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Epigenetic modifications on the chromatin do not occur in isolation. Chromatin-associated proteins and their modification

products form a highly interconnected network, and disturbing one component may rearrange the entire system. We see

this increasingly clearly in epigenetically dysregulated cancers. It is important to understand the rules governing epigenetic

interactions. Here, we use the mouse embryonic stem cell (mESC) model to describe in detail the relationships within the

H3K27-H3K36-DNA methylation subnetwork. In particular, we focus on the major epigenetic reorganization caused by

deletion of the histone 3 lysine 36 methyltransferase NSD1, which in mESCs deposits nearly all of the intergenic

H3K36me2. Although disturbing the H3K27 and DNA methylation (DNAme) components also affects this network to

a certain extent, the removal of H3K36me2 has the most drastic effect on the epigenetic landscape, resulting in full inter-

genic spread of H3K27me3 and a substantial decrease in DNAme. By profiling DNMT3A and CHH methylation (mCHH),

we show that H3K36me2 loss uponNsd1-KO leads to a massive redistribution of DNMT3A andmCHH away from intergenic

regions and toward active gene bodies, suggesting that DNAme reduction is at least in part caused by redistribution of de

novo methylation. Additionally, we show that pervasive acetylation of H3K27 is regulated by the interplay of H3K36 and

H3K27 methylation. Our analysis highlights the importance of H3K36me2 as a major determinant of the developmental

epigenome and provides a framework for further consolidating our knowledge of epigenetic networks.

[Supplemental material is available for this article.]

Our geneticmaterial, DNA, iswrapped aroundnucleosomes to form
chromatin. Chromatin can be chemically modified to determine its
functional properties. Such epigenetic modifications are deposited
by enzymes in a finely controlled fashion. The individual compo-
nents of a cell’s epigenetic landscape are tightly interwoven
(Strahl and Allis 2000; Janssen and Lorincz 2022). Steric changes in-
troduced by modifications to some histone residues affect the prob-
ability of altering nearby or interacting residues. Chromatin
modifying enzymes can be either recruited by or antagonized by
specific epigenetic modifications. Some epigenetic “writers” such
as de novo DNAmethyltransferases have the ability to read the his-
tone code. In turn, DNAmethylation affects the binding affinity for
many other chromatin writers (Soshnev et al. 2016). We are now
aware that disturbing one component of the epigenetic puzzle has
a domino effect on the entire interconnected system. Many well-
founded individual pieces of evidence have been collected

(Janssen and Lorincz 2022), but they are too often analyzed in isola-
tion. There is a need formore systematic integrated analyses of those
data sets to fully uncover the underlying relationships. Here, we
borrow an approach fromnetwork analysis to isolate a small, highly
interconnected epigenetic subnetwork and dissect it in detail.

The most fundamental epigenetic relationships exist at the
level of an individual residue. A given lysine of a histone molecule
can only bemodified in oneway at any given time: anH3K27mol-
ecule can exist as H3K27, H3K27me1, H3K27me2, and
H3K27me3, or H3K27ac: those states are mutually exclusive. The
next level of complexity is exemplified by topological constraints
introduced by nearbymodification. It is well documented that the
presence of higher-level methylation at lysine 36 (H3K36me2/3)
hinders higher-level methylation at lysine 27 (particularly
H3K27me3) (Schmitges et al. 2011; Yuan et al. 2011). Further
relationships reflect the reader/writer properties of chromatin
modifying enzymes and complexes. Polycomb repressive complex
2 (PRC2), the complex responsible for depositing H3K27

9These authors contributed equally to this work.
Corresponding author: jacek.majewski@mcgill.ca
Article published online before print. Article, supplemental material, and publi-
cation date are at https://www.genome.org/cgi/doi/10.1101/gr.276383.121.
Freely available online through the Genome Research Open Access option.

© 2022 Chen et al. This article, published in Genome Research, is available un-
der a Creative Commons License (Attribution-NonCommercial 4.0 Internation-
al), as described at http://creativecommons.org/licenses/by-nc/4.0/.

Research

32:825–837 Published by Cold Spring Harbor Laboratory Press; ISSN 1088-9051/22; www.genome.org Genome Research 825
www.genome.org

 Cold Spring Harbor Laboratory Press on June 16, 2022 - Published by genome.cshlp.orgDownloaded from 

mailto:jacek.majewski@mcgill.ca
https://www.genome.org/cgi/doi/10.1101/gr.276383.121
https://www.genome.org/cgi/doi/10.1101/gr.276383.121
http://genome.cshlp.org/site/misc/terms.xhtml
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://genome.cshlp.org/site/misc/terms.xhtml
http://genome.cshlp.org/
http://www.cshlpress.com


methylation, is capable of reading its own product (H3K27me2/3),
which can further enhance its catalytic activity (Zhang et al. 2015;
Holoch and Margueron 2017; Laugesen et al. 2019), while it is an-
tagonized by the presence of H3K36 methylation on the neigh-
boring lysine (Yuan et al. 2011; Finogenova et al. 2020). The
enzymes involved in depositing H3K36me1/2 are also capable of
“self-reading” (Sankaran et al. 2016). NSD1, the H3K36 methyl-
transferase that is central to this study, contains a PWWP domain
that is capable of recognizingnucleosomemodifications, however,
its relationship to H3K27 methylation has not been elucidated.

Another level of complexity reflects the relationships be-
tween histone and DNAmodifications. Several recent studies indi-
cate that the PWWP domains of the de novo methyltransferases,
DNMT3A and DNMT3B, are capable of recognizing H3K36 meth-
ylation and are preferentially recruited to regions marked by
H3K36me2/3 (Baubec et al. 2015; Weinberg et al. 2019). There is
also evidence that the maintenance methyltransferase, DNMT1,
may be recruited to the chromatin by interaction with histone
modifications (Rothbart et al. 2012; Nishiyama et al. 2020; Ren
et al. 2020). The reverse mechanisms—how DNA methylation af-
fects histone modifications—are not yet fully understood. There
clearly exists an inverse relationship between H3K27me3 and
DNA methylation. In undifferentiated cells, PRC2 nucleates at
unmethylated CpG islands (Jermann et al. 2014; Holoch and
Margueron 2017; Li et al. 2017). Full demethylation of the genome
in embryonic stem cells is associated with increased H3K27me3
levels (Brinkman et al. 2012; Hagarman et al. 2013; Reddington
et al. 2013; McLaughlin et al. 2019). However, in most cases the
molecular basis of interactions between histone modifying pro-
teins and DNA methylation has not been elucidated.

This work aims to consolidate the existing knowledge of the
epigenetic interaction network and synthesize it in a unified
framework to serve as amodel for understanding broader sets of in-
teractions. At the risk of being overly reductionist, we tackle only a
subcomponent of the network, delimited by the space ofmodifica-
tions to H3K27, H3K36, and DNA methylation. There is solid evi-
dence for strong interactions across this system (Li et al. 2021b),
and we hope that, althoughwe face only a small part of the overall
challenge, this attempt will provide a basis for later exploring
many additional connections. We focus on the central role
of H3K36me2 in shaping the epigenetic landscape of embryonic
stem cells (ESCs). In mouse ESCs (mESCs), H3K36me2 is highly
abundant (Schwämmle et al. 2016), and the disruption of
H3K36me2 deposition provides an exciting opportunity to ob-
serve its effect on related chromatin modifications. We use
mESCs cultured in high methylation serum/LIF conditions as a
model system (and unless otherwise stated, from here onward
whenwe refer to mESCs, wemean cells cultured in serum/LIF con-
ditions), because those cells are particularly amenable to epigenet-
ic manipulation and a wealth of data is already publicly available
and can be directly contrasted with additional data we generate
here. Our broader aim is to establish a set ofmolecularmechanisms
and rules governing those interactions to aid with understanding
and predicting the behavior of this system, particularly as a result
of perturbations occurring in disease and cancer.

Results

Distribution of H3K36, H3K27, and DNA methylation

in mouse ESCs

We illustrate (Fig. 1A; Supplemental Fig. S1A,B) the normal geno-
mic patterns of chromatin modifications in wild-type (WT)

mESCs grown in conventional serum+LIF conditions.
Methylation at the H3K36 residue, particularly H3K36me2/3, is
typically associated with active euchromatic regions of the ge-
nome. The patterns of H3K36me3 in mammalian cells are consis-
tent across all cell types (Roadmap Epigenomics Consortium
et al. 2015), including mESCs. This modification is highly en-
riched within actively transcribed gene bodies, with preference
for 3′ and exon-rich regions (McDaniel and Strahl 2017). The
lower H3K36me2 mark has a broader genomic distribution, and
in mESCs is present in nearly all the genome, although it is mark-
edly higher in intergenic regions than expressed gene bodies,
where it is upgraded to H3K36me3 (Weinberg et al. 2019). The
genomic distribution of H3K36me1 has historically not been pro-
filed partly owing to lack of reliable antibody, and because the
functional significance of this modification is not clear, we also
refrain from discussing it here. Methylation at the K27 position,
particularly the higher states H3K27me3/2, is generally associated
with transcriptionally inactive regions and facultative hetero-
chromatin. In mESCs, H3K27me3 is focused mostly within peaks
or narrow domains centered on unmethylated CGIs that serve as
nucleation sites for the PRC2 complex (Fig. 1A,E). PRC2 spreads
H3K27me3 outward from its nucleation sites (Højfeldt et al.
2018; Oksuz et al. 2018), but in mESCs the levels of H3K27me3
remain relatively low throughout most of the genome
(Schwämmle et al. 2016), particularly in regions marked with
H3K36me2 and H3K36me3. H3K27me2, in contrast, is able to
spread away from the nucleation sites and form large domains
that coincide with the distribution of H3K36me2 (Streubel
et al. 2018), but it appears to be excluded from regions occupied
by H3K36me3 (Supplemental Fig. S1A, active genes). Last,
H3K27me1 has a broad genomic distribution, but it tends to be
depleted from regions occupied by H3K27me2/3 and enhanced
within active gene bodies where it coexists with H3K36me3
(Ferrari et al. 2014; Lavarone et al. 2019).

The DNA methylome of mESCs is fairly uniform, with high
(nearly 80%) DNAme levels throughout the genome, particularly
in regions enriched for H3K36me2/3 (Fig. 1A), which is in line
with previous studies demonstrating recruitment of de novo
DNA methyltransferases DNMT3A/B to H3K36me2/3 marks
(Baubec et al. 2015; Weinberg et al. 2019). DNAme is excluded
from the majority of CGIs, reflecting the pluripotent state of
mESCs and the limited extent of stable silencing of regulatory
regions.

Nsd1-KO fully depletes intergenic H3K36me2 and allows nearly

uniform H3K27me3 spread

At least five histone methyltransferases—SETD2, NSD1, NSD2,
NSD3, and ASH1L—have been implicated in depositing
H3K36me1/2, whereas only SETD2 has been convincingly shown
to depositH3K36me3. The activity and relative importance of each
of those enzymes appears to be cell type–specific (Bennett et al.
2017; Farhangdoost et al. 2021; Li et al. 2021a). In mESCs, it has
been shown that depletion of the NSD1 histonemethyltransferase
by siRNA reduces the levels of H3K36me2 and alters the patterns of
lysine 27methylation (Streubel et al. 2018). Here, we used CRISPR-
Cas9 genome editing to create a full KO of Nsd1. We did not ob-
serve any increase in the numbers of dead cells or propensity to dif-
ferentiate. However, we noted a slightly reduced proliferation in
theNsd1-KOmESCs. To study the effects of the deletion of this im-
portant epigeneticmodifier on the epigenetic interactionnetwork,
we first performed tandem mass spectrometry analysis (Fig. 1B;
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Supplemental Tables S1, S2). We find that overall H3K36me2 lev-
els are greatly reduced by a factor of nearly 5 (30% inWT compared
with 6.3% in Nsd1-KO). Visual examination of coverage tracks in-
dicates that intergenic domains of H3K36me2 are reduced to neg-
ligible levels (Fig. 1C), whereas genic H3K36me2 remains mostly

unaffected, likely owing to the transcription-coupled activity of
SETD2. This observation is corroborated by genome-wide analysis
showing that regions with the greatest decrease are predominantly
intergenic (Fig. 1D; Supplemental Fig. S1A,B). This result allows us
to investigate the effect of depletion of H3K36me2 in a system
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Figure 1. Distributions of H3K36me2/3, H3K27me1/2/3, and DNAme in mESCs and their reorganization in Nsd1-KO. (A) Genome browser represen-
tation of H3K36me2/3, H3K27me1/2/3, and CpG methylation (mCG) in wild-type mESCs, illustrating differences in epigenetic modifications around
active versus inactive CpG islands (CGIs) and genes. The shaded areas indicate an inactive gene (purple) and an active gene (blue). The promoter
of the silent Camkk1 gene on the left is an example of an unmethylated CGI serving as a PRC2 nucleation site resulting in an H3K27me3 peak. (B)
Mass spectrometry (MS) analysis of H3K27 and H3K36 methylation levels (two replicates for each mark) in WT and Nsd1-KO, showing the gain of
H3K27me3 and the loss of H3K36me2 in Nsd1-KO. Statistical significance levels are indicated based on t-test P-values: (∗∗∗∗) [0, 0.0001); (∗∗∗)
[0.0001, 0.001); (∗∗) [0.001, 0.01); (∗) [0.01, 0.05); (ns) [0.05, 1]. (C) Genome browser representation of H3K36me2/3, H3K27me1/2/3, and CpG
methylation (mCG) in WT (green) versus Nsd1-KO (red). Tracks are normalized using MS ratios. The shaded areas indicate active genes (blue) and
an intergenic region (yellow). Genes transcribed at different levels are shown as examples, along with PRC2 nucleation sites (H3K27me3 peaks).
The WT genomic distribution of H3K36me2 is broad, and H3K27me3 is much more localized. Nsd1-KO results in a drastic loss of H3K36me2 outside
of transcribed genes, accompanied by nearly uniform spread of H3K27me3 into the regions vacated by H3K36me2. (D) Genome-wide correlation den-
sity plots of 10-kb binned ChIP-seq signal, MS normalized, shaded to indicate genic (blue) and intergenic (yellow) regions. In Nsd1-KO, the most drastic
changes occur in intergenic regions and affect H3K36me2, H3K27me3, DNAme, and to a lesser degree H3K27me1. (E) Signal intensity plots (normal-
ized by input and MS ratios) centered on transcription start sites (TSS) of inactive genes (n =12,759) showing spreading of H3K27me3 in Nsd1-KO,
indicated by the lower peak height and the higher enrichment in the surrounding regions in Nsd1-KO compared to WT. Replicate plots and additional
synthesis of the data are in Supplemental Figure S1. Data used in this figure are generated in this study (Replicate 1).
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where this mark normally occupies the majority of intergenic
space.

Previous studies noted distinct patterns of H3K27me1/2/3
deposition in mESCs following PRC2 inhibitor treatment
(Højfeldt et al. 2018). However, the mechanisms constraining
H3K27me3 to nucleation sites of PRC2 and preventing it from ex-
hibiting the broader distribution patterns of H3K27me1/2 have re-
mained unclear. To definitively test whether and to what extent
the antagonism byH3K36me2may constrainH3K27me3 distribu-
tion, we examined theH3K27methylation patterns in the absence
of NSD1 and intergenic H3K36me2. Following the total removal of
H3K36me2 from the intergenic space, H3K27me3 is able to spread
nearly uniformly and form broad domains (Fig. 1C,E) and its levels
increase by nearly 3.5-fold (Fig. 1B; Supplemental Tables S1, S2). As
a result, those broad H3K27me3 domains become depleted of
H3K27me1 as the lower mark is promoted to the highest methyl-
ation state (reduction of 1.5-fold), whereasH3K27me2 remains rel-
atively unaffected (global decrease from 37% to 35%).

Loss of H3K36me2 leads to a decrease in DNAme by retargeting

DNMT3A and redistributing de novo DNA methylation

We previously showed (Weinberg et al. 2019) the recruitment of
DNMT3A by H3K36me2 and a reduction of intergenic DNAme
subsequent to Nsd1-KO. Here, we further analyze the WGBS data
to specifically investigate de novo DNA methylation and confirm
that this decrease is indeed a direct result of change in DNMT3A
activity. Although methylation levels of the CG dinucleotide re-
flect both de novo and maintenance activities, the CHH triplet
cannot be symmetrically methylated and is thus not recognized
by the maintenance DNMT1methyltransferase. Although the lev-
els of CHH methylation in mESCs are much lower than those of

CpG methylation, they are measurable and are a direct metric of
de novo methyltransferase activity.

In line with our previous observations, in Nsd1-KO cells the
loss of intergenic H3K36me2 results in a massive redistribution
of DNMT3A away from intergenic regions, and toward actively
transcribed gene bodies (Fig. 2A,B), which are the only regions
that retain H3K36me2/3. Profiling the levels of CHH methylation
clearly shows that de novo DNA methylation is accordingly re-
duced in intergenic regions and enhanced in active gene bodies
(Fig. 2A,B). This suggests that the reduction of intergenic CpG
methylation is at least partly caused by a decrease in de novo
methylation.

DNA methylation has a limited effect on overall H3K27

methylation

Given the drastic effect of H3K36me2 reduction on H3K27me3
and DNAme, we turn our attention to the inverse relationships.
There is considerable evidence in literature that DNAme inhibits
the deposition of H3K27me3 (Jermann et al. 2014; Holoch and
Margueron 2017). In some model systems, particularly in
mESCs, this has been taken as indication that DNAme is the
main obstacle keeping H3K27me3 from spreading into broad ge-
nomic domains (Brinkman et al. 2012; Hagarman et al. 2013;
Reddington et al. 2013). Here, we take the opportunity to point
out some finer intricacies behind this relationship. To directly
compare the inhibitory effects of DNA methylation and
H3K36me2, we generated two independent ChIP-seq replicates
of H3K27me3 inDnmt-TKO andNsd1-KOmESCs. Those replicates
were matched within two experimental batches to ensure compat-
ibility andminimize effects of backgroundnoise andChIP efficien-
cy. First, we show (Fig. 3A) that the global changes in H3K27me
levels resulting from loss of DNAme are considerably smaller
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than those resulting from depletion of H3K36me2. Most notably,
H3K27me3 increases by 1.7-fold (compared with 3.5-fold increase
in Nsd1-KO). Examination of ChIP-seq coverage tracks indicates
that the changes of H3K27me1/2/3 distribution in Dnmt-TKO
are much less pronounced than those in Nsd1-KO (Fig. 3B,C).
Focusing on H3K27me3 (Fig. 3D–F), we find that the increase in

H3K27me3 levels and the spread in H3K27me3 distribution is cer-
tainly detectable but relatively minor inDnmt-TKOmESCs (which
are devoid of any DNAme) compared to the Nsd1-KO (which
shows a drastic loss of intergenic H3K36me2 along with a relative-
ly limited reduction in intergenic DNAme). Thus, globally, the an-
tagonistic effect of H3K36me2 appears to be a much stronger
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Figure 3. Depletion of DNAme has a limited effect on H3K27 methylation. (A) Mass spectrometry analysis of H3K27 and H3K36 methylation levels (two
replicates for eachmark) in WT and Dnmt-TKO, showing limited changes in Dnmt-TKO, except for slight H3K27me3 gain and H3K36me2 loss. P-values are
indicated in the same way as in Figure 1B. (B) Genome browser representation of H3K27me1/2/3 in WT (green) versus Dnmt-TKO (blue) versus Nsd1-KO
(red). Examples of regions with H3K27me3 spreading (in Nsd1-KO) are shaded. Note the much stronger effect of Nsd1-KO compared to Dnmt-TKO. (C )
Genome-wide correlation density plots of 10-kb binned ChIP-seq signal, MS normalized, shaded to indicate genic (blue) and intergenic (yellow) regions,
illustrating the global effect of DNA demethylation on H3K27me1/2/3 and H3K36me2. Aggregate plots of H3K27me across the genome centered on ac-
tive genes are provided in Supplemental Figure S2A. (D) Highlighting the comparison of H3K27me3 in WT, Dnmt-TKO, and Nsd1-KO: although there is
nearly uniform spread inNsd1-KO, H3K27me3 increase in TKO is limited andmore localized. The shaded area indicates an H3K27me3-spreading region in
Nsd1-KO. (E) Signal intensity plot of H3K27me3 (normalized by input and MS ratios) centered on CGIs overlapping SUZ12 peaks (n=4543), showing the
localized spread in TKO and the nearly uniform spread in Nsd1-KO, indicated by the higher enrichment in the surrounding regions in KOs compared to
WTs. The spread and increase of H3K27me3 uponDnmt-TKOandNsd1-KO are especially in inactive genes (i.e., outside of active genes), consistent with the
observation in Supplemental Figures S1A and S2A (see the “H3K27me3” panel). Replicate plots are shown in Supplemental Figure S2B. (F) H3K27me3
“Peakiness score,” representing the average ChIP signal in the top 1% of 1-kb bins, confirming the spreading (lower Peakiness score) of H3K27me3 in
Nsd1-KO, and the limited spread in Dnmt-TKO. Plots based on replicates are provided in Supplemental Figure S2C. Data used in this figure are generated
in this study.
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obstacle to H3K27me3 spread than DNAme. It may be expected
that the largest effects of DNAme should occur in CpG-rich re-
gions, particularly at CpG islands, which are also known to serve
as nucleation sites for PRC2 (Jermann et al. 2014). Thus, although
there is some limited incursion ofH3K27me3 into regions that lose
DNAme (Fig. 3B,D), much of the increase in H3K27me3 is mani-
fested not as a “full spread” as in Nsd1-KO but is manifested by
the appearance of new “peaks” within CpG-rich regions (Fig. 4A,
B). To further illustrate this situation at CGIs, we show that in
some cases in the TKO we observe the appearance of new nucle-
ation sites (Fig. 4A,C left), whereas in many cases we observe a re-
duction of H3K27me3 at canonical PRC2 targets (Fig. 4C, right), as
observed previously (Reddington et al. 2013; Dunican et al. 2020).
This decrease is not general, because the majority of strong PRC2
targets remain occupied, including Hox gene clusters. However,
the levels of H3K27me3, particularly at weaker nucleation sites,
decrease (Fig. 4C, right). In view of new H3K27me3 peaks appear-
ing at previously methylated CG-rich regions, it is likely that this
decreasemay be caused by redistribution of PRC2 away from its in-
tended targets and into newly created ones owing to the evacuated
DNAme (Reddington et al. 2013). A similar observation was made

in 2i medium, where DNA is hypomethylated compared to serum
culture (Supplemental Fig. S3C).

Modest effects of DNAme and H3K27me on H3K36me

We next investigated the reciprocal relationship of DNAme and
H3K27me on H3K36me2. In the Dnmt-TKO line where DNAme
is completely depleted, we find that the levels of H3K36me2
show a moderate 1.4-fold decrease relative to the wild type (Fig.
3A). Genome-wide analysis of ChIP-seq signal (Figs. 3C, 5C) indi-
cates that the decrease occurs uniformly across the genome. To
study the effect of H3K27me, we used the Ezh2-KO mESC, where
MS analysis (Fig. 5A) shows a total loss of H3K27me3, a sixfold re-
duction of H3K27me2 and no change in H3K27me1, as has been
shown previously (Lavarone et al. 2019), whereas H3K36me2 lev-
els show no change. Analysis of ChIP-seq signal also shows no no-
table change in the genome-wide distribution of H3K36me2 (Fig.
5B,C).

Previous studies have shown that loss of H3K27me has very
limited effect on DNAme and have described these effects partic-
ularly with respect to DNA methylation valleys (DMVs) that
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surround developmentally important genes (Li et al. 2018). We
do not explore those trends further other than illustrating the ge-
neral similarity of DNAme in WT and Eed-KO cells in Figure
5B. Overall, although removal of H3K36me2 results in massive
spread and increase in H3K27me3 levels, the converse relation-
ship is not true: in mESCs cultured in the serum/LIF conditions,
the removal of H3K27me2/3 does not lead to a further spread of
H3K36m2 or large-scale changes in DNAme.

The interplay of H3K36 and H3K27 methylation controls

pervasive chromatin H3K27 acetylation

Several studies suggested a strong negative correlation, and per-
haps a causative relationship, between lysine methylation and
acetylation (Kuo and Allis 1998; Tie et al. 2009; Ferrari et al.
2014; Krug et al. 2019; Lavarone et al. 2019). Not only is the pres-
ence of these modifications on the same lysine residue chemical-
ly impossible, but there may also be an inhibitory effect of lysine
methylation on histone acetyltransferase activity (Pasini et al.
2010). Recent work in mESCs described the effect of PRC2 muta-
tions on H3K27ac levels and suggested that variation in H3K27ac
is largely governed by changes in H3K27me2 (Ferrari et al. 2014;
Lavarone et al. 2019). Here, we supplement those results and con-
trast the effect on H3K27ac of removal of PRC2 activity and re-
moval of NSD1 activity (release of constraint on PRC2). We
show (Fig. 6) that removal of H3K36me2 and spreading of
H3K27me3 have the opposite effect on H3K27ac compared
with removal of H3K27me (Eed-KO): there is a clear decrease in
background acetylation levels in Nsd1-KO (Fig. 6A). This decrease
is most pronounced in intergenic regions where H3K27me3

replaces H3K27me2 and H3K36me2 (Fig. 6B). Overall, the
H3K27ac distribution becomes more restricted in Nsd1-KO and
less localized in Eed-KO (Fig. 6C). Similar changes of H3K27ac as
in Eed-KO were also observed in Ezh2-KO in 2i medium
(Lavarone et al. 2019), where the further increase of H3K27ac
in Ezh1/2-DKO suggests that the lowest methylation mark,
H3K27me1, may also impede the deposition of H3K27ac
(Supplemental Fig. S4A–D). Finally, we analyzed our data in
view of recent findings thatNsd1-KOmay lead to hyperacetylation
of enhancers (Fang et al. 2021), but we found no evidence of this
phenomenon. On the contrary, we observed positive association
of H3K36me2 and H3K27ac levels at enhancers (Supplemental
Fig. S4E), which is more in linewith previous evidence implicating
H3K36me2 in maintaining H3K27ac and enhancer activity
(Lhoumaud et al. 2019; Farhangdoost et al. 2021; Rajagopalan
et al. 2021).

Discussion

Our analysis highlights the central role of NSD1 and the chroma-
tinmodification H3K36me2 in shaping the mESC epigenome.We
use the drastic rearrangement of the epigenome that follows the
deletion of Nsd1 to provide the context for illustrating the general
nature of epigenetic interactions. H3K36me2 is one of the most
abundant histone modifications in mESCs, occupying at least
60% of intergenic regions where most subsequent changes occur.
In terms of bulk genome-wide effects, the overall abundance of a
mark is one of the most important parameters that influences
downstream outcomes.
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Figure 5. Effect of H3K27me2/3 loss on H3K36me2 is negligible. (A) Mass spectrometry analysis of H3K27 and H3K36methylation levels (two replicates
for each mark) in WT and Ezh2-KO, showing that deletion of Ezh2 results in total loss H3K27me3 and fivefold reduction in H3K27me2, but no significant
reduction in H3K36me. P-values are indicated in the same way as in Figure 1B. (B) A representative 1-Mb region illustrating high-similarity epigenomic
profiles of H3K36me2 in the Ezh2-KO and Dnmt-TKO. We also show that global DNA methylation is not visibly affected by the absence of H3K27me
(Eed-KO, bottom). DNAme in Dnmt-TKO is completely depleted (data not shown). (C) Genome-wide correlation plots (10 kb) bins showing lack of change
in global H3K36me2 distribution in Ezh2-KO and a small uniform decrease in Dnmt-TKO. All data in this figure are from this study, with the exception of
DNAme in Eed-KO (Li et al. 2018).
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H3K36me2/3 are known to interferewith the activity of PRC2
(Alabert et al. 2020; Finogenova et al. 2020). Thus, removing inter-
genic H3K36me2 provides a much more favorable substrate for
PRC2. The regions previously co-occupied by H3K36me2/27me2
are noweasily converted toH3K27me3, resulting in its nearly four-
fold increase. This happens at the expense of H3K27me1, which is
upgraded to H3K27me3. The genic profiles of H3K36me and
H3K27me modifications show relatively minor changes (Fig.
1D); however, as a result of its depletion in intergenic regions, gen-
ic enrichment of K27me1 is now more pronounced (Fig. 1C;
Supplemental Fig. S1A).

Depleting H3K36me2 also removes a targeting mechanism
for de novo methyltransferases (Shirane et al. 2020), particularly
DNMT3A (Weinberg et al. 2019). We show that in the absence
of NSD1, DNMT3A is now redistributed to genic regions which re-
tain SETD2-deposited H3K36me2/3 (Fig. 2). As a result, de novo
DNAme, represented bymCHH, increases in transcribed gene bod-
ies, and decreases in intergenic regions. This retargeting of de novo
methylation explains the substantial reduction of intergenic
DNAme.

We also find that lack of NSD1 results in decrease of H3K27ac
in regions that are now depleted of H3K36me2. This appears to
mostly take the form of reduction of “pervasive” background acet-
ylation that is loosely scattered throughout large domains. Based
on earlier studies in mESCs (Ferrari et al. 2014; Lavarone et al.
2019), this is most likely a “secondary” effect of the spread of
H3K27me3 into regions that are vacated by H3K36me2 and that
no longer provide substrates for histone acetyltransferases. To
what extent different levels of H3K27me prevent deposition of
H3K27ac remains to be determined, but a reanalysis of Ezh2 versus
Ezh1/2 mutant data in 2i medium (Lavarone et al. 2019) suggests
that even H3K27me1 may be refractive to deposition of H3K27ac
(Supplemental Fig. S4). It is also unclear whether the presence of

H3K36me may have some primary effect on H3K27ac, but to
date no plausible molecular mechanisms have been proposed.

Overall, our analysis of Nsd1 mutants and comparison with
publicly available data shows that H3K36me2 plays a major role
in shaping the mESC epigenome (schematic model andmolecular
dynamics in Fig. 7A,B). There is compelling evidence formolecular
mechanisms governing this role, and the levels of H3K36me2 in
those cells are normally very high. Our data suggest that DNA
methylation plays a limited role in determining H3K27 and
H3K36 states, and we argue that this is consistent with relatively
low CpG density throughout the mouse genome (approximately
1 CpG per nucleosome) and very low levels (<2%) of non-CpG
methylation. These relatively infrequent modifications may not
have major effects on the genome-wide recruitment of chromatin
modifying enzymes, and it may be expected that the effect of
changes in DNA methylation should be greatest at CGIs and
CpG-rich regions.We find this to be true in our analysis. The effect
of H3K27 methylation on H3K36me and DNAme is also relatively
limited. This is most likely the result of low levels and focused dis-
tribution of the most influential state, H3K27me3, in serum+LIF
cultured mESCs.

Recent literature indicates that in systems where H3K27me3
is more prevalent, changes in this modification have more pro-
nounced effects. mESCs cultured in the 2i medium, thought to
represent an earlier stage of pluripotency, are normally character-
ized by greatly reduced DNAme, reduced H3K36me2 and a much
broader distribution of H3K27me3 (Oksuz et al. 2018; McLaughlin
et al. 2019; van Mierlo et al. 2019; Alabert et al. 2020). It appears
that in 2imedium, the absence of EED andH3K27me leads to con-
siderable increase in intergenic H3K36me2 and DNAme. This has
been interpreted as evidence of bidirectional antagonism between
H3K36me and H3K27me (Alabert et al. 2020). However, no com-
pelling molecular mechanisms of how methylation at lysine 27
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erated in this study, but those in Eed-KO and WT are from Ferrari et al. (2014).
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influencesmodifications of lysine 36 have been proposed, and fur-
ther studies are necessary.

Thus, within this relatively simple subsystem, it appears that
depending on conditions, either K36 or K27 methylation can act
as the main determinants of the global epigenetic profile. In the
vast intergenic regions, DNA methylation is likely too sparse—
even in very highly methylated mESCs—to influence chromatin-
associated proteins. DNAme does, on the other hand, determine
subtler features, such as nucleation of PRC2 sites at CGIs.
Although globally less influential for bulk epigenome characteris-
tic, such localized effects are likely to have considerable functional
outcomes. The influence of H3K27ac appears somewhat akin to
DNAme: this mark is globally too infrequent (present on <1% of
nucleosomes) to have considerable direct bulk effects. However,
at enhancers and promoters the high occupancy of H3K27ac
may counteract deposition of H3K27me and DNAme (Tie et al.
2009).

We can speculate on the nature of the relative context-
dependent importance of H3K36 andH3K27methylation in shap-
ing the epigenome. The most likely determinants are the relative
strength and timing of activities of the respective writer en-

zymes/complexes: PRC2 versus H3K36 methyltransferases. In
most cell types that have been studied, those two forces appear
to counterbalance each other, subdividing the genome into clear
domains ofH3K27me3 andH3K36me2/3, where H3K36me2 often
colocalizes with H3K27me2 (Streubel et al. 2018). However, we
have come across at least two systems in which H3K27me3 and
H3K36me2 appear to coexist in the same genomic locations: the
head and neck cancer cell line FaDu (Farhangdoost et al. 2021)
and prenatal prospermatogonia (Shirane et al. 2020), suggesting
that in some cases the two forces may be evenly matched.

What are the next steps toward understanding the epigenetic
network? Some ambitious steps have been taken toward computa-
tional modeling of the system (Chory et al. 2019; Alabert et al.
2020; Harutyunyan et al. 2020; Sandholtz et al. 2020; Lövkvist
and Howard 2021). The conceptual frameworks already exist and
can be further refined. However, before the models become useful
for providing further insights into the behavior of the system,
much more work is necessary to understand the underlying inter-
actions. Even in a three-component system, distinguishing the rel-
ative importance of direct versus secondary indirect effects is not
trivial. Adding more components will further complicate the

A

B

Figure 7. The H3K27, H3K36, and DNAme interaction network. (A) The principal interaction network in mESCs, with the central role of H3K36me2. The
dashed line represents the weaker influence of the DNAme-H3K27me axis; however, the relative strengths of those interactions may differ across cell types.
(B) Molecular cartoon illustrating the state of this three-component system across five distinct genomic compartments and showing howdisturbing each of
the components affects the system.
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picture. H3K4me3 may confound the relationship between
DNAme and H3K27me3, because those two marks co-occur at bi-
valent promoters and H3K4me3 inhibits DNMT3A/B via their
ADD domains (Noh et al. 2015). PRC1 and PRC2 show a strong
cross talk through their H2AK119ub and H3K27me3 products,
and H2AK119ub has recently been suggested to recruit DNMT3A
through its UDR domain (Weinberg et al. 2021). H3K9me is
known to influence DNAme through its interaction with UHFR
and DNMT1 (Rothbart et al. 2012). This is not an exhaustive list
of interactions that may indirectly affect such subnetworks.
However, recent advances in tools such as degradable and induc-
ible systems have already produced unprecedented insights into
relative importance and timing of events (Højfeldt et al. 2018;
Oksuz et al. 2018; Dobrinić et al. 2021). Along with combinatorial
gene manipulations, fine-grained time series experiments per-
formed in themost appropriate cellular contexts relevant to specif-
ic epigenetic components will be necessary to further understand
the extended epigenetic interaction network.

Technical standardization is another key aspect necessary to
ensure robustness of future epigenetic studies. Here, in addition
to the in-house data of two replicates, we also incorporated pub-
lic data sets to complement our findings. Because those public
data came from different laboratories, we acknowledge that the
variability in the experimental conditions and methods may af-
fect some of the conclusions. Specifically, we must keep in
mind that raw ChIP-seq signal is not quantitative and does not
allow comparison of absolute modification levels across condi-
tions. In our samples, we used exogenous Drosophila (Orlando
et al. 2014) and synthetic nucleosome (EpiCypher) spike-ins
(Supplemental Table S3). However, because of discrepancies
(space limitations prevent us from discussing them here, but
some of the problems are outlined in Dickson et al. 2020), we
eventually opted for mass spectrometry normalization. In our ex-
perience, we found this method to perform most reliably, but
more research on optimizing quantitative normalization is neces-
sary, particularly to distinguish small changes in the levels of epi-
genetic modifications.

In this work, we focused on a small subset of the epigenetic
interaction network. Understanding such relationships is impor-
tant to realize the extent to which a single change may affect the
entire interconnected system. It is also essential to understand
the downstream functional consequences of epigenome dysregu-
lation, in particular, its effect on transcription, gene expression
levels, disease, and cancer.We have refrained from including func-
tional outcomes in this study but, in closing, it is worth pointing
out that transcription is not only a consequence but also a major
force shaping the epigenome (Holoch et al. 2021), and in future
studies it would benefit from consideration as a part of the interact-
ing system rather than an outcome.

Methods

Culture of mouse ES cells

A1 mouse ES lines (background C57BL/6×129S4/SvJae F1), in-
cluding Ezh2–/– and Nsd1–/– cells, were obtained from David
Allis’s laboratory (Weinberg et al. 2019). J1 control and Dnmt1/
3a/3b triple knockout (TKO) lines were obtained from Dr.
Amander Clark’s laboratory, UCLA. The Dnmt1/3a/3b TKO line
was originally generated by Dr. Masaki Okano, Riken (Tsumura
et al. 2006). For comparison between Nsd1–/– and TKO, the cell
lines were cultured in two replicates and maintained under stan-

dard serum/LIF conditions, with slight modifications detailed in
Supplemental Methods.

Histone acid extraction, histone derivatization, and analysis

of post-translational modifications by nano-LC–MS

We followed standard protocols established in the Garcia laborato-
ry as previously described (Farhangdoost et al. 2021) and detailed
in Supplemental Methods. Raw files were analyzed using
EpiProfile 2.0 (Yuan et al. 2018).

ChIP-sequencing and analysis

We followed standard protocols for chromatin immunoprecipita-
tion, similar to those previously used in Weinberg et al. (2021).
Slightly different protocols were used in the two replicates of
Nsd1-KO and TKO samples, and those differences are detailed in
Supplemental Methods. Libraries were generated using KAPA
Hyper Prep Kit according to manufacturer’s instructions. ChIP li-
braries were sequenced using Illumina NovaSeq 6000 at 50-bp or
100-bp single-end reads. Reads were aligned to a combined refer-
ence of mm10 and dm6 using BWA (Li and Durbin 2009) version
0.7.17 with default parameters. All unmapped and multimapped
reads were discarded by filtering out alignments with MAPQ less
than 3 using SAMtools (Danecek et al. 2021) version 1.12.
BEDTools (Quinlan and Hall 2010) version 2.22.1 was used to
count reads in different sized bins (1 kb, 10 kb, and 100 kb) using
“bedtools multicov –q 3 –bams $CHIP.bam –bed $REGION.”

Normalized ChIP-seq signals were obtained by dividing the
total alignments (in millions) and additionally multiplying by
MS abundance values when stated (Farhangdoost et al. 2021).

Coverage tracks (bamCoverage -b $BAM -o $OUTPUT.bigWig
-of bigwig ‐‐normalizeUsing CPM ‐‐binSize 100 ‐‐blackListFile-
Name $BL_bed) and aggregate matrices (computeMatrix scale-
regions or reference-point ‐‐missingDataAsZero –skipZeros; “‐‐bin-
Size 1000” for intergenic regions, and “‐‐binSize 500” for others)
were generated usingdeepTools v3.1.0 (Ramírez et al. 2016). In par-
ticular, the ENCODE blacklist (Amemiya et al. 2019) was used.

The genome-wide correlation density plots were generated to
capture the distribution of 10-kb genomic windows within a 2D
space defined by MS-normalized ChIP-seq signals (in the range
0%–100%) per window for a specific modification across a pair
of conditions. Data pointswith similar x and y valueswere grouped
together using R (R Core Team 2021) library hexbin, producing a
50×50 grid subdividing the plot area. By assigning +1 to windows
overlapping gene annotations, −1 to those that do not, and 0 to
ambiguous cases, an average “genicity” value is computed for
each hexbin. Additionally, the transparency of each hexbin is var-
ied based on the number of constituent data points to convey
density.

“Peakiness” scores were taken as the average read-depth nor-
malized coverage of the top 1%most covered 1-kb windows across
the genome, excluding those overlapping blacklisted regions.

Differential H3K27me3 regions for evaluation of CpGdensity
were taken from the 100th and 1st percentile when ranking 10-kb
bins based onH3K27me3 differences (Nsd1-KO −WT, TKO−WT).

H3K36me2 domains were called using the same approach as
described in our previous paper (Weinberg et al. 2019), with those
lost in Nsd1-KO generated by subtracting domains called in Nsd1-
KO from those identified in WT, excluding intervals smaller than
50 kb in the final output.

RNA-seq and analysis

Total RNA was extracted from cell pellets (∼1 million cells) using
miRNeasy Mini Kit (QIAGEN) with DNase digest using RNase-
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free DNase Set (QIAGEN) according to instructions from the man-
ufacturer. Library preparation was performed with ribosomal RNA
(rRNA) depletion according to instructions from themanufacturer
(Epicentre) to achieve greater coverage of mRNA and other long
noncoding transcripts. Paired-end sequencing (100 bp) was per-
formed on the Illumina HiSeq 4000 platform.

Raw reads were aligned to mm10 genome build using STAR
version 2.5.3a (Dobin et al. 2012). After alignment, we used
featureCounts program (version 1.5.3) to count the reads for
each gene from the GTF annotation file (using the GENCODE ver-
sion from UCSC) and expression levels were calculated as follows:

RPKM = #Reads

((transcriptLen/1000)(totalReads/1× 106))
,

where #Reads is the read counts of the gene, transcriptLen is the
transcript length, and totalReads is the total read counts. We cate-
gorized all the genes into four groups based on their expression lev-
els (RPKM), which were calculated by taking average of replicates.
The lowest group includes only genes with zero reads. The remain-
ing three groups were divided with equal numbers of genes. Here,
the “Active genes” are referred to as the combination of the first
two groups of genes with the higher expression levels, and
“Inactive genes” are the remaining two groups of genes with low
expression. When comparing parental and Nsd1-KO, we took the
intersection of genes in these two conditions.

Whole-genome bisulfite sequencing and analysis

Whole-genome sequencing libraries were generated from 1000 ng
of genomic DNA spiked with 0.1% (w/w) unmethylated λ DNA
(Roche Diagnostics) and fragmented to 300- to 400-bp peak sizes
using the Covaris focused ultrasonicator E210. Fragment size was
controlled on a Bioanalyzer High Sensitivity DNA Chip (Agilent)
andNxSeq AmpFREE LowDNA Library Kit (Lucigen) were applied.
End repair of the generated dsDNA with 3′ or 5′ overhangs, aden-
ylation of 3′ ends, adaptor ligation, and clean-up steps were per-
formed per Lucigen’s recommendations. The cleaned-up ligation
product was then analyzed on a Bioanalyzer High Sensitivity
DNA Chip (Agilent). Samples were then bisulfite converted using
the EZ-DNA Methylation Gold Kit (Zymo Research) according to
the manufacturer’s protocol. DNA was amplified by nine cycles
of PCR using the Kapa HiFi Uracil +Kit (Roche) DNA polymerase
(KAPA Biosystems) according to the manufacturer’s protocol.
The amplified libraries were purified using Ampure XP Beads
(Beckman Coulter), validated on Bioanalyzer High Sensitivity
DNA Chips, and quantified by PicoGreen. Sequencing of the
WGBS libraries was performed on the Illumina HiSeq X system us-
ing 150-bp paired-end sequencing.

Raw reads were submitted to Bismark (version 0.22.3)
(Krueger and Andrews 2011) for mapping andmethylation calling
against mouse genome versionmm10/GRCm38, discarding dupli-
cate reads. Briefly, the methylation level at a CpG (similarly for
CHH) site was the number of reads with that sitemethylated divid-
ed by the total number of reads covering the site. To ensure com-
parability of region DNA methylation levels across all samples,
CpGs that overlapped with SNPs from dbSNPs or were located
within the ENCODE blacklisted regions, termed Duke excluded re-
gions (DER), were excluded and only CpGs covered by ≥5× in all
samples were retained for the computation of DNA methylation
levels.

Published data sets

H3K36me2/3 and DNMT3A in parental mESC and Nsd1-KO were
published previously (Weinberg et al. 2019) under the NCBI

Gene Expression Omnibus (GEO; https://www.ncbi.nlm.nih
.gov/geo/) accession number GSE118785. The ChIP-seq of
H3K27me3 in mESC Dnmt-TKO and WT for Supplemental Figure
S2C were from Brinkman et al. (2012) under GEO accession num-
ber GSE28254 and Hagarman et al. (2013), where data were ob-
tained directly from the investigators. The ChIP-seq of EZH2 in
mESCWT (Fig. 4A) was fromKundu et al. (2017) under GEO acces-
sion number GSE89949. The ChIP-seq of H3K27me3 (Marks et al.
2012) and WGBS data (Habibi et al. 2013) in mESC serum and 2i
medium (Supplemental Fig. S3C) were downloaded fromGEO (ac-
cession numbers: GSE23943, GSE41923). TheWGBS data ofmESC
Eed-KO (Li et al. 2018) used in Figure 5B were obtained from GEO
with accession numberGSE102753. The ChIP-seq of H3K27ac and
H3K27me in mESC Eed-KO and WT (Ferrari et al. 2014) used in
Figure 6 were downloaded from GEO with accession numbers
GSE39496 and GSE51006. The ChIP-seq of H3K27ac and
H3K27me in mESC Ezh2-KO and WT (Lavarone et al. 2019) used
in Supplemental Figure S4were downloaded fromGEOwith acces-
sion number GSE116603.

Data access

The WGBS, ChIP-seq, and RNA-seq data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE186506. Custom scripts used to generate all results in this
study are available on GitHub (https://github.com/bhu/
mesc_epigenome) and as Supplemental Code.
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