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ABSTRACT

Title of Dissertation: Navier Stokes Solutions for Chemical Laser Flows:
Steady and Unsteady Flows

Ajay Prasannajit Kothari, Doctor of Philosophy, 1979
Dissertation directed by: John D. Anderson, Jr.

Professor and Chairman
Department of Aerospace Engineering

This work consists of an overall effort to apply a detailed and
accurate computational fluid dynamic technique to the solution of
practical high energy laser flows. In particular, a third generation
of supersonic diffusion chemical laser analysis is in*troduced, namely,
the complete solution of the Navier-Stokes equations for the Taminar,
supersonic mixing flow fields fully coupled with chemical kinetics for
both the hot and cold reactions for HF. Multicomponent diffusion is
treated in a detailed fashion.

Solutions are obtained, firstly, for "cold flows", where the effects
of chemical reactions and vibrational relaxation are not included. Al-
though such a situation is purely artificial, the results do isolate some
of the fluid dynamic aspects of chemical laser flows, and provide a set
of data to be compared later with hot flow calculations. A set of
numerical experiments using four different time dependent finite differ-
ence schemes show that relatively minor changes in the differencing
procedure can lead to major variations in the results. A modification

of the well-known MacCormack approach appears to be the best suited for




mixing flows associated with chemical lasers.

A comparison is next made between cold flows and hot flows (with
fully coupled chemical kinetics). The results show that temperature
distributions are affected the most and velocity distributions the least
by chemical energy heat release. The results have an impact on the
interpretation of cold flow aerodynamic experiments in the laboratory,
and their proper extrapolation to the real chemical Taser flows. Also,
comparisons between the present Navier Stokes results and other, more
approximate, existing calculations are made. Gradients are calculated
as a natural part of the Navier Stokes solutions. Results are given
for steady flows with large pressure gradients where advantages of the
Navier Stokes solutions are delineated.

In addition, the effect of unsteady fluctuations intentionally
introduced at the cavity inlet are studied. Specifically, sinusoidal
fluctuations in one stream and then both streams (primary and secondary)
in various quantities e.g. pressure, density, u velocity and v velocity

were simulated. Of these, the oscillations in v velocity with appro-

priate frequency and amplitude produced a remarkable improvement in mixing.

Such unsteady fluctuations also yielded peak Taser gain which were
larger by almost a factor of two compared to the steady case.

The flow at the upstream boundary has so far, in the above mentioned
cases been assumed to be uniform with real effects like Boundary Layer
and Base Flow having been neglected. For comparison purposes these
effects are next included.

A boundary layer profile in velocity at the inlet is shown to impede
production of gain substantially. Base flow calculations were attempted

but were not successful,
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CHAPTER I
INTRODUCTION

1.1 SOME BACKGROUND INFORMATION

The past decade has initiated the age of high energy lasers; first
starting in 1966 with gas-dynamic lasers and closely followed by break-
throughs in large chemical and electric discharge lasers. The gasdynamic
laser, which generates its laser medium by means of a vibrational non-
equilibrium nozzle expansion, is the subject of a recent book by Anderson
and papers by Glowacki et a12 and Russe13. The electric-discharge laser,
which generates its laser gas via electron-atom and/or molecule colli-
sions in a glow discharge, has been reviewed by Rei11y4. The supersonic
di ffusion chemical Taser, which obtains a lTaser medium from the products
of chemical reaction is nicely described in a review of Narrens. A
thorough discussion of such continuous wave (cw) as well as pulsed chemical
laser is also presented in a book by Gross and Bott6 called "Chemical
Laser Handbook". This volume collects and critically reviews all avail- f
able literature and the entire body of research work in chemical lasers
which was published and performed between 1967 and 1974, A1l of the
above lasers involve high speed flow of large amounts of gas; hence,
they all involve the realms of aerodynamics and gasdynamics. (For example
the HF or DF supersonic diffusion chemical laser involves the supersonic
mixing of two dissimilar streams, as shown in Fig. 1).

Concurrently, the discipline of computational fluid dynamics has
become a third-dimension in aerodynamics, complementing both Taboratory
experiments and pure ana]ysis7'9. llork is advancing on both numerical

methods and applications to practical engineering problems. The present



work is in the latter vein. Specifically it deals with the direct appli-
cation of computational fluid dynamics to the solution of chemical laser
flows.

The present work represents a new third generation of supersonic
diffusion chemical laser analyses. First generation studies are exempli-
fied by the RESALE computer program 10 (which assumes one dimensional
premixed flow) and the approximate flame-sheet model of Hofland and

]]’]2. In the flame sheet modeling the reaction zone is confined

Mirels
to the boundary of the region described by a parabola. The chemical
pumping reactions, thus are assumed to take place in an infinitesimally
thin region. In reality it takes a small but finite time for these
reactions to occur and hence the actual pumping region has a finite thick-
ness, and the regions of pumping and V - V, V - T deactivations overlap
each other. Calculations of these regions require much more detailed
formulations. Nevertheless such approximate modelings as flame sheet
modeling have served a very important purpose in beginning the interim
first-generation studies.

Second generation studies involve more detailed fluid dynamic cal-
culations, such as the boundary layer solutions of King and I"h’re]s]3
and of Tripodi et a1]4. Unfortunately, none of these solutions are able
to model and solve the complicated chemically reacting, recirculating and
separated flow regions at the base of chemical-laser nozzles- an impor-
tant aspect that affects chemical-laser performance as emphasized by

Grohs15.

In King and Mirels report the streams of H2 and F are assumed
to be semi-infinite and hence pressure in the flow direction is assumed

constant, being the same as the pressure outside the houndary Tayer i.e.

i



inside the inviscid core. In reality, in a chemical laser a Targe number
of nozzles are stacked together side by side. Thus the H2 and F streams
are not semi-infinite but rather of a finite width. Assumption of
constant pressure in the flow direction is hence invalid and,rather, some
way of calculating the flow-wise pressure increase is absolutely necessary.

Therefore, the present investigation is the beginning of a third
generation of studies, which incorporates the solution of the complete
Navier Stokes equations]e—]g for chemical-laser flows. The advantage
of invoking the Navier Stokes equations is that such complicated separated
flow fields as well as any lateral or longitudinal pressure gradients
induced by the chemical heat release are modeled exactly. The apparent
disadvantage is that numerical solutions of Navier Stokes solutions take
long computer times. However, this can be reduced considerably per run, if,
while doing parametric studies, the runs are made back to back and the
final steady state of one run is used as the initial condition for the
other run with slightly different inlet conditions.

From among the other existing chemical laser solutions one of the
most versatile is the LAMP (Laser and Mixing Program) developed at
Lockheed (at Huntsville, Alabama). The formulation assumes parallel
mixing and constant lateral pressure with lTasing due to single or multiple
transitions. The program allows any chemical or vibrational reaction
mechanism and associated rate constants to be prescribed as input data
as long as thermodynamic properties are also available for all partici-
pating species. Transport properties are accounted for in terms of
constant Prandtl and Lewis numbers in conjunction with a variety of
viscosity options which include models for both laminar and turbulent

flow. The set of parabolic partial differential equations which describes

i
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the problem is integrated via application of a finite-difference tech-
nique. The output of the computer program gives detailed axial and
Tateral distributions of velocity, temperature, density, species mole
fractions, laser transition gains and radiative intensities, and laser
power output.

0Of the other existing CL codes, BLAZE-II also deserves more than a
mention. Two dimensional mixing and reacting flow analysis usually
does not come cheaply in terms of computer time. And so,in it, a
compromise between one- and two-dimensional treatments of the lasing
problem was made by simplifying the multidimensional equations using
boundary-layer integral methods. This approach also allows the nozzle

boundary-Tlayer influence to be considered.

1.2 SCOPE AND PURPOSE OF PRESENT WORK

The present work is part of a larger, overall research effort to
apply detailed computational fluid dynamic techniques to the analysis
of practical problems of gasdynamic and chemical lasers. In particular,
Jones and Anderson22 have developed a time-dependent numerical solution ,
of the complete Navier Stokes equations as applied to the supersonic
laminar and turbulent mixing flows characteristic of downstream mixing
gasdynamic lasers and supersonic diffusion chemical lasers. The numerical
technique and sample solutions for non-reacting and non-relaxing mixing
flows of air-into-air are given in detail in Ref. 22. This work extended
in a very fine fashion as applied to the case of Downstream mixing Gas-
dynamic laser is described in detail by Parthasarathy et a123.

In the present work, the basic approach of Ref. 22 is extended to

chemical laser flows. Specifically, the complete Navier Stokes equations



are used to calculate the supersonic laminar mixing of two chemically
reacting streams, one of Fluorine and the other of Hydrogen. As usual,
Helium is used as a diluent in both the streams, to different extents.
Multicomponent diffusion is treated in a detailed fashion.

1.2.1 Cold Flow (Steady)

The results are obtained, firstly, for the cold flows only, i.e.,
the chemical reactions and vibrational energy exchanges are assumed
frozen. Obviouslty this is purely an artificial situation, contrary to
nature, because H2 and FB’ being hypergolic, will automatically react
when brought into physical contact with each other. However, the
"switching off" of the kinetics has two purposes:

(1) To examine the purely fluid dynamic aspects of such flows with
multicomponent diffusion. 1In this fashion, a set of cold flow calcula-
tions are produced which, when compared with similar calculations for hot
flows (flows with chemical reaction and vibrational relaxation), will
allow a direct qualitative and quantitative isolation of the effect of
reactions on the fluid dynamics. This type of comparison should provide
information on how results from cold flow laboratory experiments can be
extrapolated to actual chemical laser performance.

(2) To simply provide an interim assessment without further compli-
cations due to chemical kinetic effects. In other words to serve as a
first step towards the eventual solution of the entire problem.

1.2.2 Modified MacCormack Method

There was another major purpose served at this point which is funda-
mental to the aspects of computational fluid dynamics. Four numerical
difference schemes with seemingly minor variations between them were

found to produce major differences in the behavior of the solutions.



The Appendix B describes a series of numerical experiments which
delineate these differences, and which help to identify one particular
difference scheme which appears most suited for the analysis of viscous
mixing flows characteristic of chemical lasers. This particular differ-
encing scheme was termed the Modified MacCormack method.

1.2.3 Hot Flow (Steady)

A time dependent explicit finite difference scheme due to Mac:Cormack24
is employed. The Navier Stokes equations are used in order to develop
an analysis valid for chemical laser flows taking into account possible
large transverse and longitudinal pressure gradients in the reaction
region caused by the heat release, as well as allowing for the possi-
bility of separated and/or reverse flow in the base region of the nozzle
bank. The boundary layer equations are not valid in such cases. A
time dependent solution for the steady flow is employed, because such
an approach is advantageous for solutions of mixed subsonic and super-
sonic flow fields which may be of interest. In this sense, a time-
-dependent finite difference solution of the Navier Stokes equations re- :
presents the "state-of-the-art" in computational fluid dynamics, and
eventually leads to the best possible, most detailed calculations of
chemical laser performance with minimum amount of modeling involved.

It was in this Tight, to assess the viability of Navier Stokes
solutions for chemical laser flows, and to underscore the advantages
as well as the present-day restrictions of such numerical solutions,
that this work is done. The full chemical-Tlaser kinetics, including
both the cold and hot reactions for HF are now coupled with the Navier
Stokes equations, and the numerical results are obtained for the

detailed variations of velocity, pressure, temperature, chemical species



concentrations, and HF vibrational populations throughout the region
shown in Fig. 1. Steady state values are approached asymptotically at
large times. Small signal and integrated gain are also calculated from
the steady state values already obtained now for the entire region of
interest.

Further to illustrate graphically the effect of chemical heat
release on the fluid dynamics of the adiabatic flow (cold flow), a
comparison is made between the results obtained before and after the
kinetics are switched on i.e. between cold and hot flows. Such consid-
erations are important when extrapolating nonreacting supersonic mixing
results obtained in the laboratory to the case of real chemical lasers.

During the course of the present investigation it was brought to the
author's attention that Navier Stokes solutions are also being carried

25_27. Using

out by Butler et al at the Los Alamos Scientific laboratory
the hydrodynamic code RICE,27 various calculations involving principally
DF chemical lasers with base relief nozzles have been made. This work
to date has generally been unpublished. Because the present work deals
with HF chemical lasers with purely tangential mixing, direct comparison
with the Los Alamos work cannot be made. Instead, the present results
are comared with the finite difference boundary layer solutions of the

20,28 and of King and Mirelszg. However the Los Alamos calcu-

LAMP code
lations and the present work both demonstrate the feasibility of Navier
Stokes solutions for chemical lasers -- an important conclusion to help
guide future analyses.

1.2.4 Unsteady Flow

So far the time dependent method has been used to calculate steady

state chemical laser flow fields as the asymptotic result at large times;



the final steady state has been the desired result, and the time-depen-

dent technique has been simply a means to that end]6']8. A question

now can be asked: what would be the effect of intentionally introduced
fluctuations at the inlet on the overall performance of the chemical
laser? The answer to this question was observed to be a real enhancement
of mixing and increase in gain for some particular fluctuations at the
inlet. Availability of the already existing time dependent technique
was taken advantage of to study the transient effects of unsteady fluc-
tuations in the flow properties at the cavity inlet on overall chemical
laser performance downstream. In particular, the results show that
intentional  fluctuations in the inlet velocity vector can result in
increased mixing and about a factor of two increase in HF chemical laser
gain. This work presents the final results of such unsteady mixing

phenomena in chemical lasers.



CHAPTER TI1I

OVERVIEW OF THE PROBLEM

2.1 PHYSICAL: LAYOUT OF THE NOZZLES
2.1.1 Two Dimensionality
The axis y shown in Fig. 1 is the laser beam direction. Axis z is
then perpendicular to the plane of the paper and 3/38z = 0 reducing the
problem to a two dimensional one. Also in the beginning, for the steady
flow calculations, parallel mixing is assumed for the following reasons:
(a) it constitutes a reasonably straight forward test of the
present Navier Stokes solutions;
(b) other results exist for this model and hence can be used
for comparison; and,
(c) it is a relatively uncomplicated model to compare results
for hot and cold flows.
2.1.2 Boundary Conditions
As already mentioned earlier the nozzles of chemical lasers are
stacked together side by side, Hydrogen and Flourine nozzles placed
alternatively. Supersonic flow of the fuel gas viz. Hydrogen and the
oxydizer gas viz. Flourine issues from the nozzle exits. If, now we
Tooked at the centerlines of any of the nozzles, it would be obvious
that the properties on both sides of the centerlines are mirror images
of each other. Thus symmetry conditions exist about the centerlines.
Calculations, then, need to be made only in the section of the flow
region enclosed between two adjoining centerlines, one of a Hydrogen
stream and other of the adjoining Flourine stream, in order to know the

properties at each point in the entire Tasing region. Symmetry conditions



thus describe the natural boundary conditions on two sides of the region
of computation. The boundary conditions at the upstream end of the test
section (the region of computation will now be referred to as the 'test
section') are also prescribed, being the same as the nozzle exit conditions.
These conditions were so chosen as to represent a possible experimental
situation. The conditions at the downstream end of the test section

need not be prescribed.

2.2 CHEMICAL MECHANISMS FOR POPULATION INVERSION

As discussed earlier, the Flourine and Hydrogen nozzles, appro-
priately diluted with Helium are stacked together alternatively. These
supersonic streams when, brought into contact with each other, react
hypergolically in the mixing region downstream of the nozzle exits. In
particular the following two reactions called the "pumping reactions"

take place, designated respectively as the cold and hot reactions.

*
F o+ H2;§: HF(v) + H - 31.7 Kcal/kgmole (1)

H + Fg:g: HF(v)* + F - 98.9Kcal/kgmole (2)

The cold reaction can populate HF in the vibrational Tevels 0, 1,
2 and 33 whereas the hot reaction can populate higher vibrational Tevels
such as 0 through 8. Each one of these HF vibrational levels, from 0
through 8, can be and is treated as a separate species interlinked by
chemical reactions and vibrational relaxation reactions.

These pumping reactions have a characteristic of producing vibra-

*
tionally excited HF viz. HF(v) wherein the populations of various
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vibrational levels do not follow the Boltzman distribution for the

Tocal translational temperature. Population inversion is then said to
exist if population of a higher level is greater than that of the

lower level i.e. if NHF(v+1£:>'NHF(v)' An example of this is depicted
in Fig. 2 along with the corresponding Boltzman distribution. It is
this population inversion that makes the Taser work (see Refs. 1 and 30
for background on laser properties). The vibrationally excited HF mole-
cules give off their energy in excess of that prescribed by the Boltzman
distribution and this energy is given off in the form of electromagnetic
radiation. The energy differential between the HF vibrational levels

up to about nine levels being approximately same, the frequency of the

- turns out to be approximately the same viz. 2.7 y and thus

radiation
the radiation is nearly coherent (see Table I for reference) chemical
energy is thus available in the form of radiation energy through the
mechanism of population inversion. In the chemical laser, this inver-
sion may be total, as previously described, or partial, where the in-

]’3]. Rotational

version is carried by the rotational distribution
levels are here assumed to be in equilibrium at the translational

temperature.

11



CHAPTER III

FORMULATION OF THE PROBLEM

3.1 GOVERNING EQUATIONS

As already discussed earlier in the previous chapter, the flow in
the test section region is two dimensional. The small characteristic
sizes of the chemical laser, as well as small representitive densities,
render the characteristic Reynolds number of the order of 103. Thus
viscosityplays an important role in the flow region. The flow then is
fully viscous as well as compressible. The two dimensional Navier Stokes
equations are therefore used. Mass diffusion, thermal conduction and
viscous dissipation are also incorporated. Diffusion due to pressure
(Dufoure effect) and temperature gradients32 is negligible and hence
is not included.

As mentioned earlier, the hot reaction is able to pump 0 through
8 vibrational levels of HF. Each one of these vibrational Tevels is
treated as a separate species. Adding to these 9 species, the reactants

H, HZ’ F, F, and an inert gas (diluent) He make a total of 14 different

2
species leading to the 14 species continuity equations.

These 14 species continuity equations in addition to (1) the global
continuity equation, (2) x momentum equation, (3) y momentum equation
and (4) energy equation make a system of 18 equations which are used
to solve for the 18 unknowns. These unknownsare (1) mass density - p,
(2) x component of velocity - u, (3) y component of velocity -v, (4)
temperature - T and (5)..... (18) species densities - Py where

k = 1,2....14. Pressure was obtained using the equation of state since

the density and temperature would be calculated and the specific gas

12



*
constant R for the mixture of gas at any point can also be calculated.
Thus all the thermodynamic properties of flowing gas mixture can be
calculated at every point.

14
The 14th species continuity equation is redundant since ¥ P = P

k=1
where o is being calculated independently using the global continuity
equation. Nevertheless all 14 of the species continuity equations were

used since it was not apparent beforehand which species density should

best be calculated as

n-1 14
o =p=-[2 o+ T 9] (3)
n kel B g

rather than by the species continuity equation for o

This approach, nevertheless, does not necessarily render the prob-
lem inconsistent unless a mistake exists somewhere within the program.
It instead serves as a good check for the program making it more sen-
sitive. Aposteriori the values of global densities obtained in both
these ways (viz. ( = Li pi Where o is calculated from species contin-
uity equation and , ag—computed from the global continuity equation)
were compared and were found to be in an excellent agreement.

In order to calculate the transport properties of the gas mixture

at any point (viz. viscosity, thermal conductivity and diffusion coeffi-

cients), the transport properties of each of the constituent gases were

*
Mass fractions cj of each constituent gas i.e. 0i/p making up the
mixture at any point as well as molecular weights of each component
species are also known. From these, the specific gas constant can
be calculated as,

R
R = _Z c. R. = ‘E g o

13



calculated first, from various formulae available for individual species
viscosity, thermal conductivity and binary diffusion coefficients.
Once these are known, the mixture viscosity, thermal conductivity and
multicomponent diffusion coefficients can readily be calculated as the
constituents and their mass fractions are also known at each mesh
point. A more detailed analysis of the calculation of these transport
properties is presented elsewhere in this chapter.

The afore mentioned equations, for the case of two dimensional un-

steady flow, in their dimensional form33 are written below. They are,

Continuity:
9p 4 9 9 =
T (pu) + 5y (pv) = 0 (4)

X-Momentum:

Du_ _3p, 3 9
P Dt X : dX (OX) * dy (Tyx) (5)

where e is deviatoric normal stress and Tyx is shearing stress.

_ U, 9v ou
% T Ers W (ax * ay) *2u g
. oV, du
Tyx L (ax * ay)
y-Momentum:
T ay T % (rxy) i (oy) (6)

again here oy is deviatoric normal stress and ey is shearing stress.

Bv . du
s g ko=t =

“xy 3x oy fyx
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and,

- av . 3u v
PR 2/3 (ay + ax) 2 i (ay)

In both the above equations the body forces are neglected and bulk
viscosity K is assumed to be negligible.

Energy:

o—g%=-V'q—v-(pV) (7)

N

where, v
total energy E = e + A

and q is the heat flux vector including in general conduction, diffusion

and radiation.
q=1(q, +d+dq)
Species Continuity:

> 3 -
—2)_11_ ik a_x [Ok(U+ka)] +ay [Ok(V +\)ky)] ‘1)k (8)

where Vo and ey are x and y components of the diffusion velocity for
the species k and &k is the rate of chemical production of the species
k.

The subscripts 1 through 14 correspond to the various species as
given in Table II.

On further simplification, after some algebraic manipulation, these
equations can be reduced to the following form; the well known conser-

vation form:

2+ (pu) + 5% (pv) = 0 (9)

a
ax y

(o5}
o+
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3 8 2 (3u 4 dv ou
3 Ay o ShA o
+W[OUV—U(BX+W)] =0 (]O)

% (pv) +a—a; [buv U(% %)]

$ g% [ov2 +p o+ %lJ(%§’ Zz) -2 g%i =0 (11)

g%—(oE) + g%{OlJH— k 3% + ;i P M Vi

+ulfn (344 2 - 2ugt] 4 vlu (G + gD

* §§{pv H - k%§-+ ;Et pkhkvky + U[-“(%%”*%%)]

+v§u(§—x“—+§—;)—2u§—;]}=0 (12)
2o+ lo (urv, NI+ [glvev )] =6, (13)

i y <

These equations are further nondimensionalized by the following

appropriate parameters in order to facilitate computations.

v erme X T F

g

1]

u =U/Ur" v' =V/Ur" Vs \)kx/Ur" N kyz\)ky/Ur‘

pk =ok/pr, o' =o/pr, p' p/orUr g # =T
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k' = k/kr, u' o= u/ur

I e L e P
hk-—hk/Ur , h h/Ur 5 -H/Ur SiIE E/Ur

The non-dimensionalized set of these equations, after dropping the

primes for convenience and still written in the conservation form, is,

) e 8 N
g{'(p) + e (pu) + 3y (pv) 0 (14)
Kl 3 2 2 (B3u v i au
5t (pu) + 3X Lou +p+3”(ax+ay)/Rer 2”(ax)/Rer}
+ Ji»[puv —u(§X<+ EE)/Re'] =0 (15)
Yy X 2y r
d 2
g%'(pv)‘+§%-{pUV -11(%§~+ %¥)/Reh} 3 {pv™ + p
2 (du . v v i
# Egli(ax + ay)' ZLJ(ay)]/Rer} 0 (16)
14
B f s & B Dol = e e o 4 B h, v
o) pu p
ot oX Cprmg dX ot k "k kx
u 2, (2u, ov duq LV oy 2
+ er [3U(3X+a_y) 2 3X]+Re [ll(ax—*"()y)]
14 .
d 1 oT u dy , au
+ — {puH - s+ B By, Iy, W 2= [ e §~)]
oy pring y - k "'k ky Re, X 9y
V.2, (2u , dv Lo
2o 3t 2 o, (u+v, )] + 2 [o (v +v, )] = (==—) & (18)
5tlP)t ax Loy lutvy, 5y Pk K NG
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P UL

where Rer = B " reference Reynolds number and
r
“prmg Pr.. x Re x (Mr)2 X (yr - 1)
uy,cp
where Prr s " reference Prandtl's number
r
U
M = LA reference Mach number
© I RT
PP
CP
- fﬂﬁ
¢ v
n

Equations (14) - (18) can also be rewritten as

= K

5]
it
@

-

+ +

|
|

@
(—'-
@
ijc)
< |

X

(19)

where U, F, G and K are one dimensional tensors (vector) with 18 compo-

nentseach, namely,

1
2 By
3 pv
4 pE
i
)
Is 7 :>2
3
8 Py
9 P
10 P
11 P
12 Pg
i3 Py
14 P10
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18

B
0 cont. = e i
17 P13

1 pu

g du L 9V au
2 [pu +p+g J(-—'+5;)/Rer - 2y (ﬁ)/Rer]

3 Max
S0 . I
3 [puv-yu (gy * 5;)/Rer]
1 oT
4 fpuH-c—— k5t 2oy by vy
prmg k
u 2 du , dV au
*Re 3 Gxtay) ~2nix
Vv oV . du
+§E~ -u (5}‘+ By)]
5 Q'I (U stz \)'IX)
6 p2 (U + VZX)
d 5 (u + VSX)
10 pg (u+ v )
i Py (u + v7x)
12 Pg (U + v8x)
13 Pg (u + v9X)
14 oy (U +vqg)
16 01y (u+vy5,)
17 P13 (u + v]3x)
18 pqq (0 + vygy)
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U aVy o, 3Vyy
8x+8y) 2uay],

0 N oo o

11
12
13
14
1%
16
14
18

20
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2 0
3 0
4 0
5 iy
6 o,
7 iy
8 b
9 g
K= (- Lp ) 10 g
rnr !
1 iy
12 ing
13 g
14 g
15 1
16 b
17 i
18 g

3.2 CALCULATION OF RELATED QUANTITIES

The remaining unknowns in equations (14) - (18) were computed from
the basic variables p, T and Pk using auxiliary equations.
3.2.1 Calculation of Static Enthalpy of Each Species, (hk), Total

Energy of the Mixture (E) and Total Enthalpy of the Mixture (H):

he =€+ Ry 3 where k=1, 2,..... 14 (20)
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where ey is the species internal energy consisting of contributions from
translational, rotational and vibrational energies and the heats of

formation of the species k.

lug.. gy = (etran.)k'r(erot.)k +(ev1b.)k_+(eform.)k (21)

for 'k = V2,00 .

Expanding and writing for each species (subscript k corresponds

to species as given in Table II),

23 0
ey =5 Ry T+ R T+ (e )y +AHf]
=2 R T+R. T+ (e o #2 B2
Fal = 2 vib.’?2 £,
=3 0
e3—§R3T+AHf3
_ 3 0
84—§R4T+AHf4
L3 0
85—~2‘R5T+AHf5
) 0
e =2 R T+ leygp) * Mg
where k = 615 A oisivs s 14

Species 6 through 14 are various vibrational levels of HF. There-

fore,

R, = R. andaHO =4 H? for k = 7,8....14.
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e

For species F, H and He the rotational and vibrational modes are

nonexistent.
perature is expected to remain rela-

Also since the gas static tem

tively Tow, vibrational energies of F, and H, could be neglected i.e.
H, and He are zero

. = - (. Heats of formation of P s
(ev1b.)1 (evib.)z P 2 2

by definition. Table Il contains yibrational energies and heats of

formation of various species.

Thus,
14
pe = v py ©
gy R
: g i R, +
14 14
0
(PR L (AHZ) (22
& kEG Pk ‘Cyib. k=g k £k )
Then,
2+V2
pE =p(2~7f'4 + pe (23)
and,
pH =pk +p RT (24)
3.2.2 Ccalculation of the Species and Mixture Transport Properties:

The transport properties are calculated first for each individual
ature and pressure, and then obtained for

species at the given temper

re for given mole fractions.

the complete mixtu

3,2.2a8 yiscosity
ecies can be given by

yiscosity for each sp
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M

(25)

] =
000026693 [ TR e
000 o5 FH g ][Q Kz,

N

*
Here 9(2’2) is a function of e/kT andis related as

1. 697 (1 + .323anT¥)

- *
0 2 52

where T* = kT/e
The values of © and e/k are also tabulated for various species in

Table II.
y of the mixture u, was then obtained using the Wilke

The viscosit
N

estimation method for gases at low pressure.

6 6 Vs
= X M 1+ (—-“1 }
2 (ny/L ji] 443 Yi)] (26)
j#i
h
e ni 172 Miy1/492
o+ (V7
¢ _ 3 1
ok M. ]2
-yl

" @[1+(—M'—
J

Here y. and Y are the mole fractions.
3 2.2 Thermal conductivity

hermal conductivity of an individual species is related

The t
pecies in the following manner.

) .34
omic species

to the viscosity of the s

For monoat
)\,:__E En
5 M (27)
and . ; .34
nd for diatomic species
2 ‘p
v +08(E ®° 1] (28)

A
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where i
x and A' are thermal conductivities in cal./cm. sec Oy

Equation (28) can be used for monatomic gases as well since f
or

monoatomic gases Cp/R . 5/2 and thus A = A'.

onductivity for a mixture of ga

be shown to be given by32

The th
ermal ¢ ses at low pressure can

6 6 M
: Y
k= = 0 [T+ 2 (7%J01/8 4. (DD
i=1 j=1 L
j#i
6 *% 6 Y
o 0§ g JL1F T ¥ (=) 13
j=1 ! j=1 0 L
J#i
Where,
*
hy A {14+ /[1+.35 ((Cp /R) -2)]
i
for HZ’ F. and HF (diatomic species) and,
*
A T ¥ for H, F and He.
Also, ** *
AT kg = A for H2, F2 and HF
-0 for H, F and He
Mi + Mj
Jiss m (et
e ]

n coefficients
brational level of HF
re first obtained for each of the

3.2.2c Diffusio
as a separate species

Treating each vi
on coefficients W€

the binary diffust
1 of 196 (14 x 14)

binary diffusion coefficients

14 species yielding @ tot

matrix is @ symmet Also the binary diffusion

The (14 x 14) ric matrix.
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coefficients are independent of their individual species concentrations

but they do depend on the temperature and pressure.32

g 372 /2 s
Dy 0.001858 T/ [ (M. +Mj)/M1.MJ-] /o5 (30)
where
Dij is the binary diffusion coefficient in
cmz/sec
p is pressure in atmospheres
T is temperature in O
0.5 o5
= 1 J. 3 ?
i 5 in A
2p is the thermal collision integral
Qp = f(kT/g]Z)
where
Ene _ ic8 _ "2.793
* %)

Variation of 2 with kT/g]2 was available in tabular form32, and

was successively used to obtain a curve fit with a simple formula.
The 14 multicomponent diffusion coefficients [%m were obtained from

the 196 binary diffusion coefficients by the following formula™"

T - y.
e (31}

Species diffusion velocities (or diffusion mass flux) were related

to concentration gradients by Fick's Taw.
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3.2.3 Calculation of the Chemical Production Term mi:

The species chemical production term was calculated explicitly.
Treating each vibrational level of HF as a separate species, 100 elemen-
tary reactions were obtained from the reactions and rate constants
35

given in Table III These reactions involve chemical pumping for HF,

dissociation, V - V (vibrational - vibrational level) transfers and

V - T (vibrational - translational) transfers. The chemical pumping

is the cause of formation of various vibrational levels of HF whereas
V- Vand V - T transfers cause the destruction of population inver-

sion and relaxation towards Boltzmann distribution causing a rise in

translational temperature. The vibrational levels of H, were not

treated separately as 3 different species, unlike in Ref. 35; rather

H2 was treated Tike a single species.
The equilibrium constants as a function of temperature were obtained
from the JANAF Tab1es36 for the dissociation reactions. For the other

reactions viz. chemical pumping, V - V and V - T transfers, they were

assumed to be of the form37
Ky = expl-(E - E,)/RT] (33)
Here the reaction is of the type,
HF(0) + M= HF(v) + M (34)
where M is the collision partner.
(EV - Eo) is the energy of vth level above the ground state.
The backward rate constants can now readily be obtained since
kb = kf/keq (35)

where kf is the forward rate constant and ke the equilibrium constants

for the elementary reaction in question.
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i T T =

Once all the rate constants are known, algebraic equations can be

written for all the participating chemical components of each elementary

reactions. Separating then the rates of production of each of the 14
species and adding them together from among all the algebraic equations
the final rate equations can be written for each of the 14 species.

One of these rate equations, namely for the chemical production of HF(1)

is given below as an example.

é%_[HF(1)]=[k_3][H][F]—k31[HF(1)])[M6]

=

(K, [FILH, -3k, [HF (1) TTHD)

+

(K5b[H][F2]-k—5b[HF(])[F])

(k_g [HF(0)]-kg, [HF(1) 1) [M;]

—

-+

(k_gp7 [HF(0)J-kgp  [HF(1)T) Mgl

+(kgp  [HF(2) Ik _gp o [HF(1) 1) [Mg]

+(k_goq [HF(0)]-kg g [HF(1) 1) [Mg]
+ (kg p[HF(2)]-k_g o [HF(1)T)[Mg]

+ (k [HF(O)]-k6d][HF(])J)[M]O]

-6d1

+ (kg yp [HF(2)1-k_g 4, HF(1)IM ]
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-+

(ke p (HF(2)T = k_,[HF(1)])[M,]

%

(kgpy HF(0)I-k_ ¢ ot [HF(T) 1) [M]

+

(k6f2[HF(2)2-k_6f2[HF(1)])[M5]

+

(k_gg7 LHF(0) [-kg oy THF(1)1) [, ]

-+

(K2 lHF(2)1-K_g , [HF(1)T) M, ]

+

2(k_ 747 [HF(0) TTHF(2)1-k,_[HF(1)1%)

2 g
(ky [HF(2)1%-k_,,[HF(1)ILHF(1)12)

+

-+

(K_5, [HF(3)TLHF(0) 1~k [HF(1) T[HF(2)])

-+

(K7, LHF (2) TTHF(3) -k _y, ,[HF (1) TTHF(4)])

(K_¢1 [HF(0)JTHF (4) 1=k, _[HF(1)[HF(3)1)

+

+

(ky[HF(2)JTHF(4)]-k_; ,[HF (1) ILHF(5)])

-+

(k_747 [HF (0)JTHF(5) 1=k, [HF (1) TLHF(4)])

(ky LHF(2)JIHF(5)] - k_, [HF(T)I[HF(6)]) (36)

+

The rate equations for all the remaining 13 species are given in

Appendix A.
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CHAPTER 1V

GAIN

The small signal gain coefficient is an extremely important figure

of merit for gas 1aser devices. It is a direct measurement of popula-

tion inversion. Everything else being equal, the higher the small-signal

gain, the easier laser action can be obtained in a gas.
kl

Stimulated emission and absorption is considered and spontaneous
emission is ignored because the characteristic test section temperature

is small. Consider a slab of gas of geometric thickness dy, with

radiation of intensity Iv (per unit frequency) incident upon it as shown
in Fig. 3. The radiative intensity absorbed in a given spectral Tine

of the gas is dlv. Due to line broadening effect (natural, Doppler and

Lorentz) dIv varies over a narrow frequency range as shown in Fig. 4,

(this gives rise to the phenomena of Tine shape). The intensity of
The integrated radiative

intensity (total intensity absorbed by Tine) is30

radiation between v and v + dv is (dl\) )dv .

dl = J\) (dI\))d\) (37)
The spectral absorption coefficient @, is defined as
dI\) alidt. I\) dy (38)

Examining Eq. (38) if [ decreases as the radiation traverses the

slab of gas, then dI,, is negative and(y)is positive. On the other hand
\

if I increases as in the Taser effect, then dI) is positive and o is
\ \

negative. Hence defining small signal gain coefficient G as
V
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e — e

Fq. (38) can now be rewritten as

(40)

For a constant Gov along the path, the Eq. (40) integrates to Beer's

Taw
G, (y-yo)
(41)

eV -R transition, G, €an be written in terms of number

e upper and Tower sta

For a singl
tes, the upper and lower

densities N and N, of th
u Q
a normalized Tine

tjon wave number w,

degeneracies 9y, and g, > the transi
profile parameter olw - we) -~ where 0,4 is the centerline wave number
-- ) e 6
and an Einstein absorptiof coefficient By > 2%
h B g
- g u 2N -
JvGO dv = Go(w) = -7ﬂr‘~—(u (~u Nu Ng) (42)

bV
where h is Planck's constant and 4n 1s the total solid angle about a

point.

(v,J) for state

ss ratio n
(42) are replaced by6

Introduce now mole ma
densities in Eq.

vibrational level V. The number
= ,J
N, Ny © n(v,J)
(43)
N = Nyo n(y+1, J- 1) for P transitions
u A"

Assuming equiTibrium Roltzmann distribution for the rotational
ans1ation temperature T

populations at the tr
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g
n(v,J) = n(v) azsﬁ'EXP [- ggE(¥,J)] (44)

Inserting Eqs. (43), (44) into Eq. (42) yields

h N
A
GO(V,J) = To W

C(VaJ) e pB(V,J)(ZJ'*1)

n(v+1) he )
b exp [_ KT E(V+.|3J ])]

Qv +1)

exp [- E%»E(V,J)]

_on(v)
Q(v)

where subscript c refers to centerline values.

quantities needed for calculating the gain for any

The molecular
sition are transition wave Tength, Einstein

vibrational/rotational tran
mulated emission and the Tine shape

coefficients for spontaneous and sti

function.
is determined by the vibrational/rota-

The transition wave Tength
tional energy Tlevel spacing within the molecule. The rotational-
y the following expression

-vibrational energy 1S given b

v 2 3 3
E(v,J) =B, J(a+1)-0, 9 (J+1) +H, J (J+1)

2, ANV~ Pe (v %) _—

g = 20,95 cm']

where -
A = 0,796 cm e
e
8. 4
By 4 B, /we
2
2 3
L op “-A, @ )/3 w
He 2 De (-I e e e e
(54 /8.) ~(8,2 0g/24 B,
Be = De [(8 Wa Xe/we)— el e e e e
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wh
ere Wo = 4,14 X 103 cm

and 2
o x. =900 cm
e e

T : . . 2

he Einstein coefficients denote the probabilities for stimulated
ate

The Einstein coefficient for absorption

and
spontaneous emissions:
o that for a stimulat

is given by the s
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lasing occurs at the line center frequency, can be written as”

1
o = - ; (Qﬁz)- V(n) (48)
c A Vp l
Here V() is the Voigt function, given by6
(49)

V(n) = exp (n%) [1-erf(n)]

and n is essentially the ratio of the Lorentz Tine width to the Doppler

line width,

Assuming now pure Doppler broadening, in the 1imit as n~>0, V(n)~>1.0

and
é 2 V(QnZ)E (50)

CaD A \)D L

Here AvD is the Doppler line width at half the peak intensity.

According to Lengye130

2w
2 R 5
A\)D = —é‘c‘ (h—‘—**; Al 2)“ (51)
HF
where we is transition wave number

Myp is molecular weight of HF

and ’ .
R is universal gas constant.

Substituting into Eq. (50)

. £ (JHE (52)

(bC,D —u-); (Z'H'RT

Assuming now that only the P-branch transitions occur (i.e. tran-

sitions proceeding from (V+1, J-1) to (V,J)) and that rotational

equilibrium also exists, and substituting Eqs. (47), (52) into Eq. (45)

we obtain for Gain,
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h N M ;
A ¢ 7 HF x%
Golvsd) = 7 ¢ [/JC? () A xe

4
6. 23411 v+l 2
By LD Y o)
3w
T elutl) _ hc ol
¥ - L gvaty o [ f B+ 1.d- 1]
c(v) _ he
where n(v) = (;4(\/)
HF

c(v) being the mass fractionsand m = -1 has been substituted for P-

-transition.

Simplifying this expression algebraically we get, finally

GO(V,J) = Alc(v+1) - ac(v)]
where 2
g 1
Byt 2 Ny le”l
A = —————t— . -~ %X p
3h(2 kM T)* Qlv+1)

x exp -[E(v+1,J-1)hc/kT]
(E(v,d) -E(v+1,J-1))hc/kT]

0]
—ﬁfiﬁl—t mass fraction
0

Q(v) = ; (20+1) exp -[E(v,Jd)hc/kT]

(54)
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rotational partition function

20.95 J(J+1) - 0.796 J(3+1)(v+1) cm

1R

E(v,J)

vibrationa]—rotationa1 energy

m

noted that the expression for E(v,J) given above is
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the same as that given earlier as Eq. (46)
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3 3
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2
”y |
Small signal gain at every point in the flow field mesh can be

The averaged small signal
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(55)
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CHAPTER V
THE NUMERICAL METHOD

5.1 THE TIME DEPENDENT APPROACH

Equation (19)can be rewritten in the following form,

U Pz s
oU oF )G v (56)

Here the vectors U, F, G and K consist, as discussed earlier, of

the flow field properties and their first order derivatives. If the

distribution of the flow field variables is specified everywhere in the

test section at any instant of time t" (i.e. after n time steps), then

Vector K can also be computed

the vectors U, F and G can be computed.

explicitly since the temperature, rate constants and mole fractions of

each of the species are known. Since F and G vectors are now known,

i In

o X
turn, then, the time derivative a(l/at can be calculated from Eq. (56).

and-%% can also be computed using a finite difference scheme.

For small enough time step i.e. at,then the Taylor series expansion

of vector U about the time instant tn, could in principle yield the value

= +
of vector U at time tn 1 by

-n+l _ n 3\@
U =U 2 (Bt)n At {57 )

0" are enough to specify all

The components of this new vector

the properties at any grid point one step ahead in time. From this,

oF 26 can be calculated at time tn+

again, the vectors F, G and K and X’ dy
This process then can be repeated until a

2

to eventually yield e,

steady state is reached, i.e. when 20/5t approaches zero.
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However, Eq. (57) is of first order accuracy only. Therefore, a

time dependent technique patterned after the MacCormack approach24 was

used to generate the steady state solution. (See Refs. 40 and 41 for

further applications of this technique.) MacCormack uses a predictor-

-corrector method which is of second order accuracy. It involves the

generation of intermediate predicted values at time tn+] via Eq. (58)

below. These predicted values are used again in the conservation equation

in a "corrector" fashion to obtain values at time (n + 2) as shown in

Eq. (59) below. Averaging of these two steps leads to a higher accuracy

(of second order) at time tn+1 as described in the following three

equations,

intl _ g . r3F _ 3G, ¢

U U+ E'ax ~ 3y + K]n At (58)

ont2 _ntl sF _ 86, °

u ] & [ r ik K] 41 Ot (59)
and %

qn+2 n
- - l .
TUACEER ol . R R e (60)

Here n refers to the time step and tilde refers to the intermediate

values.

5.2 DIFFERENCING SCHEME

The vectors F and G contain first order spatial gradients of tempera-

ture and velocities directly and of species concentrations indirectly

through the diffusion velocities. In turn, spatial gradients of vectors

F and G need also to be taken to first order to solve Egs. (58) and
(59). Thus effectively, second order spatial derivatives are needed

for some of the thermodynamic quantities during both the predictor and
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corrector step calculations. This offers a possibility of various com-

11ed forward, backward and central differencing

binations of the so ca
several combinations were tried and

schems to calculate the gradients.
Appendix B contains a d
The scheme summarized beTow

results were CompaY'Ed- Eta11ed discussion of

such schemes tried for cold flows

ults and was hence recognized as the most appropriate

yielded the best res
resent interest. This differencing scheme

scheme for the mixing flows of p

was termed the "Modified MacCormack" scheme.

calculations, foward differencing is used

During the predictor step

for computing the gradients of F and B, 1.8,
oF . _ B(3.].k) = F(2,7.K) -
Ty (Z,J,k) . AX
5%
" 2 oo e
28 (4,2,k) = .f-"(1,3,k)A G(i.2,k) s
3y ,

q the gradients of T, u, Vv and p} which occur in

whereas for calculatin

Fand &, a backward differencing scheme is used, 1.e.
z #ts 1-k) = TlaJakd
S M k) 2 SAeeens | e, 63
’2’1; (Zsjak) . AX ( )

tion and j denotes the y-wise location and

Here i denotes the x-Wise Toca

k is the relative 1ocation in vector.
the reverse combination

r step calculations,

But during the correcto

is applied EE-and E@.are now computed using backward differencing while
. ay 3 - .

gradients of ;)_X et are calculated with forward differencing.

S O 9 2

aining cold and hot flow calculations.

Such a scheme isused for all the rem
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5.3 TIME STEP

5.3.1 Fluid Dynamic Criteria

d spacing in the x and y direction (defined in Fig. 1)

Let the gri
If u and v are the mass velocities

be given by ax and AY respectively.

in x and y directions and if 'a' is local speed of sound, then the time

disturbance to propagate in the x direction

interval required for any

to the nearest grid point would be

AX
(at), U +a (64)
Similarly for they direction it would be
_ by
(at), = v+ a (65)

ria for selecting the magnitude of time step required to
time 1S due to Courant, Fredrich and Levy42

1t states that the time step should

The crite
advance the solution in

and is hence called CFL criteria.

e required for the information from one grid

be smaller than the tim
In other words all the grid

point to reach its neighboring grid point.
d and the information at one grid point is realted

points are discretize
The time step according

to the next and only through the gradients.
to CFL criteria is then the minimum of (at), and (At)y calculated at

every grid point.
smaller

sed in the calculations is in general

The time step U
ja time step and

though, then the CFL criter js given as,
At = Kk (At)CFL

where,
O<k<1
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Th
e value of k used for the present calculation varied from 0.3

to 0.5.

5.3 :
.2 Chemical Kinetic Criteria

step criteria for problems with chemical kinetic
s

The other time
on processes. The time step has to be

18
due to the chemical relaxati

racteristic time required for the production of each
ac

smaller than the cha
speci p .
pecies. The chemical relaxation time can be given as,

d[&i]
(67)

v = Ve ]
wh i
Y F L s Bl s o 18

s for Ts» the species production term

to obtain expression
n in Appendix A, are differen-
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In order

e i ;
quations i.e. equation
and the negative inverse

ti s
ated with respect to the specie
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of ; .
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the minimum of wh

for the species,

]aXatj .
on i i
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Step_
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e . .
Xtremely small and velocitl

5.4 GRIp SIZE AND CONVERGENCE
(with 81 grid
13 x 13 and 17
The present

points) was used in general. Other mesh

A 9 x 9 mesh
x 17 were also used. A few words

sizes such as 5 X 9
time-dependent calculations

ab :
out convergence are 1f order-
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smoothly and regularly approach a steady-state solution as Tong as the
requisite stability criteria are followed; i.e., the solutions are
stable as long as the time increment is less than the CFL and chemical
relaxation times. With regard to convergence, the question can be asked:
Is enough accuracy obtained with the present 9 x 9 grid, which at first
glance appears rather coarse? An answer is given in Fig. 5. Here, the
final steady-state temperature at x/h = 5 and y/h = 0.75 is given for
three differet grid sizes: 5 x 5, 9 x 9 and 13 x 13. It appears that

a 9 x 9 grid is sufficiently accurate, and that a further definition by
more grid points is unnecessary. This is totally consistent with time-

1,31,80,41 pere sufficient accuracy

-dependent solutions of other problems
has been obtained with seemingly very coarse grids. Apparently, the
time-dependent mechanism is "self-correcting" at each time step, allowing
the physics contained in the conservation equations to bear more strongly
and accurately at each grid point. The philosophical point not with-
standing, experience has clearly proven that time-dependent solutions
require fewer grid points than might be expected for steady-state analyses.
The present results are a case in point. As long as the cell Reynolds
number in the y direction is on the order of unity, the gradients are
adequately accounted for, as in the present calculations, A 17 x 17

grid was used when a more definition of the flow field was needed for

base flow calculations etc.
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CHAPTER VI

cOLD FLOW
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.1 INLET CONDITIONS
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6.2 RESULTS AND DISCUSSION

In order to consolidate and summarize the solution of Navier Stokes
equations for chemical Taser "cold flows", Figs. 6 - 12 give steady
state results for a case typical of conventional supersonic diffusion
chemical lasers. These results were obtained using the modified MacCormack
scheme discussed in Appendix B, and treated a discontinuity at the
inTet. A 13 x 13 mesh was employed. Fiqure 6 shows the
progressive development of the velocity profiles at three different
stations in the flow direction. Note the stronger effect of mixing
on the slower and Tower molecular weight stream of H,. Figure 7 gives
pressure profiles at the same three stations. Note that for the present
cold f]ows; p is essentially constant across the flow, and tends to
decrease slightly in the flow direction. The corresponding temperature
profiles are given in Fig. 8. Note that, as expected, T increases in
the laminar mixing region, and tends to "diffuse" outward as the flow
moves downstream. Also note that commensurate with the slightly de-
creasing p, T also decreases in the wings of the profile as the flow
mores downstream, i.e. the wings of the flow appear to be in a slight
expansion region. Again here emphasis is made that cold flows of the
type analyzed in this chapter are purely artificial and these results
have a meaning only within the interpretation given in Chapter 1.

The profiles of species density for F2, F and H2 and He are given
in Figures 9 - 12 respectively. These results isolate the effects of
multicomponent diffusion. When examining these figures, keep in mind
that the flow velocity of the upper stream is twice that of the lower
stream. Hence for example in Fig. 11, the mass flow of H2 is preserved,

even though the profiles seem to show at first glance more H, Tost from
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the lower stream than gained by the upper stream. However, on mass

flow basis, H, is preserved, as it should be for this purely non-

-reacting flow.

6.3 COMPUTATIONAL EXPERIMENTS

6.3.1 Variation in Grid Size

A9 x 9 grid and a 13 x 13 grid were tried with the modified
MacCormack approach. Steady state results for both are plotted in

Figs. 13 through 17. A discontinuous velocity profile at the upstream

boundary was used to obtain both sets of results. (The discontinuity

Ties at the interface of two streams as shown in Fig, 1). FExact

simulation of the conditions that might prevail in a laboratory experi-
ment could not be attained because of the finite grid size. The computer

"sees" a discontinuity as a "ramp" of steepness based on the grid sizes.

Thus reducing the grid size tends to make the discontinuity more severe.

On this basis, a 9 x 9 grid size presented a weaker discon-

tinuity than a 13 x 13 grid. The effect of this steepness in the dis-

continuity of the inlet velocity profile on the downstream flow field
variables is shown in Figs. 13 through 17; the most marked variation

being in the pressure profile of Fig. 14, being 6% for 13 x 13 grid and
only 2% for the 9 x 9 grid.

6.3.2 Effect of a Continuous Velocity Profile

In general, mixing of the two streams has been treated as being
discontinuous at the inlet. However, for the sake of comparison a case
where the velocity profile at the inlet in continuous was simulated
(with a discontinuity in p and p) at the inlet). The lack of velocity
discontinuity was observed to yield smoother profiles at other locations

in the test section. As is apparent from Fig, 18, the pressure at a
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particular grid point is seen to reach its final steady state value
faster and in a much smoother fashion for a continuous velocity profile

than a discontinuous one for the same grid size. The steady state value

of pressure is also different because of the different inlet velocity

profiles.
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CHAPTER VII
HOT FLOW
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x/h = 5.0 than at x/h = 10.0 because y gradients of velocity are lar-

ger near the nozzle exits. However, in going from x/h = 5.0 to x/h = 10.0,

the mean temperature rise is more (averaged over the whole cross section)
whereas the peak temperature of the faster stream seems to drop because

the interface streamlines would bend towards the slower stream. The

average pressure also decreases slightly as the flow moves downstream

as noted in Fig. 22. In contrast the hot flow temperature profiles

clearly show almost discontinuous increase in temperature in the mixing

region, a fact already noted from Fig. 20.

Figures 24 and 25 illustrate density profiles of various HF vibra-

tional levels at x/h = 5.0 and 10.0 respectively. The growth of the

reaction zone can be seen clearly. Total population inversions existing

between vibrational Tlevels increase as the flow moves downstream. The
small signal gain, though, does not necessarily increase since the

absolute difference between the densities of HF(0), HF(1) and HF(2) does

not always increase.

The calculated growth of the reaction zone as defined by the region

where PHF(0) is greater than 10% of the maximum value, is shown in Fig.

26. This figure is taken from Ref. 15, and contains experimental data

taken at TRW. The present results are marked on Fig. 26 and show the

same laminar variation as the experimental data.

The existence of population inversions and hence laser action is
best seen in Fig. 27, where densities of various HF vibrational Tevels

at y/h = 0.375 are plotted with respect to x. Inversions exist between

the 0-1 levels and 1-2 levels, which generate the small-signal gain

GO(V,J) as calculated from Eq. 54. These gains are shown in Figs. 28 and

29. Figure 28 shows the variation of the small signal gain with respect
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to x at y/h = 0.375 for the vibrational Jevel transition 1-0 for various
rotational Tevels (only P-branch transitions are considered). Figure

29 shows similar results for the 2-1 transition. The values of gain

and the spatial extent of the lasing region as indicated on Figs. 28 and

29 are typical of conventional HF chemical lasers, as obtained from Refs.

28 and 29.

7.2 STRONGLY REACTING CASE

7.2.1 Inlet Conditions

The previous case was weakly reacting since the quantities of reac-
tants were low and diluents high, in addition to a Tow translational
temperature. For the purposes of comparison, though, a case was run
with inlet conditions taken from the report by King and Mire]szg of
Aerospace Corporation. The same case was also run on LAMP code20 of
Lockheed Missiles and Space Company, Inc., (Huntsville, Alabama).
King and Mirels, as discussed earlier in the Introduction assume two
semi-infinite streams, with pressure in both x and y directions con-
stant; whereas the LAMP code calculated a pressure gradient in x direc-
tion by means of a quasi-one-dimensional heat-addition approximation.

The inlet conditions used are given in Fig. 30. The velocities

were also different from the previous case; 1400 m/sec for stream 1

and 2140 m/sec for stream 2.

7.2.2 Results and Discussion

This mixture is so strongly reacting that a Targe adverse pressure
gradient is produced in the flow direction, Note from Fig. 31 that
both the present calculation and LAMP predict approximately a factor

of five pressure increase in a distance on the order of a centimeter.

50



e~

King and Mi
Mirels on the other hand have no pressure gradient;
tion V . - N 5 an assump-
alid for two seml infinite streams but invalid for the
real 1ife
s -- represented by the present case of stacked nozzl
zZ1es,

chemical laser
erature and HF(0) concentration varia

Fi
igures 32 and 33 denote the temp

n for all three methods in consideration. A co
. mpari-

tions in x directio
the other solution is, though, not

S0 4
n between King and Mirels and

e the boundary conditions are different Neverthel
. eless

entirely valid sinc
ake of completeness. Although LAMP did

it i :
t is also included for the s

rtain distance,
centration variations for the distance
S over

not work i
beyond a ce it should be emphasized that the

pres
sure, temperature and con

as obtained, show a
no further effort was made to obtain
a

which :
the solution W close resemblence to the present

re
sults. Due to a lack of time,
ps smaller grid sizes etc. Thus

with LAMP using perha
se figures in no way re
h the solutions followed each other

complete solution
flect on the viability

results of LAMP shown in the
r the fact that bot
nt that should be emp
o and HF(0) density profiles at

of LAMP, but rathe
hasized.

quite so closely is the PO
ows the temperatur

Figure 34 sh
y both the LAMP cod

X/h = 10,0 as ca1cu1at6d b e and the present program
se discussed in pr
Note that the
ch are 20% and 7
sidered to be a reasonable

evious section. Results of Figs

for the dilute ca
LAMP results predict peak

2
0 - 29 apply to this case.
F densities whi

0% higher, respectively

temperatures and H
ons. This is con
s and transport

than the present calculati
1ight of the di
t in two programs.
transport properti

d Prandtl numbers.

fferent kinetic rate

agreement in the
Also, the present results

properties which may exis
es at each point in

d and variable

calculate detaile
stant Lewis an

t
he flow; LAMP assumes coOfl

51



7.3 TEST CASE WITH HIGH CAVITY PRESSURE
7.3.1 Inlet Conditions

Finally one more test case whose inlet conditions were obtained
from Bell Aerospace Cor‘por‘ation44 was simulated. The inlet conditions,
given in Fig. 35 are also used as the initial conditions. The velocities
in both the streams are different now with H2 stream being much faster
than the previous cases. A slight discontinuity in pressure also exists
at the inlet. The dimensions of the nozzle combinations are also dif-
ferent, they being about 1/3 of the previous cases (compare h = .5 cm
before to h = .157 cm now). Test section for which calculations are made
is fifteen heights (15 h's) Tong. Discontinuities in temperature,
density, species density, u velocity besides the pressure areevident.
Parallel mixing is again assumed.

The most striking difference here from the previous cases is the
higher inlet pressure (5 torrs earlier to about 13 torrs now). Mixing
due to diffusion is therefore slower and hence the lasing region is
longer in terms of the nondimensional distance x/h.

7.3.2 Results and Discussion

The final steady state results for this case are plotted as 3-D
surfaces. This gives a very clear picture of fluid dynamics and reac-
tion mechanisms involved during the development of flow in both x and y
directions. The x axis again is the flow direction and y axis repre-
sents the lateral direction. z axis is the thermodynamic quantity
A11 such plots are made as seen from a viewing

plotted for the figure.

angle defined by 06 = 60° and ¢ = 240° where o and ¢ have the same

notations as in spherical coordinate axes (i.e. 6 is measured from z

axis and ¢ from x axis in x,y plane) unless otherwise noted.
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Figure 36 is such a plot of pressure. The Pressure is seen to

increase in flow direction slightly (about 40%), whereas in y direction
it is almost the same. Even the slight discontinuity in pressure that
exist at the inlet almost vanishes by the next grid point in axial
direction. Note here that although both x and y are plotted on the same
scale, x actually goes from O to 15 h whereas y goes from 0 to h.

Figure 37 is a temperature surface. Again the rise in temperature due
to heat release in the mixing region is evident. Again note that a
temperature discontinuity at the inlet is fed in as part of the problem.
The temperature rise at x/h =15 and y/h = .5 for this case is 457%.
Figure 38 represents the density (global) and u velocity surfaces
respectively. Figures39 and 40 are F2 and H, surfaces for this case.
The F, content in primary nozzle is zero whereas H, content in secondary
nozzles is zero. At the inlet the F2 and H, are present only in the
secondary and primary nozzles, respectively. As the flow moves down-
stream they diffuse into each other. Some of the diffused species com-
bine to form HF. Figures 39, 40 and 41-which is a rotated view of the
same H, surface shown for a better clarity with o = 60° but ¢ = 150° -
clearly show the depleted F2 and H2 inside the mixing region, which have
gone to form HF. Figures 42, 43 and 44 are the surfaces for vibrational
Tevels HF(0), HF(1) and HF(2) respectively. Although they are not plotted
to the same scale in z, their qualitative behavior towards attaining

a Boltzman distribution in vibrational levels at the local translational
temperature is evident. HF(0) is rapidly increasing as the flow moves
downstream whereas HF(2) is reaching an asymptotic value. Although pop-
ulation inversion exists for the first few heights downstream, the rapid

V - V transitions populate then the lower Tevels (viz. 0 and 1) at the
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et et

expense of higher levels (viz. 1 and 2 respectively) in 2 -1land1 -0

V - V deactivations.
averaged over height h s plotted in Fig.

The small signal gaim

d2 -1 transitions The values of

45 and 46 for 1 - O an respective]y.

signal gain calcul e higher than the

ated for this case ar

averaged small
.1 because the densities are

weakly reacting case discussed in Section s

higher now than in the previous case.
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CHAPTER VIII
UNSTEADY FLOW

8
.1 WEAKLY REACTING CASE

8.1.1 Inlet Conditions
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The inlet conditions were fluctuated about certain mean condi tj
ions
which, for the most part, were taken tq be the same a5 those for ty
e
Different vVariables fluctuateq

the next section,

dilute case discussed in Section 7.7,

about these mean values are outlined in

The frequency of the oscillations was selected in sych 4 way as to
have wavelength of the order of cavity length

> With ve10c1ty given by the

faster stream speed. Further parametric studies confirmed this hypo-

thesis. The Strouhal number is of the gprder recommended in Ref. 45

The frequency of fluctuation is of the order 105 rad/sec.

Figure 47 is a plot of sinusoidal variation in any of the variables .

The time taken for sound waves to travel in y direction from the inter-
face streamline to the Fluorine stream centerline and back was also

calculated as shown in the same figure.

The frequency sq calculated from
this periodic time is also of the order of 10° rad/sec.

8.1.2 Results and Discussion

Different variables were chosen to be fluctuated at the inlet with
different frequencies and amplitudes and their effect on mixing analyzed.

A1T of these simulation experiments are outlined below. Cold flow

solutions were obtained first and if any improved mixing was observed

then the hot flow calculations were turned on.

8.1.2a Pressure

Pressure was fluctuated in the F2 stream about the mean value of

500 N/m2 (and hence the density too since temperature was kept constant).

This failed to yield any improved mixing. Any variation in frequency

and/or amplitude of the pressure fluctuation did not improve this

situation.
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8.1.2b u Velocity
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The values obtained at any phase angle are instantaneous and do

not give a clear picture in terms of better or worse mixing. Therefore

when the repetitive state was established, they were time averaged over

a periodic time by using a special subroutine. These time averaged

values are a more useful indicator of the trend.

=
Another case with o = 0.5 n x 10° rad/sec and au = + 257 was also

run. Time averaged values for F, density versus x for this case and

the previous case are plotted in Fig. 51. The case with w = bSomox ]05

rad/sec shows inferior mixing. This was again an indication that the

5 :
angular velocity @ = n x 107 rad/sec was indeed in the desirable range.

Hot flow results were obtained for the case w = y x 105 but with
amplitude Au = +10%. Time averaged results of various HF vibrational

Tevel densities are plotted in Fig. 52 and 53. Figure 52 shows lateral

profiles where it is obvious that production of HF does not markedly

differ from the one for steady flow. In fact they pretty much fall on

top of each other. The x-wise variation of the same, shown in Fig. 53

also shows a very similar behavior. Indeed this suggests that fluctua-

tions with moderate amplitude like Au =+10% do not depart from the

steady state values noticeably, but rather substantial amplitudes like
Au = +25% produce noticeable changes. This behavior can be explained by
the nonlinearity associated with large perturbances, for small pertur-
bations the increase and decrease in mixing being about the same and
hence nullifying each other when time integrated over a period.

Figqure 54 is a velocity vector diagram, to scale, at an instant
described by phase angle 0 = 9° and case with w = 1 x 105 rad/sec and
Au = +25%. Large components of velocity produced in y direction due

to momentum interlinking can be seen. The flow,besides slowing down or
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speeding up due to x momentum changes in incoming flow, is also bending

in positive and negative y directions. This is obviously not observeq

much for the steady state mixing, inspite of the fact that both these

cases are parallel mixing at the inlet. Thus the flow is observed to

actually mix physically.
8.1.2c v Velocity

(I) Fluctuations in one stream-F, stream

Presence of rather large v velocity components in the flow field

for the u velocity fluctuation case outlined above prompted simulation

of v velocity fluctuations themselves at the inlet. It was v velocity

components shown in Fig. 54 that were responsible for the material
intermingling and so question was asked as to why not artificially

introduce v velocity fluctuations about the parallel mixing (with zero

v velocity in mean) at the inlet?

Therefore, all subsequent cases were run wherein only the sinusoidal

variation of y component of velocity was intentionally forced at the

inlet.

Figure 55 shows time wise variation of F, density again at a point

in the flow field for three different amplitudes of v = + 5%, + 10% and

+ 25% of the Up - These cases were again run back to back, yielding a

saving of a considerable computer time, Amplitudes of + 5% and + 10%

again lead to F2 densities less than or of the same order as the steady

state value; whereas amplitude + 25% yielded larger densities. This

case was therefore pursued further. Time averaged values of the F?

density were obtained next for this cold flow and plotted versus x.

Figure 51 shows the comparison between various cases. Faster mixing for

F2 and also H2 is seen. For all the x wise location shown,F2 density
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there is higher than and H2 density lower than all the other cases,

showing a much superior mixing. Hot flow was next turned on at the

cold flow repetitive state. Time averaged values were again obtained

at the establishment of repetitive state. Figure 52 shows HF vibrational

level profiles for a particular x location. Again a Targer and more

spread out production of HF is clearly seen for the present case compared

to all the other cases plotted. Ability of the oscillations to populate

the region of the flow for y/h > 0.5, which did not occur for the other
two cases, in general produced integrated gain larger by almost a factor
of two, thus making it possible to increase gain by a substantial amount.

Figure 53 again shows HF levels versus x for various cases. Here again

a faster mixing and faster pumping is clearly seen, particularly at

x/h = 2.5,

Averaged small signal gain is plotted in Fig. 56 and 57 versus the
non-dimensjonalized x-wise location, for both the above mentioned

unsteady case and the steady mixing case. These figures clearly illus-

trate the superiority of unsteady over steady mixing in terms of gain.
Figure 56 shows averaged gain for transition levels 1 to 0 whereas Figq.

57 shows the same for levels 2 to 1, re-emphasizing the same point of

factor of two higher obtainable gains. 1In both these cases the gain is

calculated from the various HF Tevel species densities averaged over a

time period of an oscillation.

As a final comment on the fluid dynamic aspects of unsteady mixing,
note that there is a physical improvement in mixing due to the forced

intermingling of the fluid elements. This can be seen from Figs. 58a
and b, which shows the time history of the inert particles inserted at

two different times (and hence different phase angles) in the flow.
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The nonuniform particle paths clearly show the extent of materig)

intermingling. These path lines wepe obtained as part of the ¢

Omputer
results by means of a special subroytine.

(IT1) Fluctuations in both streams

v velocity fluctuations so far haye been only in gne Stream vis

F, stream. They were introduced now in both the streams

at different
phase difference (angle) between the two

> to explore the possibi]ity of
further increased mixing. Figure 59 shows various simulation experimentsg

attempted. The runs were again made back-to-back and all the cases were

run for the same frequency. No substantially better miXing was obseryeq
over the case of fluctuations in one streanm only.

Phase differences

tried were a9 = 0, /2 and = for fluctuation of amplitude v =+ 709

and
+ 25%.

8.2 TEST CASE WITH HIGHER CAVITY PRESSURE

8.2.1 Inlet Conditions

The inlet conditions were the same again as the one described in

Section 7.3.1 except that now the y component of velocity (v velocity)
was sinusoidally fluctuated at various frequencies and amplitudes about

a mean value of zero. Frequency was again selected such that the wave-

length associated with the greatest u velocity at the inlet was of the

same order as the distance from the inlet to the peak gain for steady

flow case of Section 7.3.
8.2.2 Results and Discussion

5
Three different cases were simulated. They are (1) 4 = 21 x 10

ad/sec and v =+25%, (2) w = 2mx 10° rad/sec and v = +15% and, (3)
r - S

1.5 x ]05 rad/sec and v =+ 15%. Of these, only the second case
w = ~ ™
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CHAPTER IX

MISCELLANEOUS EXPERIMENTS

The parallel mixing flows in the steady flow cases discussed in

Chapter 7 and for all cases other than v velocity fluctuation experi-

ments in unsteady flow are idealizations of kinds where existence of
boundary layers in the nozzles and regions of circulation in the base
of the finite thickness for adjoining nozzles are neglected. This is
done to provide actually the interim results in almost the same Tight
as the cold flow results.

In real nozzles, though, boundary layers exist in velocity and
temperature. If catalytic recombination is assumed at the nozzle walls,
there is also a species density boundary Tayer in F and F2. Flow simu-
lation with just the velocity boundary layer in both nozzles was attempted
and solution outlined in the next section.

The nozzle 1ip shown in Fig., 1 is drawn to have no thickness. Of
course in real nozzles this is not the case and a region of recircula-
tion is present between primary (F2) and secondary (HZ) nozzles. This
is obviously a subsonic region embedded inside the mostly supersonic

region existing in the flow field. The treatment for obtaining solution

for this case is given in Section 9.2 although this was not successful.

9.1 BOUNDARY LAYER IN VELOCITY

The profile of the velocity boundary layer fed in at the inlet in

both the primary and secondary streams is shown in Fig. 65(a). Velocity

profiles for the cold flow at various x-wise locations are also shown

on the same figure at the steady state. It can be seen that although
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point location from the inlet) the velocity

by x/h = 1.25 (first grid
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9.2 BASE FLOW
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67 shows such a base of small thickness

of nozzle 1ip at inlet. Figure
re simply boundary layer profiles in velocity in

Inlet conditions then a
s and no s1ip conditions at the base

the primary and secondary stream

i.e. zerg velocity (both U and v).

ted with such inlet conditions but the

Acold flow solution was attemp
ot achieved. The program "blew up" (e.g. pressur
. e

final steady state was
re this could be realized.

ent negative
s were next changed
of solution and then changed gradually

) befo

or temperature W
to an arbitrary smooth

The inlet condition

velocity profile at the beginning
e the same as the actual

milar but not quit

to a profile which is si
is procedure yielded transient results

(real 1ife) velocity profile. Th

£ vortices in the b
nced much farther, by sTowly "creeping

ase region of the flow. The

which showed formation O

his way» he adva

s velocity profi1e a

The pressure again wen

solution could, t
t the inlet, but no steady

up" on the discontinuou
still obtained.

t very small

state values were
e base region.

and finally negative in th
concluded that substituting of initial condition
S

It was, therefore,
which are close to what might be expected at

everywhere in the flow,
rther attempt was made to calculate

steady state, might work, No fu
kK of time. 1t should be emphasized here that

tions due to lac
uch that the downstream end of the

such condi

the initial conditions should be 3
tely supersonic or goes and remains supersoni
S g

flow field regime S comple

soon after the ctart of the solution.

66



CHAPTER X

CONCLUSIONS AND RECOMMENDATIONS

The work presented herein introduces a "third generation" of
¢h ] . . .

emical laser analysis, 1.€- Navier-Stokes solutions for the flow
ailed chemical kinetics for both the hot and

field coupled with the det

£ HF for both steady and unsteady flows. In particula
r,

cold reactions O
the following:

the present results show
r supersonic diffusion chemical laser
S
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are indeed feasible; however, computer times equivalent to about 30

on a UNIVAC 1108 a
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al conditions for one are
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supersonic flows. In contrast
S 2

analogy with constant area h
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dinal variation is reasonably constant and

for cold flows, the Tongitu

may even decrease slightly-
5 The growth of the laminar mixing reactionzoné compares favorably

with experiment.
6. Navier stokes calculations have the distinct advantage that the
two dimensional pressure gradients (in both X and y directions) appear

In strongly reacting cases, the proper

y and exactly-
are absolutely necessarys; the

quite naturall

essure gradients

accounting of these pr
constant pressure boundary layer assumption 1S not adequate.
7. Considering the differences between the physical properties
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and fluid dynamic modeling of
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averaged gain for HF chemical lasers can
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APPENDIX A
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- k_5g[HF(6)] - k_5h[HF(7)]— k_51.[HF(8)}{ [F1

d[H)
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diH] .
- 20k, M51 * kop[Mad * kZC[M5]>{[HZJ% + 2 {-ky [M3]

—k—Zb[Mll] E k_ZC[MS:ll}{[H]Z} + k3O[HF( 0)] + k3] [HF(1)]

k32[HF(2)] + k33[HF(3)] % k34[HF(4)} + kyg[HF(5)] + kg [HF(6)]

sk o
1+ k38[HF(&)]}{[M6]* i oy R g * K g™

+ k37[HF(7)

gk 35" g6~ K37 k_38}{[H][F][M6]} * 1Ko * Kaa * Kb

k4cH[F][HZ]} + {-3k_4aO[HF (0)] - 3k_g,4 [HF (1 )];3k_4b[14p(2)]

k_AC[HF(3)] - k_4d[HF(4)] - k_4e[HF(5)] - k_4f[HF(6)]}{[H]}

k_5e[HF(4)] + k_Sf[HF(S)] * k_5g[HF(6)] + k_g [HF(7)]

k_Si[HF(8)]}*[F]} + {-kgy - Kgp ™ M5 ksq = K5 = K5¢ = K5g

ke - }
K k51}{[H][F2]
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d[FZ]
------- = {k M.] + K M, JH £ -
~]a[ 1] _]b[ 2] [F]" ) & k]a[M]] - k]b[Mz]}{[Fz]}

+{k_5a[HF(0)] + k_5b[HF(1)] + k_5C[HF(2)] + k_gq[HF(3)]

+ k_se[HF(4)] v k_gpHF(5)]* k_5g[HF(6)] + kg, [HF(7)]

s [HE()THIFDY +{Ksa ™ Fob ™ .
g [HF(8)] [F] keq ~ kob ™ K5c ™ Kod” kse = K5¢ = Ksg

d[H.,]
e
J (911 ([H1% )+ (=kpg M1 ~Kpp [, ]

dt

= (k_p,M3d * K_op[Mad * k_¢

% 3k_4b[HF(1)] + 3k_4C[HF(3)] + k_4d[HF(4)] + k_golHF(5)]
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d[HF(0)] _ {k_3O[H][F]

T [HF(0) T} [MG] + (K, [FIIH,]

3 0

- 3 k_, [HF(O)IHIY + (kg [HI[F,] - k_g [HF(0)I[F]}

-4a0

-+

(ke [HF(T)] - k_g ¢ [HF(0)]3[M, ] + {kep  [HF(1)]

- kg [HF(0VTY [Mg] + kg [HF(1)D - ko q THF(0)T} [g]

+ {kgq [HF(1)] = k_c  THFCO)IIIM, o] + (kg eq [HF(T)]
- k_gp [HF(0) I} [MgT + {k6g1[HF(1)] - k_6q](HF(0)]}[M4]

ik7a[HF(1)]2 - k_; ([HF(0)IIHF(2) 1} + (K, THF(1)ILHF(2)]

. k_7b1[HF(O)][HF(3)] S LHECDIIHF(3)] - kg0 [HF(0)] -

" [HF(4)]} + 1k, THF(1) J[HF(4)] - k_7d][HF(0)][HF(5)}
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l}‘" Wi, o R o

d[HF(2)] . [HILF] - kBZ[HF(Z)]}[M6] + (kg [FITHp1-3 k_gp, [HF(2)IIH]Y

dt = {k_32

[HF(2)J[FI} # Tk_gqplHF(1)] - keqplHF(2)]

+ {k5C[H][F2] - K_g¢

[HF(2)11IM71 * (k_gpplHF(1)]

¥ k6a3[HF(3)[ - K_ga3

- kgpo[HF(2)] gpalHF(3 - k-6b3[HF(2)]}[M8]'*{k_6c2[HF(1)]

k6C2[HF(2)] + k6C3[HF(3)] - k—6C3[HF(2)]}[Mg] +{k_6d2[HF(] )]

k6d2[HF(2)]4—k6d3[HF(3)]- k_6d3[HF(2)]}[M]O] Kk o [HF(D)]

: k6f2[HF(2)]-+k6f3[HF<3)]-k_6f3[HF(2)J}[M51 bk g HF(1)]

k692[HF(2)]'+k6g3[HF(3)]-k_6g3[HF(2)]][M4] "

2 2
! k7a{[HF(1)]2 L pra)1? - 2 @I+ gyl TRDT

. [HF(2)] -[HF(z)HF(B)]+[HF(3)HF(4)3}+ [ k_7cpHF(HF(5)]
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r'z.‘,w—-z,‘,__‘:‘ -

dHF(3)]

B -~
- - e - s s g

HF(4)] + k7C[HF(3)HF(5)]- k_c5[HF(2JHF(6)])

- kg [HF(2)
+{k_7d2[HF(])HF(6)]— k7d[HF(2)HF(5)]
g k7d[HF(3)HF(6>] - k_gglHF(HF(DD

3)1HMel * (kg [FIIH] -3 K g¢ [HF(3)]-

g {k_33[H][F] - kqglHF(

CHF(3)[FY + (k_ga3HF(2)]

. [H]} + (kg (HILFRT - Ko5a

k6a3[HF(3)] + k6a4[HF(4)] = k_6a4[HF(3)]}[M7]+{k-6b3[HF(2)]

o HF(] ¥ (gpalHF(D] o g IHED D]+ (K e lHF(2)]

- k6c3[HF(3)] + k6c4[HF(4)] - k'6C4[HF(3)]}[M9]+{k_6d3[HF(2)]

- k6d3[HF(3)]'*k6d4[HF(4)]-k_6d4[HF(3)]}[M]0] F kg g[HF(2)]

- k6f3[HF(3)]-+k6f4[HF(4)J- k_6f4[HF(3)][M5]}+{k_6g3[HF(2)]

- k6g3[HF(3)] + k6g4[HF(4)]- k_694[HF(3)]}[M4] + k7a{[HF(2)]2

[HF(1)HF(3)1+ k_7,4 [HF(2)HF(4)]

yd
= 2[HF(3)]2 + [HF(4)] } = Kga0
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k7b{[HF(1)][HF(2)]- [HF(2)HF(3)]

—k_7a4[HF(3)HF(5)]} +

@ [HF(3)HF(4)] + [HF(4)HF(5)]}-k_7b1 THF(0)HF(3)]

[HF 1)HF (4 8+ K_7p3 [HF(Z)HF( )]k 7b4rHF(3)HF(6)]}]

k7c{—[HF(1)HF(3)] _ [HF(3)HF(5)] * [HF(4)HF(6) 1}

+

r C][HF(O)HF(4)]+k_7C3 [HF(Z)HF(6)]—k_7c4[HF(3)HF(7)]}]

+
+ k7d{—[HF(3)HF(6)] + [HF(BHF(7)]) +k_7d3{[HF(2)HF(7)]
« R IHFES (3)HF(8)]}
QM k [HF(4)—]}“" ]+{—|—74X]O]2 ex ( 50
dt - {k_34[H][F]' 3L 147106 . xp (-500/RT)]-

(4)1[H]} +{k55[H][F2] —k_55[HF(4)][F]} b 1k gaaHF(3) = kgygHF(4)

HF(A)}[M7]}+{k_6b4HF(3)_ kepaF(4)

HF(4)1[Mg] +k_goq"F(3) - kgogHF(4) + kg gHF(5)

HF(5) - K_gb5

“+

Kgbs

- K_gc5

: [M1o]'*{k—6f4HF(3)"k6f4HF(4)'*k6f5HF(5)' k_gesHF(4)1M]
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e Tl e . At i — L —— ——

6g5HF(5)- k_6g5HF(4)}[M4]

-+

{ - H +
K_gqaF(3) = kggaHF(4) +k

(THF(3)1% - 2DHF(8)12 + THF(5)1%) - k_g, 5 [HF(2)HF(4)]

—

k7a

=+

2 [HF(3)HF(5)] - k_5, 5[HF( 4)HF(6)] + k7b{[HF(2)HF(3)]

-74

[HF(3)J[HF(4)] - [HF(4)HF(5)]+ [HF(5)HF(6)]) - K. o LHELT )

HF(4)] + k_;y 3 [HF(2)HF(5) ]+ k_7y nTHF(3 3IHF(6) k_5,, s[HF(4)HF(7) ]}

+ kg A[HF(T)HF (3)] - [HF(2)HF(4)] - [HF(4)HF(6)]
+ [HF(S)HF(7) 1} - k_o. ][l F(O)HF(4)] +k_7. Z[HF( YHF(5)]
+ k_7C4[HF(3)HF(7)]— k_7c5[HF(4)HF(8)]} + k7d{-[HF(1)HF(4)]

- [HF(AMHF(7)} + k_5,7 [HF(O)HF(5)] + k_54,[HF(3)HF(8)]

A



SN 0id g

13 .
k_35[HILF] - kyg[HF(5) 11[M] + (-[1.1 x 10"~ exp(-510/RT)]

CHF(5)THT ) + ( kggLHILF,J-k_o LHF(S)IIFTE + (K g o [HF(4)]

- ke [HF(5)] +k o MF(6) = k_g HF(5) [M;] # k_gpsHF(4)

bab

F(6) - k_6b6HF(5)}[M8] + Tk_p 5HF(4)

HF(5) + k6C6HF(6) - k_6C6HF(5)}[M9] + {k_6d5HF(4)

6ch

- K, ggsHF(8) + Ko gghF(6) - k_gqgHF(5)1 Mo + (k_gegHF(4)
kg esHF(5) + kg eHF(6) - k_gegF(8)1[Mg] + {k_gogHF(4)
k6g5HF(5) + k6g6HF(6) - k_6g6HF(5)}[M4] + k7a{[HF(4)J2

i

-+

“+

2[HF(5)]2-+[HF(6)2]2} —k_7a4[HF(3)HF(5) +2 k_; c[HF(4)HF(6)]
k_7a6[HF(5)HF(7)] + [k ([HF(3)HF(4)] - [HF(4)HF(5)]
[HF(5)HF(6)] + [HF(6)HF(7)]1- k_p s[HF(2)HF(5)]
k_7pa[HF(3HF(B)] + k5 [HF(4)HF(7)] - k_7pglHF(5)HF(8)]

k7c{[HF(2)HF(4)]- [HF(3)HF(5)] - [HF(5)HF(7)]}
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- k-7c2[“F(1)HF(5)] + k_g0g[HF(2)HF(6)] + k_7.5[HF(4)HF(8)]

k7d{[HF(1)HF(4)] - [HF(2)HF(5)]} = k_; 4 [HF(0)HF(5)]

-

[HF(1)HF(6)]

+

K_742

d[HF(6 [H][F] - k36[HF(6)]}[M6] +H-[1.9 x G2 exp(-566/RT)]-

S

~
{ -
I

. [HF(6)J[H1Y + {kgy[HILF,] - k_c7[HF(6)]LFI} + $ik e GHELB)

= k HF(6) + k6a7HF(7) ~ k_6a7HF(6)} [1\17] + { k—6b6HF(5)

6ab

k6b6HF(6) + kgpsHF(7) - k_gp7HF(6)} Mg] + (k_g HF(5)

- kgggHF(6) + KgagHF(7) = k_gqpHF(6)FIMy o] + [k_gegHF(5)
- kegF(6)  KgepF(7) = k_geHF(6)YDMGT + Tk _gogHF(S)

2
. k6g6HF(6) + k6g7HF(7) - k_6g7HF(6)}[M4] + [ky, ([HF(5)]

- 2[HF(6)]2-+[HF(7)]2}- k_7,5 HF(4IHF(6)] + 2 k_, ([HF(5)-

C HF(7)] - k_5,7[HF(6)HF(8)]  + kg ([HF(4)HF(5)]
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_ [HF(5)HF(6)] - [HE(6)HF(7)]Y - k_7b4[Hﬁ(3)HF(6)]

[HF(HHF(7)] k_7b6[HF(5)HF(8)] + kg L[HF(3)HF(5)]

¥ K_7n5
- [HF(A)HF(6)]} - k_7c3[HF(2)HF(6)] + k_7c4[HF(3)HF(7)]
i k7d{[HF(2)HF(5)] _ [HF(3)HF(6)]} - K742 [HF(1)HF(6)]
+ k_7d3[HF(2)HF(7)]
9L%%§Z), _ (k_pg[WIIFD - k37[HF(7)]}[M6J ¢ (kgglHIIF,] - k_5glHF(7)ITFT}
b kg, MF(E) ~ KeaT HE(T) + KeagFI8) = Kogagm (70 [M7]
+ Tk gptiFEE) kep7 PO T kepa!lF (8) - k_gpgHF(7)} [Mg]

+ {k_6C7HF(6) - k 6C7HF(7) + k+6C8HF(8) 'k-6c8HF(7)}[M9]

HE(7) + k+6d8HF(8) - k_6d8HF(7)}[M]O]

+ {k—6d7HF(6) 7 k6d7
¥ P bt RIS, 7 kee7 P * kgegF(8) - k_gaF(7)3 Mg
& Tk 7HF(6) 4 k6g7HF(7) + k 8HF(8) - k_6g8HF(7)}[M4]
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2 7
k7a{[HF(6)] - 2[HF(7)]7} - k_7a6[HF(5)HF(7)]

-+

-+

2 k_, [HF(B)HF(8)]  + ko (THF(S)HF(6)]- [HF(GIHF(T)]]

+ k_; g[HF(5)HF(8)] - k_7s[HF(AHF(7)T+ ks ([HF(4)HF(6)]

[HF(5)HF(7)1)- k_5., [HF(3)HF(7)] + k_7.5[HF(4)HF(8)]

k7d{[HF(3)HF(6)] - [HF(4)HF(7)]} - k_743 [HF(2)HF(7)]

-+

-+

k_7qq[HF (3)HF(8)]

gLﬂgégll = {k_3g[HIIF] - kyg[HF(8)T) Mgl + keg[HILF,]

- k_gglHF(BYILFT + {k_g gHF(7) - keagHF(8)11[M,]

+ (k_gpglF(7) = kgpaHF(8)1IMG] + (k_g oHF(7) - kg gHF(8)1TM]

F(7) = kgggHF(8) 1My o] + (k_gpgHF(7) = kgeaF(8)1-

+

tk_gqa'

LMD+ (k_gaghF(7) - kg gHF(B)IIN,T + (k,, [HF(7)1°

: k_7a7HF(6)HF(8)}+ ks HF(6)HF(7) - K_7pgF(5IHF(8)
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HF(4)HF(8) + k7dHF(4)HF(7)

+ k7C[HF(5)HF(7)] - K_7¢5

= k_7d4HF(3)HF(8)

82



APPENDIX B

VARIOUS DIFFERENCING SCHEMES

The vectors F and G contain spatial derivatives of temperature and
pecies densities jndirectly through the

rectly and of s
spatial gradi
(58) and (59).

velocities di
d G need to be

ents of vectors F an

diffusion velocities.
Thus effectively

n to solve equations

taken in tur
ed to be taken to

spatial gradients of the thermodynamic quantities ne
jous combinations of forward,

a largest order of two. This offers varl

a]differencin

g cchemes 1O compute the spatial deriva-

backward and centr

tives.
aries where forward, backward or central differencing

At the bound
ckward scheme

scheme may not be app]icab1e a threé point forward or ba

was used as the cas€ may be.e-9-
the number of x wisé grid and ] represent the number

Let i represent
rdinate axes as shown in Fig. 1

y are the €00

:d where X and

of y wise gri
0, F, G or K as written

k denotes the number of the component of vectors

on pp. 18-21.
Let i = 1,2,3.--17 and J = 1.2,840087
when i =1

. 45 Fl2.] 5,00 - 3x (1 k) - F(3,3.K)
oF (1,3,%) o SRLZS=ET0R (B-1)

k)’BXI(I ,',k)'[( l2 k



The following four combinations were tried. Their results are

outlined.
(1) Central differences for all spatial gradients (except, of

A two point difference scheme (equation

course, on the boundaries).
dients at all the grid points

below) was used to calculate all the gra
ard differ-

except at the boundaries where a three point forward or backw

ence scheme (Eqs. (B-1) and (B-2) was used. e.g.
9F 1o ¢ by o F(3,3.K) - F(1,3,K)
- {2.3.Kk} > ix fboah
e (i,2,k) iy

(2) Forward difference on the F and G (Eq. (B-4)) vectors to obtain

properties at intermediate time step, Eq. (58),

_g_)’;_ (Z,J,k) F(3a\]9k/zx' F(Z,J,k)
(B-4)

(1.2.%) (1,3,kA)x G(i,2,k)

1

sl

and backward differences (Eq. (B-5)) for Eq. (59),

F(2,5,k) = F(1,3.k)

BE #5541y =
5;(‘ (ZaJ’k) - AX
(B-5)
86 . o= é(i’zsk)-é(is.l’k)
'5’; (1321k) = Ay ==

but consistently using central differences for T, u, v and Che

This was called "Partial MacCormack".
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(3) Same as (2) above, with the exception of using forward

differences for T, u, v and Py (eq. (B-6)),

oT : =_T(3,j,k‘)—T(2,j,k)

'a'x“ (Zsjyk) AX (8-6)
while solving Eq. (58) and backward (Egq. (B-7)),

f)l (1,2,’() = T(T,Z,k)-T(i,],k) (8—7)

dy Ay

while solving Eq. (59). This was termed "full MacCormack" .
(4) Same as (3) above but with a reverse combination viz. backward

difference for T, U, Vs 0y for solving Eq. (58) and forward difference

This could be called "Modified MacCormack". This

for solving Eq. (59).
ccmbination yielded the best results of the above four variations.

Emphasis is made that in methods (2) - (4) above, a forward

difference is always used on F and G for the predictor step, and a
The variations between

rearward difference for the corrector step.
methods (2) - (4) occur only in the differencing of the primary flow

variables T, u, v and p.
Figure B-1 depicts the numerical effect of the various schemes.

Pressure at x/h = 10 and y/h = 0.5 is plotted versus non-dimensional

Here the velocity profile at the upstream boundary was assumed

time.
Results from the four schemes above are labeled 1 - 4

to be continuous.
Surprisingly, note that scheme 3, the

respectively in Figure B-1.
"full MacCormack", did not converge to a steady-state; the program blew

up for this case. We have no explanation for this. Scheme 1, using
all central differences, converged to a solution of sorts, but with some

noticeable oscillations. Scheme 4, the "modified MacCormack" had the
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best convergence behavior. In addition, Figs. B-2 through B-4 compare
the converged steady-state results from schemes 1, 2 and 4. In Fig,
B-2, the velocity profile (variation of u with y) at x/h = 10 is shown
as calculated from the three convergent schemes. Note that the central
differencing and partial MacCormack schemes yielded almost identical
profiles, but with wiggles; in contrast, the modified MacCormack scheme
yielded a smooth profile which ran through the middle of the above
wiggles. Exactly the same comparison is observed in Fig. B-3, which
illustrates the F2 and F density profiles at x/h = 10. Again, the
modified MacCormack scheme yields smooth profiles which goes through

the middle of the wiggles observed from the other techniques. Figure
B-4 shows the most striking comparison. Here, the pressure distribution
at x/h = 10 is given as a function of y. Note that the central difference
scheme yields a series of reqular wiggles, whereas both the partial and
modi fied MacCormack schemes yield smooth results. Also note that the
abscissa in Fig. B-4 is an expanded scale to emphasize the comparison.

The results shown in Figs. B-1 through B-4 clearly indicate that
the modified MacCormack (scheme 4 above) yields the best qualitative
results, (and presumably quantitative as well). The use of forward
finite-differences for F and G in conjunction with rearward differences
for T, u, v and Ch and vice versa, appears to be best for the mixing
flows studied in the present investigation.

As a final note on this series of results, the preservation of
mass flow from the upstream to the downstream boundary is given in the
Table IV. Obviously, in real Tife, mass is preserved; however, compu-
tational fluid dynamic calculations such as given here sometimes result

in an artificial loss or gain of mass in the flow direction. Calculations
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0 and x/h = 10 for schemes 1, 2 and

were made for m = 12 ou dy at xfh =

n Table 1v. For a
thus again accentuating the

4. The results are given i 11 practical purposes the

ux 1s neg1igib1y small,

loss in the mass 1

correctness of the results.
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TABLE 147

Wavelength of Radiation for Various P Transitions

Identification
Vibrational

Wavelength

Band Line U

1 = 0 P(4) 2.640
P(5) 2.673
P(6) 2.707
P(7) 2.744

2 > 1 P(4) 2.760
P(5) 2.795
P(6) 2.832
P(7) 2.871
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TABLE 11

Species Species Cp o e/k Sp.Gas Const.|Molr. €.ib AHfL

# Name cal A °k , R Wt j/Kg i/kg
gmole®k J m
kg°k kg/kgmole

B F, 7.49 653 12 218.8 38 0 0
2 H, 6.892 215 38 4124.3 2.016 | 0 0
3 F 5.437 9 ne 437.6 19 0 3.8391x10°
4 H 4.968 .68 38 8248.6 1.008 | © 1.07986x10’
5 He 4.966 .576 10.22 2077.1 4.0026| 0 0
6 HF(0) | 6.964 A 354 415.56 20.008 | 0 -1.35512x107
7 HE(1) | 6.964 1 354 415.56 20.008 |2.3691x10% | -1.35512¢10”
8 WF(2) | 6.964 1 354 415.56 20.008 |4.6352x10° | -1.35512x107
9 HF(3) | 6.964 1 354 415.56 20.008 |6.8012x10° | -1.35512x107
10 HF(4) | 6.964 . 354 415.56 20.008 |8.8696x10° | -1.35512x107
N HE(5) | 6.964 1 354 415.56 20.008 |1.08427x107 | -1.385512x107
12 HF(6) | 6.964 A 354 415.56 20.008 |1.2722x10" | -1.35512x707
13 HE(7) | 6.964 J 354 415.56 20.008 |1.4509x10” | -1.35512x10’
14 HE(3) | 6.964 1 354 115.56 20.008 [1.6205x107 | -1.35512x107

Molecular properties of various species
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TABLE IV
Mass conservation in flow-wise direction

m m %
Scheme @ x/h=0 @ x/h =10 Loss
Central
Differences 5.2786 5.2754 0.06062%
O
~1
Partial
MacCormack 5.2786 5.2688 0.18566%
Modified
MacCormack 5.2786 5% 27126 0.11367%

m HAS BEEN NON-DIMENSIONALIZED BY prUr
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Fig. 26 -- Growth of the reaction zone; comparison of present calculations with experiment
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Fig. 28 -- Variation of small signal gain in flow direction; 1 -0 transition, y/h = 0.375
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Fig. 29 __ Variation of

small Signal 9ain in floy direction;

2-1 transition, y/h = 0.375
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Fig. 31 --

Pressure versus longitudinal distance; comparison between present results
and method of Refs. 20 and 29 - strongly reacting case
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Fig. 32 --

Temperature versus longitudinal distance; comparison between present results
and method of Refs. 20 and 29 - strongly reacting case
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Fig. 33 -- HF(0) density versus longitudinal distance; comparison between present
results and methods of Refs. 20 and 29 - strongly reacting case
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Fig. 34 -- HF(0) and temperature profiles; comparison between present results and

methods of Ref. 29 - weakly reacting case
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Fig. 37 -- Temperature surface; note different viewing angle
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Fig. 38a --

Global density surface
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Fig. 38b --

u velocity surface



Fig. 39 -- Species density - F2
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Fig. 41 -- Species density - HZ' Note different viewing angle - § = 60° and b= 150°
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Fig. 45 --

Comparison plot of averaged small signal gains between steady and unsteady cases
1-0 transitions
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Fig. 46 -- Comparison plot of averaged small signal gains between steady and unsteady cases: 2 -1 transitions
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Fig. 55 -- F2 density variation @ x/h = 10.0 and y/h = 0.375 for sinusoidal fluctuations in
v velocity
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Fig. 56 -- Comparison plot of averaged small signal gains for steady and unsteady cases: 1-0 transition
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Fig. 60(a) & (b) -- Pressure surfaces for unsteady flow with v velocity

fluctuations at different phase angles s

Fig. 60(c) & (d) -- Temperature surfaces for unsteady flow with v

velocity fluctuations at different phase angles §
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Fig. 61(a) & (b) -- u velocity surfaces - plots at different phase

angles § of fluctuations

Fig. 61(c) & (d) -- v velocity surfaces - plots of different phase

angles ¢ of fluctuations
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Fig. 62 -- HF(0) density surface at the instant described by phase angle & = 0°
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Fig. 63(a) & (b) -- HF(2) denstiy surface at different phase angles

Fig. 63(c) & (d) -- HF(2) density surfaces at different phase angles
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Fig. 64 -- HF(1) density surface for s = 180° as seen from a different viewing angle -
. a0 s 0
6 = 60" and ¢ = 150
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Fig. 65
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