher in the summer than in the winter (Figure 3a),
which was expected because higher temperatures in the summer raised the saturation vapor pressure.

The overall average of precipitation samples (n=16) had a δ18O value of ‐5.4 ± 0.8‰ (mean ± standard error)
and a δ2H value of ‐46 ± 7‰. We collected isotopic samples from the summer season and one winter season
(the “wetter”winter of 2014‐2015). The average of summer precipitation samples (n= 9) had a δ18O value of
‐4.6 ± 1.1‰ and a δ2H value of ‐44 ± 9‰, and the average of winter precipitation samples (n = 4) had a δ18O
value of ‐7.6 ± 1.8‰ and a δ2H value of ‐55 ± 18‰ (volume‐weighted averages of summer precipitation sam-
ples had a δ18O value of ‐4.6‰ and a δ2H value of ‐49‰ and winter precipitation had a δ18O value of ‐7.2‰
and a δ2H value of ‐53‰). Average summer precipitation was more enriched in 18O than average winter pre-
cipitation (Mann‐Whitney p=0.20; Figure 4). These averages are consistent with other published values of
long‐term (1981‐2000) Tucson precipitation: May‐September δ18O averages of ‐6.0‰ and δ2H averages of ‐
43, and October‐April δ18O averages of ‐8.9‰ and δ2H averages of ‐56‰ (Wright, 2001). There were no

10.1029/2018WR023990Water Resources Research

SZUTU AND PAPUGA 5684



statistically significant differences in δ2H or δ18O values between canopy and intercanopy precipitation
samples (Mann‐Whitney p>0.5).

3.2. Soil Moisture

Shallow soil moisture over our study period ranged from 0.06 to 0.21 m3/m3, and deep soil moisture ranged
from 0.08 to 0.16 m3/m3. Shallow soil moisture increased with different magnitudes after both small and
large rain events (Figure 3b; see November and December 2013), but deep soil moisture increased only after
large rain events (Figure 3b; see March 2014) or after a series of small rain events (Figure 3b; see January

2015). However, differences in precipitation resulted in very different
ranges of soil moisture between the twowinter seasons themselves: winter
2013‐2014 had a maximum shallow and deep soil moisture of 0.16 and
0.11 m3/m3, respectively, whereas winter 2014‐2015 had a higher maxi-
mum shallow and deep soil moisture of 0.21 and 0.16 m3/m3 (Figure 3b).

The overall average of shallow soil samples (n=31) had a δ18O value of ‐4.8
± 0.9‰ (mean ± standard error) and a δ2H value of ‐55 ± 4‰. The
averages of summer and winter shallow soil samples, respectively, had
δ18O values of ‐1.9 ± 1.0‰ and ‐6.3 ± 1.5‰ and δ2H values of ‐45 ± 4‰
and ‐57 ± 10‰ (Figure 4). Average summer shallow soil samples were
more enriched in 18O than average winter shallow soil samples (Mann‐
Whitney p=0.02; Figure 4) The overall average of deep soil samples
(n=31) had a δ18O value of ‐4.0 ± 0.5‰ and a δ2H value of ‐53 ± 2‰.
The averages of summer and winter deep soil samples, respectively, had
δ18O values of ‐3.1 ± 0.8‰ and ‐2.9 ± 0.9‰ and δ2H values of ‐56 ± 3‰
and ‐45 ± 4‰, so average summer deep soil was more enriched in 2H
than average winter deep soil (Mann‐Whitney p=0.06; Figure 4). There
was no statistically significant difference in δ2H or δ18O values between
canopy and intercanopy shallow soil and deep soil samples (Mann‐
Whitney p>0.5).

Over our 18‐month study period, we categorized each day as one of the
four soil moisture Cases using the daily average shallow and deep soil
moisture. We found that n = 306 days for Case 1 (dry/dry), n = 10 days
for Case 2 (wet/dry), n = 164 days for Case 3 (wet/wet), and n = 68 days

Figure 3. Time series of (a) daily precipitation [mm], vapor pressure deficit (VPD) [kPa]; (b) shallow and deep volumetric soil moisture (θ, [m3/m3]); (c) soil moist-
ure cases; (d) transpiration (T) [mm/day], evaporation (E) [mm/day]; (e) δ2H values [‰] of precipitation and stem samples; (f) δ2H values [‰] of shallow and deep
soil samples; the shaded area highlight winter and summer seasons when isotope samples were collected.

Figure 4. Daily precipitation, shallow soil, deep soil, and stem samples
plotted with the global meteoric water line (GMWL; gray dotted line;
Clark & Fritz, 1997), and the local meteoric water line (LMWL; gray dashed
line, δ2H = 6.67 * δ18O – 3.7‰; Gallo et al., 2012). The gray symbols
represent summer samples, the white symbols represent winter samples,
and the large icons represent the seasonal averages with standard error bars.
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for Case 4 (dry/wet). Average daily shallow soil moisture was higher in
Case 2 (0.14 m3/m3) and Case 3 (0.15 m3/m3) than in Case 1 (0.08 m3/
m3) and Case 4 (0.11 m3/m3). Deep soil moisture was higher in Case 3
(0.12 m3/m3) and Case 4 (0.11 m3/m3) than in Case 1 (0.09 m3/m3) and
Case 2 (0.10 m3/m3). Deep soil moisture had a much higher maximum
and median in Case 3 than in Case 4 (Figure 5). Since Case 4 always
follows Case 3 (Figure 3c), with transpiration supported by available deep
soil water present in both these cases, the difference in deep soil moisture
between these two cases could be a proxy for the amount of water that had
been transpired away from the deep soil layer.

All four soil moisture cases were found in both winter and summer sea-
sons. In the winter, most of the days were either Case 3 (wet/wet) or
Case 1 (dry/dry), but again, the different precipitation dynamics in the
two winter seasons led to different soil moisture distributions. Case 1
made up 59% of the “drier” winter, but only 14% of the “wetter” winter,
whereas Case 3 made up 34% of the “drier”winter and 81% of the “wetter”
winter. The “drier”winter had no Case 2 (wet/dry) days and only six Case
4 (dry/wet) days; the “wetter” winter had four Case 2 days and no Case 4
days. In the summer (n=92 days), most of the days were evenly divided
between Case 1 (32 days), Case 3 (31 days), and Case 4 (26 days), and only
3 days of summer fell into Case 2.

3.3. Stable Water Isotopes

Precipitation samples fell close to the local meteoric water line (LMWL); the samples that were to the right
of the LMWL may have been affected by evaporation despite the precautions we took during sampling and
analysis. In addition, the summer precipitation samples tended to be more to the right of the LMWL than
winter precipitation samples (Figure 4), which we expect because precipitation arriving during the warmer

summer months is more enriched in the heavy isotopes 18O and 2H rela-
tive to precipitation during the cooler winter months (Dansgaard, 1964).
An overall precipitation regression line was δ2H = 7.8* δ18O ‐3.8 (Table 1).
The shallow soil samples were similar to the precipitation isotope
samples in that they fell along the LMWL, with the summer shallow soil
samples tending more to the right of the winter shallow soil samples
(Figure 4). Again, this is what we expect because the shallow soil under-
goes more evaporative enrichment during the warmer summer months
than during the cooler winter months (Gat, 1996). The deep soil isotope
samples all fell to the right of the LMWL (Figure 4), a trend which seems
to indicate that shallow and deep soil moisture are isotopically different
and that deep soil moisture may be influenced by other fractionation
processes such as plant discrimination against heavier isotopes (18O and
2H) during water uptake (e.g., Ellsworth & Williams, 2007; Lin &
Sternberg, 1993).

We analyzed seasonal patterns in precipitation and soil δ2H and δ 18O
values. During the winter, precipitation and shallow soil values were simi-
lar, whereas summer shallow soil samples were relatively enriched in 18O
than summer precipitation samples (Mann‐Whitney p=0.15; Figure 4).
On the other hand, summer precipitation δ2H and δ 18O values were simi-
lar to winter deep soil values, and winter precipitation δ2H values were
similar to summer deep soil values (Figure 4). Unlike the average shallow
soil samples, the summer deep soil samples were more depleted in 2H
than the winter deep soil samples (Mann‐Whitney p=0.06; Figure 4).
Because summer precipitation was more enriched in 2H and 18O than
winter precipitation, summer deep soil moisture was likely recharged in

Figure 5. Daily average shallow and deep soil moisture in each soil moist-
ure Case. The horizontal lines indicate wet/dry thresholds for the shallow
soil layer (gray dashed line, determined by soil moisture drydown curves)
and the deep soil layer (black dotted line, derived from site‐specific carbon
dynamics measured from an eddy covariance tower; Sanchez‐Mejia &
Papuga, 2014).

Table 1
Linear Regression Between Precipitation, Soil, and Stem δ18O and
δ2H Values

All data

Sample type n R2 Slope

Precipitation 16 0.88 7.8**
Shallow soil 31 0.75 3.7**
Deep soil 31 0.29 2.0**
Stem 31 0.74 3.9**

Summer

Sample type n R2 Slope

Precipitation 9 0.97 8.1**
Shallow soil 11 0.66 3.4*
Deep soil 11 0.37 2.4*
Stem 12 0.84 4.3**

Winter

Sample type N R2 Slope

Precipitation 4 0.93 9.6*
Shallow soil 9 0.81 6.3**
Deep soil 9 0.74 3.3**
Stem 10 0.55 3.7*

*The slope is significantly different from 0 at α=0.05. **The slope is sig-
nificantly different from 0 at α=0.01.
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part by winter precipitation and winter deep soil moisture was likely recharged in part by summer
precipitation.

In Case 1 (dry/dry), shallow soil samples tended to be more depleted in 2H than deep soil samples, and the
deep soil samples tended to be more depleted in 2H than the stem samples (Figure 6a). The pattern was dif-
ferent in the summer, with the deep soil samples being the most depleted in 2H (Figure 6b). Summer preci-
pitation was relatively enriched in 2H (Figure 4), and the higher evaporative demand of summer led to
higher δ2H values of shallow soil than deep soil samples. In Case 3 (wet/wet), deep soil samples were slightly
more depleted in 2H than shallow soil and stem samples (Figure 6a). In the winter, shallow samples were
more depleted in 2H than deep soil and stem samples (Figure 6c) because the winter shallow soil was
recharged by winter precipitation, which was relatively depleted in 2H compared to summer precipitation
(Figure 4). Finally, Case 4 (dry/wet) was similar to Case 3 in that deep soil samples were more depleted in
2H than shallow soil and stem samples both overall and in the summer (Figures 6a and 6b).

3.4. Transpiration

Transpiration averaged 0.3 mm/day, with a maximum of 0.8 mm/day (Figure 3c). Evapotranspiration aver-
aged 0.5 mm/day over the observation period, with a maximum of 3.3 mm/day. While evapotranspiration
always increased immediately following rain events, evaporation contributed most to this immediate
increase in evapotranspiration, while the contribution of transpiration to evapotranspiration was low imme-
diately following a rain event, only increasing a few days after the rain event (Figure 3d). As expected, sum-
mer averages of transpiration (0.5 mm/day) and evapotranspiration (1.2 mm/day) were higher than winter
averages of transpiration (0.2 mm/day) and evapotranspiration (0.5 mm/day).

The different precipitation patterns and soil moisture content of our two winter seasons resulted in different
average evapotranspiration but similar average transpiration. The “drier” winter in 2013‐2014 had an aver-
age deep soil moisture of 0.10 ± 0.006 m3/m3 (mean ± standard deviation), while the “wetter” winter in
2014‐2015 had a higher average deep soil moisture of 0.13 ± 0.02 m3/m3. In the drier winter, average evapo-
transpiration about 0.2 mm lower than the wetter winter, while the average transpiration was only about
0.01 mm lower. We also found that in the drier winter, increasing deep soil moisture was correlated with
decreasing transpiration, while in the wetter winter, increasing deep soil moisture was correlated with
increasing transpiration. This difference in dynamics could indicate an effect of air temperature on winter-
time transpiration. In the drier winter, more variation in transpiration is explained by air temperature
(R2=55%) than by deep soil moisture (R2=26%). In the "wetter" winter, only slightly more variation in tran-
spiration is explained by air temperature (R2=38%) than by deep soil moisture (R2=33%). Our findings indi-
cate that wintertime transpiration dynamics depend not only on deep soil moisture availability but may also
be influenced by air temperature when deep soil moisture is not available (e.g., the drier winter). Further
exploring the role of air temperature on wintertime transpiration should be an avenue for future research.

Figure 6. Daily average δ2H values of shallow soil, deep soil, and stem samples in each soil moisture case for (a) all data, (b) summer, and (c) winter. Case 2 was
excluded because of low sample numbers. We did not collect any isotope samples during winter Case 4 days.
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The overall average of plant stem samples (n=30) had δ18O value of 1.3 ± 0.5‰ (mean ± standard error) and
δ2H value of ‐41 ± 2‰. The averages of summer (n=11) and winter (n=10) stem samples, respectively, had
δ18O values of 1.0 ± 1.1‰ and 1.1 ± 0.8‰ and δ2H values of ‐45 ± 5‰ and ‐40 ± 4‰ (Figure 4). Although
these summer and winter averages were effectively the same number given our analysis precision, other
patterns in the data indicate similarities between deep soil with stem samples and shallow soil with precipi-
tation samples. The range of stem sample δ2H values were ‐66 to ‐26‰, which was similar to the δ2H range of
deep soil samples (‐71 to ‐35‰); both had a similar δ2H range of about 38‰. The δ2H range of both precipi-
tation samples (‐99 to ‐14‰) and shallow soil samples (‐108 to ‐24‰) had a similar δ2H range of about 85‰.
The deep soil and stem samples did not display a consistent seasonal bias like the precipitation and shallow
soil samples (Figure 4). Further, the average stem values of δ18O and δ2H did not fall between shallow and
deep soil moisture as expected; although stem and soil δ2H values were similar, average stem δ18O values
were higher than average shallow and deep soil δ18O values. Summer and winter stem averages had similar
δ2H values as winter deep soil and summer shallow soil, but higher δ18O values than deep and shallow soil
averages (Figure 4). Our findings indicate that the plants appear to use deep soil water during period of high
transpiration (summer) and that this deep soil water available in the summer was recharged by
winter precipitation.

Our hydrologically defined two‐layer soil moisture framework hypothesizes that shallow soil moisture is lost
primarily to evaporation and that deep soil moisture is lost primarily to transpiration. We found that evapo-
transpiration was lower during Case 1 (dry/dry) than the other Cases (Figure 7a) because there is not much
water available for either evaporation or transpiration. As expected, evaporation was lower in Case 1 than
Case 2 and Case 3, although the median evaporation in Case 4 was similar to that in Cases 2 and 3
(Figure 7c). Transpiration was higher in Case 3 (wet/wet) and Case 4 (dry/wet) than Case 1 and Case 2
(wet/dry; Figure 7b); median transpiration in Case 4 was higher than the median transpiration in other
Cases (Figure 7b). The low median transpiration in Case 3 can be explained by examining the relationship
between θshallow, VPD, and transpiration (Figure 8). Immediately following a rain event, the shallow soil
moisture will be recharged (e.g., Figure 3b). However, in the following few days, as most of the shallow soil
moisture is evaporated (Figures 3b and 3d), relative humidity increases and VPD decreases (Figure 3a): the
linear regression between shallow soil moisture and VPD has a significantly negative slope of ‐10.7 (p <0.01;
Figure 8a). As VPD increases, the rate of transpiration increases because there is greater atmospheric
demand of water from the stomata. Transpiration increases with increasing VPD until about 3‐4 kPa
(Figure 8b), when stomatal conductance likely decreases and reduces transpiration (Aphalo & Jarvis,
1991). This relationship between θshallow, VPD, and transpiration offers an explanation for the low transpira-
tion amounts found in Case 3.

In both winter and summer seasons, more of the variation in transpiration is explained by θdeep (R
2=0.20 in

winter and R2=0.36 in summer) than θshallow (R2=0.02 in winter and R2=0.08 in summer; Figures 9a and
9b) or θroot. In addition, more of the variation in evaporation is explained by θshallow (R2=0.37 in winter and
R2=0.45 in summer) than θdeep (R2=0.30 in winter and R2=0.17 in summer; Figures 9c and 9d) or θroot.

Figure 7. Daily sums of (a) evapotranspiration, (b) transpiration, and (c) evaporation in each soil moisture case.
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However, the relationship between evapotranspiration and θshallow and evapotranspiration and θdeep differ
between winter and summer. In winter, more of the variation in evapotranspiration is explained by θdeep
(R2=0.44) than θshallow (R2=0.25); in summer, more of the variation in evapotranspiration is explained
by θshallow (R2=0.48) than θdeep (R2=0.29; Figures 9e and 9f). These results suggest that different
processes are dominant at different times of the year, that is, in winter, transpiration could be the
dominant process in evapotranspiration; we estimated that transpiration was 60% of evapotranspiration
during the wetter winter and 44% of evapotranspiration during the drier winter. In summer, on the other
hand, evaporation was the dominant process in evapotranspiration; we estimated evaporation to be 58%
of evapotranspiration.

4. Discussion
4.1. Isotopic Distinction Between Shallow and Deep Soil Moisture

We hypothesized that shallow soil moisture and deep soil moisture would be isotopically distinct because
evaporative fractionation of moisture in the shallow soil layer leads to higher δ18O and δ2H values in the
shallow soil moisture than in the deep soil moisture. On most sampling days, we saw that the δ18O and
δ2H values of shallow soil samples were more enriched than deep soil samples, with two types of exceptions
(Figure 3f). The first exception was days when a large, isotopically depleted storm wet the shallow soil layer
but had not yet infiltrated to the deep soil layer (Figure 3f; e.g., storm in early February 2015). The second
exception was on dry days when there had been no rain for at least a few weeks (Figure 3f; e.g., June,
November, and December 2014). One possibility for this second exception is overnight dew condensation
or water adsorption into the shallow soil layer, which would lead to relatively higher δ18O and δ2H values
(e.g., Zhu & Jiang, 2015); dew condensation would occur if the surface temperature was lower or equal to
the dewpoint temperature, and water adsorption would occur if the relative humidity of the soil pores was
less than the relative humidity of the air immediately above the soil surface (Agam & Berliner, 2006;
Beysens, 1995).

We also expected the shallow and deep soil samples to be isotopically distinct between the winter and sum-
mer rainy seasons. However, during this particular study period, southern Arizona experienced four tropical
storms during August, September, and October 2014 (Figure 3a), whereas tropical storms in this region
usually average one every three years (C. Eastoe, personal communication Feb. 2015). Because tropical
storm precipitation is generally depleted relative to the average summer precipitation (Miller et al., 2006),
their δ18O and δ2H values tend to be more similar to winter precipitation than summer precipitation, which
was the case for the tropical storms that fell during our study period (Figure 3e). Because these isotopically
light tropical storms fell during the summer season, averages in winter and summer precipitation were not
statistically isotopically distinct during our study period (Figure 4). With more samples during years with
fewer tropical storms, winter and summer precipitation samples could be statistically isotopically distinct.

Figure 8. Linear regressions between (a) θshallow and vapor pressure deficit (VPD) and (b) VPD and transpiration. “**” indicates that the slope was significantly
different from 0 at α=0.01.
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In addition, precipitation falling during a small storm is enriched (more positive δ18O and δ2H values) rela-
tive to a large storm because of the “amount effect” (Dansgaard, 1964; Rozanski et al., 1993) caused by both
evaporation (e.g., Lee & Fung, 2008) and exchange processes (e.g., Field et al., 2010; Friedman et al., 1962)
and has been found to affect rainfall through dry air in other semiarid regions (e.g., Mayr et al., 2007).
Therefore, we expect small storms to have moisture with relatively higher δ18O and δ2H values compared
to large storms and that these small storms will wet only the shallow soil layer (Kurc & Small, 2007; Sala
& Lauenroth, 1982). On the other hand, a large storm will wet both the shallow and deep soil layers (Raz
Yaseef et al., 2010; Sanchez‐Mejia & Papuga, 2014). There were both small and large storms in our winter
and summer time periods (Figure 3a), but our sampling frequency could not differentiate isotopically
between small and large events, so we expect that this in part led to the lack of statistically significant sea-
sonal isotopic distinctions between averages in shallow and deep soil moisture (Figure 4).

Figure 9. Linear regressions between (a) θshallow and evapotranspiration; (b) θdeep and evapotranspiration; (c) θshallow
and transpiration; (d) θdeep and transpiration; (e) θshallow and evapotranspiration; and (f) θdeep and evaporation. The
solid lines represent summer regression, and the dotted lines represent winter regression. “*” and “**” indicate that the
slope was significantly different from 0 at α=0.05 (*) and at α=0.01 (**).
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The shallow soil moisture δ18O and δ2H values fell on or slightly to the right of the LMWL, and all the daily
deep soil moisture δ18O and δ2H values fell to the right of the LMWL (Figure 4). The shallow soil δ2H‐ δ18O
slope in summer was 3.4, while the slope in winter was 6.3. While precipitation usually has a slope close to 8,
a slope between 2 and 6 indicate evaporative influence (Sprenger et al., 2016), and it is clear that the shallow
soil is more influenced by evaporation in both summer and winter. The deep soil δ2H‐ δ18O slopes (2.4 in
summer and 3.3 in winter) indicate surprisingly similar influences of evaporation. One explanation of this
deep soil moisture isotopic characteristic in our sandy loam soil is that the deep soil moisture, rather than
reflecting only the isotopic signature of large precipitation events, is instead a mix of precipitation with
tightly bound soil water that could be relatively enriched in 18O and 2H (Robertson & Gazis, 2006;
Sprenger et al., 2016). Another possibility is that this deep soil moisture reflects subsurface mixing of infil-
trating precipitation with antecedent soil moisture (Barnes & Turner, 1998; Gazis & Feng, 2004); for exam-
ple, precipitation from isotopically light, large storms infiltrates to the deep soil layer andmixes with shallow
soil moisture that had been enriched in 18O and in 2H because of evaporative fractionation.

4.2. Complexities in Stable Water Isotopes for Understanding Shrub Plant Water Use

Stable water isotope values associated with plants are complex to interpret (Dawson et al., 2002; Meißner
et al., 2013), especially as plant samples of stable water isotopes may be affected through both mixing pro-
cesses and fractionation processes (Gessler et al., 2014). Notably, stem samples were on average more
enriched in both 18O and 2H relative to the shallow and deep soil samples; that is, the stem samples did
not fall between the expected sources of plant water use, shallow soil water, and deep soil water. This
may have been because we did not consider all possible end‐members (e.g., Brooks et al., 2010) or did not
recognize the effect of fractionation processes between the soil water and the sampled plant water (e.g.,
Gessler et al., 2014). Recent research by Martín‐Gómez et al. (2016) also found significant evaporative
enrichment in xylem water from suberized stems on a subdaily temporal scale when sap flow was restricted
through either leaf removal or shading.

Our soil sampling technique could also have contributed to these unexpected findings of stem samples hav-
ing higher δ18O and δ2H values than soil samples. For instance, we know that soil moisture is spatially het-
erogeneous in dryland ecosystems (e.g., D'Odorico et al., 2007; Weltzin et al., 2003), in part because of soil
differences related to pore distribution and soil microtopography (e.g., Brunel et al., 1995). Although we
did not see statistically significant difference between the canopy and intercanopy soil sample isotopic
values, our sampling design assumed that a single vertical soil core under the canopy and a single vertical
soil core in the intercanopy space were representative of overall soil moisture conditions of the ecosystem.
We also assumed that the uncertainty associated with time of sampling soil or stem water was negligible
because the diurnal variation would be smaller than the seasonal variation (Zhao et al., 2014). Our study
showed that although shallow and deep soil moisture were generally isotopically distinct on each sampling
day, these distinctions did not necessarily follow our seasonal predictions, partly because there was no clear
distinction between mean δ2H values of summer and winter precipitation. Given these complexities in inter-
preting isotopic results, our study suggests that integrating stable isotope techniques with sap flow and soil
moisture measurements offers a better understanding of how plant water use strategies than either techni-
que could offer on its own.

4.3. Deep Soil Moisture Influence on Transpiration Dynamics

Our combination of continuous soil moisture and transpiration data and stable water isotope samples indi-
cates that these warm semiarid shrubs depend on deep soil moisture for transpiration. Overall, periods of
high deep soil moisture were associated with periods of high transpiration and periods of high shallow soil
moisture were associated with periods of high evaporation (Figures 3 and 9). During periods associated with
high transpiration (Figure 3d), shrubs appear to be dependent on moisture from the deep soil layer
(Figure 9b), and this deep summer soil moisture is likely recharged by winter precipitation based on the
similarity in isotopic composition of winter precipitation with those of deep soil and stem samples at during
high transpiration: similar to how winter precipitation samples were more depleted in 2H than summer pre-
cipitation, summer deep soil and stem samples were more depleted in 2H than winter deep soil and stem
samples, respectively (Figure 4). Because the shrubs are dependent on deep soil moisture for transpiration,
a hypothetical decrease in large precipitation events would decrease deep soil moisture, which could reduce
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water available for transpiration and biomass accumulation, with major consequences for the health and
functioning of these warm dryland ecosystems. Our results are consistent with other studies in warm dry-
land ecosystems (Beyer et al., 2016; Cavanaugh et al., 2011; Kurc & Small, 2004, 2007; Scott, Huxman,
Cable, et al., 2006), although in a cold‐desert semiarid shrubland, individual shrub growth was better
predicted by shallow than deep soil moisture (Germino & Reinhardt, 2014), possibly because of nutrient
availability or soil water storage capacity.

Previous studies have tended to emphasize summer transpiration dynamics (Cavanaugh et al., 2011; Scott,
Huxman, Williams, et al., 2006; Yepez et al., 2003, 2005). However, our study suggests that under certain
conditions, winter transpiration may be an important component of the water budget in desert shrubland
ecosystems. Biederman et al. (2018) show that winter transpiration is an important contributor to winter-
time carbon storage, although the authors assume that similar seasonal distributions of evapotranspiration
and precipitation indicate that there is no seasonal lag between soil moisture recharged by precipitation and
water used for evapotranspiration. Our results showed that evapotranspiration in the drier winter was domi-
nated by evaporation, but in the wetter winter was dominated by transpiration. This suggests that transpira-
tion can indeed occur in the winter, although the transpiration dynamics seemed to be affected by both deep
soil moisture and by air temperature, depending on soil moisture availability.

5. Conclusions

Our results show how a hydrologically defined two‐layer soil moisture conceptual framework may be more
appropriate than other conceptual models based on average root zone soil moisture for understanding plant
water use in semiarid shrublands. Results from both continuous sap flow transpiration data and discrete iso-
topic sampling of precipitation, soil, and stem samples suggest that plants are primarily using deep soil
moisture for transpiration. From the isotopic samples, we found that the shallow and deep soils were isoto-
pically distinct, with the shallow soil generally more enriched in 18O and 2H than deep soil. In particular, the
δ2H values of shallow soil samples on each sampling day tended to be more positive than the δ2H values of
deep soil samples, except on days where a large, isotopically depleted storm wetted the shallow soil layer.
Using sap flow and soil moisture data, we showed that transpiration was generally more strongly correlated
with deepmoisture, whereas evaporation wasmore strongly correlated with shallowmoisture. This was sup-
ported by analysis of our isotopic data, from which we show that stem samples were isotopically similar to
deep soil samples. Using a combined approach to understand shrub plant water use in semiarid areas offers
us more insights than simply using sap flow or isotopic techniques alone, in part because of the complexity of
isotopic patterns in the rainfall and the conditions for fractionation. Contrary to what a root zone soil moist-
ure model would predict, we found that this semiarid shrubland depends year‐round on deep moisture for
growth and is therefore vulnerable to shifts in precipitation.
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