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A small amount of information leakage can undermine the security of a design that

is otherwise considered secure. Many studies demonstrate how common leakages such as

power consumption, electromagnetic emission, and the time required to perform certain

operations can reveal information, such as the secret key of a cryptosystem. As a first

contribution, in this work, we explore the possibility of cache attacks, a type of timing

side-channel attack, in a new setting, namely, data processing. Later we show an improved

attack on Learning Parity with Noise problems with a sparse secret. We propose two

algorithms that are asymptotically faster than state-of-the-art. Finally, we show that the

structure presented in RLWE constructions, in contrast to LWE constructions, opens up

new attacks. Constructions based on LWE can be proven secure as long as the secret retains

enough entropy. We show, however, that constructions based on RLWE can be completely

broken even if the secret key retains 3/4 of its entropy.
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Chapter 1: Introduction

As third-party computing on data in the cloud becomes more prevalent, clients are

becoming increasingly concerned about protecting their sensitive data. The cloud comput-

ing paradigm has been hugely successful due to its affordability. This affordability is often

achieved by reducing costs for the cloud, e.g., by sharing resources across clients. Shared

resources have opened a wide range of new attack vectors for malicious users. Multiple

studies have shown that malicious users can use shared resources to extract information

that is otherwise considered private [68, 81, 99, 110, 112]. A majority of the prior work

focused on the cache as a shared resource that the malicious user can monitor. There

have been attacks on cryptographic construction such as encryption, e.g., AES [62, 103],

RSA [110], ElGamal [68, 81, 112] signature scheme, such as Elliptic Curve Digital Signature

Algorithm (ECDSA) [15, 20].

Another line of research assumes the server itself is entirely untrusted or malicious.

These assumptions have motivated the design of new techniques for computing on encrypted

data, such as Order Preserving Encryption by Agrawal et al. [7] which allow the server

to directly run a comparison on encrypted data. These constructions prompted a line of

research that shows attacks on an encrypted database such as the work of Kellaris et al. [72]

which shows that leakage on access patterns or the volume of the query responses can lead

1



to a construction of the database. These attacks are mainly theoretical since most of these

advanced encryption systems have yet to be deployed.

Traditional cryptographic protocols are based on well-studied assumption factoring

and discrete logarithm. However, with the introduction of Shor’s factoring algorithm [101]

which showed that factoring is in quantum polynomial time, it has become clear that it is

essential to develop new types of cryptographic constructions based on new assumptions. As

a result of this discovery, the problems which can withstand powerful quantum computers

attract attention. One such a problem is Learning Parity with Noise. The (search) LPN

problem with dimension n and noise rate η, asks to recover the secret parity s, given

samples (x, 〈x, s〉 ⊕ e), where x ∈ {0, 1}n is chosen uniformly at random, s ∈ {0, 1}n, error

e ∈ {0, 1} is set to 1 with probability η and 0 with probability 1− η, and the dot product

is taken modulo 2. Solving a linear system of n equations over F2 to recover a secret of

dimension n can be done in polynomial time however, adding a small amount of noise e

makes the problem (believed to be) quantum-hard. Variants of the LPN problem have also

been considered in the literature: Sparse LPN [25], where the x vectors in the LPN problem

statement are sparse, LPN with structured noise, where the noise across multiple samples

is guaranteed to satisfy some constraint [18], and Ring LPN [64]. While there have been

some studies on the best algorithm to run to solve the secret, the best-known algorithm

remains to be by the early work of Blum, Kalai, and Wasserman [24], and it seems there

is a lack of algorithms in certain regimes.

Numerous other problems have also been studied which are believed to be suitable

for post-quantum cryptography, such as Lattice-based [19, 49, 52] and code-based [21].

The National Institute of Standards and Technology (NIST) has also launched a compe-
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tition [36] to find the most efficient and secure construction, and constructions based on

lattices are found to be among the promising directions. The proposed work in lattice-

based constructions is based on the Learning With Error (LWE) assumptions [98]. The

LWE problem is defined as the problem of distinguishing the two distributions (a, a · s + e)

and (a, u), where s ∈ Znq is a secret, a ∈ Znq and u ∈ Zq are uniform, and e has small norm

and q is a prime. A more efficient version of the LWE problem is based on the Ring struc-

ture, called RLWE [84, 86]. The RLWE problem is defined as the problem of distinguishing

the two distributions (a, a · s + e) and (a,u), where s ∈ Rq is a secret, a ∈ Rq and u ∈ Rq

are uniform, and e ∈ R has small norm and Rq := Zq[x]/(xn + 1). Since the introduction

of the RLWE, there have been studies on whether the RLWE is vulnerable to new types

of attacks. Due to the extra structure present in the ring structure, a new type of attack

may be possible.

1.1 Our Contribution

This dissertation will try to address some of the open problems which are addressed

in the previous section. Specifically, this work focuses on cache attacks on databases,

proposes an improved algorithm for the LPN problem in some parameter settings, and

finally presents an attack on RLWE constructions given certain leakage patterns. Each

direction is explained in the following.
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1.1.1 Cache Side-Channel Attack on Database

In Chapter 3, we show a cache side-channel attack on SQLite. There have not been

many side-channel attacks on a real application other than cryptosystems. This chapter

demonstrates how side-channel attacks can be applied to database management systems.

We showed that using the information leaked through the cache, the attacker can recover

the volume of the responses. However, the recovered volumes are not exactly equal to

the correct volumes. In contrast to the previous works, which assumed the server was

malicious, and as a result, the server was allowed to observe the exact volume. We show

how to extend the previous work to noisy volumes and explore new settings, such as the

cases where some queries are never made. This work was originally published in USENIX

2021 [100], in collaboration with Dana Dachman-Soled and Mahammad Shirinov.

1.1.2 New Algorithms for LPN with Sparse Parities

Later in Chapter 4, we consider LPN with sparse parities. It is worth mentioning

that it can be assumed that the secret is drawn from the same distribution as the noise,

as there is a reduction from LPN with secret s to LPN with secret e, where e is the error

vector obtained after n samples are drawn [17]. We assume that the “sparsity” or Hamming

weight of the secret vector represented by k is significantly less than η · n, where η is the

error rate. Motivation for considering this variant is twofold. Firstly, Sparse secret might be

used in some applications such as fully homomorphic encryption for efficiency purposes [37].

Secondly, we can consider an attack where some coordinates of the secret key s′ is recovered

(using some type of attack, e.g., side-channels) but we don’t have high confidence in each
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coordinate. We can turn our focus on xs − xs′ = x(s − s′) which is a sparse secret. In

this work, our focus is to achieve an algorithm that, for certain regimes of k, beats the

prior best algorithms asymptotically in the exponent. This work was originally published

in TCC 2021 [40], in collaboration with Dana Dachman-Soled, Huijing Gong, and Hunter

Kippen.

1.1.3 (In)Security of Ring-LWE Under Partial Key Exposure

Finally, in Chapter 5, we demonstrate a key recovery attack on the RLWE scheme.

We showed that leaking a certain pattern of key coordinates will result in the full recovery

of the secret key. In particular, we demonstrated that by leaking only 1/4-fraction of the

secret key, the attacker can obtain a system of equations that by solving yields the secret

key. The attacker can recover the secret key block by block. We show that in some cases,

by observing only a small number of samples, the full recovery is feasible. This work was

originally published in MathCrypt 2019 [43], in collaboration with Dana Dachman-Soled,

Huijing Gong, and Mukul Kulkarni.
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Chapter 2: Preliminary

2.1 Background for Chapter 3

In this section we remind the reader some of the preliminary notation and results

used throughout Chapter 3.

2.1.1 Notation

The number of possible values in a certain column of database is denoted by N , and

we also assume without loss of generality that the set of possible values are between 1 and

N . For any pair (x, y) : x, y ∈ [N ], x ≤ y, [x, y] defines a range (inclusive in both side) and

the same notation is used to to represent a range query. The volume (cardinality) of each

range query is represented by |[x, y]|. There are N ′ =
(
N
2

)
+N possible ranges.

2.1.2 Computer Architecture

Cache Architecture In order to reduce the access time to main memory, modern CPUs

are equipped with multiple levels of cache. They form a hierarchy such that the Level 1

cache is the fastest and smallest, whereas the Level 3 cache is the slowest and largest.

The Level 1 cache is divided into two separate caches, one holds the data and the
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other holds the instructions. In the higher level caches data and instructions are held in

the same cache. Level 3 is a shared-memory space and is the Last Level Cache (LLC). The

LLC is all-inclusive of the lower levels of the architecture, meaning that any data present

in L1 and L2 is also present in the LLC.

Each cache comprises multiple sets and each set contains multiple cache lines. Each

line of main memory is mapped to a unique cache set. Within this set, however, a memory

line can be mapped to any of the cache lines. Typically, each line of cache holds 64 Bytes of

data. Upon writing a line to a set that is already full, a decision regarding which memory

line to evict must be made. This decision is called a Replacement Policy and depends on

the cache architecture. A popular replacement policy is least-recently used (LRU), which

replaces the least recently used entry with the new one.

Flush+Reload Attack Caches are vulnerable to information leakage since an adversary

who is co-located with the victim on the same processor can retrieve useful information

about a victim’s activities. Specifically, the adversary can monitor its own access time to

the cache and use deviations in access time to deduce information about whether or not

the victim has accessed a certain memory line or not. The reason that such an attack is

feasible is that the adversary and victim share the same resource i.e. the cache. A victim

and an attacker on the same physical CPU core share all levels of the cache, whereas if they

are not on the same physical core, they at least share the L3 cache. Moreover, in a setting

where the adversary and victim share a library, they will both have access to the physical

memory locations in which the single copy of the library is stored. The attacker can now

explicitly remove a line corresponding to the shared physical memory from the cache. To
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exploit the shared physical memory in a useful way, Yarom and Falkner introduced an

attack called Flush+Reload [110]. The attacker flushes a monitored line from the cache

using a special command called clflush. This command causes the monitored line to be

removed from the L1, L2 and L3 caches. As mentioned before, L3 is inclusive and as a

result the removed line will be removed from all the other caches, even if the attacker and

the victim are not on the same physical core. The attacker then lets the victim continue to

run its program. After some time has elapsed, the attacker regains control and measures

memory access time to determine whether or not the monitored line is present in the cache.

If the monitored line is present in the cache (reloading runs fast), the attacker deduces that

the same line was accessed by the victim during its run. If the monitored line is not present

in the cache (reloading runs slow), the attacker deduces that the victim did not access the

line during its run. Hence the attacker knows whether the victim accessed a specific line

or not. In order to perform the Flush+Reload attack we used the package provided in

the Mastik framework. Mastik [108] is a toolkit with various implementations of published

micro-architectural side-channel attacks. It provides an interface that can be used to set

the monitored lines. For our work we used fr-trace to monitor various cache lines.

Cache Prefetching When an instruction or data is needed from memory, it is fetched

and brought into the cache. To reduce execution time further, Cache Prefetching is imple-

mented to bring a memory line into the cache before it is needed. The prefetching algorithm

decides what and when to bring data and instruction to the cache. Hence, when the pro-

gram needs the data or instruction in the future, it will be loaded from the cache instead

of memory. This is based on the past access patterns or on the compiler’s knowledge.

8



2.1.3 Miscellaneous

Range Queries A range query is an operation on a database in which records with

column values between a certain lower and higher bound are returned. Assuming there

exists a column c in a database with values between 1 and N , the command range[a, b] for

1 ≤ a ≤ b ≤ N returns all the entries in the database which have a value in column c in

the range [a, b] (inclusive for both a and b).

Clique Finding Problem The Clique problem is the problem of finding a clique–a set of

fully connected nodes–in a graph. We utilize the clique finding algorithm in the NetworkX

Package. NetworkX is a Python library for studying graphs and networks. The NetworkX

package can be used to find the clique number (size of the largest clique in the graph) as

well as all cliques of different sizes in the graph.

2.2 Background for Chapter 4

In this section we remind the reader some of the preliminary notation and results

used throughout Chapter 4.

2.2.1 Notations

We use := as deterministic assignment and ← as uniformly randomized assignment.

We also use bold lowercase, e.g. x, to denote vectors and bold uppercase, e.g. A, to

denote matrix. The set {1, 2, . . . , n} is often denoted by [n]. The i-th coordinate of

vector x is denoted by x[i]. For the vector x of dimension n and a set R that is a

9



subset of [n], we denote x|R to be the restriction of x to the coordinates in R, namely

x|R = x[i1] || x[i2] || . . . || x[i|R|],∀i ∈ R, where || denotes concatenation. The indices in x

are from 1 to n. For simplicity, we reset the indices in x|R and have the indices from 1 to

|R|.

2.2.2 Probability Bounds

The following inequality is used to bound the magnitude of an observed random

variable with respect to the true expected value of that random variable. The Chernoff-

Hoeffding bound extends the Chernoff bound to random variables with a bounded range.

Another important fact is that Chernoff-Hoeffding bound assumes the random variables

are independent whereas Chebyshev’s bound applies to arbitrary random variables. The

reader in encouraged to refer to [89] for more in depth reading.

Theorem 1 (Multiplicative Chernoff Bounds). Let X1, X2, . . . , Xn be n mutually indepen-

dent random variables. Let X =
∑n

i=1Xi and µ = E[X],

Pr[X ≤ (1− β)µ] ≤ exp

(
−β2µ

2

)
for all 0 < β ≤ 1

Pr[X ≥ (1 + β)µ] ≤ exp

(
−β2µ

3

)
for all 0 < β ≤ 1

Theorem 2 (Chernoff-Hoeffding). Consider a set of n independent random variables

X1, X2, . . . , Xn. If we know ai ≤ Xi ≤ bi, then let ∆i = bi − ai. Let X =
∑n

i=1Xi.
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Then for any α ∈ (0, 1/2)

Pr
(∣∣X − E[X]

∣∣ > α
)
≤ 2exp

(
−2α2∑n
i=1 ∆2

i

)
.

Theorem 3 (Chebyshev’s). Consider a set of n arbitrary random variable X1, X2, . . . , Xn.

Let X =
∑n

i=1Xi. Then for any α > 0,

Pr
(∣∣X − E[X]

∣∣ ≥ α
)
≤ Var [X]

α2
.

The following lemma is being used to further simplify the Var[X] in Theorem 3.

Lemma 4. Let X1, X2, . . . , Xn be n arbitrary random variables. Then

Var

[
n∑
i=1

Xi

]
=

n∑
i=1

Var [Xi] + 2
n∑
i=1

∑
j>i

Cov [Xi, Xj] .

2.2.3 Learning Parities

In this section, we define three Oracles . The first is the standard LPN Oracle, that

samples x uniformly. The second is the noise Oracle, which sets x to the zero vector. The

purpose of this Oracle is to return additional noise sampled identically to the noise found

in a normal LPN sample. The third Oracle is the p-biased LPN Oracle, which samples x

according to a p-biased Bernoulli distribution, as defined later.

Definition 5 (Bernoulli Distribution). Let p ∈ [0, 1]. The discrete probability distribu-

tion of a random variable which takes the value 1 with probability η and the value 0 with

probability 1− η is called Bernoulli Distribution and it is denoted by Berη.
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Definition 6 (LPN Oracle). Let secret value s← Zn2 and let η < 1/2 be a constant noise

parameter. Let Berη be a Bernoulli distribution with parameter η. Define the following

distribution L(1)
s,η as follows

{
(x, b) | x← Zn2 , fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1

2

with the additions being done module 2. Upon calling the LPN Oracle OLPN
0 ,η (s), a new

sample s = (x, b) from the distribution L(1)
s,η is returned.

Definition 7 (Noise Oracle). Let secret value s← Zn2 and let η < 1/2 be a constant noise

parameter. Let Berη be a Bernoulli distribution with parameter η. Define the following

distribution L(2)
s,η as follows

{
(x, b) | x := 0n, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1

2

with the additions being done module 2. Upon calling the Noise Oracle Õη a new sample

s = (x, b) from the distribution L(2)
s,η is returned.

Definition 8 (p-biased LPN Oracle). Let secret value s← Zn2 and let η < 1/2 be a constant

noise parameter. Let Berη be a Bernoulli distribution with parameter η and Bern(1−p)/2 be

Bernoulli distribution with parameter (1 − p)/2 over n coordinates. Define the following

distribution L(3)
s,η,p as follows

{
(x, b) | x← Bern(1−p)/2, fs(x) := 〈x, s〉, b = fs(x) + e, e← Berη} ∈ Zn+1

2
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with the additions being done modulo 2. Upon calling the p-biased LPN Oracle OLPN
p,η (s) a

new sample sp = (x, b) from the distribution L(3)
s,η,p is returned.

As our algorithms require linear combinations of LPN samples, we present the fol-

lowing lemma that describes the noise growth associated with the linear combination.

Lemma 9 (New Sample Error [24]). Given a set of ` samples (x1, b1), . . . , (x`, b`) from

an LPN Oracle OLPN
0 ,η (s) with secret s, where the choice of samples may depend on the

values of xi but not on the values of bi, then the new sample s`+1 can be formed as follows

s`+1 =
∑`

i=1 si which has the property that b`+1 is independent of x`+1 and the probability

that the label of the constructed sample is not correct is as follows: η′ = Pr[b′ 6= 〈x`+1, s〉] =

1
2
− 1

2
(1− 2η)`.

For reference we additionally provide the runtime of the original BKW algorithm:

Theorem 10 (BKW [24]). The length-n parity problem, for noise rate η for any constant

less than 1/2, can be solved with number of samples and total computation time of 2O(n/ logn).

Sometimes we denote the “corrupted” label b in sample s = (x, b) by f(x). The

function f is called the parity function. So we use the phrase that “the label is f(x)”

to mean that the label is 〈x, s〉 with probability 1 − η and 〈x, s〉 + 1 with probability η.

For sample i, the j-th coordinate of x is denoted by si.x[j] and the j-th coordinate of s

is denoted by si.s[j], and we sometimes drop si when the context is clear. For simplicity,

given two sample pairs s1 = (x1, b1) and s2 = (x2, b2) a new sample s3 = s1 + s2 can be

formed by s3 = (x1 + x2, b1 + b2) with the additions being done mod 2. Lemma 9 shows

the error rate of a sample formed by additions of some number of LPN samples.

13



2.2.4 Fourier Analysis

The boolean Fourier transform is defined for boolean functions defined over the do-

main {−1, 1}. Throughout the rest of the chapter, when we discuss boolean functions,

we will use this representation. To map a boolean function from {0, 1} ∈ F2 to {−1, 1},

we set −1 := 1F2 and 1 := 0F2 . We now present some additional notation regarding the

representation of the LPN problem in the {−1, 1} domain.

Notation. Assuming the LPN secret s is represented in Fn2 , the following represent the

boolean inner product of input x with s in different notation.

fs(x) := 〈x, s〉 ∈ F2 for x, s ∈ Fn2

fs(x) =
n∏
i=1

x[i]s[i] ∈ {−1, 1} for x ∈ {−1, 1}n and s ∈ Fn2

hence to represent a sample (x, b) from LPN oracle OLPN
0 ,η (s) we have the following two

notations

b = fs(x) + e for x, s ∈ Fn2 and e ∈ F2

b = fs(x) · e for x ∈ {−1, 1}n, s ∈ Fn2 and e ∈ {−1, 1}

Consider a vector x ∈ {−1, 1}n. We denote by Dp the product distribution over

{−1, 1}n, where each bit of the vector is independent and has mean p.

Definition 11 (Fourier Expansion). For a product distribution Dp as above, every function
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f : {−1, 1}n → R can be uniquely expressed as the multilinear polynomial

f(x) =
∑
S

f̂p(S)χS,p(x), where χS,p(x) =
∏
i∈S

x[i]− p√
1− p2

.

This expression is called the Fourier expansion of f with respect to Dp, and the real numbers

f̂(S) are called the Fourier coefficients of f on S.

The Fourier transform defines an inner product between two boolean functions f

and g: 〈f, g〉p = Ex∼Dp [f(x) · g(x)]. The Fourier coefficient for any S ⊂ N over product

distribution Dp is defined as follows:

f̂p(S) = Ex∼Dp [f(x) · χS(x)].

Claim 1. Let sp = (x, b) be a p-biased sample and let b = fs(x) · e, where e ∈ {−1, 1} is

independent of x and E[e] = 1− 2η′. Define b̂p({j}) := Ex∼Dp [b · χ{j},p(x))]. If sp.s[j] = 0,

then b̂p({j}) = 0. Whereas if sp.s[j] = 1, then b̂p({j}) = (1− 2η′) · pk−1
√

1− p2.

Proof. In the first part of the proof we assume the p-biased sample is absent of noise, i.e.

b = fs(x) and we compute the Fourier coefficient of the singleton set {j} in two cases where

(Case 1) sp.s[j] = 0 and (Case 2) sp.s[j] = 1. In the following we simplify sp.x[j] by x[j]

and sp.s[j] by s[j].

We compute the Fourier coefficients of fs(x) denoted by f̂p as follows.

f̂p(S) = 〈f(x), χS,p〉p = Ex∼Dp [fs(x) · χS,p(x)]

= Ex∼Dp

[
fs(x) ·

∏
i∈S

x[i]− p√
1− p2

]
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• Case 1 : Let’s focus on the set S = {j} such that s[j] = 0.

f̂p({j}) = Ex∼Dp

[
fs(x) · x[j]− p√

1− p2

]

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · x[j]− p√
1− p2


= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · Ex∼Dp

[
x[j]− p√

1− p2

]
(2.1)

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · 0 (2.2)

= 0

Where equation (2.1) follows from independence and equation (2.2) follows since

Ex∼Dpx[i] = p.

• Case 2 : Now let’s focus on the set S = {j} such that s[j] = 1.

f̂p({j}) = Ex∼Dp

[
fs(x) · x[j]− p√

1− p2

]

= Ex∼Dp

 ∏
i:s[i]=1

x[i]

 · x[j]− p√
1− p2


=

1√
1− p2

Ex∼Dp

 ∏
i:s[i]=1∧i 6=j

x[i]

− p · Ex∼Dp

 ∏
i:s[i]=1

x[i]

 (2.3)

=
1√

1− p2

 ∏
i:s[i]=1∧i 6=j

Ex∼Dp [x[i]] − p ·
∏

i:s[i]=1

Ex∼Dp [x[i]]

 (2.4)

=
1√

1− p2

(
pk−1 − p · pk

)
= pk−1

√
1− p2
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Where equation (2.3) follows since x[j]2 = 1 in the first term and eqaution (2.4)

follows from independence.

Now we compute the Fourier Coefficient for the case where the example label is noisy,

i.e. b = fs(x) · e. The distribution of the noise e is represented as follows.

e =


1 with probability 1− η′

−1 with probability η′

The Fourier coefficient of the labels can be computed as follows.

∣∣b̂p(S)
∣∣ =

∣∣〈fs(x) · e, χS,p〉p
∣∣

=
∣∣Ex∼Dp [fs(x) · e · χS,p(x)]

∣∣
=
∣∣Ex∼Dp(e) · Ex∼Dp [fs(x)χS,p(x)]

∣∣
= (1− 2η′) ·

∣∣f̂p(S)
∣∣

• Case 1 : For j such that s[j] = 0

b̂p({j}) = 0

• Case 2 : For j such that s[j] = 1

b̂p({j}) = (1− 2η′) · pk−1
√

1− p2
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2.2.5 Miscellaneous

Definition 12 (Restricted Left Kernel). Given a matrix A ∈ Zm×n2 for m ≤ n and set

R ⊂ [n] such that |R| < m, RLK first finds a vector u ∈ Zm2 such that v = u · A and

v|R = 0|R|. The RLK algorithm returns (v,u) := RLK(A, R).

Note that the RLK algorithm mentioned above can be implemented by simply mod-

ifying matrix A and only takes the columns pointed by set R, i.e. restriction of A to only

columns pointed by R. Let’s denote the new matrix by A′, find a vector in left kernel of

A′ and call it u. Then v can simply be computed as v = u ·A.

Definition 13 (Hamming Weight). Given a vector u ∈ Zm2 , weight(u) returns the number

of 1’s in vector u, i.e. the Hamming weight of u.

2.3 Background for Chapter 5

For a positive integer n, we denote by [n] the set {0, . . . , n− 1}. We denote vector x

using the notation ~x and matrices using capital letters ~A. For vector ~x over Rn or Cn, define

the `2 norm as ‖~x‖2 = (
∑

i |xi|
2)

1/2
. We write as ‖~x‖ for simplicity. We use the notation

≈t(n),p(n) to indicate that adversaries running in time t(n) can distinguish two distributions

with probability at most p(n). We present the background and standard definitions related

to lattices, algebraic number theory, RLWE, and NTT transform in the followings.
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2.3.1 Background on Lattices

An n-dimensional lattice L is a discrete additive subgroup of Rn. We exclusively con-

sider the full-rank lattices, which are generated as the set of all linear integer combinations

of some set of n linearly independent basis vectors B = {~bj} ⊂ Rn:

Λ = L(B) =

{∑
j

zj~bj : zj ∈ Z

}
.

The determinant of a lattice L(B) is defined as |det(B)|, which is independent of the choice

of basis B. The minimum distance λ1(Λ) of a lattice Λ (in the Euclidean norm) is the length

of a shortest nonzero lattice vector.

The dual lattice of Λ ⊂ Rn is defined as following, where 〈·, ·〉 denotes the inner

product.

Λ∨ = {~y ∈ Span(B) : ∀~x ∈ Λ, 〈~x, ~y〉 =
∑
i

xiyi ∈ Z}.

Note that, (Λ∨)∨ = Λ, and det(Λ∨) = 1/det(Λ).

2.3.2 Algebraic Number Theory

For a positive integer m, the mth cyclotomic number field is a field extension K =

Q(ζm) obtained by adjoining an element ζm of order m (i.e. a primitive mth root of unity)

to the field of rationals, where ζm satisfies the relation f(ζm) = 0 for some irreducible

polynomial f(x) ∈ Q[x], which is monic without loss of generality. The polynomial f is

called the minimal polynomial of ζm, and the degree n of the number field is the degree of
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f . The minimal polynomial of ζm is the mth cyclotomic polynomial

Φm(X) =
∏
i∈Z∗m

(X − ωim) ∈ Z[X],

where ωm ∈ C is any primitive mth root of unity in C.

2.3.3 Ring of Integers and Its Ideals

An algebraic integer is an element whose minimal polynomial over the rationals has

integer coefficients. For a number field K, let R ⊂ K denote the set of all algebraic integers

in K. This set forms a ring (under the usual addition and multiplication operations in K),

called the ring of integers of the number field. Ring of integers in K is written as R = Z[ζm].

An (integral) ideal I ⊆ R is a non-trivial (i.e. I 6= ∅ and I 6= {0}) additive subgroup that

is closed under multiplication by R, i,e., r · a ∈ I for any r ∈ R and a ∈ I.

Definition 14. For R = Z[ζm], define g =
∏

p(1 − ζp) ∈ R, where p runs over all odd

primes dividing m. Also, define t = m̂
g
∈ R, where m̂ = m

2
if m is even, otherwise

m̂ = m.

The dual ideal R∨ of R is defined as R∨ = 〈t−1〉, satisfying R ⊆ R∨ ⊆ m̂−1R. The

quotient R∨q is defined as R∨q = R∨/qR∨.

2.3.4 Ring Learning With Errors

We next present the formal definition of the Ring-LWE problem as given in [87].

Definition 15 (Ring-LWE Distribution). For a “secret” s ∈ R∨q (or just R∨) and a
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distribution χ over KR, a sample from the ring-LWE distribution As,χ over Rq × (KR/qR
∨)

is generated by choosing a ← Rq uniformly at random, choosing e ← χ, and outputting

(a, b = a · s+ emod qR∨).

Definition 16 (Ring-LWE, Average-Case Decision). The average-case decision ver-

sion of the ring-LWE problem, denoted R-DLWEq,χ, is to distinguish with non-negligible

advantage between independent samples from As,χ, where s ← R∨q is sampled uniformly

at random, and the same number of uniformly random and independent samples from

Rq × (KR/qR
∨).

A Note on the Tweak Alperin-Sheriff and Peikert [16] show that an equivalent “tweaked”

form of the Ring-LWE problem can be used in cryptographic applications without loss in

security or efficiency. This is convenient since the “tweaked” version does not involve R∨.

The “tweaked” Ring-LWE problem can be obtained by implicitly multiplying the noisy

products b by the “tweak” factor t, and, as it is explained in [16], t · R∨ = R. This yields

new values

b′ = t · b = (t · s) · a+ (t · e) = s′ · a+ e′mod qR,

where a, s′ = t · s ∈ Rq, and the errors e′ = t · e come from the “tweaked” error distribution

t · χ.

2.3.5 Number Theoretic Transform (NTT)

Let Rq := Zq[x]/(xn + 1) be the ring of polynomials, with n = 2d for any positive

integer d. Also, let m = 2n and q = 1 modm. For, ω a mth root of unity in Zq the NTT of
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polynomial ~p =
∑n−1

i=0 pix
i ∈ Rq is defined as,

~̂p = NTT(~p) :=
n−1∑
i=0

p̂ix
i

where the NTT coefficients p̂i are defined as: p̂i =
∑n−1

j=0 pjω
j(2i+1) = ~p (ω2i+1) .

The function NTT−1 is the inverse of function NTT, defined as

~p = NTT−1(~̂p) :=
n−1∑
i=0

pix
i

where the NTT inverse coefficients pi are defined as: pi = n−1
∑n−1

j=0 p̂jω
i(2j+1).

22



Chapter 3: Cache Side-Channel Attack on Database

3.1 Introduction

Data processing in the cloud is becoming continually more pervasive and cloud com-

puting is intrinsic to the business model of various popular services such as Microsoft’s

Office 365, Google’s G Suite, Adobe Creative Cloud or financial services such as intuit [1].

Besides for cloud usage by industry, federal agencies are now utilizing cloud services, even

for storage and analytics of sensitive data. For example, Microsoft recently won a $10

billion government contract from the Department of Defense (DoD) to create a “secure

cloud” for the Pentagon [2]. While providing important functionality, processing of sen-

sitive information in the cloud raises important security challenges. In the extreme case,

one may not trust the cloud server itself to handle the sensitive data, corresponding to

a threat model in which the cloud server is assumed to be malicious. In this case, data

must be encrypted, which raises the challenging task of computation over encrypted data.

Techniques and tools for computation over encrypted data have been addressed in a myriad

of papers [29, 35, 77, 97] and various privacy attacks have also been exhibited [72, 92]. A

weaker threat model, considered in this work, assumes that the server may be trusted to

handle the sensitive data (e.g. a privacy agreement has been signed with the cloud service),

but that a spy process is running on the same public server. If a spy process is co-located
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with the victim on the same physical machine they will share hardware such as a cache,

which serves as a side channel.

Our goal is to explore the effect of side-channels on open-source database engines.

We present an attack on SQLite, a C-language library that implements a small and fast

SQL database engine and is among the top ten databases in the ranking released by db-

engines.com. Our threat model assumes that an external user queries a private database

stored on a victim VM, upon which the victim VM processes the query using SQLite and

returns the result to the external user. The attacker is disallowed from directly querying

the database or observing the outputs of a query. Since the attacker is running a spy VM

co-located with the victim VM in the cloud, it can monitor the shared cache to obtain

side-channel leakage. The goal of the attacker is to reconstruct the column upon which the

victim is making range queries.

3.1.1 Relationship to Attacks on Searchable Encryption

Our work is inspired by the line of works of Kellaris et al. [72], Grubbs et al. [58],

Lacharité et al. [75] and Grubbs et al. [59]. These works exhibited database reconstruction

attacks in scenarios where range queries are made to an encrypted database and the access

pattern (i.e. which records are returned) [72, 75] or communication volume (i.e. the number

of records returned) [58, 72] is observed by the malicious server. However, recall that in

our threat model, an attacker cannot simply observe the access pattern or communication

volume, and must instead resort to side channels (such as a shared cache) to learn informa-

tion. Indeed, our attack will utilize the cache side-channel to learn information about the
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communication volume of the range queries. Briefly, this is done by finding a line of code

that is executed once for each record returned in a response to a range query, and tracking

how many times that line of code is executed.

Since cache side-channels are inherently noisy, we are only able to measure the ap-

proximate or noisy volumes of the range queries. We emphasize that even adding a small

amount of noise to the volume of each range foils the reconstruction attacks from prior

work. We assessed the effects of noise on brute-force reconstruction (an analogue of the

brute-force algorithm suggested by [72] for the dense database setting), and on the clique-

finding approach developed by [58]. As will be discussed in depth in Section 3.1.4, we

conclude that both of these approaches fail in the noisy setting.

3.1.2 Our Approach

We develop a new algorithmic approach that reduces our noisy problem to other com-

putational problems that are well-studied in the literature and for which highly optimized

solvers have been developed. Specifically, we will leverage both a noise-tolerant clique-

finding algorithm (similar to [58], but with some crucial modifications) as well as a closest

vector problem (CVP) solver. In more detail, we first use the noisy cache data to craft an

instance of the clique-finding problem that is noise-tolerant. Recovered cliques will then be

used to obtain candidate databases that are “close” to the original database. To extrapo-

late volumes that may be entirely missing from the recovered cliques, we develop a “Match

& Extend” algorithm. After the Match & Extend step, we expect to have reconstructed

approximate volumes for all ranges. We then apply a “Noise Reduction Step” that takes
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the “close” solution outputted by the previous step, consisting of approximate volumes for

each of the ranges [i, i] for i ∈ N , and uses it to craft an instance of the CVP problem.

Solutions to the CVP problem correspond to reconstructed databases in which the overall

noise is further reduced.

We note that since our side-channel attack proceeds by measuring (approximate)

range query volumes, it is agnostic to whether the victim’s database is encrypted. As long

as the spy can monitor a line of code that is executed by the database engine for each record

returned by a range query, our attack is feasible. Searchable encryption schemes that have

this property would still be susceptible to this side-channel attack. For example searchable

encryption schemes that can be integrated with standard database engines, such as order

preserving encryption [8, 28] and order revealing encryption [30].

A limitation of our work is that our approach uses solvers for NP-hard problems as

subroutines. The complexity of these NP-hard problems grows quickly with the size of

the range, and therefore will work well in practice for ranges up to size 15. This is in

contrast to the recent work of Grubbs et al. [59], which showed how to do “approximate

reconstruction” in a way that scales only with the desired accuracy level and not the range

size. However, the work of Grubbs et al. [59] assumes the adversary gets to perfectly

observe the access pattern—i.e. which records are returned for each query—which provides

far more information than simply observing the volumes. It seems difficult to extract

the access pattern for a response to a database query from a cache side-channel attack.

Specifically, to extract access pattern from the cache, Prime & Probe must be used to

monitor the data cache, and because a single record from the database can fill a large

portion of the cache, it is difficult to distinguish which records were accessed by observing
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only the cache. Additionally, the mapping from the memory location to cache line is not

one to one and hence, a large number of records will map to the same cache locations,

making it difficult to distinguish which records were accessed.

We extensively test our attack in various scenarios, using real databases (with data

distribution close to uniform), as well as synthetic databases with Gaussian data and various

settings of the standard deviation. We also experiment with uniform queries (each possible

range query is made with equal probability) and non-uniform queries (different range queries

are made with different probabilities). We also extend our analysis to study the effect of

extra load on the system. Furthermore, we extend the Match & Extend algorithm by

studying what will happen if not all the possible ranges are queried.

3.1.3 Formal Setting

We consider a database of size n and an attribute with range size N for which range

queries (i.e. SQL queries that return all records corresponding to values between [a, b])

can be made. The size of query response corresponding to range query [a, b] is denoted

by
∣∣[a, b]∣∣. In this work each volume is represented by a node in a graph, and we briefly

explain how the Graphs are constructed.

Node Each node in the graph is associated with a range [x, y]. When we refer to a node

[x, y] in the graph, we mean the node with label vi associated with range [x, y]. In this

work we refer to each node of the graph by its label. Each node [x, y] is associated with

the value |[x, y]|, which represents the volume of the range query [x, y].
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Edge There is an edge between nodes [x, y] and [w, z] iff there exists a node [u, v] such

that |[x, y]|+ |[u, v]| = |[w, z]|.

The goal of our attack is to reconstruct the entire column corresponding to the field

with range size N . Specifically, for each i ∈ [N ], we would like to recover the number of

records ni that take value i in the attribute under inspection. Similar to Grubbs et al. [58],

the volumes in the form of [1, i] for 1 ≤ i ≤ N are called “elementary volumes”. Note

that to fully recover all the ranges in the form [i, i] it is enough to recover “elementary

volumes”. We use clique finding algorithms to find these “elementary volumes” and the

following claim establishes that the “elementary volumes” forms a clique.

Claim 2. The set of nodes S := {[1, i] : i ∈ [N ]} form a clique of size N in the graph

defined above.

Proof. To prove existence of the clique we need to show that for any pair of distinct nodes

in the above set S, there is an edge. Let [1, i], [1, j] be a pair of distinct nodes in the set S.

Then either i < j or i > j. Assume without loss of generality that i < j. Then |[1, j]| =

|[1, i]|+ |[i+1, j]|. Since any database record that has value between [1, j] (inclusive), must

either have value between [1, i] (inclusive), or have value between [i+1, j] (inclusive). Then

by definition of the graph, there is an edge connecting [1, i] and [1, j]. Specifically, to see

that this indeed follows from the definition of the graph, let [w, z] = [1, j], [x, y] = [1, i] and

[u, v] = [i+ 1, j].

To better establish the database reconstruction we continue by presenting an example.

Assume we have a database of students with their grade which is according to Table 3.1.

For the sample database presented here, we have N = 4, N ′ = 10 and we have
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Name Grade

A1 1
A2 1
A3 1
A4 1
A5 1
B1 2
B2 2
B3 2
B4 2
B5 2
B6 2
B7 2
C1 3
C2 3
C3 3
C4 3
D1 4
D2 4

Table 3.1: Sample Database

the following values for the volumes for each range |[1, 1]| = 5, |[2, 2]| = 7, |[3, 3]| = 4,

|[4, 4]| = 2, |[1, 2]| = 12, |[2, 3]| = 11, |[3, 4]| = 6, |[1, 3]| = 16, |[2, 4]| = 13, and |[1, 4]| = 18.

Figure 3.1 shows the graph constructed for the sample database and each edge is

labeled with a range that causes the edge to be formed. Finally if we assume we observe

all the volumes, we have the Figure 3.2. The clique is of the form {5, 12, 16, 18} and

the recovered database is 〈5, 7, 4, 2〉. While it is true that in our toy example there are

other cliques that has formed such as {5, 7, 12, 18} with recovered database of 〈5, 2, 5, 6〉

this situation will most likely not going to happen for larger examples. Even in this toy

example, if we compute all the ranges for the latter database it is missing a node, namely

16, which means that this recovered database does not correspond to the graph presented

in Figure 3.2.
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Figure 3.1: Graph constructed for the ranges of sample database

Furthermore, the focus of this work is on “dense” databases, meaning that every

possible value from 1 to N is taken by some records in the database. We note that in

the searchable encryption setting this is not the typical case since ciphertexts encrypting

values between 1 and N are typically sampled from a larger space. However, in this work,

our main focus is on cleartext databases and attackers who learn information about them

via the cache side-channel. For simplicity, we assume that ranges are always from 1 − N .

However, the result generalizes to any range a− b, where database records can take on at

most N discrete values within the range. Our attack model assumes that a malicious party

can only launch side-channel attacks to reconstruct the database. In particular, we assume

that the attacker monitors its read timing from a cache line to deduce useful information

about the victim. As discussed, the noise introduced by the cache side-channel makes our
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Figure 3.2: Graph constructed from the observed volumes

setting more challenging. We note that Grubbs et al. [58] mentioned a type of side-channel

where an attacker intercepts the connection between user and server and counts the TLS

packets in order to obtain volumes of range queries, but they did not consider the difficulties

that arise when the measurement channel introduces noise into the computed volumes.

3.1.4 Our Contributions

We next summarize the main contributions of this work.

Weaker threat model: Side-channels Prior work considers a threat model of a ma-

licious server that is computing on an encrypted database. We consider an honest server

computing on a cleartext (or encrypted) database and a malicious third-party that is co-

located with the honest server in the cloud, sharing a cache, and cannot issue queries to

the database. The malicious third-party can only obtain information by monitoring the

shared cache. In particular, this means that the third-party cannot learn the exact volumes

of range queries and only obtains approximate or noisy volumes.
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Assessing effectiveness of previous algorithms in the noisy setting We first an-

alyzed the effectiveness of a brute-force attack, similar to the one suggested in the work of

Kellaris et al. [72], but adapted to the noisy and dense database setting. When we ran this

version of the brute-force search algorithm, it failed to return a result, even after a day of

running. We expected this to be the case, since when the volumes are noisy, there are far

more choices that need to be checked in each step of the brute-force search.

We next analyzed the effectiveness of an attack based on clique-finding, as in the

work of Grubbs et al. [58]. A graph is constructed based on the observed volumes of the

range queries. To construct the graph from exact volumes, one first creates nodes with

labels corresponding to their volume, i.e. the node with label vi has volume vi. There is a

connection between node vi to vj if there exists a node vk such that vi = vj + vk. Note that

by this construction the nodes corresponding to elementary volumes form a clique of size

N which can be recovered by clique finding algorithm. The ranges [1, 1], [1, 2], . . . , [1, N ]

and the full database can then be recovered from this information.

In the noiseless setting we always expect to get a clique of size N ; however, in the

noisy setting there are multiple edges missing in the constructed graph and so a clique of

size N will typically not exist. For example, when we ran the algorithm on our noisy data

with N = 12, the size of the cliques returned was at most 3. Further, the clique of size 3 no

longer corresponds to the volumes of the elementary volumes, and therefore is not useful

for (even partial) reconstruction of the database.

Developing algorithms for the noisy setting Whereas Grubbs et al. [58] used exact

volumes to reduce the database reconstruction to a clique-finding problem, we begin by
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reducing the reconstruction problem given with volumes to a Noise-Tolerant Clique

Finding Problem by introducing a notion called a noise budget. Remember in the exact

volume case, there is a connection between node vi to vj if there exists a node vk such

that vi = vj + vk. Here, to construct the graph from noisy volumes, we create a window,

w(vk), of acceptable values around each leaked volume vk, where the width of the windows

is determined by the noise budget. We place an edge between node vi and vj if there

exists a node vk such that |vi − vj| ∈ w(vk). The clique finding algorithm will return a

clique that allows one to recover the volumes, and the full database can then be recovered

from this information. An attacker can determine a good setting of the noise budget by

mounting an attack in a preprocessing stage on a different, known database under same

or similar conditions. Specifically, the attacker can first create its own known database

(unrelated to the unknown private database). The attacker can then simulate the side-

channel attack on the known database on a similar system and compare the recovered

approximate/noisy volumes with the correct volumes, and observe by how much they are

off, to determine an appropriate noise budget. In some cases, incorporating the noise budget

into the construction of the graph and running the clique-finding algorithm already allows

us to successfully reconstruct a fairly accurate database. However, there are some cases

where, even after increasing the noise budget, the algorithm fails to recover a candidate

database (i.e. a clique of size N does not exist). Further, even in cases where increasing

the noise budget does allow for reconstruction of some candidate database, the accuracy

of the candidate database suffers and the run-time increases. We therefore introduce an

additional algorithm called Match & Extend, which allows successful reconstruction of

candidate databases with improved accuracy.
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The Match & Extend algorithm starts by obtaining a candidate clique from the

graph. If the size of the clique is equal to N (the maximum range) we are done. Oth-

erwise, the algorithm looks at all the other cliques present in the graph starting from

the largest to the smallest. For each clique, a potential database is recovered. We then

pick one of the databases as our base solution and compare it with the other recovered

databases. In the Match phase, the algorithm looks for the “approximate longest com-

mon substring” between two databases. The “approximate” version of the longest common

substring considers two substrings equal if their corresponding values are within an accept-

able range dictated by the noise budget. Two values a and b are “approximately” equal if

|a− b| ≤ min(a, b) · 2 · noise budget. Then for the databases which have enough overlap

with the base solution, the Extend phase will compare the non-matching parts of the two

solutions and will try to reconcile the volumes in them into one “combined” database.

Finally, in the Noise Reduction Step, we use the results of the previous steps

along with a closest vector problem (CVP) solver to reconstruct nearly the exact original

database, despite the noisy measurements. The recovered database of the previous step

returns the ranges of the format [1, 1], [2, 2], . . . , [N,N ]. We can reconstruct potential vol-

umes for each range with these recovered volumes and for each computed volume we select

the closest volume from the initial noisy volume set obtained from the side-channel data.

We construct a lattice basis using the known linear dependencies between the volumes of

different ranges. The volumes obtained from the side-channel data correspond to the target

point for the CVP problem. Using the CVP solver, we find a set of volumes contained in

the lattice (so they satisfy the linear dependencies) that are closest to the target point.

This “self-correction” technique allows us to recover a better candidate solution for the
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database.

Launching the side-channel attack We adapt the Flush+Reload technique for ob-

taining the (approximate) volumes of responses to range queries in SQLite. This allows

us to learn a set of noisy volumes corresponding to the range queries made by external

parties to the database stored by the victim. The monitoring process starts as soon as an

activity is detected and continues for the duration of the SQLite query processing. Since

the databases we attack are large, the processing takes an extended amount of time, mean-

ing that there are many opportunities for noise to be introduced into a trace. On the

other hand, we require accurate measurements for our attack to succeed which is similar to

keystroke timing attacks of Gruss et al. [61]. We contrast our setting to other side-channel

settings, which typically require accurate measurements over a short period or, can toler-

ate inaccurate measurements over a longer period. For example, side-channel attacks on

cryptographic schemes require accurate information to reconstruct the high-entropy keys,

but typically take a short period of time, since the keys themselves are short. On the other

hand, side-channel attacks for profiling purposes typically monitor an application for longer

periods of time, but can tolerate noise well since their goal is just to distinguish between

several distinct scenarios.

To achieve high accuracy over a long period of time, we must handle interrupts as

well as false positives and false negatives. For interrupts, we must mitigate their effects by

detecting and dropping those traces in which an interrupt occurs. There can also be false

positives as a result of CPU prefetching, which we show how to detect. False negatives

occur if the victim process accesses the monitored line of code after the spy “Reloads” the
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line, and before the spy “Flushes” the line. We do not directly detect false negatives, but

instead show how to deal with them algorithmically.

3.1.5 Overview of Experimental Results

We ran our attacks in five different experimental settings including uniform and non-

uniform queries on real databases and synthetic databases which were sampled from Gaus-

sian (Normal) distributions with different standard deviations as well as in two sets of

experiments where the system is under heavy load and other cases where some of the range

queries are missing. The databases all contained 100, 000 rows with 135 attributes. The

synthetic database from the Gaussian distribution has the same number of entries and at-

tributes, but the column on which the range queries are made is sampled from Gaussians

with standard deviation of 3 and 4, which represent narrow and wide Gaussians, respec-

tively. The Match & Extend algorithm recovered the database in 100% of the cases within

190 seconds with maximum error percentage of 0.11%.

3.1.6 Related Work

Cache Attacks The first work on cache attack were introduced by Tsunoo et al. [104] that

shows a timing attack on MISTY1 block cipher. Later, Osvik et al. [94] presented an attack

that allowed the extraction of AES keys. In another early work, Acıiçmez [6] showed an

attack that targets instruction cache. Ristenpart et al. [99] demonstrated the possibility

of launching cache side-channel attacks in the cloud (as opposed to on a local machine)

and they pointed out that such vulnerabilities leak information about the victim VM.
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Subsequent work showed how the cache side-channel can be used to extract cryptographic

keys for ElGamal [111], AES [69], RSA [110] and recently BLISS [57] (a lattice-based

signature scheme). In more recent work, Yarom and Falkner [110] presented a powerful

attack using Flush+Reload on the Level 3 cache of a modern processor. They tested their

attack in two main scenarios, (a) victim and spy running on two unrelated processes in

a single operating system and (b) victim and spy running on separate virtual machines.

Another attack of note by Yarom and Benger [109] on ECDSA leaks the nonce which results

in signature forgery. A recent work by Moghimi et al. [90] showed the vulnerability of AES

encryption in an SGX environment which, prior to this attack, was broadly believed to be

secure. Ge et al. [53] surveyed recent attacks and classified them according to which shared

hardware device they target. Yan et al. [107] shows the effectiveness of Flush+Reload and

Prime & Probe to reduce the search space of DNN architectures. In a more recent type of

attack, Hong et al. [65] shows how to perform Deep Neural Network fingerprinting by just

observing the victim’s cache behavior. In another work by Hong et al. [66], it is shown how

to use cache attack to construct the main components of the Neural Network on the cloud.

Database Reconstruction Kellaris et al. [72], motivated by practical implementations of

searchable symmetric encryption or order-preserving encryption, studied the effect of aux-

iliary information on the overall security of the scheme. They identified two sources of

leakage (a) access pattern (b) communication volume. They developed a reconstruction

attack in which the server only needs to know the distribution of range query. They pre-

sented an attack using N4 queries, where N is the ranges of the value. Lacharité et al. [75]

presents various types of attacks: full reconstruction, approximate reconstruction as well
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as a highly effective attack in which adversary has access to a distribution for the target

dataset. Their attacks are based on the leakage of access pattern as well as leakage from

the rank of an element. Grubbs et al. [58] present an attack that reconstructs the database

given the volumes of the response of range queries. They showed an attack using a graph-

theoretic approach and specifically clique finding. Each volume is presented with a node in

the graph. They demonstrated properties that hold in practice for typical databases and

based on these properties they developed an algorithm which runs in multiple iterations

of adding/deleting nodes. Once there is no more addition and deletion to be performed

they announce that as the candidate database. They showed that this approach is indeed

successful in recovering most of the columns of their example database. In cases where this

algorithm could not find any possible result they used a clique algorithm to reconstruct the

database, and they showed that clique could help to reconstruct even more instances.

In another line of work regarding searchable encryption, Cash et al. [34] presented

leakage models for searchable encryption schemes and presented attacks. Specifically using

this leakage they could recover queries as well as the plaintext. Naveed et al. [92] presented

a series of attacks on Property-preserving Encrypted Databases. Their attack only used

the encrypted column and used publicly known information. They showed an attack which

could recover up to a certain attribute for up to 80% of users. Grubbs et al. [60] presented

an attack on order-preserving encryption and order-revealing encryption and showed they

can reveal up to 99% of encrypted values. Kornaropoulos et al. [73] studied the database

reconstruction given leakage from the k-nearest neighbours (k-NN) query. In a follow

up work by the same authors, Kornaropoulos et al. [74] extended their previous work by

presenting an attack on encrypted database without the knowledge of the data or query

38



distribution. All these attacks are in the encrypted database setting in which each value is

encrypted whereas the focus of this work is on databases where the value of each entry is

saved in clear text, and an attacker who may only obtain information about the database

via side channels.

3.2 Our Attack

In Section 3.2.1 we describe how to recover approximate volumes via the cache side-

channel. In Section 3.2.2 we describe how the clique-finding algorithm was used in the prior

work of Grubbs et al. [58] to recover a database from noiseless volumes. In Section 3.2.3

we explain our noise-tolerant clique-finding algorithm for our setting, where volumes are

noisy. In Section 3.2.4 we present the details of the Match & Extend algorithm which is

used for extrapolating volumes that are omitted from the clique. Finally in Appendix A.2

we describe how to use closest vector problem (CVP) solvers to further reduce the noise

and improve the overall accuracy of the recovered databases.

3.2.1 Recovering Approximate Volumes

In this section, we explain how to find the lines of code in the SQLite library to

monitor in the Flush+Reload attack and how to reduce the noise in our measurements.

We will then explain how to recover the approximate volumes.

Victim’s Query The victim issues a range query to SQLite database. SQLite returns

the relevant entries as it processes the query. These entries are simply saved in a linked

list and once SQLite is finished with processing the query, the linked list is returned to the
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victim.

Detecting Lines to Monitor SQLite stores columns using the BTree data structure.

We examined the SQLite program, and by using the gcov command we detected lines that

are called once in each iteration of a range query. Monitoring the number of times these

lines are called allowed us to determine the volume of a query response. It is important

to notice that the duration of each query can also be measured and that can also be used

as an indicator for the volume. However, this resulted in far greater noise since there was

no reliable way to translate time to volume (time to iterate over rows was inconsistent).

Hence we decided to explicitly count. To obtain the number of times each line is executed

we compiled our library using -fprofile-arcs and -ftest-coverage flags. We ran the

range query command and by using the gcov command we counted the number of times

each line is executed in files sqlite3.c and main.c, respectively.

We looked for more lines throughout the SQLite program and we chose to simulta-

neously monitor two lines to increase the measurement accuracy. However, note that the

attack presented in this work can be extended to other database management system, as

long as the volume of the returned query can be obtained through monitoring the I-cache.

As also observed by Allan et al. [15], monitoring two lines has the benefit that in case the

attack code fails to detect an activity in one of the lines due to overlap between attacker

reload and victim access there is still a high probability of seeing activity in the second

line. There might be some excessive false positives due to the mismatch of hits for both of

the lines and we mitigate for that by considering close hits to be from the same activity.
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Figure 3.3: The result of running Flush+Reload attack on SQLite. There are two lines
being monitored by attacker. The x-axis shows the sample point in which reload occurs
and y-axis depicts the amount of time needed to reload the monitored line from memory at
that time instance. Since two lines are being monitored, we have two sets of measurement
at each time instance. Notice there are some orange lines appearing close to each other,
those are because of speculative execution.

Using the Mastik Toolkit Once we detect the lines that leak the volume of the queries,

we use the Mastik Toolkit to monitor those lines while SQLite is processing a range query.

Figure 3.3 shows one sample measurement. Two monitored lines are represented

by blue and orange color. Mastik-FR-trace will automatically start measuring once it

detects a hit in either of the monitored lines in the SQLite program. Once there is no

more activity detected by Mastik for a while (as set in the IDLE flag), it will automatically

end the measurement. During the interval where range query execution occurs, there are

samples with reload time less than 100 cycles. Those are the samples points in which

SQLite accessed the line the attacker is monitoring and hence a small reload time is seen

by the attacker. We then count the number of times there is a hit in either a blue or orange

measurement. The hit count corresponds to the volume of the query.

Monitoring the relevant cache lines is also crucial to detect when/if range queries
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Figure 3.4: Cache line activity when different queries are issued. The cache line activity
represents the number of hits detected by the attacker. The figure is in log scale. It can
be seen that by looking at the cache activity of these three lines, different queries can be
distinguished.

are issued. Figure 3.4 shows the cache activity of three cache lines in the first couple of

thousands of samples. The cache line activity represents the number of hits detected by

the attacker. Counting the number of hits represents whether or not the victim is using

a specific line. We expect to see multiple cache activities in lines related to range queries

and for the queries that are not relevant to range queries there is not much activity going

on in at least one of the cache lines.

Noise in the Traces The number of hits that we count might be different than the

actual value of the volume since measurements are not noiseless. Here we explain some of

the sources of noise.

• False Positive: Speculative execution of an instruction causes the memory line to be

brought into the cache before it is executed. In terms of the Flush+Reload attack,

it will still look like this instruction was executed, since there will be a fast access.

Generally the true hits happen at fixed time intervals. If we see a hit which happens

much sooner than the expected time for a hit it is most likely a false positive and we

assume it occurred due to speculative execution and do not count it as a hit.
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• False Negative: These occur if the victim process accesses the monitored line of code

after the spy Reloads the line, and before the spy Flushes the line. We do not attempt

to detect false negatives experimentally, but rather deal with them algorithmically:

as will be discussed in Section 3.2.3, we use an asymmetric window around each

observed volume to compensate for the fact that true volumes are typically greater

than the observed volume. In our experiments we allocate 90% of the window width

to the values greater than the observed volume.

Running the Experiment We randomly select and execute range query [a, b] while

concurrently monitoring lines using Mastik-FR-trace to gather a single trace. We repeat

this experiment a number of times in order to gather enough traces. For each trace we

count the number of times that either of the lines shows a hit and after mitigating the

False Positive issue, we report the number of hits as the volume of the range query for that

trace.

Figure 3.5 shows the result of aggregating the volumes reported by the traces. Some

volumes are observed far more frequently than others, and those values are saved as an

approximation to the expected volumes. In a noiseless setting we expect to see at most(
N
2

)
+ N values (there might be some volumes which correspond to more than one range

query). In the noisy setting, there are cases where the trace is “good enough” but the

volume is not correct. By aggregating all the traces the effect of those instances will be

insignificant and the approximation of correct volumes will stand out. However, the volumes

we recover are not exactly the correct volumes from the database. Figure 3.6 shows a closer

snapshot of Figure 3.5 for volumes in the range 7700−8800. The red dotted bars represent
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Figure 3.5: Sample noisy volumes recovered by cache attack. The x-axis is the volume and
y-axis shows the number of occurrence of that volume. For a sample database, we ran the
range query multiple times and for each range query we monitored the cache activity to
recover the volume of the range for that query. We repeated this process multiple times
and counted how many times a volume occurred.

the actual volume of the range query response, while the blue line shows the approximate

volumes recovered by the cache attack. For every correct volume (red line), there is a blue

line with some high value close to it.

3.2.2 Clique Finding–Noiseless Volumes

To construct the graph we first explain the clique finding algorithm of Grubbs et.

al. [58] and then extend their technique to cover the noisy case. There are two main parts

to the Algorithm.

• Creating Nodes Given the set of recovered volumes V we create a node for rep-

resenting each volume and label the node by its corresponding volume, meaning the

node vi has volume vi.

• Creating Edges We create an undirected edge between two nodes vi, vj ∈ V if there

exists a node vk ∈ V such that vi = vj + vk.
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Figure 3.6: A closer look at the recovered volumes. The blue figure is the actual mea-
surement from processing traces from the cache attack. The red bar is the actual volume
expected to be observed. It can be seen that the recovered volumes (blue) is approximate
version of actual volumes (red).

By running the clique finding algorithm on the constructed graph, one can recover the

volumes. Assuming the range of values are from 1 to N there are
(
N
2

)
+N = N(N+1)

2
possible

ranges, and therefore N(N+1)
2

nodes in the graph. Each range [i, j] for 1 ≤ i ≤ j ≤ N

is represented by a node. The nodes that correspond to ranges of the format [1, i] for

1 ≤ i ≤ N , i.e. elementary volumes, form a clique since for each pair of ranges of the

form [1, i] and [1, j] for 1 ≤ i < j ≤ N there is another range of the form [i + 1, j] for

1 ≤ i < j ≤ N , which implies, due to how the graph is constructed, that there is an edge

between [1, i] and [1, j], and Claim 2 formally proves it. The clique finding algorithm finds

the nodes [1, i] for 1 ≤ i ≤ N . To recover the original ranges which are of the form [i, i] for

1 ≤ i ≤ N , all that is needed is to sort the nodes based on their labels, which corresponds

to their volumes, and subtract them sequentially since
∣∣[i, i]∣∣ =

∣∣[1, i]∣∣ − ∣∣[1, i − 1]
∣∣ for

1 < i ≤ N .
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3.2.3 Clique Finding–Noisy Volumes

In the noisy case considered here, all recovered volumes are close to the correct vol-

umes, but the exact volumes may not have been recovered. Hence, the procedure for

noiseless case fails to find the cliques of large enough size. This is because the condition

to connect nodes vi, vj will almost always fail (even when there should be an edge) since

there will not be a third volume vk such that the equation vi = vj + vk is exactly satisfied.

This means that the constructed graph is missing too many edges and the large cliques are

not formed. To mitigate the effect of the noise, we modify the second step of the graph

generation algorithm i.e. Creating Edges.

While the recovered volumes are close to the correct ones, as explained in Sec-

tion 3.2.1, since the traces are noisy we do not expect to get the exact volumes and we

often under-count. We call the ratio of the recovered volume to the correct volume the

“noise ratio.” In the first step the attacker performs a preprocessing step which involves

mounting the attack on a database known to the attacker. The attacker then assesses the

quality of the traces to find the approximate value of the “noise ratio.” To find it the

attacker heuristically looks at the recovered volumes and compares them to the correct

volumes they are expecting to compute. Then based on all the noise ratios, the attacker

sets a value for “noise budget” which is the mean of the “noise ratio” he observed over

all volumes. Once the noise budget is fixed, for each recovered volume the attacker cre-

ates a window of acceptable values around it. Assuming the recovered volume is vi, the

attacker creates an asymmetric window around vi with lower bound and upper bound of

vi × (1 − 0.1 · noise budget) and vi × (1 + 0.9 · noise budget), respectively. As also
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mentioned in Section 3.2.1, the window is asymmetric with 90% of its width on the right

hand side of it, as the noisy volumes are typically less than the true volumes. For a volume

vi we denote by w(vi) the window around it. To construct the graph in the noisy case we

modify the second step of the algorithm explained in Section 3.2.2 as follows:

• (Modified) Creating Edges We create an undirected edge between two nodes

vi ∈ V and vj ∈ V if there exists a node vk ∈ V such that |vi − vj| ∈ w(vk).

In particular, we will say that candidate volumes u and v are “approximately equal”

if |u−v|
min(u,v)

≤ noise budget. As we will show in Section 3.3, using the above algorithm with

the just-mentioned modification is in some cases sufficient to approximately reconstruct

the database.

3.2.4 Match & Extend

In this section we describe an improvement on the noisy clique-finding algorithm that

is used in cases where the noisy clique-finding algorithm fails to find a maximal clique of

size N , even with appropriate adjustment of the noise budget.

First, recall that the idea behind the clique finding algorithm is that if we have the

volumes of all ranges present in our data, then there must exist a clique in the graph cor-

responding to the volumes of the ranges [1, i] for 1 ≤ i ≤ N . Now, let us assume there is a

missing (approximate) volume corresponding to range [i, j]. This will result in the missing

connection from the node [1, j] to node [1, i− 1] as the reason that there had to be a con-

nection was because
∣∣[1, j]∣∣ ≈ ∣∣[1, i − 1]

∣∣ +
∣∣[i, j]∣∣. As a result of this missing volume, the

maximal clique of size N will not form. If we run the clique finding algorithm on the data
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with the missing volume, it will return cliques of size smaller than N and for each of them re-

cover a candidate database. Then the algorithm will merge the information in these smaller

databases to form larger ones. In the following we explain the idea of the algorithm with

an example. Consider a database with 5 possible values in the range, i.e. N = 5, assume

the database is 〈30, 100, 80, 30, 60〉 (i.e. the database contains 30 records with value 1, 100

records with value 2, etc.). The set of possible values for the volume of a range query is V =

{30, 60, 80, 90, 100, 110, 130, 170, 180, 210, 240, 270, 300}, i.e.
∣∣[1, 1]

∣∣ = 30,
∣∣[1, 2]

∣∣ = 130 and

so on. The graph constructed from the these volumes is shown in Figure 3.7 and the maxi-

mal clique found by the clique finder algorithm is shown by bold connections. The returned

nodes are {30, 130, 210, 240, 300} and the reconstructed database is 〈30, 100, 80, 30, 60〉. As-

sume the recovered volumes are noisy and the set of possible values for the volume of a

range query is V = {29, 58, 79, 89, 98, 108, 128, 160, 178, 209, 239, 268, 299}. In Figure 3.8

all the noisy volumes are rather close to their actual values except the volume 160 which is

far from the correct one — 170. To construct the graph in this setting we use the algorithm

mentioned in Section 3.2.3 and only for the sake of this example we take the window around

volume vi to have lower and upper bound of vi−1 and vi+3, respectively. Some connections

will be missing as a result of the error in the measurement. For example the connection

from node 299 to node 128 is not going to be formed since there is no longer a window

which contains 171. If we run the clique finding algorithm on the new graph the result is

going to be a clique of size smaller than N = 5. As seen in Figure 3.9, the clique finding

algorithm returns a clique of size 4 with values {29, 128, 209, 239} that results in database

〈29, 99, 81, 30〉. Figure 3.10 shows another clique of size 4 with values {29, 209, 239, 299}

that results in database 〈29, 180, 30, 60〉. It can be observed the two databases approxi-
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<latexit sha1_base64="NSXIj28r5t4zTdiroJmsl7L61gA=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2NADx6jmAckS5id9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLRzdRvPaHSPJaPZpygH9GB5CFn1Fjp4dLtlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrehdV9/68UrvN4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH/H3jPo=</latexit>

60

<latexit sha1_base64="1VSnC3f39rJ7Gs+3QR/fv8FpWiM=">AAAB6nicbVDLSgMxFL1TX7W+qi7dBIvgqmR8oMuiG5cV7QPaoWTSTBuaSYYkI5Shn+DGhSJu/SJ3/o1pOwttPXDhcM693HtPmAhuLMbfXmFldW19o7hZ2tre2d0r7x80jUo1ZQ2qhNLtkBgmuGQNy61g7UQzEoeCtcLR7dRvPTFtuJKPdpywICYDySNOiXXSwznGvXIFV/EMaJn4OalAjnqv/NXtK5rGTFoqiDEdHyc2yIi2nAo2KXVTwxJCR2TAOo5KEjMTZLNTJ+jEKX0UKe1KWjRTf09kJDZmHIeuMyZ2aBa9qfif10ltdB1kXCapZZLOF0WpQFah6d+ozzWjVowdIVRzdyuiQ6IJtS6dkgvBX3x5mTTPqv5lFd9fVGo3eRxFOIJjOAUfrqAGd1CHBlAYwDO8wpsnvBfv3fuYtxa8fOYQ/sD7/AFa5o0v</latexit>

300

<latexit sha1_base64="R8EFha69Yj0KMi7mcQDQYngYRkk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR6rHoxWNF+wFtKJvtpl262YTdiVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJFIYdN1vZ219Y3Nru7BT3N3bPzgsHR23TJxqxpsslrHuBNRwKRRvokDJO4nmNAokbwfj25nffuLaiFg94iThfkSHSoSCUbTSQ7Xm9ktlt+LOQVaJl5My5Gj0S1+9QczSiCtkkhrT9dwE/YxqFEzyabGXGp5QNqZD3rVU0YgbP5ufOiXnVhmQMNa2FJK5+nsio5ExkyiwnRHFkVn2ZuJ/XjfF8NrPhEpS5IotFoWpJBiT2d9kIDRnKCeWUKaFvZWwEdWUoU2naEPwll9eJa1qxbuquPeX5fpNHkcBTuEMLsCDGtThDhrQBAZDeIZXeHOk8+K8Ox+L1jUnnzmBP3A+fwBkA401</latexit>

270

<latexit sha1_base64="VjvALPWhU1mi7bTYu1vJPcunQe0=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKRY9FLx4r2lpoQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fCoreNUMWyxWMSqE1CNgktsGW4EdhKFNAoEPgbjm5n/+IRK81g+mEmCfkSHkoecUWOl+1rd7ZcrbtWdg6wSLycVyNHsl796g5ilEUrDBNW667mJ8TOqDGcCp6VeqjGhbEyH2LVU0gi1n81PnZIzqwxIGCtb0pC5+nsio5HWkyiwnRE1I73szcT/vG5qwis/4zJJDUq2WBSmgpiYzP4mA66QGTGxhDLF7a2EjaiizNh0SjYEb/nlVdKuVb2LqntXrzSu8ziKcAKncA4eXEIDbqEJLWAwhGd4hTdHOC/Ou/OxaC04+cwx/IHz+QNfdI0y</latexit>

240

<latexit sha1_base64="s2Io/vZLGlGguopXy2OMLxo20fc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mKoseiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0UPPcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa1a1busuvcXlfpNHkcRTuAUzsGDK6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBa5Y0v</latexit>

210

<latexit sha1_base64="YVl/Wxyn3+ziODkRbBhVKdpWK5Y=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04NXcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBkAo01</latexit>

180
<latexit sha1_base64="yRVO6/lbFwYU4J5mWqj2pyFKDPE=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04NXcfrniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPYzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2nZEPwll9eJa2LqndVde8vK/WbPI4inMApnIMHNajDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBifY00</latexit>

170

<latexit sha1_base64="xv/eovzOoe9eAd8tTc5czhOQskk=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx4jmgckS5id9CZDZmeXmVkhLPkELx4U8eoXefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1FjpwTt3e+WKW3VnIMvEy0kFctR75a9uP2ZphNIwQbXueG5i/Iwqw5nASambakwoG9EBdiyVNELtZ7NTJ+TEKn0SxsqWNGSm/p7IaKT1OApsZ0TNUC96U/E/r5Oa8NrPuExSg5LNF4WpICYm079JnytkRowtoUxxeythQ6ooMzadkg3BW3x5mTTPqt5l1b2/qNRu8jiKcATHcAoeXEEN7qAODWAwgGd4hTdHOC/Ou/Mxby04+cwh/IHz+QNcaY0w</latexit>

130

<latexit sha1_base64="1vZXzQ7mdqa1+K89tGwLondm85I=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEoseiF48V7Qe0oWy2m3bpZhN2J0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilB89z++WKW3XnIKvEy0kFcjT65a/eIGZpxBUySY3pem6CfkY1Cib5tNRLDU8oG9Mh71qqaMSNn81PnZIzqwxIGGtbCslc/T2R0ciYSRTYzojiyCx7M/E/r5tieO1nQiUpcsUWi8JUEozJ7G8yEJozlBNLKNPC3krYiGrK0KZTsiF4yy+vktZF1atV3fvLSv0mj6MIJ3AK5+DBFdThDhrQBAZDeIZXeHOk8+K8Ox+L1oKTzxzDHzifP1lfjS4=</latexit>

110

<latexit sha1_base64="pudkPm1l18WLXog0DE9u5jliYSM=">AAAB6nicbVA9SwNBEJ2LXzF+RS1tFoNgFfZE0TJoYxnRmEByhL3NXLJkb+/Y3RNCyE+wsVDE1l9k579xk1yhiQ8GHu/NMDMvTKUwltJvr7Cyura+UdwsbW3v7O6V9w8eTZJpjg2eyES3QmZQCoUNK6zEVqqRxaHEZji8mfrNJ9RGJOrBjlIMYtZXIhKcWSfd+5R2yxVapTOQZeLnpAI56t3yV6eX8CxGZblkxrR9mtpgzLQVXOKk1MkMpowPWR/bjioWownGs1Mn5MQpPRIl2pWyZKb+nhiz2JhRHLrOmNmBWfSm4n9eO7PRVTAWKs0sKj5fFGWS2IRM/yY9oZFbOXKEcS3crYQPmGbcunRKLgR/8eVl8nhW9S+q9O68UrvO4yjCERzDKfhwCTW4hTo0gEMfnuEV3jzpvXjv3se8teDlM4fwB97nD1fajS0=</latexit>

100

<latexit sha1_base64="Ga8e2DqX7A0eiaRtUmOj46WQyoQ=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEUW9FLx6r2A9oQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4drtlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCKz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrehdV9/68UrvJ4yjCERzDKXhwCTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH/XsjPs=</latexit>

90

<latexit sha1_base64="MLL62A9y+TRmHxdouC99aPFMFPY=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF49V7Ae0oWy2m3bpZhN2J0IJ/QdePCji1X/kzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUijeRIGSdxLNaRRI3g7GtzO//cS1EbF6xEnC/YgOlQgFo2ilh5rbL1fcqjsHWSVeTiqQo9Evf/UGMUsjrpBJakzXcxP0M6pRMMmnpV5qeELZmA5511JFI278bH7plJxZZUDCWNtSSObq74mMRsZMosB2RhRHZtmbif953RTDmp8JlaTIFVssClNJMCazt8lAaM5QTiyhTAt7K2EjqilDG07JhuAtv7xKWhdV76rq3l9W6jd5HEU4gVM4Bw+uoQ530IAmMAjhGV7hzRk7L86787FoLTj5zDH8gfP5A/RnjPo=</latexit>

80

<latexit sha1_base64="Klhx58dqDUo4EX3v1sklIEjrskw=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKez6QI9BLx6jmAckS5id9CZDZmeXmVkhLPkDLx4U8eofefNvnCR70MSChqKqm+6uIBFcG9f9dgorq2vrG8XN0tb2zu5eef+gqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7dRvPaHSPJaPZpygH9GB5CFn1Fjp4dztlStu1Z2BLBMvJxXIUe+Vv7r9mKURSsME1brjuYnxM6oMZwInpW6qMaFsRAfYsVTSCLWfzS6dkBOr9EkYK1vSkJn6eyKjkdbjKLCdETVDvehNxf+8TmrCaz/jMkkNSjZfFKaCmJhM3yZ9rpAZMbaEMsXtrYQNqaLM2HBKNgRv8eVl0jyrepdV9/6iUrvJ4yjCERzDKXhwBTW4gzo0gEEIz/AKb87IeXHenY95a8HJZw7hD5zPH+zOjPU=</latexit>

30

Figure 3.7: The graph constructed from the exact volumes of the database
〈30, 100, 80, 30, 60〉 and the maximal clique corresponding to that.

mately “match” in some locations, i.e. 〈29, 180(99 + 81), 30〉. It is important to note that

although in this example 180 is exactly equal to 99 + 81, this need not hold in general,

thus we consider two sequences a match if their corresponding values are approximately

equal. Having established this long match, we can deduce that value 60 also belongs to the

database and we can “extend” the initial candidate to include 60 and return the database

〈29, 99, 81, 30, 60〉. In another scenario assume we first detect the database of Figure 3.10

and then we discover the database in Figure 3.9. In that case we can see that we can

rewrite the initial candidate, i.e. 〈29, 180, 30, 60〉 as 〈29, 180 = (99 + 81), 30, 60〉 using the

second candidate.

We next describe in detail the main steps taken in the Match & Extend algorithm.

The high level steps of the Match & Extend algorithm can be found in Figure 3.11. We

note that, in some cases, simply increasing the noise budget allows us to successfully find

a clique of size N . However, as we will discuss in Section 3.3, by not increasing the noise
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<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>

160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>

299

Figure 3.8: The graph constructed from the approximate/noisy volumes of the database
〈30, 100, 80, 30, 60〉. An edge in the maximal clique is missing.

<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>

160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>
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Figure 3.9: A maximal Clique in a graph with approximate/noisy volumes.
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<latexit sha1_base64="nQoYBCdcUkGKBwk0ClfTnib0cHQ=">AAAB6XicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8cq9gPaUDbbTbt0swm7E6GE/gMvHhTx6j/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh+p1r1R2K+4MZJl4OSlDjnqv9NXtxyyNuEImqTEdz03Qz6hGwSSfFLup4QllIzrgHUsVjbjxs9mlE3JqlT4JY21LIZmpvycyGhkzjgLbGVEcmkVvKv7ndVIMr/xMqCRFrth8UZhKgjGZvk36QnOGcmwJZVrYWwkbUk0Z2nCKNgRv8eVl0qxWvIuKe39ert3kcRTgGE7gDDy4hBrcQR0awCCEZ3iFN2fkvDjvzse8dcXJZ47gD5zPH/jtjP0=</latexit>

29
<latexit sha1_base64="kugftEPFALdccp0xSBfVoFer05k=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0nEYo9FLx6rWFtoQ9lsJ+3SzSbsboQS+g+8eFDEq//Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgpr6xubW8Xt0s7u3v5B+fDoUcepYthisYhVJ6AaBZfYMtwI7CQKaRQIbAfjm5nffkKleSwfzCRBP6JDyUPOqLHSfa3eL1fcqjsHWSVeTiqQo9kvf/UGMUsjlIYJqnXXcxPjZ1QZzgROS71UY0LZmA6xa6mkEWo/m186JWdWGZAwVrakIXP190RGI60nUWA7I2pGetmbif953dSEdT/jMkkNSrZYFKaCmJjM3iYDrpAZMbGEMsXtrYSNqKLM2HBKNgRv+eVV8nhR9WpV9+6y0rjO4yjCCZzCOXhwBQ24hSa0gEEIz/AKb87YeXHenY9Fa8HJZ47hD5zPH/v4jP8=</latexit>

58

<latexit sha1_base64="Xp34OYj+RYY3r1KFxpMzDVjhqG4=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEqd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJL/2MyyQ1KNliUZgKYmIye5sMuEJmxMQSyhS3txI2oooyY8Mp2RC85Zf/ktZZ1buounfnlfp1HkcRjuAYTsGDGtThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgEAlY0C</latexit>

79

<latexit sha1_base64="NzLm87TPhlEwICDmQeCAkrCBpQE=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1FjpvnbVL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECGo0D</latexit>

89

<latexit sha1_base64="rKCBuIiPoPIZTbO4SKLW5ZXYW4I=">AAAB6XicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsd6KXjxWsR/QhrLZTtqlm03Y3Qgl9B948aCIV/+RN/+N2zYHrT4YeLw3w8y8IBFcG9f9cgorq2vrG8XN0tb2zu5eef+gpeNUMWyyWMSqE1CNgktsGm4EdhKFNAoEtoPxzcxvP6LSPJYPZpKgH9Gh5CFn1Fjp/qrWL1fcqjsH+Uu8nFQgR6Nf/uwNYpZGKA0TVOuu5ybGz6gynAmclnqpxoSyMR1i11JJI9R+Nr90Sk6sMiBhrGxJQ+bqz4mMRlpPosB2RtSM9LI3E//zuqkJa37GZZIalGyxKEwFMTGZvU0GXCEzYmIJZYrbWwkbUUWZseGUbAje8st/Seus6l1U3bvzSv06j6MIR3AMp+DBJdThFhrQBAYhPMELvDpj59l5c94XrQUnnzmEX3A+vgECG40D</latexit>

98

<latexit sha1_base64="aVAmORsREIVYJ2vMLmyZuNhglVI=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEsceiF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz04Lm1frniVt05yCrxclKBHI1++as3iFkaoTRMUK27npsYP6PKcCZwWuqlGhPKxnSIXUsljVD72fzUKTmzyoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTsiF4yy+vktZF1buquveXlfpNHkcRTuAUzsGDa6jDHTSgCQyG8Ayv8OYI58V5dz4WrQUnnzmGP3A+fwBj+o01</latexit>

108

<latexit sha1_base64="Tp19MdX/PMiMhSS+UjdZjtkrFRk=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR7LHoxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ68Kq1fqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmrPkZl0lqULLFojAVxMRk9jcZcIXMiIkllClubyVsRBVlxqZTtCF4yy+vkla14l1V3PvLcv0mj6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwBnBI03</latexit>

128<latexit sha1_base64="DNTXLd449qeueZ/wnbnthORu29c=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKeyKr2PQi8eI5gHJEmYnvcmQ2dllZlYISz7BiwdFvPpF3vwbJ8keNLGgoajqprsrSATXxnW/ncLK6tr6RnGztLW9s7tX3j9o6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0O/VbT6g0j+WjGSfoR3QgecgZNVZ68C7dXrniVt0ZyDLxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwUuqmGhPKRnSAHUsljVD72ezUCTmxSp+EsbIlDZmpvycyGmk9jgLbGVEz1IveVPzP66QmvPYzLpPUoGTzRWEqiInJ9G/S5wqZEWNLKFPc3krYkCrKjE2nZEPwFl9eJs2zqndRde/PK7WbPI4iHMExnIIHV1CDO6hDAxgM4Ble4c0Rzovz7nzMWwtOPnMIf+B8/gBg+I0z</latexit>

160

<latexit sha1_base64="JC8vKhDYyb6o6HlzJCatkxqbuCY=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEaY9FLx4rWltoQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4W19Y3NreJ2aWd3b/+gfHj0aOJUM95isYx1J6CGS6F4CwVK3kk0p1EgeTsY38z89hPXRsTqAScJ9yM6VCIUjKKV7r1avV+uuFV3DrJKvJxUIEezX/7qDWKWRlwhk9SYrucm6GdUo2CST0u91PCEsjEd8q6likbc+Nn81Ck5s8qAhLG2pZDM1d8TGY2MmUSB7YwojsyyNxP/87ophnU/EypJkSu2WBSmkmBMZn+TgdCcoZxYQpkW9lbCRlRThjadkg3BW355lTxeVL2rqnt3WWlc53EU4QRO4Rw8qEEDbqEJLWAwhGd4hTdHOi/Ou/OxaC04+cwx/IHz+QNunY08</latexit>

178

<latexit sha1_base64="nR/Nellmt/XkL5PbooDtwzurpdY=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KklR1FvRi8eK9gPaUDbbTbt0swm7E6GE/gQvHhTx6i/y5r9x2+agrQ8GHu/NMDMvSKQw6Lrfzsrq2vrGZmGruL2zu7dfOjhsmjjVjDdYLGPdDqjhUijeQIGStxPNaRRI3gpGt1O/9cS1EbF6xHHC/YgOlAgFo2ilh6p73SuV3Yo7A1kmXk7KkKPeK311+zFLI66QSWpMx3MT9DOqUTDJJ8VuanhC2YgOeMdSRSNu/Gx26oScWqVPwljbUkhm6u+JjEbGjKPAdkYUh2bRm4r/eZ0Uwys/EypJkSs2XxSmkmBMpn+TvtCcoRxbQpkW9lbChlRThjadog3BW3x5mTSrFe+i4t6fl2s3eRwFOIYTOAMPLqEGd1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QNnBI03</latexit>

209

<latexit sha1_base64="j8O9Z8qjxeujdR0MQr6hwl5LyQE=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGRb0FvXiMaB6QLGF2MkmGzM4uM71CWPIJXjwo4tUv8ubfOEn2oIkFDUVVN91dQSyFQdf9dnIrq2vrG/nNwtb2zu5ecf+gYaJEM15nkYx0K6CGS6F4HQVK3oo1p2EgeTMY3U795hPXRkTqEccx90M6UKIvGEUrPVTOrrvFklt2ZyDLxMtICTLUusWvTi9iScgVMkmNaXtujH5KNQom+aTQSQyPKRvRAW9bqmjIjZ/OTp2QE6v0SD/SthSSmfp7IqWhMeMwsJ0hxaFZ9Kbif147wf6VnwoVJ8gVmy/qJ5JgRKZ/k57QnKEcW0KZFvZWwoZUU4Y2nYINwVt8eZk0KmXvouzen5eqN1kceTiCYzgFDy6hCndQgzowGMAzvMKbI50X5935mLfmnGzmEP7A+fwBa5ONOg==</latexit>

239

<latexit sha1_base64="PhoxjLDQyMca2os/fKpOfAFb2yw=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHaJD45ELx4xyiOBDZkdemHC7OxmZtaEED7BiweN8eoXefNvHGAPClbSSaWqO91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzThBP6IDyUPOqLHSQ+Wq2iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJqz6Ey6T1KBki0VhKoiJyexv0ucKmRFjSyhT3N5K2JAqyoxNp2BD8JZfXiXNStm7LLv3F6XaTRZHHk7gFM7Bg2uowR3UoQEMBvAMr/DmCOfFeXc+Fq05J5s5hj9wPn8Abp6NPA==</latexit>

268

<latexit sha1_base64="AvLk+bp8dC9oTVsL0nnXskYkkHY=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKewGRXMLevEY0TwgWcLspDcZMju7zMwKIeQTvHhQxKtf5M2/cZLsQRMLGoqqbrq7gkRwbVz328mtrW9sbuW3Czu7e/sHxcOjpo5TxbDBYhGrdkA1Ci6xYbgR2E4U0igQ2ApGtzO/9YRK81g+mnGCfkQHkoecUWOlh0q12iuW3LI7B1klXkZKkKHeK351+zFLI5SGCap1x3MT40+oMpwJnBa6qcaEshEdYMdSSSPU/mR+6pScWaVPwljZkobM1d8TExppPY4C2xlRM9TL3kz8z+ukJrz2J1wmqUHJFovCVBATk9nfpM8VMiPGllCmuL2VsCFVlBmbTsGG4C2/vEqalbJ3WXbvL0q1myyOPJzAKZyDB1dQgzuoQwMYDOAZXuHNEc6L8+58LFpzTjZzDH/gfP4AdLGNQA==</latexit>
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Figure 3.10: Another maximal Clique in a graph with approximate/noisy volumes.

budget and instead running the Match & Extend algorithm, we can recover a database

that is closer to the true database.

1: baseSolution = FindMaximalClique()
2: allCliques = FindRemainingCliques(K, `)
3: while length(baseSolution) < N do
4: candidateSolution= FindBestCandidate(allCliques)
5: baseSolution= Merge(baseSolution, candidateSolution)
6: end while
7: return baseSolution

Figure 3.11: Match & Extend Algorithm

FindMaximalClique The first step in the Match & Extend algorithm is to find a max-

imal clique in the constructed graph. Let K denote the size of a maximal clique recovered

in this step. If there is more than one clique with the same maximal size select one of them

arbitrarily. Once the clique is found, the corresponding database is computed. We call this

database baseSolution and the rest of the algorithm will expand this database. If the

size of maximal clique found in this step is N we are done, otherwise the Match & Extend
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algorithm expands the baseSolution.

FindRemainingCliques Recover all cliques of size K,K − 1, K − 2, . . . , K − ` and sort

them from the largest clique size to the smallest. For each clique, the corresponding

database is found and is called candidateSolution. The candidateSolution is in the

form of an ordered list of volumes that correspond to neighbouring ranges of the database.

Note that the cliques to be found in this step are not restricted to be from the ranges in

the form [1, 1], [1, 2], ..., [1, K] for some K. In fact, and this holds in the noiseless setting

too, any set of volumes corresponding to ranges of the form [i, i1], [i, i2], . . . , [i, ik] where

i ≤ i1 < i2 < · · · < ik will form a clique of size k, provided that all the differences of the

volumes corresponding to these ranges are present in our data. This fact will enable our

algorithm to discover the volumes of different parts of the true database and “merge” those

parts to recover the original database.

ApproximateLCSubstring This is a subroutine that is invoked as a part of Merge

function. Given a baseSolution and a candidateSolution in form of lists of volumes

of neighboring ranges, it finds the longest common substring of these solutions, i.e. the

longest contiguous list of volumes where both solutions agree. We call this substring the

commonSub-Solution. To find it, we use a standard longest common substring algorithm

with a modification that the elements of the substring need to be only approximately

equal (as defined in Section 3.2.3) to the corresponding elements of baseSolution and

candidateSolution. At termination this will return the commonSub-Solution and the

starting and ending indices of commonSub-Solution in the two given solutions.
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Merge Given the baseSolution and a candidateSolution in the form of lists of vol-

umes, attempt to combine the information in them into one larger solution. We refer

to this as “merging” the two solutions. The Merge function first invokes Approxi-

mateLCSubstring to find the approximate longest common substring of the two so-

lutions. After the longest common substring of the two solutions and the locations of this

substring in the two solutions are found, there can still be volumes where the baseSolution

and candidateSolution agree, which are not recognized by the ApproximateLCSub-

string. For example, if the baseSolution is 〈29, 99, 81, 30〉 and candidateSolution is

〈29, 180, 30, 60〉, the commonSub-Solution may be found as 〈29〉, however one can see that

the two solutions agree at 〈99, 81〉 as well, only in the candidateSolution this informa-

tion appears as the volume of one range 〈180〉 which is the union of those two neighboring

ranges in baseSolution. The merging algorithm identifies such cases and extends the

commonSub-Solution accordingly. The algorithm searches for occurrences where a volume

vi next to the end of the commonSub-Solution in one of the solutions (say in baseSolution)

is approximately equal to the sum of volumes uj, uj+1, . . . , uj+r for r ≥ 0 next to the same

end of the commonSub-Solution in the other solution (say candidateSolution). In such

a case, it extends the commonSub-Solution by appending to it 〈uj, uj+1, . . . , uj+r〉, and

changing endpoints of the commonSub-Solution in baseSolution and candidateSolution.

So in the database given above, the algorithm will look at the neighbors of 〈29〉 and discover

that 180 ≈ 99 + 81, and extend the commonSub-Solution to 〈29,99,81〉. Then, the algo-

rithm will look at the neighbors of 〈29,99,81〉 and discover that 30 ≈ 30, extending the

commonSolution further to 〈29,99,81,30〉. It is important to mention that while the val-

ues in the example were exactly equal, the algorithm accepts values which are approximately

53



equal as well, meaning that we look for whether 180
?
≈ 99+81 or whether 30

?
≈ 30. After the

commonSub-Solution is maximally extended, our two solutions will have the following form:

baseSolution = 〈pref1, comm, suff1〉 and candidateSolution = 〈pref2, comm, suff2〉,

where comm is the commonSub-Solution found as previously explained, and any of the pre-

fixes and suffixes may be empty. The algorithm then will do one of four things: (a) if pref1

(similarly, suff1) is empty, it will extend the commonSub-Solution to comm = pref2||comm

(similarly, comm ||suff2), (b) if pref2 (similarly, suff2) is empty, it will extend the

commonSub-Solution to comm = pref1||comm (similarly, comm ||suff1), (c) if both pref1

and pref2 (similarly, suff1 and suff2) are of length 1, meaning they both contain one

volume (say, a and b, with a < b), and if the absolute value of the difference of these

volumes appears in our volume measurements, then comm = 〈b − a, a〉||comm (similarly

comm = comm ||〈a, b − a〉), (d) if none of the above conditions are satisfied, the algorithm

will abort the merge and repeat its steps for another candidateSolution. The condition

(c) above is for identifying the cases where the volume in, say, suff1 corresponds to a

range [i, j], which includes in itself the range of the volume in suff2, which can be [i, k]

for k < j. If the difference of these two volumes appears in the measured volumes, that

difference likely corresponds to the range [k + 1, j], so we replace 〈b〉 ([i, j]) by 〈a, b − a〉

(which is the range [i, k] and range [k + 1, j], respectively).

Back to our example database of 〈30, 100, 80, 30, 60〉, we had last found the

commonSub-Solution to be 〈29, 99, 81, 30〉. In the merge step, we are going to

have baseSolution = 〈comm〉 and candidateSolution = 〈comm, 60〉. This falls un-

der the case (a) where suff1 is empty, so the algorithm appends suff2 = 〈60〉 to the
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commonSub-Solution and returns the solution as baseSolution = 〈29, 99, 81, 30, 60〉.

FindBestCandidate Any time a merge is successful, two solutions are combined into

one to create a larger solution. The reason why this larger solution was not initially found

by the clique finder is that some volumes or connections in the graph were missing, and so

a potential clique corresponding to this solution could not be formed. Every merge of two

solutions identifies the number of missing volumes that prevented the combined solution

from being found in the first place; in fact, if we were to add those missing volumes to

the graph and start the algorithm again, the combined “merged” solution would show up

among all listed solutions. Therefore we use the number of missing volumes as a metric for

assessing the goodness of a candidate solution; if there are few missing volumes, it suggests

that the baseSolution and candidateSolution agree in many volumes of the database,

and are thus compatible, whereas if there are many missing volumes, the two solutions

likely have different information about the volumes. The FindBestCandidate finds the

candidate solution among all cliques that has the least number of such missing volumes

with respect to being merged with the baseSolution.

3.3 Experimental Results

We performed five sets of experiments. The first two experiments (I and II) are

for the cases where there is no additional noise during the measurement and the query

distribution over all the possible queries are uniform. The third set of experiments (III)

in Section 3.3.1 studies the effect of extra load on the system while taking measurements.

The fourth set of experiments (IV) in Section 3.3.2 looks at different query distributions.
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In the last set of experiments (V) in Section 3.3.3, we look at the effect of missing some

volumes due to the fact that some range queries may have never been issued, or due to

noise causing a query to be missed entirely. In Experiment I, we first prepare 10 databases

from the NIS2008 database, by randomly selecting 100, 000 records. Nationwide Inpatient

Sample (NIS) is part of the Healthcare Cost and Utilization Project (HCUP) which is used

to analyze national trends in healthcare [5]. The NIS is collected annually and it gathers

approximately 5 to 8 million records of inpatient stays. We selected NIS from the year 2008;

the full description of each attribute of the database is reported in [5, Table1]. In the first

set of experiments we performed uniform range queries on the AMONTH attribute which

corresponds to admission month coded from (1) January to (12) December (i.e., each of

the possible ranges were queried with equal probability). In the second set of experiments

(Experiment II) we sampled the database as follows: For each of the 10 databases from

Experiment I, for each record in the database, instead of using the real value for the

AMONTH column, we generated synthetic data by sampling a value from a Gaussian

(Normal) distribution with mean 1+N
2

= 6.5 and standard deviation of 3 and 4, respectively.

So within Experiment II, we considered two data distributions, a “narrow” Gaussian with

standard deviation 3 and a “wide” Gaussian with standard deviation 4.

We ran the experiments on a Lenovo W540 Laptop with Intel Core i7-4600M CPU

clocking at 2.9 GHz running Ubuntu 16.04. The L1, L2 and L3 caches have capacities

32KB, 256KB and 4MB, respectively. For the SQLite, we use the amalgamation of SQLite

in C, version 3.20.1. We heuristically observed that if we gather around 120 measurements

for any one range query, the aggregated side-channel measurements will result in a peak

corresponding to the approximate volume. Since there are at most 78 different range queries
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for N = 12 we decided to gather around 10, 000 traces to make sure there are enough traces

for each range to be able to see a peak for each approximate volume.

We gathered 10, 000 traces corresponding to 10, 000 uniformly chosen range queries

for Experiments I and II, i.e. 1 trace for each query. We processed all those traces to obtain

the approximate/noisy volumes. On average, gathering 10, 000 traces takes around 8 hours

and processing them takes another 3 hours. The experiments and the code to run the

Clique-finding algorithm, Match & Extend and noise reduction step can be found in the

following GitHub Repository [3].

After processing the measurements, we obtained a set of approximate volumes, on

which we then ran noisy clique-finding and Match & Extend, which in turn output recon-

structed databases. Figure 3.12 illustrates the quality of the recovered values for the noisy

clique-finding and Match & Extend algorithms. The noisy clique-finding algorithm is run

with several values for the noise budget while the Match & Extend is run with a fixed noise

budget of 0.002. For each of the N values 1, 2, . . . , N , we expect to recover a candidate

volume, corresponding to the number of records in the database that take that value. For

a database with range of size N , we define the success rate as the number of candidate

volumes recovered divided by N . For example in our experiments if we recover only 11

candidate values for a database of range of size N = 12, then we have a success rate of

11/12. It is also worth mentioning that the attacker can distinguish a successful attack

from the failed one, since N , i.e. the size of the range, is known to the attacker. We define

the error rate of a recovered volume as its percentage of deviation from the original volume

that it corresponds to. We look at the recovered database and compare it to the original

one. For each candidate volume v′ that is recovered, we compare it to the corresponding
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value in the real database, v and report the error rate as
(
|v′−v|
v

)
×100. So for example, if

a recovered volume is 7990 and the actual volume was 8000 we report an error percentage

of 0.12%. If the algorithm only recovered 11 values for a database of size 12, we will report

the percentage error for the 11 recovered values.

Figure 3.12 and 3.13 show both the success rate and the error percentage for Experi-

ment I and II. For success rate (orange line), it can be seen that for the noisy clique-finding

algorithm, increasing the noise budget helps to recover more volumes in both experiments.

The Match & Extend algorithm, used with a fixed noise budget of 0.002 could recover all

the volumes in both of the experiments. For error percentage the average percentage of

error is marked with a blue dot. The 90% confidence interval is marked with the black

marker. The confidence interval indicates that for a new set of experiments with the same

setting, we are 90% confident that the average error rate will fall within that interval. For

the noisy clique-finding algorithm, increasing the noise budget causes the average error per-

centage to increase and the confidence interval to grow. In some cases with noise budget

0.005 and 0.006, some of the recovered databases in Experiment I were very far off from

the actual databases, causing the error interval in these settings to be much larger than in

other settings.

In a nutshell, although it seems that increasing the noise budget helped to achieve

higher success rates, since the error percentage grows, the quality of the recovered databases

is lower. For the Match & Extend algorithm the average amount of error and the width of

error interval is comparable to the noisy clique-finding algorithm with small noise budget

but the success rate is much higher. Figure 3.14 shows the average run time as well as
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Figure 3.12: Success Rate and Error Percentage for Experiment I
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Figure 3.13: Success Rate and Error Percentage for Experiment II

90% confidence interval of the successful database recovery in seconds. It can be seen that

the average run time of noisy clique grows with the value of noise budget. The Match &

Extend algorithm, however, always uses noise budget of 0.002 and so its average running

time remains low.

Table 3.2 compares the performance of the Match & Extend algorithm and the noisy

Noisy Clique
(0.006)

Match & Extend

Error Percentage 0.10 % - 0.27 % 0.07 % - 0.11 %
Run Time (s) 0 - 1900 38 - 190

Table 3.2: Performance Comparison of Noisy Clique with Noise Budget 0.006 vs. Match
& Extend Algorithm, with 99% Confidence interval
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Figure 3.14: Average running time of Noisy Clique for different Noise Budget vs. Match &
Extend Algorithm

clique algorithm on successful instances (meaning, the performance of the noisy-clique is

taken only over the instances for which the recovered database had the correct size N).

The noisy clique-finding algorithm with noise budget 0.006 performs better in terms of

success rate than noisy clique-finding with smaller noise budgets, and we select it as a

comparable algorithm to Match & Extend algorithm. We are 99% certain that in a new

set of experiments with the same setting as presented here, the Match & Extend algorithm

would output a result in at most 190 seconds with at most 0.11% error. The noisy clique

finding algorithm, on the other hand, would output a result in at most 1900 seconds with at

most 0.27% error. We have also analyzed the effect noise reduction step to further reduce

the noise, which can be found in Appendix A.3.

3.3.1 Additional Noisy Process Running

For Experiment III, we extend our analysis to the case where there is extra load on

the system—i.e. extra processes running—during the time of the attack. To run the noisy

processes we use the command stress -m i, where i represents the number of parallel
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Figure 3.15: Success Rate and error percentage for Experiment III. The system is analyzed
under different varying load. The load is increased by adding extra 1,2,8 processes.

threads running with CPU load of 100%. We repeat the experiment for i ∈ {1, 2, 8} and

present the results in Figure 3.15. We took 5 databases from Experiment I and obtained

new sets of traces while the system had noisy processes running at the background. We

recovered all the coordinates of the databases for all cases, so the success rate for all cases

remains at 100%. The quality of the recovered databases worsened with heavier loads,

however even with 8 noisy processes the average error remains less than 2%.

3.3.2 Non-uniform Query Distribution

As mentioned, in order to be able to detect an approximate volume in our side-channel

measurements, we need to observe at least 120 measurements per range query. While we

require that each query must be made some minimum number of times, we do not impose

that the query distribution must be uniform. This is in contrast to previous work by Kellaris
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Figure 3.16: Success Rate and Error Percentage for Experiment IV
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Figure 3.17: Success Rate and Error Percentage for Experiment V
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Figure 3.18: Success Rate and Error Percentage for Experiment V
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et al. [72] who crucially required uniform query distribution. Our requirement can be seen

as the noisy analogue of Grubbs et al. [58], who required each volume to be observed at

least once in the noiseless setting. To tolerate the noise present in the measurement in our

setting, we require each query to be observed at least 120 times. Later, in Section 3.3.3, we

will further relax this requirement by showing that the recovery can be done even if some

of the range queries are entirely omitted. This can be viewed as a weakening of even the

requirements of Grubbs et al. [58].

For Experiment IV, we used the same databases as in Experiment I, but performed

non-uniform range queries. We picked 5 database from Experiment I and tested them with

3 sets of non-uniform query distributions which results in 15 scenarios in total. The first

query distribution is chosen based on the assumption that queries of the form [i, i + 1]

are made twice as often as the other queries. The second query distribution assumed that

queries in the form of [i, i+1] and [i, i+2] are made twice as often as the other queries. For

the last query distribution, we tested the hypothesis that the determining factor for our

attack seems to be the ability to identify “peaks” that roughly correspond to the volumes

of the range queries (e.g. see Figure 3.5 and Figure 3.6). A challenging query distribution

is therefore one which causes one of the peaks to disappear as the peak adjacent to it

dominates it. To test our hypothesis, we chose a distribution in which range [a, b] was

queried twice as often as [c, d] when ranges [a, b] and [c, d] had close volumes (and therefore

close peaks).

Figure 3.16 shows both the success rate and the error percentage for Experiment IV. It

can be seen that the noisy clique-finding algorithm exhibits better success rate as the noise

budget increases, while the error percentage grows as well. Match & Extend algorithm,
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however has 100% success rate with low error percentage. We have also analyzed the effect

of the noise reduction step to further reduce the noise, which can be found in Appendix A.3.

3.3.3 Missing Queries

For Experiment V, we study the performance of our algorithm when some of the

ranges are never queried. We consider two cases. In the first case, we look at a setting

in which certain randomly chosen ranges are never queried and in the second case, we

consider a setting in which the queries corresponding to the largest volumes are never

made. For the first case, we randomly drop {1, 2, 4, 6, 8} volumes from the measurements.

The performance of Match & Extend algorithm can be seen in Figure 3.17. As more and

more volumes are dropped, the success rate of the algorithm decreases. For example, in

the case where 8 volumes are missing we recovered around 95% of the databases entries.

However, the error percentage grows as more and more volumes are missing, although it

remains below 1% error even for the case where 8 volumes are missing. For the second

case, we first look at the case where the query [1, N ] is blocked, i.e. the attacker is not

allowed to query the whole database. In other cases the queries which ask for more than

90%, 80% and 70% of the database is blocked, respectively. It can be seen in Figure 3.18

that in these cases the success rate remains around 98% and the error percentage of the

recovered coordinates stays below 2%.
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Chapter 4: New Algorithms for LPN with Sparse Parities

4.1 Introduction

The (search) Learning Parity with Noise (LPN) problem with dimension n and noise

rate η, asks to recover the secret parity s, given samples (x, 〈x, s〉 ⊕ e), where x ∈ {0, 1}n

is chosen uniformly at random, s ∈ {0, 1}n, error e ∈ {0, 1} is set to 1 with probability η

and 0 with probability 1− η, and the dot product is taken modulo 2.

While solving a linear system of n equations over F2 to recover a secret of dimension

n can be done in polynomial time via Gaussian elimination, even adding a small amount

of noise e renders the above a seemingly hard learning problem, even given a large number

of samples. Specifically, the search LPN problem, which typically assumes the noise rate

is a small constant, is believed to be hard, with the asymptotically best algorithm (known

as BKW) requiring runtime 2Θ(n/ log(n)) and 2Θ(n/ log(n)) number of samples to recover s of

dimension n. Some evidence of its hardness comes from the fact that it provably can-

not be learned efficiently in the so called statistical query (SQ) model under the uniform

distribution [22, 24].

Though originally arising in the fields of computational learning theory and coding

theory, the LPN problem has found numerous applications in cryptography (see e.g. [23,

54, 67, 70] for a partial list of applications) due to the fact that (1) there is a search-
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to-decision reduction, meaning that the decision version – which is more amenable to

cryptographic applications and asks to distinguish (x, 〈x, s〉 ⊕ e) from (x, b), where b is

random – is as hard as the search version (which asks to recover s) and (2) the LPN problem

is believed to be quantum-hard, as opposed to other standard cryptographic assumptions

such as discrete logarithm and factoring which are known to have polynomial time quantum

algorithms [101].

Variants of the LPN problem have also been considered in the literature: Sparse

LPN [25], where the x vectors in the LPN problem statement are sparse, LPN with struc-

tured noise, where the noise across multiple samples is guaranteed to satisfy some con-

straint [18], and Ring LPN [64]. While typically the error rate is assumed to be constant,

LPN with low noise rate has also been considered with applications to cryptography [33].

Indeed, LPN with noise rate even as low as Ω(log2(n)/n) is considered a hard problem [33].

We further note that without loss of generality can assume that the secret is drawn from

the same distribution as the noise, as there is a reduction from LPN with secret s to LPN

with secret e, where e is the error vector obtained after n samples are drawn [17].

In this work we consider LPN with sparse parities (i.e. the “sparsity” or Hamming

weight k of the secret vector is significantly less than η · n, where η is the error rate).

We consider both the constant noise and the low noise setting (where the error rate is

subconstant). Motivations for considering this variant of LPN include the fact that sparse

secrets may be used in practical cryptosystems for efficiency purposes (as is the case for

some fully homomorphic encryption implementations [37]), or some bits of the secret may be

leaked via a side-channel attack. More generally, analyzing the security of LPN with sparse

parities tests the robustness of the standard LPN assumption, since a lack of polynomial-
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time algorithms in the sparse parities setting (when k is super-constant) would then raise

our confidence in the security of the standard setting. We also consider applications of

our results to other learning problems, such as learning DNFs and Juntas. Prior work on

LPN with sparse parities, has mainly considered obtaining algorithms with runtime nc·k

for constant c < 1 [56, 105]. This beats the trivial brute-force search with runtime
(
n
k

)
in the regime where k � n. In this work, our focus is to achieve an algorithm which,

for certain regimes of k, beats the prior best algorithms asymptotically in the exponent.

Since our goal is to achieve asymptotic improvement in the exponent, we will compare our

algorithm’s runtime against brute-force search and not the prior work of [56, 105], since

the latter algorithms are equivalent to brute-force search in terms of asymptotics in the

exponent.

4.1.1 Our Results

We obtain new LPN algorithms for sparse parities that improve upon the state-of-

the-art in certain regimes, which will be discussed below.

Our first result pertains to the constant noise setting, where the noise rate η ∈ Θ(1).

In the theorem below, p ∈ (0, 1) is a free parameter that we set later to optimize our

runtime.

Theorem 17. For δ ∈ [0, 1], p ∈ (0, 1), LPN for parities of sparsity k out of n variables

and constant noise rate can be learned with total number of samples and total computation

time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln(
n

δ
) ·
(

2
np

log(np) · log(np)
))

,
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and success probability of 1− δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln(2n

δ
) · exp(−pn

8
)
)

.

By setting the parameter p appropriately, we obtain the following:

Corollary 18. For sparisty k = k(n) = n

log1+1/c(n)
, where c ∈ o(log log(n)) and c ∈ ω(1),

the runtime of our new learning algorithm presented in Figure 4.2 is contained in both

log(n)o(k) and 2o(n/ log(n)), and it succeeds with constant probability. For this range of k,

brute-force search requires runtime log(n)Ω(k) and BKW requires runtime of 2Ω(n/ log(n)).

Our second result pertains to the low noise setting, where the noise rate η ∈ o(1).

Again, p ∈ (0, 1) is a free parameter that we set later to optimize our runtime.

Theorem 19. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2 · p2(k−1)(1− p2)

)
∈ o(1/η · log(np)),

and that δ ∈ [0, 1], p ∈ (0, 1). LPN for parities of sparsity k out of n variables and noise

rate η ∈ o(1) can be learned using (2np+ 1)2 · log(n) number of samples, total computation

time of N := poly
(

1
(1−2η)2np+2·p2(k−1)(1−p2)

)
and achieves success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))

By setting the parameter p appropriately, we obtain the following:

Corollary 20. For sparsity k(n) such that k = 1
η
· log(n)

log(f(n))
, noise rate η 6= 1/2 such that

η2 =
(

log(n)
n
· f(n)

)
, for f(n) ∈ ω(1) ∩ no(1), the Learning Algorithm of Figure 4.4 runs

in time O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k)
with constant success probability. In
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this setting, the running time of brute-force is
(
n
k

)
≥ (n

k
)k and the running time of lucky

brute-force is eηn ∈
(
n
k

)ω(k)
.

Finally, applying known reductions to LPN [51] and solving LPN using our algorithm,

we also obtain applications to learning other classes of functions such as DNF and Juntas:

• Our algorithm can be applied to learn DNFs of size s and approximation factor ε,

with asymptotic improvements over Verbeurgt’s bound [106] of O
(
nlog s

ε

)
, and with

negligible failure probability when log s
ε
∈ ω

(
c

logn log log c

)
, and log s

ε
∈ n1−o(1), where

c ∈ n1−o(1).

• Our algorithm can be applied to learn Juntas of size k with a runtime of no(k) and

a negligible failure probability when k ∈ ω
(

c
logn log log c

)
, and k ∈ n1−o(1), where

c ∈ n1−o(1).

4.1.2 Technical Overview

Fourier Analysis of Boolean Functions Every Boolean function, f : {0, 1}n →

{0, 1}—equivalently f : {−1, 1}n → {−1, 1}—can be represented as a linear combina-

tion f(x) =
∑

S⊆[n] f̂(S) · χS,p(x), known as the Fourier representation of f . Typically,

we consider the uniform distribution over examples x, in which case χS,p(x) is defined

as
∏

j∈S x[j] and f̂(S) = Ex∼{−1,1}n [f(x) · χS,p(x)]. However, for any product distri-

bution [p1, . . . , pn], where E[x[j]] = pj, we can also define χS,p(x) :=
∏

j∈S
x[j]−pj√

1−p2j
and

f̂(S) := Ex∼Dp [f(x) · χS,p(x)], where Dp is a product distribution defined over {−1, 1}n

and is parameterized by its mean vector [p1, . . . , pn]. Fourier analysis is a strong tool in

computational learning theory for learning under the uniform distribution (and can be ex-
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tended to product distributions as well). Specifically, the Low Degree Algorithm of [79]

guarantees that if most of the Fourier weight of a Boolean function is concentrated on low

degree parities (i.e. χS,p with small |S|), then an approximate version of the function can be

reconstructed, even in the presence of noise. However, for learning large parities under the

uniform distribution Fourier analysis is not useful since for a parity corresponding to secret

s of Hamming weight k, all of the Fourier weight is on a single Fourier coefficient of degree k

and searching for this Fourier coefficient would require a brute-force search that enumerates

over all possible parities of size at most k. If the distribution is p-biased instead of uni-

form, however, then the above is no longer the case. Specifically, if we consider a product

distributions where the example x is no longer uniformly random, but each coordinate of

x is set to 0 with probability 1/2 + p/2 and 1 with probability 1/2− p/2 (so the expecta-

tion E[x[j]] = p for each coordinate of x, once it is represented in ±1 notation), then the

Fourier weight is now spread over all parities S such that ∀j ∈ S, s[j] = 1. In particular,

this means that by approximately computing the Fourier coefficient of all subsets consisting

of a single element S = {s[1]}, . . . , S = {s[n]}, we can distinguish the subsets of size 1 with

non-zero versus zero Fourier weight and thus determine all i such that s[j] = 1. We note

that when the distribution is p-biased, the magnitude of the Fourier coefficients that we

must approximate is of the order pk, and we will therefore require poly((1/p)k) samples to

approximate the quantity (even without considering noise). We will see in the following

that in order for our approach to improve upon known algorithms, we must consider sparse

parities with k ∈ o(n).
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Attack Overview Given the above discussion, the main idea of our attack is to convert

samples drawn from the uniform distribution to samples drawn from a p-biased distribution

and then use Fourier analysis techniques to learn the elements of the parity one by one.

In order for this approach to succeed, our algorithm first needs to generate a sufficient

number of p-biased LPN samples, given uniformly random LPN samples. Specifically, the

attacker has access to unbiased LPN oracle which outputs samples xi and corresponding

label bi such that bi = 〈xi, s〉 + ei, noise ei has rate η meaning that error ei is 1 with

probability η and 0 with probability 1 − η. The attacker will generate new samples x′i,

which are p-biased, and a corresponding label b′i, with a higher error rate η′. We then

approximate the Fourier coefficient of coordinate j, constructed as above, by b̂p({j}) :=

Ex′∼Dp [b
′ · χ{j},p(x′)]. The main observation is that for the secret key coordinate j such

that s[j] = 0 we have b̂p({j}) = 0 and for the coordinates j such that s[j] = 1 we have

b̂({j}) = (1−2η′) ·pk−1
√

1− p2 . The value of b̂p({j}) is estimated by using a sample mean

with a sufficient number of generated p-biased samples to approximate the expectation.

We present two algorithms for generating the p-biased samples, each algorithm is

appropriate for a different scenario. Specifically, our first algorithm is appropriate for the

standard case where the noise rate is constant, while our second algorithm is appropriate

for the low noise case where the noise rate is sub-constant. After generating the p-biased

samples, the Fourier estimation step is similar in both settings. We next elaborate on our

algorithm for each of the two settings.

Constant Noise In the case where the noise rate is constant, to generate the p-biased

samples, we apply a variant of the BKW algorithm. The BKW algorithm gives an
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2O(n/ log(n))-time algorithm for the LPN problem that also requires 2O(n/ log(n)) number of

samples. An intermediate step of the BKW algorithm uses access to its LPN oracle to

generates samples (x, 〈x, s〉 ⊕ e′), where x is a vector that has all 0’s except in a single po-

sition, and e′ is an error term with higher noise rate than the original error. The key idea

of our algorithm is that in order to create p-biased samples, we can choose a random set of

coordinates, R ⊆ [n], by including each i ∈ [n] in the set R independently with probability

p, and then run the subroutine of the BKW algorithm on the smaller set R, of expected

size pn, in order to create a sample x that is set to 0 for all i ∈ R. Such a sample x is now

distributed identically to a p-biased sample. The error rate increases, but since Fourier

analysis is robust against noise, these p-biased samples can still be used to estimate the

Fourier coefficients corresponding to singleton sets of the form S = {s[1]}, . . . , S = {s[n]}

to determine the secret s. Crucially, our algorithm gains over simply running BKW on

the entire instance because the set of coordinates we run BKW on is of size O(pn) instead

of size n. Thus, generating the biased samples runs in time 2O(pn/ log(pn)) instead of time

2O(n/ log(n)). When p is subconstant, we achieve an asymptotic gain in the exponent. In

contrast, the Fourier estimation step runs in time poly((1/p)k), so we must also set p large

enough so that this step achieves asymptotic gain in the exponent beyond the brute-force

search time of
(
n
k

)
. We discuss at the end of the section the regime in which it is possible to

set the parameter p so that our algorithm improves asymptotically in the exponent beyond

the best known algorithms.

Low Noise When the noise rate is sufficiently low, we can generate p-biased samples

using a simpler approach. As before, we randomly select a set R ⊆ [n], by including each
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i ∈ [n] in the set R independently with probability p. Now, instead of running BKW on the

coordinates in the set R, we simply choose O(np) number samples (since R has expected

size np) from the non-biased oracle and find a linear combination (guaranteed to exist)

that sets all the coordinates in R to 0. Again, the noise increases in the generated sample.

Nevertheless, we gain over the trivial approach (which instead of p-biasing the oracle simply

creates linear combinations that have x set to all 0 except for in a single coordinate) because

the linear combination we generate is over at most O(np) versus O(n) vectors, which in turn

guarantees that the noise rate will be lower. However, we note that the above description is

a bit inaccurate, since we must include an additional step to ensure that the added noise is

independent of the set of samples. We elaborate on these details in Section 4.3.1, Figure 4.3

and Lemma 26. We gain from this technique by choosing p small enough to lower the noise

rate but large enough to ensure that the (1/p)k necessary to estimate the Fourier coefficient

still beats brute-force search asymptotically in the exponent.

In the low noise case we further show that we can generate the large number of

samples needed for the Fourier analysis using only a polynomial size set of examples from

the original LPN oracle. In this case, the generated samples will not be i.i.d., but we

will use a construction inspired by the designs of Nisan and Wigderson to generate an

exponentially large set of samples, where each pair of samples from the generated set has

low covariance. The details of this design are presented in Section 4.3.1. Further we note

that, it is also possible to use a random choice of subsets in place of this design. However,

the deterministic procedure allows for bounding the covariance of the newly generated

samples which is crucial in our analysis as seen later. This will be enough to then run

the Fourier analysis, which requires that one can use random sampling to estimate the
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mean of a random variable. We can bound the deviation from the mean using Chebyshev’s

inequality since we guarantee that the covariance between any two distinct samples is small.

Parameters We now discuss the regime of k and η in which we improve on prior al-

gorithms, and how to set the parameter p to achieve the optimal run time. For the con-

stant noise setting, with secret s with sparsity in the form k = k(n) = n

log1+1/c(n)
, where

c ∈ o(log log(n)) and c ∈ ω(1), we set p = 1/ log1/(c)(n) to obtain an algorithm that im-

proves upon both brute-force and BKW asymptotically in the exponent. Recall that prior

work on LPN with parities of sparsity k reduced the constant in the exponent beyond brute-

force, but did not achieve asymptotic improvement in the exponent. In our work we care

about asymptotic improvement in the exponent and therefore do not compare against those

algorithms. For the low noise setting we show that for sparsity k = 1
η
· log(n)

log(f(n))
and the noise

rate of η 6= 1/2 and η2 =
(

log(n)
n
· f(n)

)
, for f(n) ∈ ω(1) ∩ no(1), by setting p = 1

f(n)
and

1
p
∈
(
n
k

)o(1)
, our algorithm improves upon both brute-force and “lucky brute-force”–i.e. an

algorithm which gathers m samples until it has n noiseless samples with high confidence

(where m depends on the noiserate) and then attempts Gaussian elimination with every

possible subset of size n, giving runtime poly(
(
m
n

)
)–asymptotically in the exponent. To our

knowledge, these are the best algorithms when considering asymptotics in the exponent.

Application to DNF and Juntas In addition to parities, the reductions by Feldman

et al. [51] provide a way to translate improvements in solving LPN to learning Juntas

and DNFs. As such, we present a formulation of our constant noise algorithm that is

parameterized according to these reductions, and provide parameter settings such that our
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algorithm, when applied to learning DNFs or Juntas, yields asymptotic improvements in

the exponent. For DNFs, we present an asymptotic result similar to that of [56] in that we

improve on Verbeurgt’s bound of O(nlog s
ε ) for learning DNFs of size s with approximation

factor ε for a different regime of s
ε
, where log s

ε
∈ ω

(
c

logn log log c

)
, and log s

ε
∈ n1−o(1), for

c ∈ n1−o(1). Note that for Juntas, we present an algorithm that learns Juntas of k variables

in no(k) time for k ∈ ω
(

c
logn log log c

)
, and k ∈ n1−o(1), where c ∈ n1−o(1).

4.1.3 Related Work

Learnig Parity with Noise Blum, Kalai and Wasserman [24] presented the first algorithm

that improved upon the trivial 2Ω(n) time algorithm for LPN. They showed that LPN

with constant error rate can be learned in slightly subexponential time 2O(n/ logn) with the

same amount of samples. To date, their algorithm remains the state-of-the-art in terms of

asymptotics in the exponent in the constant error rate regime.

Lyubashevsky [82] extended the previous algorithm by Blum et al. [24] and reduced

the overall sample complexity. Lyubashevsky developed an algorithm for creating a super-

polynomial number of psuedorandom samples from a polynomial number of original sam-

ples. Thus, Lyubashevsky traded sample complexity for time complexity. More specifically,

the algorithm solved LPN with constant error rate and parities of size n in time 2O(n/ log logn)

using only n1+ε samples.

In later work, Bogos et al. [26] presented a unified framework for various improve-

ments and optimizations of BKW. Specifically, they focused on tightening the analysis of

several previous works [63, 76] to give more accurate bounds for the time and sample com-
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plexity needed to solve the LPN problem. They improved the bounds of the variant of the

BKW algorithm proposed by Leviel and Fouque [76] which is based on Walsh-Hadamard

transform. Moreover, they analyzed the algorithm by Guo et al. [63] which used a “covering

codes” technique to reduce the dimension of the problem. We note that the many of the

improvements listed are heuristic in nature, while others provably improve the runtime.

We also note that our usage of BKW in our algorithms is compatible with only some of

these improvements. We only use the so-called “reduction” phase of the algorithm to gen-

erate our p-biased samples. Thus, improvements to this phase, such as covering codes, are

applicable whereas others, such as the Walsh-Hadamard transform, are not.

LPN with Sparse Parities Grigorescu et al. [56] showed an improvement of learning sparse

parities with noise over brute-force search, which has run time
(
n
k

)
. The algorithm ran in

time poly
(

log(1
δ
), 1

1−2η

)
· n(1+(2η)2+o(1))k/2 and had sample complexity of k log(n/δ)ω(1)

(1−2η)2
in the

random noise setting under the uniform distribution, where η is the noise rate and δ is the

confidence parameter.

Valiant [105] showed that the learning parity with noise problem can be solved

in time ≈ n0.8kpoly( 1
1−2η

). He also showed that noisy k-juntas can be learned in time

n0.8kpoly
(

1
1−2η

)
and r-term DNF can be (ε, δ)-PAC learned in time poly

(
1
δ
, r
ε

)
n0.8 log( r

ε
),

respectively. We note that the improvements of Grigorescu et al. [56] and Valiant [105] do

not improve upon the runtime of brute-force search of nk in terms of asymptotics in the

exponent.
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Learning DNF and Juntas Mossel et al. [91] showed the first learning algorithm which

achieves a polynomial factor improvement over trivial brute-force algorithm which runs

time O(nk). It shows that k-juntas can be learned in absence of noise with confidence

1− δ from uniform random examples with run time of
(
nk
) ω
ω+1 ·poly

(
2k, n, log(1/δ)

)
where

ω < 2.376 is the matrix multiplication exponent.

Feldman et al. [50] presented a foundational work for learning both DNFs and Juntas.

They developed an oracle transformation procedure that enabled reductions from learning

DNFs and Juntas to that of LPN. In addition, Feldman et al. presented a learning algo-

rithm for agnostically learning parities by showing a reduction from learning parities with

adverserial noise to learning parities with random noise. With this reduction, they showed

that the algorithm by Blum et al. [24] can learn parities with an adverserial noise rate

of η in time O(2
n

logn ). In a follow up work [51], Feldman et al. refined their reductions

and included the influence of sample complexity on the the runtime. These reductions

have streamlined the process of improving algorithms for learning DNFs and Juntas, as

improved algorithms for learning parities can be directly applied to both problems. Both

the work of Grigorescu et al. [56], and Valiant [105] were examples of this.

One can also consider natural restrictions to the Junta problem. For monotone Juntas,

Dachman-Soled et al. [39] found lower bounds for solving monotone Juntas in the statistical

query model. Lipton et al. [80] considered the problem of learning symmetric Juntas and

showed they can be learned in no(k) time. Note here that the symmetry requirement is

orthogonal to restrictions on the size of k.
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4.2 Constant Noise Setting

In the constant noise setting, our algorithm consists of two steps. First, using a mod-

ification of the acclaimed BKW algorithm [24], we implement a p-biased LPN Oracle with

noise rate η′ and secret value s which is denoted by OLPN
p,η′ (s) and is defined in Section 2.2.3.

We present this modification, entitled BKWR (BKW restricted to set R), in Section 4.2.1.

In Section 4.2.2 we present the integration of our p-biased oracle into the learning algorithm

based on Fourier analysis. Finally, in Sections 4.2.3 and 4.2.4, we combine our analysis to

present the regime in which we can set the free parameter p in order to improve on both

BKW and brute-force search asymptotically in the exponent.

4.2.1 BKWR Algorithm

As a first step, we present our BKWR algorithm in Figure 4.1. The BKWR algorithm

is given access to an unbiased LPN Oracle OLPN
0 ,η (s) and its goal is to produce a sample

that is p-biased. The presented algorithm works similarly to BKW by successively taking

linear combinations of samples to produce a sample with all zero entries one “block” at a

time. The algorithm accomplishes this by maintaining successive tables such that samples

in each table are combined to fill the next table. The number of tables is a parameter of

the algorithm denoted a. The tables T (1), . . . , T (a) are each of size 2b, where b is the size

of each block, except the last table T (a) which might have a smaller number of entries,

specifically 2|R| mod b. Each table T (j) is indexed by the value of the coordinates in the

j-th block of x|R, namely x|R [(j − 1) · b, j · b− 1]. The element in row i of table j is

denoted by
[
T

(j)
i

]
. Importantly, while the size of R may vary, a remains constant each
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time the algorithm is called. This ensures that a constant number of samples are combined

to produce the output. This decouples the noise present in the output from the size of R,

ensuring that all generated samples are independent.

Construction of p-biased Oracle given BKWR The construction of the p-biased Oracle

is quite simple. We sample an index set R where each index is selected independently with

probability p. The set R is then passed as input to BKWR. By bounding the size of the

set R, we can ensure that with overwhelming probability BKWR outputs a p-biased sample

in 2O(np/ log(np)) time. If the size of the set R exceeds this bound (captured by the event

Event1 occurring), the runtime may be longer. Thus, when we invoke OLPN
p,η′ (s) multiple

times to generate a large number of p-biased samples for the Fourier analysis, we need to

ensure that with high probability Event1 never occurs. We bound the probability of Event1

in Theorem 22.

Lemma 21. The samples (x′, b′) outputted by BKWR Algorithm with access to OLPN
0 ,η (s)

are independent and distributed identically to samples drawn from a p-biased LPN Oracle

OLPN
p,η′ (s) for η′ = 1

2
− 1

2
(1− 2η)

√
2np.

Proof. The proof can be found in Appendix B.1.

Theorem 22. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s = (x, b),

the oracle OLPN
p,η′ (s) constructed from BKWR requires O(2

4np
log(2np) · log(2np)) samples, and

O(2
4np

log(2np) · log(2np)) runtime with probability at least 1− 2 exp(−p · n/8).

Proof. The proof can be found in Appendix B.2.
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BKWR

Result: Sample (x′, b′) such that the coordinates of x′, which are defined by set R are
set to 0.

1: if |R| ≥ 2np ∨ |R| ≤ pn/2 then
2: Event1 occurs.
3: end if
4: Set a := dlog(2np)/2e and b := d|R|/ae
5: Set T (1), . . . , T (a) to empty tables
6: while True do
7: Query a new sample from unbiased LPN Oracle OLPN

0 ,η (s)
8: j := 1
9: while j ≤ a do

10: if
[
T

(j)
x|R[(j−1)·b,j·b−1]

]
= ∅ then

11:

[
T

(j)
x|R[(j−1)·b,j·b−1]

]
:= (x, b)

12: break
13: end if
14: if x|R [(j − 1) · b, j · b− 1] 6= 0 then

15: (x′, b′) :=
[
T

(j)
x|R[(j−1)·b,j·b−1]

]
16: x′′ := x + x′, b′′ := b+ b′

17: (x, b) := (x′′, b′′)
18: end if
19: j := j + 1
20: end while
21: if j = a + 1 then
22: break
23: end if
24: end while
25: (x′, b′) := (x, b)
26: return (x′, b′)

Figure 4.1: BKWR “Zeroing” Algorithm

4.2.2 Learning Secret Coordinates

In this section we first present the Learning Algorithm in Figure 4.2. The Algorithm

starts by sampling num number of samples from a p-biased LPN Oracle OLPN
p,η′ (s). As the

samples are non-uniform, we can apply Fourier analysis technique described in Section 2.2.4.
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The Learning Algorithm
The learning algorithm gets access to p-biased LPN Oracle OLPN

p,η′ (s) which returns sample
sp = (x, b).

1. Initialize S,S ′ := ∅

2. For i ∈ num:

(a) Set spi ← OLPN
p,η′ (s) to be the output sample from p-biased LPN Oracle.

(b) Add spi to the set S.

3. Use the set S of num number of samples to estimate the Fourier coefficient of each
coordinate of secret.

• For each j ∈ [n], approximate b̂p({j}) := 1
num

∑num
i=1 bi · χ{j},p(xi), where each

coordinate of xi, bi is switched to {−1, 1} from F2.

• If b̂p({j}) > (1− 2η′)pk−1
√

1− p2/2, add j to S ′.

4. Output s′ such that s′[j] = 1 for j ∈ [n] if j ∈ S ′.

Figure 4.2: LPN Algorithm for Constant Noise

Lemma 23. For δ ∈ [0, 1], p ∈ (0, 1), the learning algorithm presented in Figure 4.2

uses samples from Oracle OLPN
p,η′ (s) to estimate the secret value s′. The algorithm runs in

time 8
(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ), requires num = 8

(1−2η′)2·p2(k−1)·(1−p)2 · ln(2n/δ) number of

samples and outputs the correct secret key, i.e. s = s′ with probability 1− δ.

Proof. The proof can be found in Appendix B.3.

4.2.3 Combining the Results

Combining the results of Sections 4.2.1 and 4.2.2 we obtain the following theorem:

Theorem 24. For δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity with Noise algorithm presented

in Figure 4.2, learns parity with k out of n variables with the total number of samples and
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total computation time of

poly

(
1

(1− 2η)
√
np · p2(k−1)(1− p)2

· ln(
n

δ
) · 2

4np
log(2np) · log(2np)

)
,

and achieves success probability of 1− δ −
(

16
(1−2η)

√
8np·p2(k−1)(1−p)2 · ln(2n

δ
) · exp(−pn

8
)
)

.

Proof. Using Lemma 23, we have that the number of p-biased samples required is num =

8
(1−2η′)2·p2(k−1)·(1−p)2 ·ln(2n/δ) and using Lemma 21 we have that η′ = 1

2
− 1

2
(1−2η)

√
2np. From

Theorem 22, we have that with probability 1 − 2 exp(−p · n/8) each p-biased sample can

be obtained by an invocation of the BKWR algorithm, which requires O(2
4np

log(2np) · log(2np))

samples and O(2
4np

log(2np) · log(2np)) runtime with probability 1− 2 exp(−p ·n/8). Combining

and taking a union bound, we have that the algorithm in Figure 4.2 requires at most

num · O
(

2
4np

log(2np) · log(2np)
)

samples and run time and succeeds with probability 1− δ −

(2 · num · exp(−p · n/8)).

4.2.4 Parameter Settings

We consider the parameter setting for which our algorithm asymptotically outper-

forms the previous algorithms in the exponent. We consider two cases.

• The algorithm has to run faster than a brute-force algorithm which tries all the
(
n
k

)
combination to find the sparse secret. Note that the best algorithms for k-sparse

LPN achieve only a constant factor improvement in the exponent beyond brute-force

search. Since we are concerned with asymptotic improvement in the exponent, these

algorithms are equivalent to brute-force search.
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• The algorithm should run faster than the BKW algorithm for the length-n LPN

problem, as BKW is the asymptotically best algorithm for length-n LPN.

Corollary 25. For the sparsity k = k(n) = n

log1+1/c(n)
, where c ∈ o(log log(n)) and c ∈ ω(1),

the runtime of our learning algorithm in Figure 4.2 is contained in both log(n)o(k) and

2o(n/ log(n)), with constant failure probability. For this range of k, brute-force search requires

runtime log(n)Ω(k) and BKW requires runtime of 2Ω(n/ log(n)).

Proof. Setting 1/p = log1/(c)(n) and k = n

log(c+1)/c(n)
in Theorem 24, we find that our LPN

Algorithm for constant noise rate presented in Figure 4.2 succeeds with constant probability

and has runtime

(
1

p

)2k

· 2
4np

log(2np) = log(n)
(1/c)· n

log(c+1)/c(n) · 2
4n/ log1/(c)(n)

log(2n/ log1/(c)(n)) ∈ log(n)O((1/c)·k).

Note that if c ∈ ω(1), then our runtime is in log(n)o(k). On the other hand, if

c ∈ o(log log(n)) then our runtime

log(n)O((1/c)·k) = 2O((log log(n)/c)·k) ∈ 2o(k) ∈ 2o(n/ log(n))

and so asymptotically beats the above two algorithms in the exponent for any c = c(n) that

satisfies c ∈ ω(1) and c ∈ o(log log(n)). Plugging the above parameter into Theorem 24

yields probability of success of 1− δ − negl(n) = 1− δ.
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4.3 Low Noise Setting

In this section we present an improved learning algorithm for the low noise setting.

The algorithm will draw only a polynomial number of samples from the given LPN oracle,

use them to construct a much larger set of p-biased samples that are not independent, but

have certain desirable properties, and then present a learning algorithm that succeeds with

regard to a set of p-biased samples satisfying these properties.

4.3.1 Sample Partition

In this section we present the SamP algorithm which draws a polynomial-sized set

of samples from the original LPN oracle OLPN
0 ,η (s), and uses them to construct a far larger

set of p-biased samples that are “close” to being pairwise independent. To achieve this,

SamP constructs a large number of subsets of size 2np + 1 from the polynomial-sized set

of samples, such that each pair of distinct subsets has at most t � 2np + 1 number of

samples in common. Then, from each subset of size 2np + 1, we construct a single p-

biased sample sp = (x′, b′) as follows: First, a random subset R ⊆ [n] of coordinates is

chosen, by placing each index i ∈ [n] in R with independent probability p. Note that with

overwhelming probability, |R| ≤ 2np. Thus, given our set of 2np+ 1 ≥ |R|+ 1 samples, we

construct a matrix M that contains the samples as rows and we compute the left kernel of

the matrix to find a vector u to zero out the coordinates of R – i.e. (u ·M) |R = 0|R| and the

returned sample is (x′, b′) := u ·M. This procedure is denoted by RLK (see Definition 12

for more details). Note that the procedure always succeeds when the size of R is at most

2np+ 1. If the size of R is larger than this, a bad event Event1 occurs, and we must draw
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new independent samples from the oracle. We will later show that Event1 occurs with

negligible probability. We show that the samples resulting from distinct subsets are “close”

to independent, due to the small intersection of any pair of subsets. We next provide some

additional details on the construction and guarantees on independence, before formally

describing the algorithm and its properties.

Constructing the subsets with small pairwise intersection Our algorithm given

in Figure 4.3 constructs the subsets using the designs of Nisan and Wigderson [93]. Their

approach works as follows. It first draws (2np+ 1)2 samples from the original LPN distri-

bution and associates each sample with an ordered pair (x, y) for x, y ∈ F, for the field F

of size 2np + 1. There are (2np + 1)t polynomials of degree t − 1 in F, and each subset is

associated with a particular polynomial, i.e. the samples contained in a particular subset

correspond to the 2np + 1 points that lie on the associated polynomial. Note that the

maximum number of subsets that can be constructed is (2np+ 1)t and that, furthermore,

since any pair of distinct polynomials of degree t − 1 in F intersect in at most t points,

any two subsets have at most t samples in common. Note that this construction allows at

most maxnum := (2np+1)t number of p-biased samples to be generated. Looking ahead, in

Section 4.3.2 we will present a learning algorithm that requires O (log(n)) such independent

sets of samples, each of size at most maxnum to learn the parity function.

Near pairwise independence We note that by construction, the Sample Partition

Algorithm SamP presented in Figure 4.3 constructs sets of size (2np + 1) such that the

intersection of any two sets is at most t for t ≤ (np + 1). This will allow us to bound

85



Generating the p-biased samples

Obtain (2np + 1)2 independent samples S = {s1, . . . , s(2np+1)2} from the unbiased LPN

oracle OLPN
0 ,η (s) . Run the following setup phase to create sets O1,O2, . . . ,Omaxnum each of

size 2np+ 1 such that for distinct i, j, |Oi
⋂
Oj | ≤ t.

Setup Phase :

1. Consider a Finite Field F of size 2np + 1. Define a bijection π from [(2np + 1)2] to
pairs (x, y) ∈ F× F.

2. Consider all polynomials of degree t−1 in the ring F[x]. There are maxnum := (2np+1)t

such distinct polynomials poly1, . . . , polymaxnum.

3. For j ∈ [maxnum], Oj contains si if and only if π(i) = (x, y) and polyj(x) = y.

1: procedure SamP(j) . To respond to the j-th query
2: if j > maxnum then
3: return ⊥ and terminate
4: else
5: sample a set Rj such that each i ∈ [n] is selected independently into Rj with

probability p
6: end if
7: if |Rj | ≥ 2np ∨ |Rj | ≤ pn/2 then
8: Event1 occurs
9: Sample a fresh set of |Rj |+ 1 samples from the LPN oracle and arrange them in

rows of matrix A of size (|Rj |+ 1× n)
10: Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is defined in

Section 2.2.5
11: Go To L1
12: end if
13: Select set Oj and arrange them in rows of matrix A of size (2np+ 1× n)
14: Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |; . RLK is defined in

Section 2.2.5
15: if x′|Ri = 0|Ri| for some i ∈ [j − 1] then
16: Event2 occurs
17: Sample a fresh set of 2np + 1 samples from the LPN oracle and arrange them in

rows of matrix A of size (2np+ 1× n)
18: Compute (x′,u) := RLK(A, Rj) such that x′|Rj = 0|Rj |

19: end if
20: L1 : k := 1
21: (x′, b′) := u ·A
22: while k < 2np+ 1− weight(u) do . weight is defined in Section 2.2.5
23: b′ := b′ + Õη
24: end while
25: return (x′, b′)
26: end procedure

Figure 4.3: SamP “Zeroing” Algorithm
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the covariance of the errors e′i and e′j obtained by taking linear combinations of elements

in the sets Oi, Oj. Overall, the set of samples generated by SamP algorithm have certain

properties enumerated in the following Lemma.

Lemma 26. Consider an experiment in which the setup phase is run and two samples

spi = (x′i, b
′
i) and spj =

(
x′j, b

′
j

)
are generated by running SamP(i) and SamP(j) for distinct

i, j ≤ maxnum then the following hold:

1. Each individual sample (x′i, b
′
i) (resp.

(
x′j, b

′
j

)
) outputted is distributed identically to

a sample drawn from a p-biased LPN Oracle OLPN
p,η′ (s) for η′ = 1

2
− 1

2
(1− 2η)2np+1.

2. x′i and x′j are pairwise independent

3. Recall that b′i = fs(x
′
i) + e′i and b′j = fs(x

′
j) + e′j. Then

Cov
[
e′i, e

′
j

]
≤ (1− 2η)2(2np−t)+2 − (1− 2η)4np+2 .

Proof. The proof can be found in Appendix B.4.

Finally, we analyze the runtime and sample complexity for each invocation of SamP.

Theorem 27. Given access to LPN Oracle OLPN
0 ,η (s) which gives samples s = (x, b), the

SamP algorithm requires O ((np)2) samples in total, and poly(np) runtime per invocation

with probability at least 1− 2 exp(−p · n/8)− (np)t · exp(−n/48)− (np)t · 1/2np/4.

Proof. The proof can be found in Appendix B.5.
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4.3.2 Learning Secret Coordinates

In this section we present our Learning Algorithm in Figure 4.4. The input to the

algorithm is 8 log(n) independently generated sets of p-biased samples with the properties

given in Lemma 26. The algorithm uses the p-biased samples to estimate the values of the

Fourier Coefficients of the target function.

The Learning Algorithm
The learning algorithm starts by having access to 8 log(n) sets S1,S2, . . . ,S8 log(n) of
randomly generated samples. Each set of samples is independent and satisfies the

properties given in Lemma 26.

1. Initilizate set S ′ := ∅.

2. For j ∈ [n]

• count := 0

• T := 8 log(n)

• For i′ ∈ T :

(a) Use the set Si′ of num number of samples to approximate b̂p({j}) :=
1

num

∑num
i=1 bi ·χ{j},p(xi), where each coordinate of xi, bi is switched to {−1, 1}

from F2.

(b) If b̂p({j}) > (1− 2η′)pk−1
√

1− p2/2, count := count + 1

• if count ≥ T/2
– add j to S ′

3. Output s′ such that s′[j] = 1 for j ∈ [n], if j ∈ S ′.

Figure 4.4: LPN Algorithm for Low-Noise

Lemma 28. For δ ∈ [0, 1], p ∈ (0, 1), given as input 8 log(n) independent sets of samples

S1,S2, . . . ,S8 log(n) each of size num := O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and each satisfying the

properties given in Lemma 26 for some t ∈ Θ(1/η), the Learning Algorithm presented in

Figure 4.4 runs in time poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and outputs the correct secret key, i.e.

s = s′ with probability 1− δ.
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Proof. The proof can be found in Appendix B.6.

4.3.3 Combining the Results

Combining the results of Sections 4.3.1 and 4.3.2 we obtain the following theorem:

Theorem 29. Assuming parameters are set such that

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
∈ o(1/η · log(np)), (4.1)

and with δ ∈ [0, 1], p ∈ (0, 1), the Learning Parity from Noise Algorithm presented in

Figure 4.4, learns parity with k out of n variables and noise rate η using (2np + 1)2 ·

log(n) number of samples, total computation time of N := poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
and

achieves success probability of

1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))

Proof. Using Lemma 28, we have that, for some t ∈ Θ(1/η), the number of p-

biased samples with the following properties needed to succeed with probability 1 − δ

is poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
. From Theorem 27, we have that as long as num =

poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
≤ maxnum = (2np + 1)t we can generate the required sam-

ples using (2np + 1)2 samples from the unbiased LPN oracle OLPN
0 ,η (s), and with poly(np)

runtime per sample, with probability at least 1−2(np)t ·exp(−p·n/8)−(np)t ·exp(−n/48)−

(np)t ·1/2np/4. The fact that num and maxnum satisfy the above constraint is guaranteed by

the assumption in the theorem on the setting of parameters and the fact that t ∈ Θ(1/η).
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Combining and taking a union bound, we have that the algorithm in Figure 4.4 requires

(2np+1)2 ·8 log(n) samples, has run time poly
(

1
(1−2η)2np+2p2(k−1)(1−p2)

· log(n)
)

, and succeeds

with probability 1− δ −
(
N ·

(
2 · exp(−p · n/8) + exp(−n/48) + 1/2np/4

))
.

4.3.4 Parameter Settings

We consider the parameter setting for which our algorithm’s runtime asymptotically

outperforms the previous algorithms’ runtime in the exponent. We consider two cases.

• The algorithm has to run faster than a brute-force algorithm which tries all the
(
n
k

)
combinations to find the sparse secret. Note that there are known algorithms that

improve upon brute-force search, but the improvement is a constant factor in the

exponent. Since we are concerned with asymptotic improvement in the exponent,

these algorithms are equivalent to brute-force search.

• The algorithm should run faster than the algorithm which just gets lucky and gets n

noiseless samples, we call this algorithm “lucky brute-force”. For this algorithm to

succeed, it needs n
1−η samples from LPN Oracle to ensures that there are approxi-

mately n noiseless samples. The next step is to just randomly select n out of these n
1−η

samples and try Gaussian elimination on them. The run time of such an algorithm

for small η can be approximate by eηn.

Corollary 30. For sparsity k(n) such that k = 1
η
· log(n)

log(f(n))
, noise rate η 6= 1/2 such that

η2 =
(

log(n)
n
· f(n)

)
for f(n) ∈ ω(1) ∩ no(1), the Learning Algorithm of Figure 4.4 runs in

time O
(

1
(1−2η)2np+2p2k

· log(n) · (np)3
)
∈
(
n
k

)o(k)
with constant probability. In this setting,

the running time of brute-force is
(
n
k

)
≥ (n

k
)k and the running time of lucky brute-force is
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eηn ∈
(
n
k

)ω(k)
.

Proof. For k, η defined as above, we choose the biased p = 1
f(n)

and 1
p
∈
(
n
k

)o(1)
, we have

constraint (4.1) from Theorem 29 satisfied as follows:

log

(
1

(1− 2η)2np+2p2(k−1)(1− p2)

)
≈ 4npη + 2k log(

1

p
)

∈ o(1/η · log(n)) ∈ o(1/η · log(np)),

the runtime of the Learning Algorithm of Figure 4.4 is bounded by

1

(1− 2η)2npp2k
· log(n) ·O

(
(np)3

)
≈ e4npη ·

(
1

p

)2k

· log(n) ·O
(
(np)3

)
∈ eo(k)·log(n/k) ·

(n
k

)o(k)

· log(n) · o(n3)

∈
(n
k

)o(k)

,

which outperforms brute-force and lucky brute-force under the same parameter settings.

Plugging the above parameters into Theorem 29 yields probability of success of 1 − δ −

negl(n).

4.4 Learning Other Classes of Functions

In the following we apply our LPN algorithms from Section 4.2 to learn other classes

of functions. First, let us look at the reduction from learning DNFs to learning noisy

parities.

Theorem 31 (Theorem 2 in [51]). Let A be an algorithm that learns noisy parities of
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k variables on {0, 1}n for every noise rate η < 1/2 in time T (n, k, 1
1−2η

) and using at most

S(n, k, 1
1−2η

). Then there exists an algorithm that learns DNF expressions of size s in time

Õ
(
s4

ε2
· T (n, logB,B) · S(n, logB,B)2

)
, where B = Õ(s/ε).

We are interested in determining the parameter range for which our algorithm yields

an asymptotic improvement over the state of the art in the exponent. The work of Grig-

orescu [56] is the current state-of-the-art. They present an improvement of the bound from

[106] of 2O(log(n) log s
ε
) for s

ε
∈ o

(
log1/3 n
log logn

)
. As we are similarly applying the reductions from

Feldman, our algorithm yields a similar improvement on the bounds in [106] for a different

range of s
ε
.

Note the reduction in Feldman [51] relates the ratio of the size of the DNF and its

approximation factor to both the noise rate and sparsity of the parity function. Thus, the

parameter range for which our algorithm is optimal will be expressed in terms of this ratio.

We begin by extending the runtime analysis of our algorithm from Section 4.2, which

dealt with the constant noise setting, to the arbitrary noise η < 1/2.

Theorem 32. The learning algorithm described in Figure 4.2 has a runtime of

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

and requires

S

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)
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LPN samples in the high noise setting, and achieves a success probability of

1− δ −
(

1

1− 2η

)2a+1

16 ln(2n/δ)

p2(k−1)(1− p)2
e
−np
8

where ab = np.

Proof. The proof follows directly from Theorem 24. Instead of fixing a value for a and b,

we let them remain free parameters. As well, we no longer make assumptions on the noise

rate η. Thus, we start with the runtime in terms of η′.

T (n, k, η′) =
8 ln(2n/δ)

(1− 2η′)2p2(k−1)(1− p)2
O
(
a2b
)

T (n, k, η) =
8 ln(2n/δ)

(1− 2η)2a+1p2(k−1)(1− p)2
O
(
a2b
)

T

(
n, k,

1

1− 2η

)
=

(
1

1− 2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1− p)2
O
(
a2b
)

The sample complexity of the algorithm is equal to its runtime complexity, and thus we

just need to consider the success probability. In the high noise setting, the p-biased LPN

oracle is called num =
(

1
1−2η

)2a+1

8 ln(2n/δ)

p2(k−1)(1−p)2 times, and the success probability calculation

follows the same formula from Theorem 24.

As we are concerned with asymptotic improvement in the exponent of the runtime we

will take the logarithm of the runtime and compare it to the state of the art for learning

DNFs and Juntas.

Corollary 33. The learning algorithm described in Figure 4.2 learns DNFs of size s

and approximation factor ε, with asymptotic improvements over Verbeurgt’s bound [106]
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of O
(
nlog s

ε

)
, and with negligible failure probability when log s

ε
∈ ω

(
c

logn log log c

)
, and

log s
ε
∈ n1−o(1), where c ∈ n1−o(1).

Note here that the parameter regime in Corollary 33 requires setting the free param-

eters of the learning algorithm differently than in the constant noise setting. In order to

minimize the runtime of the BKWR step of the algorithm in the high noise setting, the value

for a must be changed from the description in Section 4.2. Thus we set a = (1/2) log log(np).

This change necessitates considerations for δ, the Fourier analysis confidence. This ensures

that the failure probability of the full algorithm remains small, even after increasing the

number of samples required. We set δ = 2−n. The free parameter p is set to n−o(1) to

satisfy asymptotic requirements. These parameters are set similarly for Corollary 35.

Aside from DNFs we can also use our LPN algorithm to learn Juntas. By applying

Feldman’s reduction we are able to yield an algorithm that, for certain ranges for k, is able

to improve on the O(n0.7k) runtime cited in [105] asymptotically, not just by reducing the

constant factor in the exponent.

Theorem 34 (Theorem 3 in [51]). Let A be an algorithm that learns parities of k

variables on {0, 1}n for every noise rate η < 1/2 in time T (n, k, 1
1−2η

). Then there exists

an algorithm that learns k-juntas in time O
(
22kk · T (n, k, 2k−1)

)
.

Corollary 35. The learning algorithm described in Figure 4.2 learns Juntas of size k

with a runtime of no(k) and a negligible failure probability when k ∈ ω
(

c
logn log log c

)
, and

k ∈ n1−o(1), where c ∈ n1−o(1).
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Chapter 5: (In)Security of Ring-LWE Under Partial Key Exposure

5.1 Introduction

There has been a monumental effort in the cryptographic community to develop

“post-quantum” cryptosystems that remain secure even in the presence of a quantum ad-

versary. One of the foremost avenues for viable post-quantum public key cryptography is

to construct schemes from the Ring-Learning with Error (RLWE) assumption—currently

3 out of 26 of the second round NIST submissions are based on assumptions in the ring

setting. RLWE is often preferred in practice over standard LWE due to its algebraic

structure, which allows for smaller public keys and more efficient implementations. In the

RLWE setting, we typically consider rings of the form Rq := Zq[x]/(xn + 1), where n is a

power of two and q ≡ 1 mod 2n. The (decisional) RLWE problem is then to distinguish

(a, b = a · s+ e) ∈ Rq ×Rq from uniformly random pairs, where s ∈ Rq is a random secret,

a ∈ Rq is uniformly random and the error term e ∈ R has small norm. A critical question is

whether the additional algebraic structure of the RLWE problem renders it less secure than

the standard LWE problem. Interestingly, to the best of our knowledge—for the rings used

in practice and practical parameter settings—the best attacks on RLWE are generic and

can equally well be applied to standard LWE [95]. In this work, we ask whether improved

attacks on RLWE are possible when partial information about the RLWE secret is exposed,
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though the secret retains high entropy.

The NTT Transform One key method for speeding up computations in the RLWE

setting is usage of the NTT transform (similar to the discrete Fourier transform (DFT), but

over finite fields) to allow for faster polynomial multiplication over the ring Rq. Specifically,

applying the NTT transform to two polynomials ~p, ~p′ ∈ Rq—resulting in two n-dimensional

vectors, ~̂p, ~̂p′ ∈ Znq—allows for component-wise multiplication and addition, which is highly

efficient. In this work, we consider leakage of a fraction of NTT coordinates of the RLWE

secret. Since the RLWE secret will typically be stored in NTT form (to facilitate fast

computation), [11, 14] leakage of coordinates of the NTT transform is a natural model for

partial key exposure attacks.

This Work The goal of this work is to initiate a study of partial key exposure in RLWE

based cryptosystems and explore both positive and negative results in this setting. Specif-

ically, we (1) define search and decision versions of Leaky RLWE assumptions, where the

structured leakage occurs on the coordinates of the NTT transform of the RLWE secret;

(2) present partial key exposure attacks on RLWE, given 1/4-fraction of structured leakage

on the secret key; (3) present a search to decision reduction for the Leaky RLWE assump-

tions; and (4) propose applications of the decision version of the assumption to practical

RLWE-based cryptosystems.
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5.1.1 Leaky RLWE Assumptions–Search and Decision Versions

We next briefly introduce the search and decision versions of the Leaky RLWE

assumptions. For ~p ∈ Rq := Zq[x]/(xn + 1), we denote ~̂p := NTT(~p) :=

(~p(ω1), ~p(ω3), . . . , ~p(ω2n−1)), where ω is a primitive 2n-th root of unity modulo q, and

is guaranteed to exist by choice of prime q, s.t. q ≡ 1 mod 2n. Note that ~̂p is indexed by

the set Z∗2n.

The search version of the RLWE problem with leakage, denoted Leaky R-SLWE,

is parametrized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to recover the RLWE

secret ~s = NTT−1
(
~̂s
)

, given samples from the distribution D~s
real,n′,S which outputs(

~̂a, ~̂a · ~̂s+ ~̂e, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where ~a,~s, and ~e are as in the standard RLWE assumption

(see Section 2.3.4 and [87] for the precise definition).

The decision version of the RLWE problem with leakage, denoted Leaky R-DLWE

is parametrized by (n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The goal is to distinguish the

distributions D~s
real,n′,S and D~s

sim,n′,S , where D~s
real,n′,S is as above and D~s

sim,n′,S outputs(
~̂a, ~̂u, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where ûi = âi · ŝi + êi for i ≡ α mod 2n′, α ∈ S and ûi is

chosen uniformly at random from Zq, otherwise. Note that only the coordinates of û

corresponding to unleaked positions are required to be indistinguishable from random.

When S = {α} consists of a single element, we sometimes abuse notation and write

the Leaky-RLWE parameters as (n′, α). Due to automorphisms on the NTT transform,

Leaky-RLWE with parameters (n′,S) where S = {α1, α2, . . . , αt}, is equivalent to Leaky-

RLWE with parameters (n′,S ′), where S ′ = α−1
1 · S (multiply every element of S by α−1

1 ).

It is also not hard to see that leaky search and decision are equally hard when secret ~s is
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uniform random from Rq versus drawn from the error distribution (the same reduction for

standard RLWE works in our case).

5.1.2 Our Results

Partial Key Exposure Attacks We present attacks on Leaky R-SLWE and test them

on various practical parameter settings, such as the NewHope [14] parameter settings as

well as the RLWE challenges of Crockett and Peikert [38]. Our attacks demonstrate that

Leaky R-SLWE is easy for leakage parameters (n′ = 4, α = 1), (n′ = 8,S = {1, 7}) and

(n′ = 8,S = {1, 15}), under (1) NewHope parameter settings of n = 1024, q = 12289,

and χ = Ψ16 (centered binomial distribution of parameter 16); (2) The same parameters

above, but with χ = D√8 (discrete Gaussian with standard deviation of
√

8, which has the

same standard deviation as Ψ16), since this is the recommended setting in the case where

the adversary gets to see many RLWE samples [10]; (3) For parameters of several of the

Crockett and Peikert challenges, including those classified as “very hard.” In all the above

cases, we fully recover the RLWE secret with high probability, given the corresponding

1/4-fraction of the positions in the NTT transform of the RLWE secret. See Section 5.2.2

for details on the experimental results.

A Search-to-Decision Reduction Define Tn′(n) to be the time required to solve Leaky

R-SLWE for dimension n, given positions [ŝi]i≡α mod 2n′ . Assuming search R-LWE without

leakage is subexponentially 2Ω(nε)-hard for some constant ε ≤ 1 and polynomial modulus

q, then Tn(n) ∈ 2Ω(nε), i.e. there is a constant c such that, for sufficiently large n, Tn(n) ≥

2c(n
ε). Note that, search R-LWE can be solved given a subroutine that solves Leaky R-
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SLWE by first guessing the leakage on ~s, then running the Leaky R-SLWE attack. Thus, by

guessing the value of the single leaked position we obtain a (Tn(n) · q)-time attack on search

R-LWE without leakage. Also, T1(n) ∈ poly(n), since the entire ~s is leaked. So there is some

constant c′ such that, for sufficiently large n, there exists n∗ = n∗(n) ∈ {2, 4, 8, 16, . . . , n}

such that Tn∗(n) ≥ 2c
′(nε) and Tn∗ (n)

Tn∗/2(n)
≥ n. Otherwise for every n1 ∈ N, there exists an

n2 ≥ n1 such that Tn2(n2) < 2c
′(nε2) · nlogn2

2 < 2c(n
ε
2), which is a contradiction and so the

latter relation has to hold.

Theorem 36 (Informal). Assume n∗ := n∗(n) > 4, ~s← Rq, then:

(1) D~s
real,n∗,{α} ≈ D~s

sim,n∗,{α} OR

(2) D~s
real,n∗,{α,(n∗−1)·α} ≈ D~s

sim,n∗,{α,(n∗−1)·α} OR

(3) D~s
real,n∗,{α,(2n∗−1)·α} ≈ D~s

sim,n∗,{α,(2n∗−1)·α}.

While at first glance it may seem that the conclusions (1), (2), (3) are redundant,

in fact they are incomparable; Indeed, conclusion (1) does not imply (2) (resp. (3)), since

the adversary in (2) (resp. (3)) is given additional leakage. Conversely, conclusion (2)

(resp. (3)) does not imply (1), since the set of NTT coordinates that are indistinguishable

from random is smaller in (2).

Note that our experimental results show that for our chosen parameter settings

D~s
real,4,{1} 6≈ D~s

sim,4,{1}, D
~s
real,8,{1,7} 6≈ D~s

sim,8,{1,7} and D~s
real,8,{1,15} 6≈ D~s

sim,8,{1,15} (since we in

fact fully recover the secret in all these cases). This indicates that n∗ 6= 4 and, if n∗ = 8

for our chosen parameter settings (as supported by our experiments), then it must be the

case that D~s
real,8,{1} ≈ D~s

sim,8,{1}.
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Applications The Leaky R-DLWE assumption is a useful tool for analyzing the security

of RLWE-based cryptosystems subject to partial key exposure, and guaranteeing a graceful

degradation in security. In particular, the Leaky R-DLWE assumption was used to analyze

the NewHope protocol of [14] in a work by Dachman-Soled et al. [42]. The assumption

is applicable to schemes in which the RLWE assumption is used to guarantee that a cer-

tain outcome is high-entropy (as opposed to uniform random), such as NewHope without

reconciliation [13].

Practicality of Our Attack We note that an attack on Leaky R-SLWE yields an attack

on standard search R-LWE by guessing each possible leakage outcome, running the Leaky

R-SLWE attack and checking correctness of the recovered secret. Therefore, we believe

this line of research is interesting beyond the context of leakage resilience, since if the

attack can be made to work successfully for sufficiently low leakage rate (far lower than the

1/4-leakage rate of our attacks), then one could potentially obtain an improved attack on

standard search R-LWE.

We chose to consider partial exposure of the NTT transform of the R-LWE secret,

since in practical schemes the secret key is often stored in the NTT domain and certain

types of side-channel attacks allow recovering large portions of the secret key stored in

memory. For example, Albrecht et al. [11], in their analysis of “cold boot attacks” on NTT

cryptosystems, considered bit-flip rates as low as 0.2%. However, the highly structured

leakage required for our attack is unlikely to occur in a practical leakage setting such

as a “cold boot attack,” where one expects to recover the values of random locations in

memory. We leave open the question of reducing the structure of the leakage in our attack.
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Specifically, as a starting point it will be interesting to see if our attack can extend to

leakage patterns of n′ = 16, |S| = 4 or n′ = 32, |S| = 8, etc. While the leakage rate

remains the same (1/4) in each case, these patterns capture leakage that is less and less

structured, since at the extreme, one can view leakage of a random 1/4-fraction of the NTT

coordinates as an instance of Leaky R-SLWE with parameters n′ = n and |S| = n/4. This

direction was raised by an anonymous reviewer for our original submission of this work,

and we want to thank them for bringing this research direction to our attention.

5.1.3 Related Work

Leakage-Resilient Cryptography The study of provably secure, leakage-resilient cryptog-

raphy was introduced by the work of Dziembowski and Pietrzak in [48]. Pietrzak [96] also

constructed a leakage-resilient stream-cipher. Brakerski et al. [32] showed how to construct

a scheme secure against an attacker who leaks at each time period. There are other works

as well considering continual leakage [46, 78]. There are also work on leakage-resilient

signature scheme [31, 71, 88].

Leakage-Resilience and Lattice-Based Cryptography Goldwasser et al. [55], and subse-

quently [9, 45, 47] studied the leakage resilience of standard LWE based cryptosystems

in the symmetric and public key settings.

Leakage Resilience of Ring-LWE Dachman-Soled et al. [41] considered the leakage re-

silience of a RLWE-based public key encryption scheme for specific leakage profiles. This

was followed by Albrecht et al. [11], they investigated cold boot attacks and compared the
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number of operations for implementing the attack when the secret key is stored as polyno-

mial coefficients versus when encoding of the secret key using a number theoretic transform

(NTT) is stored in memory. Recently, Stange [102] showed that given multiple samples of

RLWE instances such that the public key for every instance lies in some specific subring,

one can reduce the original RLWE problem to multiple independent RLWE problems over

the subring. In this work we do not place any such restriction on the RLWE samples

required to mount partial key exposure attack.

Comparison with Concurrent Work of Bolboceanu et al. [27] One of the settings considered

by authors in [27] is sampling the RLWE secret from an ideal I ⊆ qR. It is straightforward

to see that sampling the RLWE secret uniformly at random from Rq and then leaking the

NTT coordinates i such that i = α mod 2n′ is equivalent to sampling the RLWE secret

from the ideal I that contains those elements whose NTT transform is 0 in positions i

such that i = α mod 2n′. Nevertheless, our decisional assumption is weaker than the

assumption of [27], since [27] require that the entire vector ~u be indistinguishable from

uniform random, whereas we only require that the NTT transform of ~u is indistinguishable

from uniform random at the positions i that are not leaked. Our assumption lends itself to

a search-to-decision reduction while the assumption of [27] does not. While [27] do provide

a direct security reduction for their decisional assumption, the required standard deviation

of the error (in polynomial basis, tweaked and scaled by q) is ω(q1/n′ · n3/2), which would

be far higher than the noise considered in the NewHope and RLWE Challenges settings. In

contrast, our assumption can be applied in practical parameter regimes and is sufficient to

argue the security of several practical cryptosystems under partial key exposure. Finally,
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we compare our attack to that of [27]. For fixed n, q, our attack works for noise regimes

that are not covered by the attack of [27]. For example, for NewHope settings of n = 1024,

q = 12289, the attack of [27] has success rate at most 1/1000 when the standard deviation

of noise distribution is less than 0.00562. Note that [27] provides an upper bound of

norm of error with respect to canonical basis for its attack to succeed. Using a variant of

Chernoff’s bound, we derive an upper bound of standard deviation of error for success rate

at most 1/1000. To make the bound comparable to NewHope setting, we further convert

to tweaked polynomial representation and to RLWE instance in the form of (as+e) instead

of (as/q + e). In contrast, our attack works (with success ranging from 82/200 to 2/1000)

when the standard deviation of the noise is
√

8 ≈ 2.83. Also note that the standard

deviation of
√

8 is the more conservative setting in the original NewHope specification [14].

The NIST submission uses lower standard deviation of 2, which is still not covered by

the attack of [27]. Our attack applies only for certain leakage patterns corresponding to

certain ideals I, whereas the attack of [27] works for any ideal. The techniques of the two

attacks are entirely different. Bolboceanu et al. [27] obtain a “good” basis for the ideal via

non-uniform advice, perform a change of basis and then use Babai’s roundoff algorithm to

solve the resulting BDD instance. We use the algebraic structure of the problem to convert

RLWE instances over high dimension into CVP instances over constant dimension n′. We

then exactly solve the CVP instances over constant dimension and determine the “high

confidence” solutions that are likely to be the correct values of the RLWE error. Assuming

all high confidence solutions are correct, we obtain a noiseless system of linear equations

w.r.t. the RLWE secret, allowing efficient recovery of the secret.
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5.2 Partial Key Exposure Attack on Ring-LWE

5.2.1 Reconstructing the Secret Given (α mod n′) Leakage.

Recall that for ~p ∈ Zq[x]/(xn + 1), the NTT transform, ~̂p, is obtained by evaluating

~p(x) mod q at the powers ωi for i ∈ Z∗2n, where ω is a 2n-th primitive root in Zq. For

n′ ∈ {1, 2, 4, 8, . . . , n}, let u = n/n′. For α ∈ Z∗2n′ , consider ~pαu(x) be the degree u − 1

polynomial that is obtained by taking ~p(x) modulo (xu− (ωα)u). We may assume without

loss of generality that α = 1. We abbreviate notation and write ~pu, instead of ~p1
u.

We consider attacks in which the adversary learns all coordinates i of ~̂s such that

i ≡ 1 mod 2n′ where n′ ∈ {1, 2, 4, 8, . . . , n}, and aims to recover the RLWE secret ~s. First,

we note that in NTT transform notation the equation ~̂a · ~̂s+ ~̂e = ~̂u holds component-wise.

Therefore, given leakage on certain coordinates of ~̂s, we can solve for the corresponding

coordinates of ~̂e. We also get to see multiple RLWE samples (which we write in matrix

notation–where the ~Aj matrices are the circulant matrices corresponding to the ring element

~aj’s) as ( ~A1, ~A1~s + ~e1 = ~u1), . . . , ( ~A`, ~A`~s + ~e` = ~u`). Thus, for the j-th RLWE sample we

learn all the coordinates ~̂e
j

i , for i ≡ 1 mod 2n′. Note that the leaked coordinates are the

evaluation of the polynomial ~eu(x) at the ωi for i ≡ 1 mod 2n′. We can then reconstruct

the polynomial ~eu(x) using Lagrange Interpolation.

For i ∈ {0, . . . , u− 1}, the (i+ 1)-st coefficient of ~eu(x), i.e. eu,i is equal to

ei + ωu · ei+u + ω2·u · ei+2·u + . . .+ ω(n′−1)·u · ei+(n′−1)·u
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The coefficients of ~e can be partitioned into u groups of size n′, forming independent

linear systems, each with n′ variables and one equation. Given only the leakage, the set of

feasible secret keys is a cartesian product S1 × · · · × Su, where for i ∈ [u], the set Si is the

set of vectors ~ei := {ei, ei+u, ei+2u, . . . , ei+(n′−1)u} that satisfy the i-th linear system:

[
1 ωu ω2·u · · · ω(n′−1)·u

]
·
[
ei ei+u ei+2·u · · · ei+(n′−1)·u

]T
=

[
eu,i

]

Since each coordinate of ~e is drawn independently from χ and since each linear system

above has small dimension n′, we can use a brute-force-search to find the most likely solution

and calculate its probability.

Given this information, we will carefully choose the solutions ~e
j

i (from all possible sets

of solutions
[
~e
j

i

]
j∈[`],i∈[u]

) that have a high chance of being the correct values of the RLWE

error. To obtain a full key recovery attack, we require the followings.

(1) In total, we must guess at least u number of n′-dimensional solutions, ~e
j

i , from all the

obtained solutions
[
~e
j

i

]
j∈[`],i∈[u]

.

(2) With high probability all our guesses are correct.

Observe that if our guess of some ~e
j

i is correct, we learn the following linear system of n′

equations and n variables (Aj,i ·~s = ~uj,i−~ej,i), where Aj,i is the submatrix of Aj consisting

of the n′ rows i, i+ u, i+ 2 · u, . . . , i+ (n′ − 1) · u, and ~uj,i, ~ej,i are vectors consisting of the

i, i + u, i + 2 · u, . . . , i + (n′ − 1) · u coordinates of ~uj and ~ej. So assuming items (1) and

(2) hold, we learn u noiseless systems of n′ linear equations, each with n = u · n′ number

of variables. We then construct a linear system of n variables and n equations, which can
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be solved to obtain the candidate ~s.

In order to ensure that item (2) holds, we only keep the guess for ~e
j

i when we have

“high confidence” that it is the correct solution. The probability of a particular solution

~e
j

i :=
(
eji , e

j
i+u, . . . , e

j
i+(n′−1)u

)
, is the ratio of the probability of ~e

j

i being drawn from the

error distribution (which is coordinate-wise independent) over the sum of the probabilities

of all solutions. For small dimension n′, this can be computed via a brute-force method.

In our case, we keep the highest probability solution when it has probability at least, say

0.98. The probability that all guesses are correct is therefore 0.98u = 0.98n/n
′
.

Since computing the exact probability as above is computationally intensive, we de-

velop a heuristic that performs nearly as well and is much faster. Note that finding the

“most likely” solution is equivalent to solving a CVP problem over an appropriate n′-

dimensional lattice. We then calculate the probability of the solution under the discrete

Gaussian and set some threshold . If the probability of the solution is above the threshold

we keep it, if not we discard it. Experimentally, we show that by setting the threshold

correctly, we can still achieve high confidence. See Figure 5.1 for the exact settings of the

threshold for each setting of parameters. Our experiments show that item (1) also holds

given a reasonable number of RLWE samples. See Section 5.2.2 for a presentation of our

experimental results. We describe our attack in cases where the leakage is on all coordinates

i such that i ≡ α1 mod 2n′ or i ≡ α2 mod 2n′ in Appendix C.1.

Complexity of the Attack We provide the pseudocode for the attack in Appendix C.3,

Figure C.1. While our attack works well in practice, we do not provide a formal proof that

our attack is polynomial time for a given setting of parameters. Within the loop beginning
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on line 5, all the steps (or subroutines) shown in Figure C.1 can be computed in polyno-

mial time. Note that even step 12 (CVP.closest vector), which requires solving a CVP

instance, can be computed in polynomial time because for the leakage patterns we consider,

the dimension of the CVP instance will always be either 4 or 8–a constant, independent of

n. However, our analysis does not bound the number of iterations of the loop beginning

on line 5. Specifically, we do not analyze how large the variable RLWESamples must be set

in order to guarantee that the attack is successful with high probability. Bounding this

variable corresponds to bounding the number of RLWE samples needed in order to ob-

tain a sufficient number of “high confidence” solutions. In practice, the number of RLWE

samples was always fewer than 200 for all parameter settings. In future work, we plan to

compute the expected number of RLWE samples needed to obtain a sufficient number of

high confidence solutions for a given parameter setting. Assuming this expected number

of samples is polynomial in n, we obtain an expected polynomial time attack.

5.2.2 Experimental Results

We first assess the performance of our attack on the RLWE challenges published by

Crockett and Peikert [38], with various parameters, ranging from “toy” to “very hard”

security levels. For each parameter setting, a cut-and-choose protocol was used by [38]

to prove correctness of the challenges: They committed to some number (e.g. N = 32)

of independent RLWE instances, a random index i was chosen, and the secret key for all

except the i-th instance was revealed. For each of the 31 opened challenges, we simulate

the Leaky RLWE experiment and attempt to recover the full secret ~s using our attack.
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We next measure the performance of our attack on RLWE instances generated using the

dimension, modulus and noise distribution proposed in the original NewHope scheme [14].

These parameters are more conservative than the ones chosen for the later submission

to the NIST competition [12]. When multiple RLWE samples are released, bounded error

distributions are less secure [10]. We therefore tested our attack in the more difficult setting

of Gaussian error, in addition to the original binomial error distribution of [14].

The experiments were run using server with AMD Opteron 6274 processor, with a

python script using all the cores with Sage version 8.1. We used fplll [44] library for CVP

solver and the source code of all the attacks are available online at [4]. The results of

our attacks are summarized in Figure 5.1. We report the total number of instances we

broke and the average number of RLWE samples needed for those instances. To decide

whether a solution is kept or discarded, its probability mass under the error distribution

χ is calculated and compared to the threshold. The threshold for each parameter setting

is set heuristically so that minimal weight solutions passing the threshold are correct with

high confidence (see Figure 5.1 for the exact threshold settings). We tested leakage patterns

of (n′ = 4,S = {1}), (n′ = 8,S = {1, 7}) and (n′ = 8,S = {1, 15})–all corresponding to

1/4-fraction leakage—for each parameter setting and were able to break multiple Leaky

RLWE instances for every parameter setting/leakage pattern shown in Figure 5.1. We also

report the maximum time it took to break a single instance for each parameter setting in

Figure 5.1. Overall, the maximum amount of time to break a single instance was 6 hours

for the hardest instance, i.e. Challenge ID 89. We attempted to launch our attack given

only 1/8-fraction of leakage (leakage pattern (n′ = 8, α = 1)), but were only successful for

the easiest case, i.e. Challenge ID 1. For, e.g. Challenge ID 89, the attack failed since for
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5000 number of linear systems, the maximum confidence of any solution was 0.28, meaning

that we expect to recover the secret key with probability at most 0.282048/8 ≈ 2−470, which

is well beyond feasible.

Chall ID
(hardness)

n q χ n′ Pattern (S)
min-max
RLWE #

Avg.
RLWE #

Broken
Instances

Threshold
Maximum
Time (s)

1
(toy)

128 769 D0.40

4 {1} 2-2 2 31 of 31 7e-5 2.24
8 {1, 15} 1-2 1.93 29 of 31 7e-6 2.18
8 {1, 7} 1-2 1.93 29 of 31 7e-6 1.23
8 {1} 1-1 1 4 of 31 1e-8 1.3

5
(toy)

128 3329 D0.80

4 {1} 2-3 2.38 31 of 31 7e-5 2.53
8 {1, 15} 2-3 2.09 31 of 31 7e-6 1.99
8 {1, 7} 2-3 2.09 31 of 31 7e-6 1.88

45
(moderate)

256 7681 D0.80

4 {1} 2-3 2.61 31 of 31 7e-5 8.83
8 {1, 15} 2-2 2 31 of 31 7e-8 8.78
8 {1, 7} 2-2 2 31 of 31 7e-8 6.97

85
(very hard)

1024 59393 D3.59

4 {1} 6-7 6.05 17 of 31 7e-5 1914
8 {1, 15} 39-60 51.88 26 of 31 7e-9 2000
8 {1, 7} 39-59 50.76 17 of 31 7e-9 2682

89
(very hard)

2048 86017 D3.59

4 {1} 6-7 6.16 30 of 31 7e-5 5523
8 {1, 15} 44-58 52.29 31 of 31 7e-9 11766
8 {1, 7} 44-58 52.29 31 of 31 7e-9 20837

NewHope 1024 12289

D√
8

4 {1} 35-37 36 3 of 200 3e-4 745
8 {1, 15} 147-220 180.85 82 of 200 7e-8 2226
8 {1, 7} 189-204 196.5 2 of 1000 7e-8 1238

Ψ16

4 {1} 34-36 34.16 6 of 200 3e-4 796
8 {1, 15} 149-217 183.20 94 of 200 7e-8 2039
8 {1, 7} 177-193 184.8 5 of 1000 7e-8 975

Figure 5.1: Performance of attack against RLWE Challenges [38] and NewHope [14] param-
eter settings. For each parameter setting, we report the following: min/max and average
number of RLWE samples required for successful break, total number of broken instances,
and max run-time (in seconds) for successful break. Threshold is set such that the mini-
mal weight solutions to the linear systems given in Section 5.2 have high confidence with
sufficiently high probability.

5.3 Search and Decisional Ring-LWE with Leakage

Definition 37 (Search RLWE (R-SLWE) with Leakage). The search version of the

R-LWE problem with leakage, denoted Leaky R-SLWEq,ψ,n′,S , is parameterized by (n′ ∈

{1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The experiment chooses ~s ← Rq uniformly at random, where
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~s = NTT−1
(
~̂s
)

. The goal of the adversary is to recover ~s, given independent samples

from the distribution D~s
real,n′,S , which outputs

(
~̂a, ~̂a · ~̂s+ ~̂e, [ŝi]i≡αmod 2n′ |∀α∈S

)
where ~a,~e

are obtained from A~s,ψ as in standard RLWE (see Definition 15).

Definition 38 (Decision RLWE (R-DLWE) with Leakage). The decision version

of the R-LWE problem with leakage, denoted Leaky R-DLWEq,ψ,n′,S , is parameterized by

(n′ ∈ {1, 2, 4, 8, . . . n},S ⊆ Z∗2n′). The experiment chooses ~s ← Rq uniformly at random,

where ~s = NTT−1
(
~̂s
)

. The goal of the adversary is to distinguish between independent

samples from the distributions D~s
real,n′,S and D~s

sim,n′,S , where D~s
real,n′,S is the same as above,

and D~s
sim,n′,S outputs

(
~̂a, ~̂u, [ŝi]i≡αmod 2n′ |∀α∈S

)
, where ~a,~e are obtained from A~s,ψ as in

standard RLWE (see Definition 15) and

ûi = âi · ŝi + êi | i ≡ αmod 2n′ ∀α ∈ S and ûi ← Zq

chosen uniformly random, otherwise.

5.4 Search to Decision Reduction with Leakage

Let the RLWE secret be denoted by ~̂s and assume without loss of generality that there

exists an adversary that obtains leakage [ŝi]i≡1 mod 2n′ and distinguishes ~̂u = ~̂a · ~̂s+ ~̂e from

~̂u′, where ûi = âi · ŝi+ êi for i ≡ 1 mod 2n′ and otherwise is uniform random. Note that the

problem is identical when the adversary obtains leakage [ŝi]i≡α mod 2n′ , for α ∈ Z∗2n′ since,

as we shall see next, an automorphism can be applied to shift all indices i such that i ≡ α

mod 2n′ to positions i ≡ 1 mod 2n′. It is not hard to see, using techniques of [83, 84, 85],
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that this implies an attacker that learns a single index j ∈ Z∗2n, j ≡ b mod 2n′ of the

RLWE secret, where b 6≡ 1 mod 2n′. We call this the Basic Attack. We refer readers to

Appendix C.2 for description of Basic Attack.

Theorem 39 (Existence of Basic Attack). If, for any (n′,S ⊆ Z∗2n′) adversary A running

in time t := t(n) distinguishes D~s
real,n′,S from D~s

sim,n′,S with probability p := p(n), then there

is some index j such that j 6= α′ mod n for all α′ ∈ S and an attack Basic Attack with

parameters (n′,S, j, t, p), that learns NTT coordinate ŝj with probability 1− 1/poly(n) and

takes time poly(n) · t · 1/p.

Our attack Attack 1 uses the Basic Attack to learn all the values [ŝi]i≡br mod 2n′

for r ∈ [n′/2]. Let ~̂s1 := ~̂s. The main idea of Attack 1 is to learn all [ŝ1
i ]i≡b mod 2n′ in

the first round, then apply an automorphism to shift the positions i ≡ b2 mod 2n′ into

the positions i ≡ b mod 2n′, resulting in a permuted RLWE secret, denoted ~̂s2. Note that

applying the automorphism causes the positions ŝ1
i such that i ≡ b mod 2n′ to shift into

the positions i ≡ 1 mod 2n′. This means that we are now back where we started, and the

reduction is now able to provide the required leakage (on [ŝ2
i ]i≡1 mod 2n′) to the adversary

and thus can learn the values of [ŝ2
i ]i≡b mod 2n′ = [ŝ1

i ]i≡b2 mod 2n′ in the second iteration,

[ŝ3
i ]i≡b mod 2n′ = [ŝ1

i ]i≡b3 mod 2n′ in the third iteration, etc. We next formalize the necessary

properties of the automorphisms.

For i, j ∈ Z∗2n, let φi→j be the automorphism that maps ~̂v to ~̂v′ such that ~v(ωi) =

~v′(ωj). Hence, φi→j induces a permutation on the elements of ~̂v, denoted ρi→j. Specifically,

φi→j(~̂v) maps v̂` to v̂ρi→j(`) for i, j, ` ∈ Z∗2n, where ρi→j(`) = i−1`j.

Definition 40. A probability distribution ψ : Z(ζm) → R is automorphically closed in K
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if for all i, j ∈ Z∗m, φi→j(ψ) = ψ.

We remark that RLWE error distribution χ is automorphically closed [83].

We formally define Attack 1 in Figure 5.2. We next sketch how Attack 1 can

be used to complete the proof. For dimenstion n and parameter n′ ∈ {1, 2, 4, 8, . . . n},

let Tn′ := Tn′(n) be the (non-uniform) time to solve Leaky R-SLWE for dimension n and

parameters (n′,S = {α} = {1}), i.e. given positions [ŝ1
i ]i≡1 mod 2n′ , with probability 1/2.

Assume subexponential 2Ω(nε)-hardness of search RLWE without leakage for some

constant ε ≤ 1 and polynomial modulus q. Then we also have that Tn(n) ∈ 2Ω(nε), and

as discussed in the intro, there must exist a constant c′ such that for sufficiently large n,

there exists n∗ = n∗(n) ∈ {2, 4, 8, 16, . . . , n} such that Tn∗(n) ≥ 2c
′(nε) and Tn∗ (n)

Tn∗/2(n)
≥ n.

The above implies that T(n∗/2) ∈ o(Tn∗).

Now, if given [ŝ1
i ]i≡1 mod 2n∗ leakage, there exists a (t(n), p(n))-distinguishing adver-

sary (where t(n) =
√
Tn∗/poly(n) and p(n) = 1/

√
Tn∗), then we will show that there is an

adversary solving the R-SLWE with high probability given positions [ŝ1
i ]i≡1 mod 2n∗ in time

less than Tn∗ , leading to contradiction. We begin by running Attack 1, which takes time

at most o(Tn∗) for our settings of t(n) and p(n). If b ∈ Z∗2n∗ is such that for some r ∈ [n∗/2],

br ≡ n∗ + 1 mod 2n∗, then we can combine the reconstructed values of ŝ1
i from Attack

1 with our knowledge of [ŝ1
i ]i≡1 mod 2n∗ to obtain all values [ŝ1

i ]i≡1 mod n∗ . This means that

we can then run the search attack for 2/n∗-fraction of leakage to recover all of ~̂s in time

T(n∗/2) ∈ o(Tn∗). But then the entire attack for (1 mod 2n∗)-leakage can be run in time

o(Tn∗), contradicting the definition of Tn∗ .

For n∗ > 4, the only cases in which Attack 1 does not recover [ŝi]i≡n∗+1 mod 2n∗ , is
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Attack 1

Given access to D~s
real,n′,S={1} (i.e. RLWE samples with leakage [ŝi]i≡1 mod 2n′) and the dis-

tinguishing index j ∈ Z∗2n, where j ≡ b mod 2n′, for the Basic Attack:

1: for all Leaky-RLWE samples do
2: Set ~̂a1 := ~̂a, ~̂u1 := ~̂u, [ŝ1

i := ŝi]i≡1 mod 2n′ .
3: end for
4: for r ∈ [1, 2, . . . , n′/2] do . [ŝri ]i≡1 mod 2n′ are now known.
5: for all j′ such that j′ ≡ j mod 2n′ do
6: Run the Basic Attack with parameters (n′, {1}, j, t, p) on RLWE samples of the

form (~̂a := φj′→j(~̂a
r), ~̂u := φj′→j(~̂u

r)), leakage set
[
ŝi := ŝrρj′→j(i)

]
i≡1 mod 2n′

to recover

ŝrj′ .
. All these values of ŝrρj′→j(i) are now known: If i ≡ 1 mod 2n′ then ρj′→j(i) ≡ 1

mod 2n′, since j ≡ j′ mod 2n′.
7: end for . w.h.p. all ŝrj′ s.t. j′ ≡ b mod 2n′ are now known.
8: Choose an ` ∈ Z∗2n such that ` ≡ b2 mod 2n′.
9: for all Leaky RLWE samples do

10: Set ~̂ar+1 := φ`→j(~̂a
r) and ~̂ur+1 := φ`→j(~̂u

r).
11: end for

.
[
ŝr+1
i

]
i≡1 mod 2n′

, are now known since ŝri′ s.t. i′ ≡ b mod 2n′ are now in position

ŝr+1
i s.t. i ≡ 1 mod 2n′.

12: end for . All values si such that i ≡ br mod 2n′ and r ∈ [n′/2] are now known.

Figure 5.2: Description of Attack 1.

when b ∈ {n∗ − 1, 2n∗ − 1}. For such b, we do not know how to rule out the possibility

that given [ŝi]i≡1 mod 2n∗ , the positions i ≡ b mod 2n∗ of û do not look random. In this

case, however, we argue that given leakage on both [ŝi]i≡1 mod n∗ , and [ŝi]i≡b mod n∗ , all other

positions are indistinguishable from random, since otherwise a modified version of Attack

1 can be run. We next state the formal theorem of this section.

Theorem 41. Assume n∗ := n∗(n) > 4, ~s← Rq, then:

• D~s
real,n∗,{α} ≈t(n),p(n) D

~s
sim,n∗,{α} OR

• D~s
real,n∗,{α,(n∗−1)·α} ≈t(n),p(n) D

~s
sim,n∗,{α,(n∗−1)·α} OR
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• D~s
real,n∗,{α,(2n∗−1)·α} ≈t(n),p(n) D

~s
sim,n∗,{α,(2n∗−1)·α}.

where, t(n) =
√
Tn∗/poly(n), p(n) = 1/

√
Tn∗.

Proof. We can assume without loss of generality that α = 1. Furthermore, assume

D~s
real,n∗,{1} 6≈(

√
Tn∗/poly(n),1/

√
Tn∗ )

D~s
sim,n∗,{1}. Then this means there must be an adver-

sary A running in time
√
Tn∗/poly(n), that distinguishes on index j ∈ Z∗2n, where j ≡ b

mod 2n′ with probability at least 1/
√
Tn∗ .

Case 1: b is such that br ≡ n∗ + 1 mod 2n∗ for some r ∈ [n∗/2]. In this case, with

appropriate setting of poly(n), we can use Attack 1 to recover the positions i such that

i ≡ n∗ + 1 mod 2n∗ (with high probability) in time o(Tn∗). Now we can run the attack

that takes as input [ŝi]i≡1 mod n∗ and recovers all of ~̂s. By assumption, this attack runs in

time T(n∗/2) ∈ o(Tn∗). Thus, we can recover the whole ~̂s with high probability greater than

1/2 in time o(Tn∗), which is a contradiction.

By properties of the group Z∗2n∗ , where n∗ is a power of two, for all b ∈ Z∗2n∗ \{1, n∗−

1, 2n∗ − 1}, it is the case that br ≡ n∗ + 1 mod 2n∗ for some r ∈ [n∗/2]. Thus, Case 1

holds for all b ∈ Z∗2n∗ \ {n∗ − 1, 2n∗ − 1}.

Case 2: b = n∗ − 1. In this case, with appropriate setting of poly(n), we can use Attack

1 to recover the positions i such that i ≡ n∗ − 1 mod 2n∗ (with high probability) in time

o(Tn∗). Assume D~s
real,n∗,{1,(n∗−1)} 6≈√Tn∗/poly(n),

√
Tn∗/poly(n)

D~s
sim,n∗,{1,(n∗−1)}, then there must

be some adversary A′ that distinguishes on index j′ ∈ Z∗2n, where j′ ≡ b′ ∈ Z∗2n∗\{1, n∗−1}.

We can combine this with the previous attack as follows:

Case 2(a): b′ ∈ Z∗2n∗\{1, n∗−1, 2n∗−1}. Due to essentially the same argument

as before, by appropriately setting poly(n), we can with high probability learn
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all [ŝi]i≡(b′)r mod 2n∗ for r ∈ [n∗/2] in time o(Tn∗) and then apply the same

argument as above.

Specifically, given the initial leakage [ŝ1
i ]i≡1 mod 2n∗ , the attack will first learn

[ŝ1
i ]i≡n∗−1 mod 2n∗ , then learn [ŝ1

i ]i≡b′ mod 2n∗ , then, for some (j, j′) such that

j ≡ b′ mod 2n∗ and j′ ≡ 1 mod 2n∗, apply automorphism φj→j′ to get ~̂s2,

learn [ŝ2
i ]i≡n∗−1 mod 2n∗ , then learn [ŝ2

i ]i≡b′ mod 2n∗ , etc. thus ultimately learning

[ŝi]i≡(b′)r mod 2n∗ for r ∈ [n∗/2]. At this point, we will have [ŝi]i≡1 mod n∗ and

thus can learn all of ~̂s in additional time T(n∗/2) ∈ o(Tn∗). Thus, in total the

attack takes time o(Tn∗), leading to contradiction.

Case 2(b): b′ = 2n∗−1. Due to essentially the same argument as before, with

appropriate setting of poly(n), we can with high probability recover the positions

i such that i ≡ 2n∗ − 1 mod 2n∗ in time o(Tn∗). The adversary now knows

[ŝi]i≡n∗−1 mod n∗ . We can thus learn all of ~̂s in additional time T(n∗/2) ∈ o(Tn∗).

Thus, in total the attack takes time o(Tn∗), leading to contradiction.

Case 3: b = 2n∗ − 1. This essentially follows identically to Case 2.
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Chapter 6: Conclusion and Future Directions

First in Chapter 3, we looked at a cache side-channel attack against the SQLite

database management system. We developed two algorithms that approximately recover

the database using the information leaked from the side-channel attack. Finally, we showed

the effectiveness of closest vector problem (CVP) solvers in reducing the overall noise in

the recovered databases to obtain databases with improved accuracy. We showed that for

attributes with range of size 12 our algorithm can recover the approximate database in at

most 190 seconds with maximum error percentage of 0.11%. We have also extended our

analysis to study the effect of heavy load on the system as well as cases where some of

the ranges are missing. We have shown that the error percentage for those cases remain

below 2%. As a possible approach to mitigate the attacks presented in this work, we

suggest that when processing a range query, a random number of dummy elements get

appended to the results and returned in addition to the true matches. The effect of such a

countermeasure is twofold. (1) It makes it difficult for the side-channel attacker to able to

aggregate information over different runs to obtain good approximations of the volumes.

(2) It makes the graph generation and clique-finding algorithms more expensive, as there

will be a large number of additional nodes and edges in the graph (recall that each observed

volume corresponds to a node in the graph). Since clique-finding is NP-hard, adding even
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a small fraction of nodes to the graph can make the attack infeasible.

As a future work, it would be interesting to explore the effectiveness of the attack

using fewer traces; in the extreme case it is interesting to study the scenario where only

1 trace per query is given. Moreover, it would be of interest to study the performance

of the Prime & Probe [94] which is a more generic type of cache side-channel attack that

can be used even in scenarios where the victim and attacker do not have a shared library.

Further, as mentioned previously, improved attacks on encrypted databases are possible

when the full access pattern is revealed (cf. Grubbs et al. [59]). It will be interesting to

explore whether partial information about the access pattern can be obtained via the cache

side-channel and whether this information can be used to obtain improved attacks. We

have simulated some non-uniform query distribution, and one area that can be explored

more is to study what are the most realistic query distribution. One limitation we faced

in the work is the scalability of solver for NP-hard problem, i.e. clique finding algorithm.

The work of Grubbs et al. [58] tolerate this by having a prepossessing step. This step

enables the algorithm to work even for the cases where the size of the graph is large and it

is interesting to study whether a prepossessing step can be applied to cases where volumes

are noisy.

Later in Chapter 4, we considered new algorithms for LPN when the parity function is

sparse, i.e. has dimension n, error rate η, and Hamming weight at most k, where k/n� η.

Prior to our work, the best algorithms for the sparse parity regime (up to constants in the

exponent) were brute-force-search in time
(
n
k

)
or, for larger k, simply using the best LPN

algorithm, i.e. BKW, for the non-sparse secret case. In other words, restricting the LPN

problem to k-sparse parities did not lead to any speedup (asymptotically in the exponent)
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other than the trivial brute-force-search over all parities of size k, for any sparsity regime.

However in this work, we presented two new algorithms and exhibits two regimes where one

can improve upon the above, asymptotically in the exponent. The first regime corresponds

to constant noise rate, and parities of sparseness k such that k is (loosely) between n/ log(n)

and n/ log2(n). The second regime of improvement corresponds to low noise rate which can

be, for example, log(n)/
√
n and parities of sparseness k =

√
n/ log log(n). In both of the

cases we compared our proposed algorithm to the state-of-the-art algorithm. Specifically,

for the first case we showed an improvement over BKW algorithm and brute-force algorithm.

Similarly, for the second case, we showed an improvement over brute-force and a lucky

brute-force (as it is defined in Section 4.3.4).

This work provides new insights into the LPN problem and the quantitative effects on

security of sampling the secret from a high entropy distribution that is different from the

noise distribution. We also motivated the study of improvements to other learning classes,

i.e. DNF and Juntas. One natural extension of this work, is to explore what other type of

learning algorithms can be improved by using the underlying LPN algorithm we developed

in this work.

Finally, in Chapter 5, we motivated the study of partial key exposure in Ring-LWE

(RLWE)-based cryptosystems. Specifically we presented and implemented an efficient key

exposure attack that, given certain 1/4-fraction of the coordinates of the NTT transform of

the RLWE secret, along with samples from the RLWE distribution, recovers the full RLWE

secret for standard parameter settings. As it was mentioned in Section 5.1.2, our attacks

work in a highly structured leakage scenario and reducing the structure of the leakage in

our attack seems to be an interesting future work.
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Appendix A: Appendix of Cache Side-Channel Attack on Database

A.1 Closest Vector Problem (CVP)

Given n-linearly independent vectors b1,b2, . . . ,bn ∈ Rm, the lattice generated by

b1,b2, . . .bn is the set of all the integer linear combination of them i.e. L(b1,b2, . . .bn) =

{
∑n

1 bixi | xi ∈ Z}. The set {b1,b2, . . .bn} is called the basis of the lattice and is presented

by matrix B in which basis bi is i-th row of the matrix. In the closest vector problem

target vector y is given. The target vector y does not necessarily belong to lattice L. The

solution is a lattice point y′ = xB which is closest to target vector y and also y′ ∈ L.

Notice that a lattice point y′ is a linear combination of basis, while the target vector y is

not. The significance of the CVP problem is to find a closest vector to y such that the

linear combination is satisfied. CVP problem is also known to be NP-complete and we use

fplll [44] for finding the closest vector in lattice.

A.2 Error Reduction Step

As explained in Section 3.2.3 and Section 3.2.4 by using the noisy clique-finding

and Match & Extend algorithms on the noisy data we get some close answer to the real

database. Here we outline a technique which can reduce the noise and output a more
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accurate answer. The first step is to compute all the
(
N
2

)
+ N volumes corresponding to

each range. Specifically, the ranges [1, 1], [1, 2], . . . , [1, N ] are obtained using noisy clique-

finding or Match & Extend. Each range [i, j] can be computed from the elementary volumes

as
∣∣[i, j]∣∣ =

∣∣[1, j]∣∣ − ∣∣[1, i − 1]
∣∣. Instead of taking the computed value for range [i, j], we

choose the value in the set of volumes (obtained from the side-channel data) that is closest

to this computed value. This procedure results in N ′ =
(
N
2

)
+ N volumes which we call

candidate volumes. Now note that given the volumes of the ranges [1, 1], [2, 2], . . . , [N,N ],

the volume of any other range [i, j] can be expressed as a linear combination of these

values. Therefore, our variable ~x = (x1, . . . , xN) corresponds to the volumes of the ranges

[1, 1], [2, 2], . . . , [N,N ] and our candidate volumes ~v = (v1, . . . , vN ′), correspond to noisy

linear combinations of the xi’s. Thus, solving for the ~x which yields the closest solution

to ~v = (v1, . . . , vN ′) under the linear constraints, corresponds to solving a Closest Vector

Problem (CVP).

For example, if the range has size N = 3, then we obtain a total of 6 volumes v1, . . . , v6

corresponding to the ranges [1, 1], [2, 2], [3, 3], [1, 2], [2, 3], [1, 3] and can construct the

following system of equations:

A~x+ ~e = ~v where A =



1 0 0

0 1 0

0 0 1

1 1 0

0 1 1

1 1 1
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~v = (v1, . . . , v6), ~e is the amount of error and ~x is unknown. To solve this problem,

we can consider the lattice defined by A~z, where A is the basis and ~z is any integer vector.

Now, given ~v, we would like to find the closest lattice vector ~y = A~x′ to ~v. Once we have

~y, we can solve to get ~x′. To create a full rank matrix for our solver, we can modify matrix

A as following:

A′ =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 0 T 0 0

0 1 1 0 T 0

1 1 1 0 0 T


where T � n and ~v stays the same.

Now we obtain a solution of dimension 6 (as opposed to dimension 3), but the last

three coordinates should always be 0, since if they are non-zero there will be at least ± T

in the corresponding coordinate of ~v , which will clearly not be the closest vector.

A.3 Error Reduction Step Experiments

Table A.1 and Table A.2 compare the clique and Match & Extend algorithms and the

improvement achieved by the error reduction step using the CVP solver. Recall that the

error percentage is computed for each recovered coordinate. We measured the quality of

the recovered databases in two ways: in Table A.1 we report the average value of the error

percentage over all the volumes in all recovered databases. For Table A.2, we compute for
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Noisy Clique Match & Extend
Experiment No CVP CVP No CVP CVP
Experiment I 0.21% 0.19% 0.09% 0.07%
Experiment II 0.16% 0.10% 0.09% 0.08%
Experiment IV 0.80% 0.77% 0.09% 0.08%

Table A.1: Average Error Percentage

Noisy Clique Match & Extend
Experiment No CVP CVP No CVP CVP
Experiment I 0.86% 0.86% 0.22% 0.20%
Experiment II 0.55% 0.38% 0.30% 0.22%
Experiment IV 2.29% 2.30% 0.24% 0.22%

Table A.2: Maximum Error Percentage

each database the largest error percentage of its coordinates, and we report the average of

all these maxima over all databases in Experiments I, II and IV. The effectiveness of CVP

is for the cases where the initial reconstructed database is within some close distance of

the correct database. Hence for the other two experiments, the plain CVP is not effective

as the initial recovered database is rather far from the correct answer, and generally CVP

can not be effective. Moreover, the CVP algorithm needs to have all the initial volumes,

so for the experiments where some of the volumes are missing, CVP can not be used.

It can be seen that for Match & Extend algorithm the average error percentage is

reduced from 0.09 to 0.07, from 0.09 to 0.08 and from 0.09 to 0.08 in Experiments I, II and

IV, respectively. Table A.2 shows similar results for maximum error percentage. For Match

& Extend algorithm the maximum error percentage is reduced from 0.22 to 0.20, from 0.30

to 0.22 and from 0.24 to 0.22 in Experiments I, II and IV, respectively. Table A.1 and

Table A.2 present the L1 norm and L∞ norm, respectively. The CVP solver optimizes for

L2 norm, so it has a larger effect on decreasing L∞ norm than L1 norm. In case the objective

is to minimize the L1 norm, an integer programming approach would be preferable.
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Appendix B: Appendix of New Algorithms for LPN with Sparse Parities

B.1 Proof of Lemma 21

We first show that each coordinate of x′ is set to 0 with independent probability

(1 + p)/2. The probability that a coordinate j of x′ in sample sp is set to 0 after running

BKWR can be computed as follows:

Pr [x′[j] = 0] = Pr [x′[j] = 0 | j ∈ R] · Pr [j ∈ R] + Pr [x′[j] = 0 | j /∈ R] · Pr [j /∈ R]

= 1 · p+ 1/2 · (1− p) = (1 + p)/2

To show that the label b′ is correct with probability η′ and that the correctness of the label

is independent of the instance x′, s, note that x′ is always constructed by XOR’ing a set of

exactly 2a number of samples and that the choice of the set of XOR’ed samples depends

only on the random coins of the algorithm and on the x values, which are independent of

the e value. Therefore, we can apply Lemma 9 to conclude that the noise is independent

and that b′ is correct with probability η′ = 1
2
− 1

2
(1− 2η)

√
2np.
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B.2 Proof of Theorem 22

From the description of BKWR, it is clear to see that it takes O(a2b) LPN samples and

running time to generate a p-biased sample, where a = log(2np)/2, b = d|R|/ae. Remember

that the BKWR algorithm will abort if |R| ≥ 2pn or |R| ≤ pn/2, i.e. Event1 occurs. By

showing that Event1 occurs with probability at most 2 exp(−p ·n/8), we obtain that BKWR

runs in time O(2
4np

log(2np) · log(2np)) with probability at least 1− 2 exp(−p · n/8).

To bound the probability of Event1 occurring, we notice that by multiplicative Cher-

noff bounds in Theorem 1, we can bound the size of set R as follows:

Pr [|R| ≥ 2pn] ≤ exp(−p · n/3)

Pr [|R| ≤ pn/2] ≤ exp(−p · n/8)

Pr [|R| ≥ 2pn ∨ |R| ≤ pn/2] ≤ exp(−p · n/3) + exp(−p · n/8) ≤ 2 exp(−p · n/8)

Pr [pn/2 < |R| < 2pn] > 1− 2 exp(−p · n/8)

B.3 Proof of Lemma 23

Before proving Lemma 23, we present the following simple claims about the number

of samples needed to estimate the Fourier Coefficient of a single index. Based on Claim 1,

the magnitude of Fourier coefficient of the indexes with secret value of 0 is equal to 0, while

for the secret coordinates 1 that is equal to ε = (1 − 2η′) · pk−1
√

1− p2. In the Following

Claim we compute how many samples are needed to estimate the magnitude of Fourier
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coefficient within distance of ε/2 of correct value. We will bound the failure probability

with δ/n.

Claim 3. For every j ∈ [n], b̂p({j}) = E[b · χ{j},p(x))], where (x, b) ∼ OLPN
p,η′ (s), can be

estimated within additive accuracy ε
2

and confidence 1− δ
n

using 8
ε2
· 1+p

1−p · ln(2n/δ) number

of samples.

Proof. The estimate of b̂p({j}) based on the m samples spi = (xi, bi) is

b̂estimate({j}) =
1

m

m∑
i=1

bi · χ{j},p(xi)

and notice that E
[
b̂estimate({j})

]
= b̂p({j}). Lets denote Xi = 1

m
· bi · χ{j},p(xi), then note

that |Xi| ≤ (1/m)
√

1+p
1−p . Finally by Chernoff-Hoeffding bound of Theorem 2, we have the

following.

Pr
[∣∣∣b̂estimate({j})− b̂p ({j})

∣∣∣ ≥ ε/2
]
≤ 2 exp

(
−mε2

8
· 1− p

1 + p

)

Bounding the right hand side by δ/n and solving for m gives the desired value for number

of samples.

Proof of Lemma 23. Invoking Claim 1, we have that for j such that s[j] = 1, b̂p({j}) =

(1− 2η′) · pk−1
√

1− p2 while for j such that s[j] = 0, b̂p({j}) = 0. It is clear by inspection

that Algorithm 4.2 succeeds when it correctly estimates the values of b̂p({j}) to within

additive ε/2 := (1 − 2η′) · pk−1
√

1− p2/2 for all j ∈ [n]. By Claim 3, 8
ε2
· 1+p

1−p · ln(2n/δ)

number of samples are sufficient to estimate a single coordinate within additive ε/2 of its

correct value with confidence 1− δ
n
. By a union bound, the success probability of estimating
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all coordinates to within additive ε/2 is 1− δ.

B.4 Proof of Lemma 26

The proof is similar to the proof of Lemma 21 and noticing that the SamP algorithm

uses 2np + 1 samples to generate a single p-biased sample. Two p-biased samples x′i,x
′
j,

j > i are pairwise independent, unless the same linear combination of samples in S was used

to generate both of them. But in that case, during execution, the condition x′j|Ri = 0|Ri|

would evaluate to true, which means that Event2 occurred and so fresh samples (not from

S) would be used to generate x′j.

In the rest of the proof we switch to the ±1 representation instead of the Boolean

representation. The sample spi = (x′i, b
′
i) is obtained from the samples in set Oi alongside

some extra error samples from Noise Oracle Õη. In the following proof these are denoted

by e1, e2, . . . , e2np+1. Moreover, notice that the sample spj =
(
x′j, b

′
j

)
, obtained from set Oj,

has at most t elements in common with the sample obtained from the set Oi. Hence we

can represent the error in sample spj =
(
x′j, b

′
j

)
as e1, e2, . . . , et, e

′′
t+1 . . . e

′′
2np+1. For the ease

of notation we assumed that the t samples which are in common are at index 1 to t.

Cov[e′i, e
′
j] = Cov[e1 · e2 . . . et · et+1 . . . e2np+1 , e1 · e2 . . . et · e′′t+1 . . . e

′′
2np+1]

= E[e2
1 · e2

2 . . . e
2
t · et+1 . . . e2np+1 · e′′t+1 . . . e

′′
2np+1]

− E[e1 · e2 . . . e2np+1] E[e1 · e2 . . . et . . . e
′′
t+1 . . . e

′′
2np+1]

= (1− 2η)2(2np−t)+2 − (1− 2η)4np+2
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Where the last line follows from the independence of errors, E[ei] = 1− 2η and E[e2
i ] = 1.

B.5 Proof of Theorem 27

Assuming Event1 and Event2 do not occur, the sample complexity and runtime can

be verified by inspection and assuming RLK takes poly(np) time. It remains to bound

the probability of Event1 and Event2. We can upper bound the probability of Event1 by

2 exp(−p · n/8), as in the proof of Theorem 22. To upperbound the probability of Event2,

we note that assuming Event1 does not occur, Event2 occurs only if one of the following

two events occur:

• Event′1: For some distinct i, j ∈ maxnum, |Ri ∩Rj| ≥ np/4.

• Event′2: For some distinct i, j ∈ maxnum, |Ri \Rj| ≥ np/4 and x′j|Ri\Rj = 0|Ri\Rj |.

Since for distinct i, j, each coordinate ` ∈ [n] is placed in both Ri and Rj with

probability p2, by a union bound over all pairs i, j and a standard Chernoff bound, Event′1

can be upperbounded by:

maxnum2 · exp(−n/48) = (np)t · exp(−n/48).

Since for any x′j, the coordinates outside of Rj are uniformly random, Event′2 can be

upperbounded by:

maxnum2 · 1/2np/4 = (np)t · 1/2np/4.
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B.6 Proof of Lemma 28

Similar to Section 4.2.2, before proving Lemma 28, we first present the following claim

about the number of samples needed to estimate the Fourier Coefficient of a single index.

The algorithm gets access to 8 log(n) sets of p-biased samples. In the following claim we

first prove how many samples are needed to be able to approximate the Fourier coefficient

within additive distance of ε/2 and later discuss how by repeating the approximation step,

i.e. step 2b in Figure 4.4, will reduce the error in approximation even further.

Claim 4. For δ ∈ [0, 1], p ∈ (0, 1), given 8 log(n) independent sets of samples

S1,S2, . . . ,S8 log(n) that each of size num := O
(

1
(1−2η)4np+2p2(k−1)(1−p2)

)
and each satisfying

the properties given in Lemma 26 for some t ∈ Θ(1/η), then for every j ∈ [n], b̂p({j}) =

E[b · χ{j},p(x))] can be estimated within additive accuracy ε
2

= (1 − 2η′)pk−1
√

1− p2/2 for

η′ = 1
2
− 1

2
(1− 2η)2np+1 with confidence 1− δ

n
.

Proof. Let X = 1
m

∑m
i=1 bi · χS,p(xi). Let f be a parity function. Assuming S = {k}, let

Xi = 1
m
· bi · χ{k},p(xi). First we compute Cov[Xi, Xj] for k such that s[k] = 1

Cov[Xi, Xj] = Cov

[
1

m
· b′i · χ{k},p(x′i) ,

1

m
· b′j · χ{k},p(x′j)

]
Cov[Xi, Xj] =

1

m2
· Cov

[
b′i · χ{k},p(x′i) , b′j · χ{k},p(x′j)

]
=

1

m2
· Cov

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2

,

 ∏
v:s[v]=1

x′j[v]

 · e′j · x′j[k]− p√
1− p2


(B.1)
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=
1

m2
· 1

1− p2

(
Cov

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j[v]

 · e′j
−

Cov

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j[v]

 · e′j
−

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i ,
 ∏
v:s[v]=1∧v 6=k

x′j[v]

 · e′j
+

Cov

p ·
 ∏
u:s[u]=1

x′i[u]

 · e′i , p ·
 ∏
v:s[v]=1

x′j[v]

 · e′j
) (B.2)

=
1

m2
· 1

(1− p2)

(
p2(k−1)Cov

[
e′i, e

′
j

]
− 2p2kCov

[
e′i, e

′
j

]
+ p2(k+1)Cov

[
e′i, e

′
j

])
(B.3)

= m−2p2(k−1)(1− p2)Cov
[
e′i, e

′
j

]
= m−2p2(k−1)(1− p2)

[
(1− 2η)2(2np−t)+2 − (1− 2η)4np+2

]
(B.4)

Where equation (B.1) follows from definition of Fourier Coefficients and noting that

b′i is multiplications of xis and error term ei, equation (B.2) follows from properties of

Covariance, equation (B.3) follows from independence of x′is and equation (B.4) follows

from Lemma 26. We can also bound Var[Xi] as follows

Var[Xi] = Var

[
1

m
· b′i · χ{k},p(x′i)

]

=
1

m2
· Var

 ∏
u:s[u]=1

x′i[u]

 · e′i · x′i[k]− p√
1− p2


=

1

m2
· 1

1− p2

Var

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
− p2 · Var

 ∏
v:s[v]=1

x′i[u]

 · e′i
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=
1

m2
· 1

1− p2

(
E

 ∏
u:s[u]=1∧u6=k

x
′2
i [u]

 · e′2i
− E

 ∏
u:s[u]=1∧u6=k

x′i[u]

 · e′i
2

−

p2 · E

 ∏
u:s[u]=1

x
′2
i [u]

 · e′2i
+ p2 · E

 ∏
u:s[u]=1

x′i[u]

 · e′i
2)

(B.5)

=
1

m2
· 1

1− p2

(
1− p2(k−1)(1− 2η)2np − p2 + p2(k+1)(1− 2η)2np

)
(B.6)

= m−2

(
1− p2(k−1)(1 + p2)(1− 2η)2np

)
≤ m−2

Where equation (B.5) follows from properties of variance and equation (B.6) follows

from independence of x′is. Then we have the following bound from Chebyshev’s bound of

Theorem 3

Pr [|X − E[X]| ≥ ε/2] ≤
∑m

i=1 Var [Xi] + 2
∑m

i=1

∑
j>i Cov [Xi, Xj]

ε2/4

≤ 4 ·
m−1 + p2(k−1)(1− p2)

[
(1− 2η)2(2np−t)+2 − (1− 2η)4np+2

]
ε2

By substituting ε = (1 − 2η′) · pk−1
√

1− p2 for η′ = 1
2
− 1

2
(1 − 2η)2np+1, we can

bound the right hand side by a constant less than 1/2 by setting t < − ln(9/8−1/c)
2 ln(1−2η)

and

setting m = c · 1
(1−2η)4np+2p2(k−1)(1−p2)

, where c > 8. We use random variable Yi′ to represents

whether the value of count in step i′ is increased or not, specifically Yi′ = 1 represents the

event that count is increased in step i′. Assume we repeat the protocol for T rounds in

total. Let Y = (1/T ) ·
∑T

i′=1 Yi′ . First, take the case that j such that s[j] = 0 , we know

that in each step of loop over i′, Pr[Yi′ = 1] = 1/2 − ε. Note that the algorithm is run T

times using independent sets Si′ each time and index j is only added if in the majority of

the runs its estimated Fourier coefficient is more than ε/2. Using Chernoff bound, we can
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bound Pr[Y ≥ T/2] ≤ 1/n.

Pr[index j is added to set S ′] = Pr[count ≥ T/2]

= Pr

[∑T
i′=1 Yi′

T
≥ 1

2

]
≤ Pr [|Y − E[Y ]| > ε] ≤ 2 exp(−2Tε2)

We can bound the right hand side by δ
n

for constant δ by setting T = 8 log(n) and ε = 1/4.

Similar argument applies to the case for j such that s[j] = 1.

Proof of Lemma 28. Invoking Claim 1, we have that for j such that s[j] = 1, b̂p({j}) =

(1− 2η′) · pk−1
√

1− p2 while for j such that s[j] = 0, b̂p({j}) = 0. It is clear by inspection

that Algorithm in Figure 4.4 succeeds when it correctly estimates the values of b̂p({j})

to within additive ε/2 := (1 − 2η′) · pk−1
√

1− p2/2 for all j ∈ [n]. By Claim 4, we need

8 log(n) sets such that each set has O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

)
number of p-biased samples.

So in total num · 8 log(n) = O
(

1
(1−2η)2np+2p2(k−1)(1−p2)

· log(n)
)

number of p-biased samples

are sufficient to estimate a single coordinate within additive ε/2 of its correct value with

confidence 1− δ
n
. By a union bound, the success probability of estimating all coordinates

to within additive ε/2 is 1− δ.
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Appendix C: Appendix of (In)Security of Ring-LWE Under Partial Key

Exposure

C.1 Reconstructing the Secret Given (α1, α2 mod n′) Leakage

Let ~eαu(x) be the degree u = n/n′ polynomial that is obtained by taking ~e(x) modulo

xu − (ωα)u. We consider two polynomials ~eα1
u (x) and ~eα2

u (x). We may assume without loss

of generality, α1 = 1. We therefore set α := α2. For i ∈ {0, . . . , u − 1}, the (i + 1)-st

coefficient of ~eu(x) and ~eαu(x) are as follows, respectively

ei + ωu · ei+u + ω2·u · ei+2·u + . . .+ ω(n′−1)·u · ei+(n′−1)·u

ei + ωα·u · ei+u + ωα·2·u · ei+2·u + . . .+ ωα·(n
′−1)·u · ei+(n′−1)·u

Similar to the previous attack, we obtain the following constraints on the error, given

leakage on the secret key and an RLWE sample,
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1 ωu ω2·u · · · ω(n′−1)·u

1 ωα·u ωα·2·u · · · ωα·(n
′−1)·u

 ·



ei

ei+u

ei+2·u

...

ei+(n′−1)·u


=

eu,i
eαu,i



We solve a corresponding CVP instance to find the “most likely” solution, ~ei for

(ei, ei+u, ei+2·u, . . . , ei+(n′−1)·u), since the “most likely” solution is the one with smallest

norm. Similar to our previous attack, our goal is to carefully choose the answers with

“high confidence” such that

(1) In total, we must guess at least u number of n′-dimensional solutions, ~e
j

i , from all the

obtained solutions
[
~e
j

i

]
j∈[`],i∈[u]

.

(2) With high probability all our guesses are correct.

We choose the candidate which has probability of at least, say, 0.95 of being correct solution.

The total probability of success for this case is 0.95u = 0.95n/n
′
. Our experiments in

Section 5.2.2 again show that we can obtain enough “high” confidence solutions, without

requiring too large a number of RLWE instances.

C.2 Description of Basic Attack

In this section, we present the Basic Attack, following the description from [83, 84,

85] and using the fact that NTT coefficients form a CRT representation. We first recall

definition of CRT representation in our setting of parameters.
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Definition 42 (CRT Representation). For ~p ∈ Rq, and ω a mth primitive root of unity in

Z∗q, CRT representation for ~p is defined as

CRT(~p) =
(
~p(ωj1), . . . , ~p(ωjn)

)
,

for ji ∈ Z∗m.

Remember our setting, m = 2n for n a power of 2; hence, It is easy to see that

CRT(~p) = (p̂0, . . . , p̂n−1). We first introduce the following definition:

Definition 43 (Hybrid Leaky RLWE Distribution). For j ∈ Z∗2n = {1, 3, . . . , 2n − 1},

a “secret” s ∈ Rq, and a distribution χ over Rq, a sample from the distribution

D~s,j
real,n′,S is generated by choosing

(
~̂a,~̂b

)
← D~s

real,n′,S and outputting

(
~̂a,~̂b+ ~u

)
, where

~u = (u1, u3, . . . , u2n−1) ∈ Znq with ui, i ∈ Z∗2n defined as follows: ui is chosen uniformly at

random from Zq if i 6= α′ mod 2n′ for all α′ ∈ S and i ≤ j, ui = 0 otherwise.

Define D~s,−1
real,n′,S := D~s

real,n′,S . Additionally, notice that D~s,2n−1
real,n′,S = D~s

sim,n′,S . Thus

if, for any (n′,S ⊆ Z∗2n′) adversary A running in time t := t(n) distinguishes D~s
real,n′,S

from D~s
sim,n′,S with probability p := p(n), then there is some index j ∈ Z∗2n such that

j 6= α′ mod n for all α′ ∈ S and a distinguisher Dj that is able to distinguish between the

distribution D~s,j−2
real,n′,S and D~s,j

real,n′,S with probability at least p/n.

We now show the distinguisherDj can be used to construct an algorithm that finds the

value of ŝj. The idea of this algorithm is to try each of the possible values ŝj, constructing

the samples on inputs from D~s
real,n′,S , so that the samples are distributed according to

D~s,j−2
real,n′,S if ŝj is guessed correctly, and the samples are distributed according to D~s,j

real,n′,S
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otherwise. Then using the distinguisher Dj, which runs in time t, for poly(n/p) times for

each of the q(= poly(n)) guesses for ŝi, we are able to find the correct value of ŝj with

probability 1− 1/poly(n) in time t · poly(n) · 1/p.

Next we present the samples construction algorithm that takes a guess g ∈ Zq and

transform D~s
real,n′,S to either D~s,j−2

real,n′,S or D~s,j
real,n′,S . On each sample

(
~̂a,~̂b

)
← D~s

real,n′,S , it

outputs a sample (
~a′, ~b′

)
=

(
~̂a+ ~v,~̂b+ ~u+ g~v

)
,

where ~u = (u1, u3, . . . , u2n−1), ~v = (v1, v3, . . . , v2n−1) ∈ Znq are chosen as follows: uk is

uniform in Zq if k < j, k 6= α′ mod 2n′ for all α′ ∈ S, and the rest are 0; vk is uniform in

Zq if k = j, and the rest are 0. Note that b′j can be written as

b′j = âj ŝj + êj + uj + gvj = a′j ŝj + êj + uj + (g − ŝj)vj.

Observe that if g is the correct guess, then (g − ŝj)vj = 0. The distribution of
(
~a′,~b′

)
is

identical to D~s,j−2
real,n′,S . If g is a wrong guess, (g− sj) is non-zero. Since q is prime, (g− ŝj)vj

is uniform in Zq. Thus the distribution of
(
~a′,~b′

)
is identical to D~s,j

real,n′,S .

C.3 Pseudocode of Attack from Section 5.2
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Partial Key Exposure Attack

Given leaked coordinates on NTT version of secret key ~̂s, public key a and a public value
b, recover all coordinates of ~s

1: [ω̄, B] = create basis()

. create basis used in CVP solver and ω̄ being
[
1, ωu, ω2·u, · · · , ω(n′−1)·u]

2: bTotal = [], aTotal = []

3: count = 0

4: u = n/n′

5: for j ∈ [1, 2, . . . , RLWESamples] do

6: ~Aj =create a(~̂a
j
) . Create circulant matrix corresponding to ~̂a

j

7: ~̂e
j

= ~̂b
j

− ~̂a
j
· ~̂s

. For all leaked coordinate of ~̂s we compute the corresponding coordinates of error ~̂e
j

8: ~e = Lagrange polynomials(~̂e
j
)

. Recover the coeffiecient of polynomial obtained by taking ~e(x) modulo (xu − (ωα)u)
9: aMat = [], bTemp = []

10: for i ∈ [0, 1, 2, . . . , u− 1] do
11: X = ω̄.solve right(~ei) . Solving the system of equation explained in

Section 5.2
12: Y =CVP.closest vector(B, X)
13: ~̄ei = X − Y
14: if Prob(~̄ei) > Threshold then

15: aMat.append
(
~̂A
j

[i, i+ u, i+ 2 · u, . . . , i+ (n′ − 1) · u][:]
)

. Select the corresponding rows from ~̂a
j

and save them

16: bTemp.append
(̂
~b
j

[i, i+ u, i+ 2 · u, . . . , i+ (n′ − 1) · u]− ~̄ei
)

. Select the corresponding rows from ~̂b
j

, subtract ~̄ei from it to get noiseless system
17: count += n′

18: end if
19: end for
20: aTotal.append

(
aMat

)
21: bTotal.append

(
bTemp

)
22: if count == n then
23: break

24: end if
25: end for
26: try:
27: sk = aTotal.solve right(bTotal) . solve the noiseless system to recover key
28: except:
29: return error . couldn’t solve the system
30: return sk

Figure C.1: Description of Partial Key Exposure Attack from Section 5.2
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[6] Onur Acıiçmez. Yet Another Microarchitectural Attack: Exploiting I-cache. In Pro-
ceedings of the 2007 ACM workshop on Computer security architecture, pages 11–18.
ACM, 2007.

[7] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order pre-
serving encryption for numeric data. In Proceedings of the 2004 ACM SIGMOD
international conference on Management of data, pages 563–574, 2004.

[8] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. Order-
Preserving Encryption for Numeric Data. In Proceedings of the ACM SIGMOD In-
ternational Conference on Management of Data, Paris, France, June 13-18, 2004,
pages 563–574, 2004.

[9] Adi Akavia, Shafi Goldwasser, and Vinod Vaikuntanathan. Simultaneous hardcore
bits and cryptography against memory attacks. In Omer Reingold, editor, TCC 2009,
volume 5444 of LNCS, pages 474–495. Springer, Heidelberg, March 2009.

[10] Martin Albrecht, Carlos Cid, Jean-Charles Faugère, Robert Fitzpatrick, and Ludovic
Perret. Algebraic Algorithms for LWE Problems. working paper or preprint, October
2014.

137

https://www.datamation.com/cloud-computing/slideshows/top-10-cloud-apps.html
https://www.datamation.com/cloud-computing/slideshows/top-10-cloud-apps.html
https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html
https://www.nytimes.com/2019/10/25/technology/dod-jedi-contract.html
https://github.com/ariashahverdi/database_reconstruction
https://github.com/ariashahverdi/database_reconstruction
https://github.com/ariashahverdi/RLWE


[11] Martin R. Albrecht, Amit Deo, and Kenneth G. Paterson. Cold boot attacks on
ring and module LWE keys under the NTT. IACR TCHES, 2018(3):173–213, 2018.
https://tches.iacr.org/index.php/TCHES/article/view/7273.

[12] Erdem Alkim, Roberto Avanzi, Joppe Bos, Léo Ducas, Antonio de la Piedra, Thomas
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