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Abstract

Summary: Large-scale human genetics studies are now employing whole genome sequencing

with the goal of conducting comprehensive trait mapping analyses of all forms of genome vari-

ation. However, methods for structural variation (SV) analysis have lagged far behind those for

smaller scale variants, and there is an urgent need to develop more efficient tools that scale to the

size of human populations. Here, we present a fast and highly scalable software toolkit (svtools)

and cloud-based pipeline for assembling high quality SV maps—including deletions, duplications,

mobile element insertions, inversions and other rearrangements—in many thousands of human

genomes. We show that this pipeline achieves similar variant detection performance to established

per-sample methods (e.g. LUMPY), while providing fast and affordable joint analysis at the scale of

�100 000 genomes. These tools will help enable the next generation of human genetics studies.

Availability and implementation: svtools is implemented in Python and freely available (MIT) from

https://github.com/hall-lab/svtools.

Contact: ihall@wustl.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

With the dramatic cost reduction of whole genome sequencing

(WGS) in recent years, large-scale human genetics studies are under-

way that aim to conduct comprehensive trait association analyses in

tens to hundreds of thousands of deeply sequenced (>20�) individu-

als. Foremost among these are NIH programs such as NHGRI’s

Centers for Common Disease Genomics (CCDG) and NHLBI’s

Trans-Omics for Precision Medicine (TOPMed), which have gener-

ated >150 000 deep WGS datasets thus far. Moreover, ongoing

genome aggregation efforts seek to produce even larger genome vari-

ation maps that can be mined for insights into genome biology, and

to help interpret personal genomes and rare disease studies. These

efforts, along with many others around the world, will usher in a

new era of data-centric human genetics research.

A key promise of WGS is the potential to assess all forms of gen-

ome variation. However, despite considerable effort and creativity

by many groups [most notably the 1000 Genomes Project, 1KGP

(Mills et al., 2011; Sudmant et al., 2015)], it remains extremely
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difficult to assemble high quality structural variation (SV) maps

from WGS data, especially for large cohorts comprising thousands

of individuals. An initial obstacle is that SV detection is a difficult

problem even for small-scale studies due to fundamental limitations

in the integrity of short-read alignment signals used to infer break-

point positions and estimate copy number from Illumina WGS data.

These alignment signals—including split-read (SR), clipped-read

(CR), read-pair (RP) and read-depth (RD)—are difficult to distin-

guish from sequencing and alignment artifacts, and are difficult to

integrate with each other, such that even the best performing tools

generally suffer from low sensitivity, high false discovery rates

(FDR) and high compute costs.

A second issue is that current WGS-based multi-sample variant

detection approaches require ‘joint’ analysis of raw (or nearly raw)

alignment data for each sample, at each putative variant site; how-

ever, due to memory and compute limitations, native joint calling

algorithms do not perform well beyond the scale of several hundred

genomes. SNV/indel detection tools such as GATK and VT have

implemented distributed workflows to distill and combine variant

detection signals in large cohorts through the use of intermediate

files (e.g. gVCF) and parallel ‘scatter-gather’ computing schemes. A

natural goal is to develop similar approaches for SVs.

However, for SV the problem is different and arguably much

harder. Tools must tolerate higher error rates and accommodate di-

verse variant sizes and architectures including balanced, complex and/

or repetitive variants that may be difficult to classify. Parallelization

schemes are complicated by the fact that, unlike SNVs that map to a

single coordinate, SV breakpoints are defined by pairs of discontiguous

and potentially distant strand-oriented reference genome coordinates.

Intermediate data structures analogous to gVCF are difficult to design

because they must encapsulate information from at least four disparate

alignment signals (SR, CR, RP, RD), each with different resolution and

artifact modalities. Cross-sample merging schemes must be robust to

positional uncertainty because SV breakpoint mapping resolution is

typically imprecise on a per-sample basis (�10–100 bp mean), and

sequencing and alignment effects can vary widely across variant classes,

samples and batches. New approaches are required.

Of course, the task of combining spatially imprecise SV/CNV calls

across collections of samples is an old problem that has been dealt with

effectively through ad hoc methods in prior microarray (Conrad et al.,

2009; Redon et al., 2006; Wellcome Trust Case Control et al., 2010)

and WGS-based (Mills et al., 2011; Sudmant et al., 2015) studies.

However, array-based methods do not readily extend to balanced SVs

or to the increased resolution, complexity and scale of deep WGS.

1KGP employed a clever approach to merge results from multiple algo-

rithms and platforms (Mills et al., 2011; Sudmant et al., 2015), but this

was a monumental effort and the methods therein are impractical for

routine use. GenomeSTRiP has two published workflows for detecting

SV in populations of samples, but both have limitations: an early ver-

sion focuses on deletions and serially combines RP-based detection

with RD genotyping (Handsaker et al., 2011); a second RD-based

CNV pipeline is computationally expensive, low resolution (>1 kb),

and limited to moderate sample sizes (<1000) (Handsaker et al.,

2015). To our knowledge, no publicly available tools or reproducible

workflows exist to systematically assemble high-resolution SV callsets

from joint analysis of multiple alignment signals in tens of thousands of

deep WGS datasets, as we present here.

2 Materials and methods

We developed a software toolkit and distributed workflow for large-

scale SV callset generation that combines per-sample variant

discovery, resolution-aware cross-sample merging, breakpoint geno-

typing, copy number annotation, variant classification and callset

refinement (Fig. 1). We release the svtools python toolkit (https://

github.com/hall-lab/svtools) and two pipeline versions: an on-

premises ‘B37’ version designed to handle BAM files aligned to the

GRCh37 reference genome, that relies mainly on BASH scripts and

LSF commands; and a cloud-based ‘B38’ pipeline written in WDL

designed to work with CRAM (Hsi-Yang Fritz et al., 2011) files

aligned to GRCh38 using the new ‘functional equivalence’ standard

developed by the CCDG and TOPMed programs (Regier et al.,

2018). Despite their different workflow implementations and refer-

ence genome versions, the core tools and parameters are virtually

identical between these two pipelines, and both are publicly avail-

able (https://github.com/hall-lab/sv-pipeline).

The first step is to analyze each genome separately, in parallel.

We generate per-sample breakpoints calls using the LUMPY algo-

rithm (Layer et al., 2014), which combines RP and SR alignment sig-

nals in a probabilistic breakpoint detection framework. LUMPY is a

widely used tool that has been benchmarked extensively in prior

studies (Chiang et al., 2015; Chiang et al., 2017; Layer et al., 2014);

here, we adapted LUMPY to CRAM and improved performance on

GRCh38 by masking highly repetitive and misassembled genomic

regions. The second step is to merge all candidate variants from all

samples into a single non-redundant VCF/BEDPE (Danecek et al.,

2011; Quinlan and Hall, 2010) file. Positional uncertainty is mod-

eled during the merging process through the use of breakpoint prob-

ability distributions [as within LUMPY itself (Layer et al., 2014)],

which is possible because we have modified LUMPY to report the

integrated per-base probability distribution for each breakpoint-

containing confidence interval in the output per-sample VCF. The

merging algorithm defines collections of SV predictions with mutu-

ally consistent coordinate intervals and orientations, as defined by

the extent of overlap between breakpoint probability distributions

in each sample, then combines and refines coordinates based on the

weight of alignment evidence at each base, in each sample.

We then genotype all candidate SV breakpoints in all samples

using SVTyper (Chiang et al., 2015). This tool measures RP, SR and

CR alignment signals at predicted breakpoints, in a more sensitive

and accurate manner than feasible with genome-wide SV discovery

tools such as LUMPY. The new svtools implementation handles

CRAM and is significantly faster and more sensitive than the origin-

al (Chiang et al., 2015). Quantitative allele balance information is

retained throughout the workflow to preserve trait mapping power

at difficult-to-genotype variants. Since certain CNVs are easier to

genotype by RD analysis than breakpoint-spanning alignments, we

also use CNVnator’s ‘genotype’ tool (Abyzov et al., 2011) to esti-

mate the copy number of each SV interval in each sample. This copy

number information can be used in lieu of breakpoint genotypes as

desired in downstream association analyses and is crucial for SV

classification.

We next use a combination of breakpoint coordinates, break-

point genotypes, read-depth evidence and genome annotations to

classify each SV breakpoint either as a deletion (DEL), duplication

(DUP), inversion (INV), mobile element insertion (MEI) or generic

rearrangement of unknown architecture (‘break-end’, BND) (see

Supplementary Methods for details). This is an important and chal-

lenging step. The main difficulty arises because breakpoint predic-

tion tools such as LUMPY are designed to detect novel DNA

adjacencies, however, it is impossible to infer SV architecture from

such evidence alone. For example, DEL and MEI variants often have

identical breakpoint configurations (i.e. direct orientation), and

complex rearrangements are often defined by multiple adjacent
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breakpoints that masquerade as simple SVs. The ‘svtools classify’

tool distinguishes DELs and DUPs from balanced SVs (BNDs) based

on linear regression of quantitative breakpoint genotype informa-

tion and copy number estimates from the affected genomic interval.

MEIs are discerned by the location of mobile elements in the refer-

ence genome, and inversions by the co-detection of two breakpoints

with inverted orientation. This classification step enables more

informed SV impact prediction (Ganel et al., 2017) and thus

Fig. 1. The svtools pipeline. SVs are detected separately in each sample using LUMPY. Breakpoint probability distributions are utilized to merge and refine the

coordinates of SV breakpoints within a cohort, followed by parallelized re-genotyping and copy number annotation. Variants are merged into a single cohort-level

VCF file and variant types are classified using the combined breakpoint genotype and read-depth information

4784 D.E.Larson et al.
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improves prioritization of rare SVs for human genetics studies. We

note that additional SV classes—including interspersed duplications,

retrogene insertions, translocations and complex rearrangements—

can be identified by further interrogation of BND calls, but that

rigorous automation of this process will require further work.

The final steps are callset refinement, tuning and quality control

(QC). These are extremely important for obtaining high quality

results, and ideally should take place with knowledge of genealogic-

al relationships and SNVs. Miscellaneous tools are provided for al-

lele frequency annotation, genotype refinement, confidence scoring,

cross-callset variant look-ups, variant pruning and file format con-

version (see https://github.com/hall-lab/svtools#usage).

Additional details are available in the Supplementary Methods.

3 Results and discussion

The sensitivity, accuracy and utility of the core SV discovery and

genotyping algorithms in our pipeline have been thoroughly docu-

mented in multiple prior small-scale studies (Chiang et al., 2015;

Chiang et al., 2017; Layer et al., 2014). Here, we focus on the ques-

tion of whether we achieve similar performance using the distributed

workflow on much larger sample sizes. We constructed two separate

callsets using identical methods: a ‘small’ 12-sample callset com-

posed solely of 1KGP samples, and a ‘large’ 1000-sample callset

composed of the same 1KGP samples plus 988 Finnish samples.

We first assessed the relative sensitivity obtained in the small ver-

sus large callset using 1KGP calls as ground truth (Table 1).

We achieved nearly identical sensitivity levels in per-sample calls

prior to and after merging, at levels that are consistent with prior

single-sample tests (Chiang et al., 2015; Layer et al., 2014). This dem-

onstrates the effectiveness of our cross-sample merging strategy.

Notably, sensitivity in both the small and large callsets improves mark-

edly after the re-genotyping step. This demonstrates the benefits of

re-genotyping, which is designed to be more sensitive than the initial

SV discovery step and—when combined with high resolution cross-

sample merging—emulates joint analysis by allowing evidence to be

borrowed across samples. This important feature also provides quality

and genotyping information for every sample, enabling confidence fil-

tering of the variants. Taken together, this results in the uniform SV

levels apparent in a 8438-sample callset [generated for a different study

(Abel et al., 2018)] after re-genotyping and quality filtering, as com-

pared to directly after calling (Supplementary Fig. S1). Sensitivity levels

after re-genotyping are similar in the large versus small callset, which

shows that our tools achieve comparable sensitivity at vastly different

sample sizes. As expected, sensitivity increases as a function of variant

allele frequency (Supplementary Fig. S3), which reflects the benefits of

joint analysis across samples with shared alleles. Note that these com-

parisons underestimate sensitivity given known false positives in 1KGP

(Chiang et al., 2015; Chiang et al., 2017; Layer et al., 2014).

Although it is impossible to measure FDR in the absence of a

comprehensive truth-set, Mendelian error (ME) rates serve as an in-

formative proxy. To estimate ME, we examined inheritance patterns

in four separate parent-offspring trios included in the 12-sample and

1000-sample callsets (Table 2).

ME rates are high (12–17%) prior to re-genotyping, classification

and confidence scoring, but fall to acceptable levels (2–3%) for high-

confidence calls in the final small and large callsets. The slightly higher

ME rate in the large callset is accompanied by substantially more vari-

ant calls and thus can be tuned to the desired ME rate depending of the

application-specific desired balance between sensitivity and specificity.

Consistent with these results, the significantly larger callsets we

have generated for other studies—based on 8417 samples (on prem-

ises B37 pipeline) and 23 559 samples (cloud-based B38 pipeline)—

exhibit similar numbers and types of variants (Supplementary Fig.

S1) and achieve similarly low ME rates (Abel et al., 2018). Taken to-

gether, these analyses demonstrate that our pipeline achieves high

performance at large sample sizes.

A key strength of our pipeline is scalability and cost. Tool per-

formance metrics are provided from sets of 10, 100 and 1000 deep

(>20�) genomes in Table 3.

Overall, most steps are efficient and require modest compute

resources, allowing them to be run on affordable cloud instances. For

the 1000 sample dataset used above, we estimate costs to be merely

�$0.30 per dataset. The initial per-sample SV discovery steps have

been optimized for speed and cost (�$0.13 per genome) and scale lin-

early with the number of samples. Merging is a complex and compute-

intensive process that can require significant RAM usage but is only ne-

cessary once per callset and can be parallelized. The current merging

strategy is effective with as many as �7000 samples, using commodity

hardware; however, for callsets exceeding several thousand samples we

recommend a tiered scheme, whereby separate batches of data (e.g.

�1000 samples) are combined during an initial sample-level merging

step, followed by batch-level merging. Initial evidence suggests this ap-

proach results in similar if not higher quality breakpoint predictions

than bulk merging (Supplementary Fig. S2), especially if data are

batched by cohort and sequencing protocol.

The distributed genotyping step is the key bottleneck for large stud-

ies, since sensitive SV genotyping requires computationally expensive in-

terrogation of raw alignment data, and aggregate compute time scales

as a function of both sample size and the number of candidate variants.

The latter is determined by a combination of sample size, ancestry com-

position, genetic relatedness and per-sample variant discovery FDR, and

is difficult to predict. Empirically, genotyping accounts for 6, 12 and

24% of compute at the scale of 10, 100 and 1000 genomes, respectively

(Table 3), and�78% of compute at the scale of 23 559 genomes.

Table 1. Detection sensitivity in large and small cohorts

12 sample callset

Merge only Reclassified (naı̈ve bayes)

Sample Sensitivity

(all) (%)

Sensitivity

(all) (%)

Sensitivity

(HC) (%)

HG00513 80.94 87.53 82.43

HG00731 78.17 83.96 78.88

HG00732 82.40 87.43 81.39

NA12878 82.39 88.19 83.15

NA19238 84.39 88.58 82.41

NA19239 74.39 77.60 73.36

1000 sample callset

Merge only Reclassified (regression)

Sample Sensitivity

(all) (%)

Sensitivity

(all) (%)

Sensitivity

(HC) (%)

HG00513 80.23 88.03 83.80

HG00731 77.67 84.47 80.46

HG00732 81.50 88.12 82.56

NA12878 81.58 88.62 84.18

NA19238 83.86 88.53 82.80

NA19239 74.01 77.81 73.31

Note: Sensitivity is defined as percent of detectable 1000 Genomes Project

variants identified in the cohort. HC stands for high confidence variants.
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Remarkably, a 23 559 genome callset for the study described in

Abel et al. (2018) was assembled on the Google Cloud at an empiric-

al cost of $0.68 per sample. Based on the observed performance at

different scales, we expect our current pipeline to achieve affordable

callset generation (<$2 per sample) at the scale of �105 genomes, al-

though improved methods may be necessary beyond that.

The tools described here will enable efficient and affordable

analyses of SV in population-scale WGS studies, furthering our

understanding of SV biology and enabling a more complete under-

standing of the contribution of SV to human traits.
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