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Abstract

Because of their ex utero development, relatively simple nervous system, translucency, and availability of tools
to investigate neural function, larval zebrafish are an exceptional model for understanding neurodevelopmental
disorders and the consequences of environmental toxins. Furthermore, early in development, zebrafish larvae
easily absorb chemicals from water, a significant advantage over methods required to expose developing or-
ganisms to chemical agents in utero. Bisphenol A (BPA) and BPA analogs are ubiquitous environmental toxins
with known molecular consequences. All humans have measurable quantities of BPA in their bodies. Most
concerning, the level of BPA exposure is correlated with neurodevelopmental difficulties in people. Given the
importance of understanding the health-related effects of this common toxin, we have exploited the experi-
mental advantages of the larval zebrafish model system to investigate the behavioral and anatomic effects of

Significance Statement

Bisphenol A (BPA) exposure elicits sensory processing deficits in larval zebrafish. Specifically, animals
show abnormal prepulse inhibition (PPI) and short-term habituation (STH), which are behaviors mediated by
a relatively simple neural circuit: the C-start escape circuit. Given the well-defined nature of the circuitry
underlying the C-start reflex, the present study should facilitate future investigations of the neurobiological
basis of BPA-induced behavioral deficits. Furthermore, the behavioral assays used here can be readily
adapted for high-throughput screening of potential therapeutic agents. Finally, the present study provides a
model system and a set of assays that can generally be used to investigate sensory processing, locomotion,
anxiety, and key anatomic measurements.
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BPA exposure. We discovered that BPA exposure early in development leads to deficits in the processing of
sensory information, as indicated by BPA’s effects on prepulse inhibition (PPI) and short-term habituation
(STH) of the C-start reflex. We observed no changes in locomotion, thigmotaxis, and repetitive behaviors (cir-
cling). Despite changes in sensory processing, we detected no regional or whole-brain volume changes. Our
results show that early BPA exposure can induce sensory processing deficits, as revealed by alterations in
simple behaviors that are mediated by a well-defined neural circuit.

Key words: autism spectrum disorder; C-start reflex; habituation; Mauthner cell; prepulse inhibition; zebrafish

Introduction
Bisphenol A (BPA) and BPA analogs are common

chemicals found in polycarbonate plastics and other
products. They are also used to help extend the shelf life
of food products (Vandenberg et al., 2007; Chen et al.,
2016). Because of the ubiquitous nature of BPA-contain-
ing products, measurable levels of BPA and BPA analogs
are found in human breast milk, blood, and cerebral spinal
fluid (Ye et al., 2006; Vandenberg et al., 2007; Stein et al.,
2015). Fetal plasma and amniotic fluid contain detectable
levels of BPA, indicating that it can cross the maternal-
fetal-placental barrier and influence fetal development
(Schonfelder et al., 2002; Yamada et al., 2002). Thus, BPA
can potentially impact human development in utero and
postnatally.
BPA exposure is associated with human disease and

dysfunction, including fertility problems, cancer, obesity,
and neurobehavioral abnormalities (Rochester, 2013). In
particular, BPA exposure is correlated with the develop-
ment of neurodevelopmental disorders, such as autism
spectrum disorder (ASD), and children diagnosed with
ASD have higher BPA metabolites in their urine (de Cock
et al., 2012; Stein et al., 2015; Yoo et al., 2020; Hansen et
al., 2021). Further, multiple studies have shown that be-
havioral problems correlate with maternal BPA exposure
(Ejaredar et al., 2017).
BPA can potentially disrupt cellular function through

multiple molecular mechanisms, including disruption of
endocrine function and chromosomal modifications. BPA
perturbs endocrine function and can bind to several

endocrine-related receptors, such as estrogen receptors
(Mustieles et al., 2015). BPA exposure changes gene ex-
pression by modulating transcription factors and perturb-
ing the epigenome (Dolinoy et al., 2007; Yaoi et al., 2008;
Lam et al., 2011; Singh and Li, 2012), the latter effect can
have transgenerational consequences (Santangeli et al.,
2019). Finally, BPA disrupts double-stranded DNA repair
mechanisms and increases oxidative stress (Iso et al.,
2006; Allard and Colaiácovo, 2010; Durovcova et al.,
2018)
Rodents have been used extensively to model human

neurodevelopmental disorders, such as ASD. The molec-
ular perturbations underlying rodent models of ASD result
in social deficits, repetitive behaviors, and cognitive in-
flexibility (Moy et al., 2006; Ellegood and Crawley, 2015;
Kazdoba et al., 2016). In mice, prenatal BPA exposure
elicits several ASD-like phenotypes, including increased
anxiety, repetitive behaviors, sensory processing difficul-
ties, and impairments in memory and social behaviors.
The impairments observed in mice exposed to BPA sug-
gest that this toxin might contribute to human ASD or re-
lated neurodevelopmental difficulties (Wolstenholme et
al., 2013; Hu et al., 2022).
Modeling human BPA exposure in animals is difficult

because the half-life of BPA is;6 h, and these measure-
ments only represent a snapshot of exposure (Thayer et
al., 2015). Human samples do not provide information
regarding the range of BPA exposure or the impact of
exposure to the toxin at critical periods of human devel-
opment. Understanding the developmental consequen-
ces of BPA exposure, which is known to modify DNA
methylation, is particularly important because a single
application of a DNA methyltransferase inhibitor in mice
at postnatal day (P)7 induces life-long behavioral abnor-
malities and deficits in synaptic plasticity (Subbanna et
al., 2016).
Unlike the complications involved in exposing common

laboratory mammals to toxins because of their in utero
development, chemical agents can be efficiently and ef-
fectively delivered to embryonic and larval zebrafish ex
utero. It has been found that exposure to relatively high
concentrations of BPA early in the zebrafish life cycle in-
creases mortality and deformity, and delays hatching.
Interestingly, despite general agreement regarding the
adverse effects of high levels of BPA on mortality, body
shape, and time of hatching, the reported threshold con-
centration of BPA for producing these effects varies
greatly (Lam et al., 2011; Saili et al., 2012; Tse et al., 2013;
Wang et al., 2013; Martínez et al., 2018; Olsvik et al.,
2019; Coumailleau et al., 2020; Gyimah et al., 2021;
Huang et al., 2021; Scopel et al., 2021; Sundarraj et al.,
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2021; Wu et al., 2021). Furthermore, some studies have
found that BPA exposure modifies locomotion in zebra-
fish, whereas others have not (Saili et al., 2012; Wang et
al., 2013; Kinch et al., 2015; Fraser et al., 2017; Olsvik et
al., 2019; Coumailleau et al., 2020; Gyimah et al., 2021;
Wu et al., 2021). Given the complexity of the underlying
mechanisms of behavior, it is not surprising that BPA
exposure can produce widely disparate behavioral re-
sults. Nonetheless, exposing larval zebrafish to BPA
clearly modifies neural circuitry involved in locomotion
and, therefore, BPA exposure during development would
be expected to cause behavioral alterations. Here, we in-
vestigated the consequences of early BPA exposure on
sensory processing, locomotion, and anxiety in zebrafish
larvae, as well as on anatomy.

Materials and Methods
Animals
The TL strain of zebrafish was used for all experiments

except for those in which brain volume was measured.
For the measurements of brain volume, we used trans-
genic zebrafish that express the photoconvertible protein
Kaede pan-neuronally Tg(elavl3:Kaede)RW0130a (RRID:
ZFIN ID: ZDB-GENO-060619–2; Sato et al., 2006).

BPA exposure
After zebrafish eggs were collected, they were placed

in E3 water (5 mM NaCl, 0.33 mM MgSO4, 0.33 mM

CaCl2, 0.17 mM KCl, 1 mM HEPES, 10�5% methylene
blue, pH 7.0) and transferred to the laboratory for stag-
ing. Embryos were staged to ;4–5 h after fertilization;
they were then placed in Petri dishes containing E3
water alone, E3 water containing 0.05% dimethyl sulf-
oxide (DMSO), or E3 water containing BPA (10–50 mM)
in 0.05% DMSO, which were put into an incubator (14/10
h light/dark; 28.5°C). Each day, the dishes were cleaned
by replacing the solutions in the Petri dishes, and any
dead embryos were removed and counted. On the fifth
day of exposure, all solutions were replaced with E3, and
the larvae were maintained in E3 until testing at 6 d post-
fertilization (dpf). On testing day, fish were fed premixed
food (Hatchfry Encapsulon) in E3. This food was removed
4 h later, the solution in the Petri dishes was replaced with
fresh E3, and then experimental protocols were begun
(�1 h after the removal of the food).

Analyses of survival and deformity
In experiments designed to determine minimum BPA

concentrations that caused death, deformities, or hatch-
ing delays, we assayed the effect of varying concentra-
tions of BPA on these variables. By the end of the sixth
day, the total number of fish that survived was calculated
for each plate of embryos to determine mortality (0 = alive
at 6 dpf, 1 =dead at 6 dpf). Concurrently, deformities of
the surviving embryos were recorded (0 = no deformity at
6 dpf, 1 =deformity at 6 dpf) and photographed. Common
deformities included spinal/tail bends, cranial malforma-
tions, and yolk and pericardial edema. Failure to escape
the chorion by 6 dpf was also classified as a deformity.

Animals with deformities were euthanized on 6 dpf and
were not used for behavioral experiments. Finally, to de-
termine whether hatching was delayed (Kimmel et al.,
1995), the day the embryos escaped from their chorions
was recorded (1 = hatched after 3 dpf or failed to hatch,
0 =hatched before 3 dpf).

Behavioral protocols
Audiogenic startle
To measure the C-start reflex, surviving and nonde-

formed zebrafish larvae (6 dpf) were placed into individual
wells with a 1.63-cm diameter (;3 ml of E3) in a 24-well
plate. The plate was then positioned on a lightbox (Gagne
Inc.) next to a speaker. The volume of the speaker was
calibrated in air with a decibel meter (re 20 mPa). After a
30-min period of acclimation, six auditory/vibrational (AV)
pulses (200Hz, 108 dB re 20 mPa, 2-ms pulse duration)
were delivered every 5min. A high-speed camera (Mako
U-029B; Allied Vision) positioned above the plate was
used to record (500 fr/s) the responses of the larvae to the
AV pulse. The determination of whether or not an AV
pulse elicited a C-start was made by visual inspection of
the video recording by a blind observer. Long-latency
startle responses (�26ms) were not counted as C-starts;
such long-latency startles are mediated by different neu-
rocircuitry than are the shorter latency C-starts (Liu and
Fetcho, 1999; Burgess and Granato, 2007; Kohashi and
Oda, 2008).

Prepulse inhibition (PPI)
Zebrafish larvae (6 dpf) were placed into individual

wells (see above) and allowed to acclimate for 30min.
After this acclimation period, six AV stimuli were deliv-
ered (5-min intertrial interval), and C-start reflexes were
recorded and quantified as described above. AV stimuli
were alternatively delivered with or without a prepulse
auditory stimulus. The prepulse stimulus was 100ms in
duration (200 Hz, 55 dB re 20 mPa) and preceded the
startle stimulus (2-ms duration, 500 Hz, 108 dB re 20
mPa) by 100ms. The relative difference in startles with
and without the prepulse stimulus was used to calcu-
late the PPI index [(percentage startle response with-
out the prepulse stimulus – percent startle response
with the prepulse stimulus)/(the average startle re-
sponse without a prepulse)].

Short-term habituation (STH)
To measure STH, larvae (6 dpf) were placed into individ-

ual wells in a 24-well plate as described above. After
30min of acclimation, 120 AV pulses (200Hz, 2-ms dura-
tion, 108 dB) were delivered at 1Hz, followed by a postt-
est AV stimulus 30 s after the last training stimulus. The
responses to the training and posttest pulses were video
recorded, and only short-latency (C-start) responses were
counted for the determination of habituation.

Thigmotaxis
Twenty zebrafish larvae (6 dpf) were put into a Petri dish

(142 mm in diameter) containing ;100-ml E3; the dish
was placed inside a custom-made testing chamber with
overhead illumination. The larvae were given 30min to
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acclimate, after which a camera (Casio Exilim EX-ZR1000,
EX-ZR800, or EX-ZR100; Casio America) was used to record
a single image of the positions of all 20 fish in relation to the
center and edge of the Petri dish. Using ImageJ (RRID:SCR_
003070; Schneider et al., 2012), an average plate position for
the fish was determined from the image; for statistical analy-
ses, each plate average equaled an n of 1.

Locomotion
Zebrafish larvae (6 dpf) were placed individually into a Petri

dish (36 mm in diameter) containing ;8-ml E3. After 1min,
the movement of the fish was recorded for 20min (50 f/s) by
a camera (Casio Exilim EX-ZR1000, EX-ZR800, or EX-ZR100;
Casio America) positioned above the Petri dish. The position
of each fish during the 20-min observation period was
sampled every 41.67ms and the total distance (cm) the fish
moved was calculated using Behavioral Cloud software.
Also, the path taken by each fish was determined by sam-
pling the fish’s position every 1 s. Using ImageJ, a blind ob-
server then counted the total number of circles made by the
fish during the 20-min period; this number was used as a

measure of repetitive behavior (circling). Movements were
considered to constitute a circle if the path taken by a fish fol-
lowed a circular trajectory. A circle-like movement was only
counted if the path was 75% complete (closed) before a
change in direction. Additionally, circles that included more
than half of the dish were not included in the circle count be-
cause they were difficult to distinguish from mere swimming
in a circular enclosure (the dish).

Anatomical measurements
Head size
Zebrafish (6 dpf) were put into tricaine (MS-222;

200mg/l) and then positioned dorsal side up in 1%
low melting point agarose. The fish were then imaged
using an AmScope stereo microscope and photo-
graphed with an attached digital camera. ImageJ was
used to determine the area of the dorsal portion of the
head in the photographs by a blind observer. The
head was outlined, starting posterior to the eyes, as
indicated in Figure 1.

Figure 1. Image of a zebrafish larva illustrating the area used for head size measurements. Dorsal view of a zebrafish larvae embed-
ded in low melting point agarose. Red lines outline the area measured to determine the head size of larvae. Scale bar: 150mm.

Table 1: Statistical analyses

Data structure Type of test Power (a = 0.05)
a(Fig. 2A) Non-normally distributed One-way ANOVA test 0.92
b(Fig. 2B) Non-normally distributed One-way ANOVA test 1.00
c(Fig. 2C) Non-normally distributed One-way ANOVA test 1.00
d(Fig. 2D) Normally distributed One-way ANOVA test 0.09
e(Fig. 3A) Normally distributed Unpaired t test 0.07
f(Fig. 3B) Non-normally distributed Unpaired t test 0.19
g(Fig. 3C) Normally distributed Unpaired t test 0.30
h(Fig. 4A) Non-normally distributed Unpaired t test 0.17
i(Fig. 4B) Non-normally distributed Unpaired t test 0.63
j(Fig. 4C) Normally distributed Unpaired t test 0.07
k(Fig. 5) Normally distributed Unpaired t test 0.63
l(Fig. 6A) Normally distributed Two-way ANOVA test (interaction) 1.00
m(Fig. 6B) Normally distributed One-way ANOVA test 1.00
n(Fig. 6C) Non-normally distributed One-way ANOVA test 0.79
o(Fig. 7) Normally distributed Unpaired t test 0.12
p(Fig. 8A) Normally distributed Unpaired t test 0.06
q(Fig. 8B) Normally distributed Unpaired t test 0.30
r(Fig. 9) Normally distributed Unpaired t test 0.36
s(Fig. 10B) Normally distributed Two-way ANOVA test (interaction) 0.05
t(Fig. 10B) Normally distributed Two-way ANOVA test (main effect) 0.06
u(Fig. 10C) Normally distributed Unpaired t test 0.06
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Brain size
Images of zebrafish (6 dpf) expressing the photoconver-

tible protein Kaede pan-neuronally driven by the ELAV3
promoter (Sato et al., 2006) were used to determine the
whole-brain volume and volumes of brain regions in
zebrafish exposed to BPA. To image zebrafish brains,
an LSM Pascal microscope (Zeiss) was used (488-nm
excitation) to construct a whole-brain image stack using
z-stacks (2-mm slices) and tiling. The tiles were stitched
together after the images were taken. In addition, we used
depth-dependent adaptive illumination to ensure ad-
equate detection of deeper brain regions. The calculated
volumes from the 2-mm slices were then summed to
determine the total volume for each region (forebrain,

midbrain, and hindbrain), and these values were then
added to quantify the total brain volume.

Pharmacology
All compounds were obtained from Sigma-Aldrich. BPA

(CAS 80-05-7) was dissolved in DMSO (CAS 67-68-5) to
make a final concentration of 0.05%.

Statistical analyses
Group comparisons were determined by unpaired t

tests or ANOVAs. When appropriate, Tukey’s HSD tests
were used for post hoc analyses. Table 1 includes a sum-
mary of the statistical analyses.

Figure 2. BPA exposure can increase mortality, deformity, and delays in hatching in zebrafish. A, Five days of exposure to BPA in-
creased mortality measured at 6 dpf according to a one-way ANOVA (F(5,174) = 3.56; p, 0.01). Tukey’s HSD post hoc tests revealed
that the group exposed to 50 mM BPA had significantly (p, 0.05) more mortality compared with the groups exposed to 0, 10, and
20 mM BPA. B, BPA exposure (5 d) increased the number of deformities measured at 6 dpf as indicated by a one-way ANOVA
(F(5,126) = 63.41; p, 0.001). Subsequent Tukey’s HSD post hoc tests demonstrated that the 40 and 50 mM groups had significantly
(p,0.001) more deformities than did the groups exposed to 0, 10, 20, and 30 mM BPA. Furthermore, the 30 mM BPA group had sig-
nificantly (p,0.01) more deformities than did the 0 mM BPA group. C, BPA exposure (5 d) caused hatching delays as indicated by a
one-way ANOVA (F(5,136) = 11.48; p, 0.001). Tukey’s HSD post hoc tests revealed that hatching in the group exposed to 50 mM

BPA was significantly (p, 0.05) more likely to be delayed compared with hatching in the 0, 10, 20, 30, and 40 mM BPA groups.
Furthermore, the fish in the 10 and 30 mM BPA groups demonstrated significantly (p, 0.01) more frequent delayed hatching than
did those in the 0 mM BPA group. D, Zebrafish exposed to BPA (5 d), and with no visible deformities, did not exhibit deficits in the
C-start reflex as shown by a one-way ANOVA (F(3,80) = 0.23; p=0.87). This and subsequent figures present means 6 SEM; * speci-
fies a significant difference between groups in this and subsequent figures.
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Results
Exposure to high levels of BPA increases mortality
and deformity in larval zebrafish
To determine the highest dose of BPA exposure that

does not elicit increased mortality and deformity, or

reduced sensorimotor responsiveness, we exposed ze-
brafish larvae to several doses of BPA for 5 d (Fig. 2).
DMSO (0.05%) was used as the vehicle control and was
included in the control group’s solutions for all experi-
ments investigating BPA exposure. Extended exposure
(5 d) to E3 or DMSO (0.05%) alone did not significantly
alter the rate of larval mortality (Fig. 3A) or deformity [data
not shown; no deformities were observed for either the E3
group (0/66) or DMSO group (0/40)]. Furthermore, there
were no hatching delays (Fig. 3B) or reductions in sensori-
motor responsiveness, as measured by startle to an audi-
tory stimulus (Fig. 3C), in either the E3 or DMSO groups.
High concentrations (50 mM) of BPA, however, increased
mortality (Fig. 2A; Table 2). There was also an increased
likelihood of deformity with levels of BPA�30 mM (Fig. 2B;
Table 2). Relatively low concentrations (10 mM) of BPA sig-
nificantly delayed hatching, as did higher concentrations
(�30 mM; Fig. 2C; Table 2), this effect might indicate a
neurodevelopmental delay or changes to the chorion
that make escaping the chorion more difficult. No sig-
nificant reductions in audiogenic startle rate were ob-
served with BPA concentrations�30 mM (Fig. 2D; Table
2). Animals with visually detectable deformities were
not used to test for startle responses. Consequently,
no zebrafish larvae exposed to concentrations of
BPA�40 mM were tested for startle.
A recent report by Scopel et al. (2021) investigated the

effect of 25 mM BPA on mortality, deformity, and hatching
in larval zebrafish. Because Scopel et al. (2021) only ex-
posed zebrafish to 25 mM BPA for 3 d, we investigated the
consequences of a 5-d exposure of larvae to 25 mM BPA.
As shown in Figure 4A, larvae exposed to 25 mM BPA did
not exhibit a statistically significant increase in mortality
(BPA group=3.336 3.33) compared with the vehicle con-
trol group (DMSO group=0.006 0.00). Furthermore, no
deformities were observed in either the BPA group (n=29)
or the DMSO control group (n=30; data not shown). We
did detect (Fig. 4B) a significant delay in hatching in the
BPA group (43.336 9.20) compared with the DMSO
group (16.6766.92). With respect to the percent evoked
startle response, there were no significant differences ob-
served between the BPA group (92.5362.12) and the
DMSO group (93.8962.19; Fig. 4C). Based on these find-
ings, 25 mM was selected as the experimental concentra-
tion to investigate the behavioral and anatomic effects of
BPA exposure from 0 to 5 dpf.

Table 2: Mortality, deformity, hatching delays, startle response in zebrafish larvae exposed to BPA

BPA Mortality; mean and SEM Deformity; mean and SEM Hatching delays; mean and SEM Startle response; mean and SEM
0 mM 16.676 6.92%

n=30
0.006 0.00%
n=25

4.006 4.00%
n=25

88.676 4.38%
n=25

10 mM 13.336 6.31%
n=30

11.546 6.39%
n=26

44.836 9.40%
n=29

91.306 3.61%
n=23

20 mM 20.006 7.43%
n=30

8.336 5.76%
n=24

28.006 9.17%
n=25

93.186 4.74%
n=22

30 mM 33.336 8.75%
n=30

30.006 10.51%
n=20

55.006 11.41%
n=20

92.866 4.85%
n=14

40 mM 23.336 7.85%
n=30

100.006 0.00%
n=23

56.526 10.57%
n=23

50 mM 53.336 9.26%
n=30

100.006 0.00%
n=14

95.006 5.00%
n=20

Figure 3. Extended exposure to DMSO does not increase mortality,
delays in hatching, or abnormal sensorimotor responses. A,
Exposure of zebrafish larvae to DMSO (0.05%) from 0 to 5 dpf did
not change the mortality rate (DMSO group=22.006 5.92%, n=50)
compared with a control group exposed only to E3 (E3 group=
18.756 4.39%, n=80) according to an unpaired t test (t(128) = 0.45,
p=0.66). B, Extended exposure (5 d) to DMSO (0.05%) did not sig-
nificantly delay hatching in zebrafish compared with fish exposed to
E3 solution (DMSO group=2.506 2.50%, n=40; E3 group=7.586
3.28%, n=66; unpaired t test; t(104) = 1.09, p=0.28). C, An unpaired
t test (t(104) = 1.45, p=0.15) revealed no significant differences in star-
tle response probability between the DMSO group (88.336 3.00%,
n=40) and the E3 group (93.186 1.87%, n=66).
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BPA exposure disrupts sensorimotor gating in
zebrafish larvae
As measured by PPI, deficits in sensorimotor gating

have been observed in humans with neurodevelopmental
disorders, such as schizophrenia and ASD (Braff et al.,
1978, 2001; Grillon et al., 1992; McAlonan et al., 2002;
Frankland et al., 2004; Perry et al., 2007; Kohl et al., 2013;
but see Ornitz et al., 1993; Madsen et al., 2014). Further,
animal models of these developmental disorders also dis-
play deficits in PPI (Dulawa et al., 1997; Swerdlow and
Geyer, 1998; Burgess and Granato, 2007; Bickel et al.,
2008; Möhrle et al., 2021). To determine whether BPA ex-
posure causes deficits in PPI, we treated zebrafish with
25 mM BPA from 0 to 5 dpf. At 6 dpf, we gave BPA-treated
(experimental) and DMSO-treated (control) larvae brief
auditory stimuli to elicit a C-start, either with or without a
prepulse stimulus. We calculated the level of PPI for ex-
perimental and control zebrafish. As shown in Figure 5,
prolonged exposure to 25 mM BPA significantly reduced
PPI (BPA group=34.746 4.03) compared with vehicle-
treated controls (DMSO group=47.9964.08). Thus, BPA
exposure appears to affect the neural circuitry mediating
sensorimotor gating.

BPA exposure disrupts STH in zebrafish larvae
Neurodevelopmental disorders exhibit cognitive diffi-

culties, including deficits in habituation, suggesting prob-
lems processing sensory information (Barry and James,
1988; Bolino et al., 1992, 1994; Braff et al., 1992;
Martineau et al., 1992; Vivanti et al., 2018; Bharath et al.,
2020; Gandhi et al., 2021; Jamal et al., 2021). Similar to
humans with neurodevelopmental disorders, mouse mod-
els of neurodevelopmental disorders also exhibit reduc-
tions in habituation (Dulawa et al., 1997; Restivo et al.,
2005; Bickel et al., 2008; Lovelace et al., 2016; Möhrle et
al., 2021). The extensive literature on habituation in zebra-
fish larvae (Eaton et al., 1977; Roberts et al., 2011, 2013,
2016, 2019; Wolman et al., 2011) makes this model orga-
nism particularly well suited for investigating abnormal
habituation resulting from neurodevelopmental disor-
ders. To test the effect of chronic exposure to BPA on
STH in zebrafish larvae, we gave larvae 120 AV pulses
(1 Hz). There was significantly less habituation (more
startle responses) during training in BPA-treated lar-
vae (BPA group = 10.256 0.98 startles) than in the con-
trol group (DMSO group = 3.456 0.11; Fig. 6A,B). The
BPA-treated group also showed significantly less ha-
bituation (higher probability of startle) on a posttest
taken 30 s after the end of habituation training (BPA
group = 0.406 0.11) than did the control group (DMSO
group = 0.056 0.05; Fig. 6C).

Thigmotaxis was not altered by exposure to BPA
Organisms tend to move toward the edges of an open

area when anxious (thigmotaxis), and their position in
space can serve as a measurement of anxiety (Christmas
and Maxwell, 1970; Prut and Belzung, 2003; Schnörr et
al., 2012; Ahmad and Richardson, 2013; Walz et al.,
2016). To assess whether 5 d of exposure to BPA affects

Figure 4. Exposure to 25 mM BPA does not alter mortality, or
startle probability in zebrafish larvae, but does delay hatching.
A, Bathing fish in BPA for 5 d did not significantly increase mor-
tality (BPA group, n=30) compared with bathing them in the ve-
hicle (DMSO group, n=30; unpaired t test; t(58) = 1.00, p=0.32).
B, BPA treatment significantly delayed hatching (BPA group,
n=30; DMSO group, n=30; unpaired t test, t(58) = 2.32,
p=0.02). C, The startle probability of BPA-treated larvae (BPA
group, n=29) did not differ from that of vehicle-treated larvae
(DMSO group, n=30; unpaired t test; t(57) = 0.45, p=0.66).

Figure 5. BPA exposure disrupts PPI in zebrafish larvae. Effect
on PPI of exposure to 25 mM BPA for 5 d (BPA group, n=83)
compared with that of exposure to the vehicle (DMSO group,
n=83; unpaired t test, t(164) = 2.31, p, 0.05).
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thigmotaxis in zebrafish, we quantified their propensity
to thigmotax when put into a Petri dish (142 mm in diame-
ter). As shown in Figure 7, we did not observe a significant
difference between BPA-treated zebrafish (BPA group=

17.276 0.69 mm) and control zebrafish (DMSO group=
16.406 0.89 mm) with respect to their distance from the
dish’s edge. Thus, BPA exposure did not increase anxiety in
zebrafish, at least as measured by this assay.

BPA exposure did not modify locomotion in zebrafish
larvae
In contrast to the results of Saili et al. (2012), we did not

find that BPA exposure increased locomotion. The BPA
group traveled 418.866 22.33 cm during the 20-min test
period, whereas the control (DMSO) group traveled
407.336 30.62 cm (Fig. 8A). We also tested whether BPA
exposure increased the propensity for larvae to perform
repetitive behaviors (Dwivedi et al., 2019). For this test,
we quantified the number of circles made by zebrafish lar-
vae during the same 20-min test period (Fig. 8B). The
number of circles made during swimming by the BPA-
treated group (19.4162.22) was not different from the
number made by the DSMO-treated group (23.906 2.18;
Fig. 8B). Thus, BPA exposure did not produce any signifi-
cant changes in this repetitive behavior.

Head size and brain volume were unchanged in
zebrafish larvae by BPA exposure
We wished to know whether BPA exposure affects

head size in zebrafish larvae. Accordingly, we measured

Figure 6. BPA exposure reduces STH. A, Response rates during habituation training of BPA-exposed fish (n=20) and DMSO-
treated fish (n=20). Data were binned as a running average of five consecutive auditory pulses. According to a two-way ANOVA,
the number of responses during training and the probability of startle at 30 s posttest produced a significant interaction (F(1,76) =
27.24; p, 0.01). B, Results of a one-way ANOVA, subsequent to the two-way ANOVA in A, comparing the number of startle re-
sponses during habituation training by the BPA-treated group to the DMSO-treated group. This analysis revealed that the BPA
group habituated less than did the DMSO group (F(1,38) = 30.58; p, 0.001). C, Results of a one-way ANOVA comparing the number
of startle responses evoked on the 30 s posttest in the BPA-treated and DMSO-treated groups (F(1,38) = 8.10; p, 0.01).

Figure 7. Thigmotaxis was not increased in zebrafish exposed
to BPA. The mean distance from the edge of the experimental
dish during swimming in the BPA-exposed group (n=14) and
the DMSO-treated group (n=15; t test, t(27) = 0.77, p=0.45).

Research Article: New Research 8 of 13

May/June 2022, 9(3) ENEURO.0020-22.2022 eNeuro.org



the area of the dorsal portion of the head, as indicated in
Figure 1. We found no difference in head size between a
group of zebrafish exposed to BPA for 5 d (BPA group=
89,491.076 1231.97mm2) and a control group (DMSO
group = 86,742.8761145.39 mm2; Fig. 9). Thus, our
BPA treatment did not affect larval head size.
We also examined whether brain volume was altered

in larvae exposed to BPA. Therefore, we measured the
volume of the forebrain, midbrain, and hindbrain in fish
treated with BPA or DMSO alone. We observed no
significant differences in the volume of the forebrain
(BPA group = 12,792,608.936 563,489.39 mm3; DMSO
group = 13,046,271.336 722,424.18 mm3), midbrain
(BPA group = 9,472,418.036302,444.26 mm3; DMSO
group = 9,618,611.83 6 324,266.03 mm3), and hind-
brain (BPA group = 15,168,202.246 594,253.33 mm3;
DMSO group = 15,168,013.016468,219.30 mm3; Fig.
10A). Additionally, we summed these brain area vol-
umes to determine whole-brain volume in the larvae.
The whole-brain volume did not differ significantly in the
BPA-treated (37,433,229.206 1,133,165.488) and the vehi-
cle-treated (DMSO=37,832,896.176 1,281,757.20) groups
(Fig. 10B).

Discussion
Here, we examined the effect of early exposure to BPA,

an environmental toxin, on development in the zebrafish.
To date, most investigations of the behavioral ramifica-
tions of BPA exposure have focused on locomotion; there
has been little emphasis on sensory processing despite
evidence that humans and animal models of neurodeve-
lopmental disorders commonly involve disruptions of sen-
sory processing, including PPI and habituation (Braff et
al., 1978, 1992; Barry and James, 1988; Bolino et al.,
1992, 1994; Grillon et al., 1992; Martineau et al., 1992;
Dulawa et al., 1997; Swerdlow and Geyer, 1998; Braff et
al., 2001; McAlonan et al., 2002; Frankland et al., 2004;
Restivo et al., 2005; Burgess and Granato, 2007; Perry et

al., 2007; Bickel et al., 2008; Kohl et al., 2013; Lovelace et
al., 2016; Vivanti et al., 2018; Bharath et al., 2020; Gandhi
et al., 2021; Jamal et al., 2021; Möhrle et al., 2021; but
see Ornitz et al., 1993; Madsen et al., 2014). Both PPI and
habituation test the ability of an organism to ignore un-
necessary sensory information. We found reductions in
PPI and habituation (during and 30 s after training) of the
C-start reflex in larvae exposed to BPA (Figs. 5, 6).
Because the neural circuitry and molecules underlying
these two behavioral phenomena are well-described in
larval zebrafish (Liu and Fetcho, 1999; Burgess and
Granato, 2007; Kohashi and Oda, 2008; Roberts et al.,
2011, 2019; Wolman et al., 2011; Kohashi et al., 2012;
Bergeron et al., 2015; Marsden and Granato, 2015;
Wolman et al., 2015; Tabor et al., 2018; Nelson et al.,
2020; Zoodsma et al., 2020), elucidation of the BPA-in-
duced pathology should be relatively straightforward.
Furthermore, habituation and PPI of the C-start reflex are
behaviors that are well-suited for high-throughput drug
screening, which should facilitate the development of
novel treatments to mitigate the effects of BPA (Rihel et
al., 2010; Thyme et al., 2019).
We found that 25 mM BPA was the highest level of expo-

sure (5 d) that did not result in an increase in gross de-
formities and significant mortality (Figs. 2, 4). Generally,
this finding is consistent with the literature; however, the
exact level of BPA to elicit these effects varies greatly
(Lam et al., 2011; Saili et al., 2012; Tse et al., 2013; Wang
et al., 2013; Martínez et al., 2018; Olsvik et al., 2019;
Coumailleau et al., 2020; Gyimah et al., 2021; Huang et
al., 2021; Scopel et al., 2021; Sundarraj et al., 2021; Wu et
al., 2021). The differences in the reported concentrations
of BPA required to elicit deformity and mortality likely re-
sult from variation in experimental protocols or the strain
of zebrafish used. Similar to deformity and mortality,
hatching delays have more commonly been reported with
higher levels of BPA (Martínez et al., 2018; Scopel et al.,
2021; but see Olsvik et al., 2019 compared with lower lev-
els of BPA (Gyimah et al., 2021; Huang et al., 2021; Gu et
al., 2022; but see Sundarraj et al., 2021). By contrast, very

Figure 9. Exposure to BPA did not change head size in zebra-
fish larvae. Mean volume of the head in BPA-treated (BPA
group, n=30) and vehicle-treated (DMSO group, n=30) fish
(t(58) = 1.63, p=0.11).

Figure 8. BPA exposure did not modify locomotion in zebrafish
larvae. A, Mean distance traveled by BPA-exposed (n=32) and
DMSO-exposed (n=31) fish (unpaired t test; t(61) = 0.30,
p=0.77). B, Number of circles made by larvae exposed to BPA
(BPA group, n=32) and the vehicle (DMSO group, n=31; t(61) =
1.44, p=0.15).
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low levels of BPA have been reported to accelerate hatch-
ing (Qiu et al., 2016; Coumailleau et al., 2020). We ob-
served hatching delays at BPA concentrations as low as
10 mM, as well as at higher concentrations (Figs. 2C, 4B).
Changes to the chorion might be responsible for the ob-
served delays; however, we think it is more likely that hatch-
ing latencies stem from delays in neural or skeletomuscular
development. Notice that early BPA exposure in our study
did not diminish the probability of startle (C-start reflex),
which suggests that the BPA-treated zebrafish were not in
poor health at the time of testing (Figs. 2D, 4C).
In humans, neurodevelopmental disorders such as ASD

are often comorbid with anxiety (Lai et al., 2019), animal
models of ASD also tend to exhibit comorbidity with anxi-
ety, as indicated in such tasks as the open field test in
mice (Hung et al., 2008; Blundell et al., 2009; Schmeisser
et al., 2012; Clipperton-Allen and Page, 2014). In 5-dpf
zebrafish larvae, Fraser et al. (2017) found that BPA ex-
posure (10 mM) increased anxiety, as measured by thig-
motaxis. By contrast, we did not detect a change in
thigmotaxis despite using a higher concentration of BPA
(25 mM; Fig. 7). While several experimental parameters
(see below) differed between our experiments and those of

Fraser et al. (2017), they measured the effect of BPA expo-
sure while the toxin was present at the time of testing,
whereas BPA was not present during behavioral testing in
our experiments. Therefore, the enhanced thigmotaxis ob-
served by Fraser et al., may be an acute effect of BPA. In ad-
dition, we used a larger behavioral chamber than did Fraser
et al. (2017). Furthermore, our measure of thigmotaxis was
the position of the zebrafish as a continuous variable (dis-
tance from the edge; Roberts et al., 2020) rather than the
level of activity within a defined zone in the chamber
(Schnörr et al., 2012). The larger chamber combined with a
continuous variable should have increased the likelihood of
detecting baseline thigmotaxis compared with alternative
methods. As such, we think the different concentrations of
BPA or exposure models most likely account for the differ-
ent results. Consequently, we believe that the differences
between our results and those of previous studies of BPA’s
effects on thigmotaxis in zebrafish can be ascribed to differ-
ences in experimental variables, including differences in the
concentrations of BPA used.
Numerous studies have found that BPA affects locomo-

tion in zebrafish. However, there is little consistency in re-
ported behavioral outcomes (Saili et al., 2012; Wang et

Figure 10. Brain volume was not changed in zebrafish larvae by BPA exposure. A, 3D reconstruction of a larval brain. Sample con-
focal images of optical sections of a brain exposed to DMSO. Scale bar: 150mm. B, Mean volumes of the forebrain (FB), midbrain
(MB), and hindbrain (HB) in BPA-exposed (BPA group, n=15) fish compared with the vehicle-exposed fish (DMSO group, n=15). A
two-way ANOVA revealed no significant interaction or group effect (interaction, F(2,84) = 0.03; p=0.75: group, F(1,84) = 0.10; p=0.97.
C, Mean volume of the whole brain in BPA-exposed fish (BPA group, n=15) and vehicle-exposed fish (DMSO group, n=15). The
difference between the two groups was not significant (t(28) = 0.23, p=0.82).
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al., 2013; Kinch et al., 2015; Fraser et al., 2017; Olsvik et
al., 2019; Coumailleau et al., 2020; Gyimah et al., 2021;
Wu et al., 2021). We observed no changes in the total dis-
tance moved or in repetitive behavior (circling; Fig. 8) in
BPA-exposed fish. Possibly, the disparities in results of
the studies on locomotion can be attributed to methodo-
logical differences. Fraser et al. (2017) observed that the
presence or absence of a light cycle and the size of the
testing chamber could substantially influence BPA’s ef-
fect on locomotion. Fraser and colleagues also claimed
that BPA-induced hyperlocomotion requires dark rearing,
and our larvae were reared with a day/night cycle.
BPA has been reported to modify neural structure and

function in mice (Inadera, 2015) and to increase neuro-
genesis in the hypothalamus of zebrafish (Kinch et al.,
2015). Studies of BPA’s effect on neurogenesis through-
out the central nervous system have yielded conflicting
reports (Gyimah et al., 2021; Gu et al., 2022). We found no
BPA-related change in the volume of the forebrain, mid-
brain, or hindbrain, or in total brain volume (Fig. 10). This
suggests that the PPI and habituation deficits could not
have resulted from any gross changes in brain morphol-
ogy. However, our results do not preclude the possibility
of more subtle BPA-induced modifications in neural
morphology.
Model developmental systems such as larval zebrafish,

which permit in-depth analyses of toxin-induced molecu-
lar, cellular, and behavioral changes, are important for
understanding how chronic exposure to environmental
toxins such as BPA disrupts neural development and be-
havior. The behavioral assays used in our study revealed
the disruptive effects of BPA exposure on sensory proc-
essing and learning in zebrafish larvae. Our finding that
both PPI and STH of the C-start are abnormal in BPA-ex-
posed larvae should facilitate the identification of the neu-
robiological causes of the perturbations of sensory
processing caused by early BPA exposure.
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