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Leveraging integrated single cell technologies for the characterization and 

treatment of refractory pancreatic cancer.  
 

Maria E. Monberg, BS 

Advisory Professor: Anirban Maitra, MBBS 

Heterogeneity is a hallmark of cancer, and the advent of multimodal single-cell 

technologies has helped uncover heterogeneity in a high-throughput manner in different 

cancers across varied contexts at an unprecedented resolution. In an effort to improve 

precision medicine approaches in pancreatic ductal adenocarcinoma (PDAC), a highly lethal 

malignancy with a mere 11% 5-year survival rate, this dissertation focuses on first questioning 

the assumptions of the most basic models used to study PDAC via multimodal single-cell 

characterization methods at multiple levels of biological organization (scCNVseq and 

snATACseq for DNA assays, scRNAseq for transcriptomics, and paired protein assays such as 

multiplexed immunofluorescence and fluorescence in situ hybridization for validation methods) 

to reveal inherent heterogeneity in assumptively isogenic pancreatic cancer (PDAC) cell lines, 

patient-derived organoids (PDOs), and patient tissue samples that  contribute to the 

proliferation of resistant cell phenotypes and, ultimately, treatment failures in the clinic. I then 

apply single-cell characterization methods to a panel of PDO samples to explore adaptive 

resistance mechanisms of PDAC lesions following administration of epigenetically-modifying 

therapeutic agents (HDAC inhibitors). I describe a novel HDACi resistance mechanism of AP1 

activation, which can be intercepted by using an AP1 inhibitor in combination with an HDAC 

inhibitor to achieve tumor cell death. Finally, in an effort to explore and characterize the 

molecular consequences of newly-developed KRAS inhibitors in PDAC samples, I present a 

series to studies illustrating differential PDO sensitivity to KRAS inhibitors with different 

mechanisms of action, induce KRASi-resistance in select G12C-mutant PDO samples, and 

suggest avenues for future study to achieve maximal clinical benefit for PDAC patients on 

KRAS-inhibitory therapies.
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Dissertation Introduction 

 

The #1 rule of surgery is “don’t touch the pancreas”. This is for good reason, as this 

bizarre, medium-sized (avg. 6-inches in length), temperamental organ with both endocrine and 

exocrine functions has a long and complicated history with human health. Pancreatic dysfunction, 

at its mildest, results in diseases such as Type 2 Diabetes or acute pancreatitis. Pancreatic 

dysfunction, at its worst, results in pancreatic ductal adenocarcinoma (PDAC), a lethal 

malignancy with a 5-year survival rate ranging from 5-11%, depending on whom you ask1,2. 

PDAC represents approximately 90% of all pancreatic cancer cases, with the other ~7-10% 

comprised of neuroendocrine-derived tumors3. With no reliable, preventative, early-detection or 

screening methods currently available, the far majority of PDAC patients present in the clinic with 

locally advanced or already-metastasized disease4, making surgical resection (via 

pancreaticoduodenectomy for tumors in the head of the pancreas, laparoscopic surgery for tail 

tumors5) an impossibility for many patients. While there are few effective therapeutic regimens 

for the treatment of PDAC, patients with various stages of disease progression have historically 

been stratified to one of two treatment regimens: FOLFIRINOX (or a variation thereof6), or 

Gemzar + Abraxane7,8. Despite recent clinical trials and valiant efforts on the part of researchers 

and oncologists alike to improve treatment strategies in both the adjuvant and neoadjuvant 

settings, the incidence of PDAC is increasing both globally and in the United States. With 60,000+ 

new cases annually in the US alone (and approximately 400,000 new diagnoses globally each 

year9), PDAC is projected to be the second leading cause of cancer-associated death by 20304. 

Given the limited state of current therapeutic options for this rapidly burgeoning patient 

population, there is a critical need to develop effective ways to detect, characterize, and treat this 

malignancy.  
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PDAC initiation and progression.  

While this dissertation does not focus on PDAC precursor lesions, a nod to the stepwise 

developmental progression of this malignancy is nonetheless warranted. Broadly speaking, 

PDAC tumors arise from so-called precursor lesions that develop as a function of pancreatic 

injury, genetic predisposition, or a variety of other factors (“environmental insults”, if you will). 

Precursor lesions include but are not limited to intraductal papillary mucinous lesions (IPMNs), 

pancreatic intraepithelial neoplasias (PanINs), and, rarely, mucinous cysts (MCNs)10, and 

originate from either pancreatic ductal or acinar cells, which follow distinctly different modes of 

progression into PDAC tumors (e.g. in a study of acinar-to-ductal metaplasia [ADM], the 

acquisition of an activating AGR2 mutation in ductal cells led to high AGR2 expression in ductally-

derived precursor lesions, whereas acinar-derived lesions exhibited low AGR2 expression)11. 

Canonically, the initiating mutation for PDAC progression from precursor lesions is KRAS12, with 

over 90% of PanINs and 40-65% of IPMNs13 harboring an activating mutation in this gene. KRAS 

G12D is the most common activating mutation in PDAC, with KRAS mutation rates tightly 

orchestrating the progression of ductal PanINs to PDAC14 (further discussion of the role of KRAS 

mutations in PDAC to follow). After KRAS is mutated, the next genomic events associated with 

PDAC progression are deletion/inactivating mutations of TP5315 and p16/CDKN2A16. After these 

biologically catastrophic events (TP53 deletion sophomorically described as “pulling the breaks 

off a car” in undergraduate cancer biology classes), a cacophony of genomic chaos breaks loose 

in diseased pancreata (RNF43 deletion17, GNAS18 inactivation, SMAD4 loss19) to drive metabolic 

reprogramming, cellular dysplasia, genomic instability and dysregulation, and the downright 

biological havoc of tumor formation20 (Figure 1). Thus, the “dogma” of stepwise PDAC 

progression follows the cadence of KRAS mutation, concomitant mutations of TP53 + CDKN2A, 

and finally, loss/mutation of SMAD4 driving the advancement of local and metastatic disease21,22. 
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Figure 1: From Maitra & Hruban 2008, as an homage to the early work of my mentor in establishing 
the genetic progression model of pancreatic adenocarcinoma. The progression from histologically 
normal epithelium to low-grade pancreatic intraepithelial neoplasia (PanIN), to high-grade PanIN, to 
invasive carcinoma (left to right) is associated with the accumulation of specific genetic alterations. 
On the basis of their temporal appearance in this progression model, the molecular abnormalities can 
be classified as early (KRAS2 mutation, telomere shortening), intermediate (p16/CDKN2A loss), or 
late (mutations of DPC4/SMAD4, TP53, BRCA2). Ref: Maitra, A., and R. H. Hruban. 2008. 'Pancreatic cancer', Annu Rev Pathol, 3: 

157-88. 

 

 

A word on the PDAC tumor microenvironment (TME). 

I am not an immunologist, and have little vested interest in becoming one at this time. This bodes 

well for studying pancreatic cancer, as this tumor type is often described as “immune-cold”23, 

with a hostile microenvironment comprised less of tired immune cells (as in other cancer types 

which are laden with a variety of T cells ripe for re-activation with immunotherapies24) and more 

of a dense, hypoxic25, desmoplastic stroma built of fibroblasts and other pro-tumor cell types26. 

PDAC tumors, as they progress, actively exclude anti-tumor immune cells and recruit pro-tumor 

immune aggregates to the TME27. As such, immunotherapies, which are a very promising and 

efficacious therapeutic option in other malignancies, have all but failed PDAC patients28,29. The 

most notable components of the PDAC stroma are fibroblasts, which are presumed to have their 

origins in pancreatic stellate cells that, via signaling from adjacently-developing tumor epithelium, 

differentiate into at least three fibroblast subtypes30. These cancer-associated fibroblast (CAF[s]) 

lineages have been shown to play a critical role in promoting the immune-evasiveness of tumor 

cells31, and experimental depletion of CAFs has resulted in accelerated tumor progression and 

reduced survival in in vivo models32, 33, as well as in the clinic34. The biology of the PDAC TME 
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is an increasingly complicated and robust research area35, and it is widely-accepted that the TME 

exerts a reprogramming force so strong on PDAC lesions that it is at least partially responsible 

for dictating how tumors will metastasize, transform, and respond to therapy36. Because the 

PDAC TME is an exceedingly complicated research area,,for all of the projects to be discussed 

in this dissertation I have focused almost exclusively on the behavior and modeling of tumor 

epithelial cells.    

 

Current state of genomic and transcriptional characterization of PDAC.  

An extensive, decades-long effort to unravel the mutational and transcriptional features of PDAC 

has led to innumerable groundbreaking discoveries, ultimately establishing a growing landscape 

of mutations and signatures to better inform disease progression and therapeutic response. The 

importance of these discoveries are far broader than the scope of this dissertation, but a brief 

review of the state of the field is essential nonetheless. Characterization efforts of PDAC lesions 

have spanned from the development of rapid-autopsy programs at major cancer centers37, to 

liquid biopsy platforms for early detection and disease monitoring of patients38, to the initiation of 

clinical trials leveraging RNA-based PDAC subtypes39. The development and  application of 

sequencing technologies have played a huge role in all of these efforts, and have fundamentally 

altered the working paradigm for how scientists and clinicians study and understand PDAC.  

Initially, genomic and transcriptomic analysis were conducted separately, as the cost of 

sequencing used to be quite high and computational analysis extremely intensive. In 2015, 

Waddell et al.40 performed the first whole-genome sequencing and copy-number variation (CNV) 

analysis of PDAC tumors. In 2017, the Cancer Genome Atlas Network published the first 

sequencing-based consensus study on 150 PDAC tumors, which represented the largest 

integrated genomics study in PDAC41. After a few years, scientists had developed the methods 

and technological capability to integrate genomic and transcriptomic data- thus ushering in a 

seminal 2019 study comprising 289 patient tissues, wherein whole genome and transcriptomic 

sequencing from both primary and metastatic PDAC lesions were characterized42. It truly was 
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not until relatively recently that the field of PDAC genomics had a foundational framework upon 

which clinically translational precision medicine strategies could be built. 

Broadly, the seminal studies described above established that hypoxia is associated with 

worse prognosis in PDAC, cell cycle progression driven by acquired SNVs and contributes to 

metastatic disease, and that a number of currently inactionable genomic mutations arise 

following the progression of precursor lesions to tumors. Given the scope of this dissertation and 

the essentiality of this background information, the graphical abstracts of these seminal works 

are included in Figure 2 to provide context for the genomic and transcriptional landscapes of 

PDAC.  

Of critical importance for understanding PDAC biology, and concurrently discussed by 

both 2017 and 2019 characterization efforts, is that the mutational signatures and processes 

identified in primary PDAC lesions are conserved in metastases. The conservation of driver 

mutations in both primary and metastatic lesions has led some folks to posit that patients with 

both advanced and early disease may benefit from the same targeted therapies43 (were they to 

exist), but this has not been proven true in either clinical or preclinical settings, as the genetic 

mutational landscape of PDAC remains largely inactionable. Furthermore, in the classical 

assumptions of cancer biology, during the “metastatic cascade” of cancer, cells in a primary 

tumor acquire additional mutations and increasing genomic instability to “prime” them for 

colonization of distant organ systems44. PDAC progression and metastasis represents a 

dissimilar oncogenic scenario from other solid tumor types42, and is a contributing factor to why 

PDAC is inherently “harder” to treat than other solid tumors (at the present time). Pancreatic 

cancer cells from the primary lesion are instead epigenetically and transcriptionally 

remodeled37,45, or poised, for metastatic outgrowth, and identifying precisely which combination 

of epigenetic and transcriptional programs pushes primary tumor cells off their metastatic cliff 

remains an unresolved challenge to the field.   
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Figure 2: A) Graphical abstract from the TCGA characterization of PDAC, published 2017 under an 
open-access license. B) Graphical abstract from Connor et al., 2019, also published with open-
access licensing. Refs. Cancer Genome Atlas Research Network. Network Cancer Genome Atlas Research. 2017. 'Integrated Genomic Characterization of Pancreatic Ductal Adenocarcinoma', 

Cancer Cell, 32: 185-203 e13. ; Connor, A. A., R. E. Denroche, G. H. Jang, M. Lemire, A. Zhang, M. Chan-Seng-Yue, G. Wilson, R. C. Grant, D. Merico, I. Lungu, J. M. S. Bartlett, D. Chadwick, S. B. Liang, J. Eagles, F. 
Mbabaali, J. K. Miller, P. Krzyzanowski, H. Armstrong, X. Luo, L. G. T. Jorgensen, J. M. Romero, P. Bavi, S. E. Fischer, S. Serra, S. Hafezi-Bakhtiari, D. Caglar, M. H. A. Roehrl, S. Cleary, M. A. Hollingsworth, G. M. 
Petersen, S. Thayer, C. H. L. Law, S. Nanji, T. Golan, A. L. Smith, A. Borgida, A. Dodd, D. Hedley, B. G. Wouters, G. M. O'Kane, J. M. Wilson, G. Zogopoulos, F. Notta, J. J. Knox, and S. Gallinger. 2019. 'Integration of 
Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases', Cancer Cell, 35: 267-82 e7. 

 

 

 

 

The transcriptional programs colloquially endowed to PDAC tumors has been a 

contentious research area46, and as of 2011, at least 3 different, clinically-applied47 RNA-based 

classification schemes for PDAC have been published. Referred to by the lead authors on each 

of these bodies of work, the classification methods are named Collisson48, Moffitt49, and Bailey50. 

While the subtypes of PDAC are very important and much work has been done to compare the 

subtype schemas, the patient outcomes between them, the superiority of one schema over 

another, et cetera, for all intents and purposes I have chosen to incorporate analyses and data 

obtained only by applications of Moffitt subtyping into this dissertation. This is for good reason, 

as Moffitt et al. break down PDAC tumors into 2 groups: Basal (chemoresistant with worse 

prognosis and a more aggressive phenotype) and Classical (better prognosis, more amenable 

responses to therapy). GATA6 expression is a prognostic biomarker for Classical tumors, while 

keratin 5 is used to identify Basal tumors. Both biomarkers are now used as stratification criteria 
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for patients on subtype-driven clinical trials51. The simplicity of this subtyping model and its 

bioinformatic ease-of-application have elevated the Moffitt Subtypes to my “classification of 

choice”- and this is my dissertation, after all. There will be more data and discussion of this 

forthcoming.  

 

A brief note on epigenetics and histone biology. 

DNA to RNA to protein is, of course, biology’s central dogma. However, this mantra makes a 

glaring omission of the epigenetic processes and molecular scaffolds that cradle DNA and 

ultimately dictate which genes are transcribed and in what manner. In Chapter 2 of this 

dissertation, I present a series of studies focusing on an epigentically-modifying class of 

compounds, histone deacetylase inhibitors (HDAC inhibitors, HDACis). The biological context of 

HDACis might well be lost on the reader, however, unless some background is provided here. 

Histones are made in the cytoplasm (during cellular replication) and transported to the nucleus 

by histone chaperone proteins52. DNA, after being replicated and neatly condensed into 

chromatin, is meticulously coiled around nuclear arginine- and lysine-rich histone core octamers 

to form nucleosomes53.  

“HDACs” is an abbreviation for histone deacetylases, which are functional counterparts 

to histone acetylases, otherwise referred to as HATs. Both are histone-modifying protein/enzyme 

complexes that, through a series of amino acid removals or additions at the N-terminal tails of 

histone amino acids, alter the accessibility of chromatin to regulate transcription. HATs neutralize 

the positive charge on histone lysine residues by transferring an acetyl group onto them. This 

neutralization causes a “molecular loosening” of DNA-histone binding, and allows DNA binding 

proteins to interact with “open” chromatin regions to promote transcription of exposed genes. 

HDACs have the opposite function- they reverse the addition of acetyl groups to histone lysine 

tails (removal), yielding chromatin that is  tightly coiled. HDACs  function as “chromatin stabilizer” 

proteins and repressors of transcription54. In cancer especially, the ratio of chromatin that is 

acetylated versus deacetylated (open and active versus tightly-wound and transcriptionally 
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inactive) is often shifted to favor the transcription of genes important for increased tumor cell 

growth, proliferation, nutrient uptake, etc.55 This is an over-simplification, as the research domain 

of epigenetic regulation is vast and highly complicated. However, for the purposes of my work, 

these are the key points to focus on.  

Given the seemingly deliberate shift in histone acetylation/deacetylation by tumor cells of 

various cancer types, the development of HDAC inhibitors as anti-cancer therapeutics became 

a hotly-researched field. HDAC inhibitors achieve a similar molecular effect as HATs, in that they 

prevent HDACs from removing acetyl groups on histones, keeping chromatin open and available 

for transcriptional machinery to access. HDAC inhibitors, as both natural and manufactured 

compounds, are classified into five groups depending on the type of histone structure that they 

act on, their cell type-specific functions, their dependence on zinc cofactors, where they bind 

(nucleus, cytoplasm, or both), and their evolutionary homology (benchmarked as their similarity 

to different yeast transcriptional complexes)56. HDACis in the context of cancer treatment 

typically help modulate an anti-tumor immune response, induce cancer cell cycle arrest, are 

antiproliferative, and result in cell death in many, but not all, tumor types57. 

In summary, much like a spool ravelling or unraveling its thread, HDACs, HATs, and 

HDACis work on nucleosomes to expose or sequester regions of DNA. Tumor cells leverage 

these epigenetic modifiers to transcribe regions of the genome that enhance their survival and 

promote cell proliferation. HDAC inhibitors were developed as a way to clinically intervene with 

a tumor cell’s ability to unravel or tighten up regions of its DNA in the interest of its own growth 

and survival. However, because HDACis given as anticancer mono-therapies have been 

unsuccessful, there is a vested interest for clinicians and researchers alike in determining the 

mechanisms of how tumors regulate their epigenetic machinery in the first place, and do so again 

in response to epigenetically-modifying drugs to achieve an enduring, resistant phenotype.   
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Single cell sequencing for uncovering intratumoral heterogeneity of PDAC 

lesions. 

To complicate matters further, the dawn of single-cell sequencing methods has alerted us to the 

notion that all of this tumor evolution, epigenetic shape-shifting, fibroblast activation, stromal 

construction, and malignant progression happen heterogeneously: if you look closely enough, no 

two tumor cells are “truly” the same (intratumoral heterogeneity), no two patient tumors are 

identical (intertumoral heterogeneity), and therefore no two “clones” or patient tumors can 

reasonably be expected to respond to therapy in the same manner58. Intratumoral heterogeneity, 

in terms of different genomic profiles, epigenetic modifications, and transcriptomic states 

coexisting in a single tumor, is a well-documented and widely accepted principle in tumor 

biology59,60,61,62. However, the development and advancement of single-cell (sc) DNA, RNA, 

ATAC, and multi-omic protocols (with accompanying advancement in bioinformatic tools to make 

sense of this wealth of data) has helped to uncover an unprecedented level of detail in PDAC 

tumor biology. As an example of this insight, let’s revisit the Moffitt transcriptional subtypes of 

PDAC. Through traditional bulk RNA sequencing approaches, RNA sequencing data from either 

a patient tumor or blood sample leads to the classification of a lesion as either Basal or Classical, 

and a patient’s treatment is planned accordingly. In recent years, as a function of scRNAseq 

approaches, we now understand that individual tumors exhibit subtype admixture, where some 

regions have classical-like features, while other tumor areas in the same lesion are definitively 

more basal-like63. In this scenario, while the “overall tumor” might appear Classical-like via bulk 

RNA sequencing, there would be underlying regions of more aggressive Basal tumor cells that 

bulk RNAseq would “overlook”. This patient might be placed on a treatment regimen appropriate 

for a Classical tumor subtype, and soon progress on therapy due to the proliferation of the more-

aggressive Basal-like cells operating in the absence of resource competition from their now-

deceased Classical cousins. There are myriad examples in the literature now of the incredible 

methods (both bioinformatic and bench-based) that have been developed in this new age of 
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single-cell science. In this dissertation, different single cell technologies will be applied to address 

fundamental questions of pancreatic cancer biology. It is my hope that the work presented here 

will not only showcase the power of multi-modal analytics, but also demonstrate the importance 

of applying appropriate tools to deconvolute cancer biology to impact our understanding of this 

wretched malignancy.  
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Chapter 1 Introduction 

Pancreatic Ductal Adenocarcinoma (PDAC) is a highly lethal malignancy, projected to be 

the second-leading cause of cancer-related death in the United States by 203064,65. With a dismal 

5-year survival rate of 10%66 and few clinically meaningful therapeutic advances in recent years, 

the need for clinical and research advances is urgent. Preclinical models of PDAC represent 

essential prerequisites for advancing cancer research and experimental therapeutics in this lethal 

disease. The most commonly used and widely published preclinical models of PDAC that have 

been, and continue to be, leveraged in research laboratories globally are adherent cell lines 

distributed by the American Type Culture Collection (ATCC). For example, a perusal of current 

Google Scholar metrics demonstrates ~35,000 publications for PANC-1 and ~20,000 

publications for MiaPaCa2, two prototypal ATCC cell lines nearly ubiquitous in every PDAC 

cancer research laboratory’s incubator. Included in many of these publications, and typically used 

as contemporaneous “control” cells in experiments, are two immortalized, non-transformed 

human pancreas-derived cell lines – so-called Human Pancreatic Ductal Epithelial (HPDE) and 

Human Pancreatic Nestin-expressing (HPNE) cells. While the reach of these preclinical models 

in furthering our knowledge of PDAC biology is extensive 2-67, several inherent assumptions have 

been made regarding the stability of the genomic and transcriptomic clonal architectures of these 

cells over time, including the fidelity to “normal” parameters for HPDE and HPNE during ex vivo 

passage. 

The justifiably increased focus on rigor and reproducibility in scientific research studies 

has meant more stringent requirements for authentication of cell line resources, but the 

microsatellite assays typically used for confirmation of cell identity provide minimal insights into 

genomic and transcriptomic variabilities that might arise when the apparently identical line is 

propagated at different laboratories68 or in disparate culture conditions, such as two-dimensional 

(2D) versus three-dimensional (3D) growth. A recent seminal publication by Ben-David et al69 

identified widespread genomic and transcriptomic variabilities in single cell clones isolated and 

expanded from the same parental cancer cells, which further translated into differences in drug 
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responsiveness in vitro, suggesting a staggering level of pre-existing intra-culture heterogeneity 

within cancer cell lines. Although PDAC cells from surgical resections were not included in this 

analysis, it underscores the need for an in-depth benchmarking study using commonly used 

cancer and non-transformed “control” cells, in order to fully glean the extent of intra- and inter-

culture heterogeneity that exists in these preclinical model systems. 

In addition to the use of adherent cell lines, efforts at better recapitulating the biology of 

in vivo disease have led to the burgeoning adoption of patient-derived organoid (PDO) models 

as an ex vivo platform in the PDAC field. Encouragingly, early passages of PDAC PDOs maintain 

genomic and transcriptomic features of the tumor of origin, and harbor a gene signature of 

response to commonly used cytotoxic agents, enabling therapeutic prediction 70-71 . Nonetheless, 

whether the clonal architecture of PDOs remains stable over more prolonged ex vivo 

propagation, considering both the time in culture and the lack of extrinsic cues from the tumor 

microenvironment in vivo, remains less studied. 

Here we present an in-depth single cell genomic and transcriptomic assessment of clonal 

heterogeneity in a panel of established and globally utilized PDAC cell lines (Panc-1, MiaPaCa2, 

HPAF-II and BxPC-3), immortalized “control” cells (HPNE and HPDE), and in an independent 

PDO which is compared to its earlier passage prior to prolonged ex vivo propagation. We 

demonstrate that pancreatic cell lines -  neoplastic and non-neoplastic -  are composed of 

remarkable sub-clonal heterogeneity at single cell resolution, which is unlikely to be detectable 

by conventional “bulk” profiling, and has not been previously reported on, despite extensive 

“traditional phenotypic” characterization of these lines 11,72-73. Unexpectedly, HPDE cells harbor 

substantial genomic alterations and a transcriptome that essentially resembles cancer cells, 

questioning their use as a “control” line in research studies. We further demonstrate marked 

transcriptomic differences (including expression-based subtype classification) in microsatellite 

authenticated MiaPaca2 cells obtained from three independent sources.  Another notable finding 

of our study is the observation of marked transcriptomic and epigenetic divergence (incorporating 

the appearance of distinct therapeutically actionable pathways) when adherent (2D) parental 
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Panc1 cells are grown in 3D cultures. Finally, we describe the significant genomic and 

transcriptomic divergence of a later-passage PDO from an earlier passage, reiterating the 

importance of limiting the window for ex vivo therapeutic prediction and other biological 

experiments in this model type. Overall, our findings provide data-driven benchmarks for the 

limitations of the most commonly utilized preclinical models and platforms in PDAC research, 

with implications for the rigor and reproducibility of data generated in the in vitro setting. 

 

Materials and Methods included in Chapter 1 

Cell line selection and 2D culture 

For non-neoplastic cell lines, HPDE and hTERT-HPNE were used, given their prevalence 

as “normal controls” in literature (over 800 citations for each line in PubMed). hTERT-HPNE 

(ATCC Cat. CRL-4023, passage no. 1) was plated in Complete Growth Medium, consisting of 

75% DMEM without glucose (Sigma D-5030) with an additional 2mM L-glutamine and 1.5 g/L 

sodium bicarbonate, 25% Medium M3 Base (Incell Corp. M300F-500), 5% fetal bovine serum 

(ThermoFisher Scientific Cat. 10082147), 10 ng/mL human recombinant EGF, 5.5 mM D-glucose 

(1g/L) and 750 ng/mL puromycin. HPDE (Kerafast Cat. ECA001-FP, passage no. 4) cells were 

cultured using Keratinocyte Basal Medium with supplied supplements (Lonza, Clonetics KBM, 

Cat. CC-3111). For PDAC-derived cell lines, we wanted to ensure that lines selected were both 

widely-used in the field, and be representative of a range of characteristics in terms of 

differentiation and epithelial versus mesenchymal origin. MP2-A cell line was purchased from the 

American Type Culture Collection (ATCC Cat. CRL-1420). MP2-B was obtained from a 

collaborating lab and plated upon arrival (passage no. 2). MP2-C was thawed and plated from 

an in-house stock vial (passage no. 3). All MiaPaCa-2 cells were cultured using DMEM (ATCC 

Cat. 30-2002) supplemented with 10% fetal bovine serum for up to 2 expansions. BXPC3 (ATCC 

Cat. CRL-1687, passage no. 1) and HPAF-II (ATCC Cat. CRL-1997, passage no. 1) cell lines 

are commercially available, and cultured using RPMI 1640 (Gibco) supplemented with 2mM 

glutamine, 10% fetal bovine serum (ThermoFisher Scientific Cat. 10082147). Panc-1 cell line 
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(ATCC Cat. CRL-1469, passage no. 3) for 2D studies was cultured in DMEM with 2mM glutamine 

and 10% fetal bovine serum (ThermoFisher Scientific Cat. 10082147). Cell lines were harvested 

for single-cell dissociation and sequencing at 80-90% confluency. A volume of 3mL of media 

from each cell line was harvested and sent to the MD Anderson core facilities for mycoplasma 

testing. All cell lines were washed with PBS and incubated with 0.25% Trypsin for 3-5 minutes. 

For all lines except HPDE, trypsin was neutralized using each respective cell line’s media; in 

HPDE, trypsin was neutralized using a Trypsin Inhibitor (Invitrogen Cat. 17075-029). Cell lines 

were centrifuged for 5 minutes at 1200rpm, resuspended in cold PBS + 0.04% BSA (Roche Ref. 

03116956001), filtered using Flowmi 40uM pipette filter tips (Sigma BAH136800040), and 

counted to ensure debris-free single cell suspensions. A portion of cells were sent to the MD 

Anderson core facility for molecular fingerprinting, and all cell lines were counted using a 

Countess II automated cell counter. 2,000 cells were loaded per lane into the 10x Chromium 

Platform for scCNV sequencing, and 10,000 cells per lane were loaded for scRNA sequencing.  

 

Panc-1 3D spheroid culture  

For 3D spheroid growth, Panc1 cells from the same passage as the cultured 2D cells 

were thawed, washed with PBS, suspended in growth-factor reduced Matrigel (Corning 

#356231), and plated in 80uL spheres on 24-well Nunclon Delta surface plates (TMO140620). 

Spheroids were incubated for 10 minutes at 37℃ to allow the matrigel to harden, and 650uL of 

DMEM + 2mM glutamine and 10% fetal bovine serum were added. For spheroid dissociation in 

single-cells, media was removed, and spheroids were manually dissociated in 500uL of TryplE 

Express (Gibco Cat. 12604013). DMEM media was then added, and spheroids were centrifuged 

at 1500rpm for 5 minutes. To dilute the matrigel and obtain single-cells, cells were resuspended 

in 5mL PBS,  filtered twice with 70uM cell strainers (Corning CLS 431751), resuspended once 

more in cold PBS + 0.04% BSA, filtered again using Flowmi 40uM pipette filter tips, counted, and 

loaded at 10,000 cells per lane into the 10x Chromium Platform for scRNA sequencing. 
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Sample acquisition for organoid generation 

A patient was recruited at the University of Texas MD Anderson Cancer Center through 

informed written consent following institutional review board approval (Lab00-396 and PA15-

0014). The study was conducted in accordance with Good Clinical Practices concerning medical 

research in humans per the Declaration of Helsinki. An EUS-FNA biopsy procedure was 

conducted and confirmation of pancreatic ductal adenocarcinoma present in biopsy-obtained 

tissue specimens was provided by a pathologist. The tissue specimens were subsequently 

delivered to the research laboratory setting, where they were processed for organoid generation.  

 

 

Organoid generation 

 

Dissociated cells were resuspended in PaTOM media74 and centrifuged at 1500rpm for 5 

minutes. Cell pellet was gently resuspended in Matrigel Growth Factor Reduced (Corning) and 

plated as a dome in a Nunclon Delta Surface 24-well plate (Thermo Fisher). Cells embedded in 

matrigel were incubated at 37C for 15 minutes and covered with PaTOM media supplemented 

with Y-27632 dihydrochloride (Tocris). Organoids were expanded and grown up to passage 4 

(PDO early), at which point there were a sufficient number of cells in culture to be processed for 

single cell sequencing while also maintaining a stock in culture for further growth. After an 

additional 10 passages, PDO cells were harvested for single cell sequencing to be compared as 

“PDO late” in this study.  

 

Library construction for whole exome sequencing (WES) of HPDE and HPNE cell lines  

DNA was prepared as described previously75, including fragmentation with a Covaris LE 

220 ultrasonicators system (Covaris) and library construction with the SureSelect XT HT–

targeted enrichment protocol (Version A1, July 2017). Libraries were subsequently hybridized to 

a whole-exome capture library (SureSelect AllExonV7; Agilent, C/N: 5991-9039) and sequenced 

on a NextSeq500 (Illumina) using 300-cycle kits, paired-end. 
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Whole exome sequencing and segmentation analysis 

Bcl2Fastq (2.20.0, Illumina) was used to convert raw Illumina data (bcls) into fastqs. 

Fastqs were then trimmed with SureCallTrimmer (v4.0.1, AGeNT v2.0, Agilent), aligned to hg19 

with BWA (Burrows-Wheeler Aligner, 0.7.15-r1140, Li 2020, and barcodes were collapsed with 

LocatIt (v4.0.1, AGeNT v2.0, Agilent) to family size of 1. Resulting bam files were then processed 

by GATK (v4.1.2.0) according to best practices76, including base quality recalibration (BQSR). 

Segmentation analysis was performed as described by GATK best practices76. Briefly, we use 

the PBMC data, sequenced with the same platform and library to create a CNV panel of normals 

(PoN) to establish a baseline. We then collected read counts for HPDE/HPNE on padded (100bp) 

targeted regions, and then standardized and denoised using the PoN. Read counts were then 

standardized and denoised before making segmentation calls. 

 

Single-cell RNA and CNV library construction and sequencing  

All cell lines were processed using 10x Genomics platforms: Single Cell 3’ Reagent Kits 

v2 for scRNA and the Chromium Single Cell DNA Reagent Kit for scCNV. All libraries were 

assessed for quality on Agilent TapeStation 2200 and quantified using both Agilent TapeStation 

2200 reagents and Qubit dsDNA HS Reagent kits (Invitrogen Cat. Q33231) before loading onto 

NextSeq500 (Illumina). Multiplexed scRNA libraries were sequenced using 150-cycle kits, 

paired-end, Read 1 26 cycles, Read 2 98 cycles, i7 index 8 cycles, i5 index 0 cycles. Multiplexed 

scCNV libraries were sequenced using 300-cycle kits, paired-end, Read 1 150 cycles, Read 2 

150 cycles, i7 index 8 cycles, i5 index 0 cycles. Cell Ranger version 2.0 was used to convert 

Illumina base calls (bcls) to FASTQ files. FASTQ files for scCNV data and scRNA were aligned 

to the reference genome GrCh38 using files provided by 10x Genomics. Cell Ranger DNA 

Software v1.1 was used for subsequent downstream analysis of each cell line’s aligned data.  

 

Single-nuclei ATAC library construction and sequencing 
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Of the Panc1 monolayer and spheroid cultures, a subset of whole cells was isolated from 

the pools processed for scRNA + CNV sequencing. Using the nuclei isolation protocol and 

methods proscribed by 10x Genomics (Demonstrated Protocol CG000169, Rev D), we were able 

to load 5,000 nuclei per well for Panc1-3D and 7,000 nuclei per well for Panc1-2D for processing 

using the 10x Genomics Single Cell Atac Kit, v1. As with the previously described scRNA and 

scCNV libraries, all quantification and quality control was conducted on an Agilent 2200 

TapeStation using D1000 High Sensitivity reagents, with additional quantification using Qubit 

dsDNA HS Reagent kits. A pooled library containing both Panc1-2D and Panc1-3D snATAC 

libraries was loaded on the NextSeq500 using 150-cycle kits, paired-end, dual-index mode, Read 

1 50 cycles, Read 2 50 cycles, i5 index 16 cycles, i7 index 8 cycles. Cell Ranger version 3.1.0 

and cellranger-atac version 1.2.0 were used to convert Illumina bcls to fastq files and align 

samples to reference genome GrCh38.    

 

scCNV clonal analysis 

 Using bedtools to intersect coordinates, and book-ended 5.12Mb intervals along each 

chromosome of chr1-22 and chrX, chromosomal locations and copy number values as provided 

by 10x Genomics software in node_cnv_calls.bed were mapped to evenly sized intervals along 

each chromosome. Next, a weighted average based on the size of the overlap of each interval 

in node_cnv_calls.bed was used to obtain a mean copy number value per cell, per 5.12Mb 

interval. Finally, cells listed as noisy or with a haploid genome (mean ploidy < 1.5) were excluded 

from the visualization. A literature search was conducted to identify commonly amplified/deleted 

genes in PDAC, and the output of that search was combined with a Maitra Lab in-house panel 

of commonly mutated genes in pancreas cancers. Using Ensembl v84 for gene locations and 

bedtools to intersect coordinates, chromosomal locations and copy number values as provided 

by 10x Genomics software in node_cnv_calls.bed were mapped to gene-specific loci. Cells listed 

as noisy or with a haploid genome (mean ploidy < 1.5) were excluded, and then a random 1000 

cells per cell line were chosen using the "sample" function in R. 
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scRNA Seurat analysis of cell lines 

Seurat (v3.1)77 merged analysis was used to profile the scRNA cell line data. For removal 

of mitochondrial genes in cell lines, we subsetted all cells with less than 20% mitochondrial gene 

expression. Log normalization, variable feature identification (FindVariableFeatures), z-scoring 

(ScaleData) were applied to the merged object of all cell lines, and principal component analysis 

(RunPCA, npcs = 30) and subsequent dimension reduction (UMAP) were applied. Seurat’s 

FindMarkers command was used to identify cell lines that were representative of mesenchymal, 

epithelial, or neither phenotypes based on surface expression marker gene sets, as previously 

published by our laboratory78.  

For confirmation of AURKA and BRCA expression in HPDE and HPNE cell lines, 

scRNAseq data for these samples were combined into a single seurat object, scaled and 

normalized as previously described, and seurat’s FindMarkers command was used to measure 

expression of each gene.  

 

Gene Set Enrichment Analysis (GSEA) for MiaPaca2 clusters 

To obtain significantly enriched pathways on a per-cluster basis from MP2 cell lines, 

marker genes were extracted using FindMarkers function in Seurat, on a per-sample basis (ex: 

FindMarkers, ident.1 = “MP2.A”, ident.2 = c(“MP2.C”, “MP2.B”). Resulting genes were ranked by 

-log10(FDR) multiplied by fold-change directions, and the output file was formatted according to 

requirements for downstream input to GSEA. This yielded an output wherein upregulated genes 

had positive values and downregulated genes had negative values. Pre-ranked GSEA was thus 

performed using fgsea R package v1.12.079 specifying 10,000 permutations, and fgsea output 

was filtered based on FDR and adjusted p-values for each pathway.  

 

Copy number inference of MiaPaca2 cell lines from scRNA-seq 
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Copy number alterations from scRNA-seq were inferred using inferCNV R package v1.0.4 

(https://github.com/broadinstitute/inferCNV). Raw gene counts from filtered cells were used, and 

cutoff was set to 0.1. HPNE cells were used as reference. 

 

Gene Set Enrichment Analysis (GSEA) for Panc1 sample-specific clusters 

To obtain significantly enriched pathways for clusters specific to either Panc1-2D or 

Panc1-3D, marker genes were extracted on a per-cluster basis using FindMarkers function in 

Seurat from a merged Panc1-2D + Panc1-3D object (ex: panc3_c2.markers <- 

FindMarkers(object = panc1, ident.1 = 2, ident.2 = c(0,1,3,4,5,6))). Resulting genes were ranked 

by -log10(FDR) multiplied by fold-change directions. This yielded an output wherein upregulated 

genes had positive values and downregulated genes had negative values. Pre-ranked GSEA 

was thus performed using fgsea R package v1.12.0 specifying 10,000 permutations, and fgsea 

output was filtered based on FDR and adjusted p-values for each pathway, as previously 

described for MiaPaca2 GSEA analysis. 

 

snATAC analysis of Panc1 for motif activity, coverage plotting, and integration with matched 

scRNA  

 Using Seurat v3 and its extension package Signac version 1.0.0 

(https://github.com/timoast/signac), along with additional R packages for gene annotation 

(EnsDb.Hsapiens.v86) and the JASPAR 2020 Motif Database (JASPAR2020), 10x genomic 

output files (metadata, fragments file, fragments index, filtered peak matrices) to generate Seurat 

objects containing motif information, gene annotations, and genomic ranges. Quality control on 

nuclei was done by quantifying nucleosome signal, TSS enrichment,  number of peaks in 

fragmentation regions, and nucleosome signal according to Signac software recommendations 

(TSS Enrichment > 2, nucleosome signal < f10,  blacklist ratio < 0.05, percent reads in peaks > 

15, peak region fragments between 1,000 and 20,000). Samples were normalized using term 

frequency-inverse document frequency (TF-IDF) normalization, top features were identified, and 

https://github.com/timoast/signac


21 

dimensional reduction using singular value decomposition (SVD) on the TF-IDF matrix using 

peaks as features was done on both individual samples and a merged analysis object that had 

been created using fragmentation and peak data to identify common features to use as merging 

anchors. Motif activities were subsequently calculated using chromVar, as adapted for Signac. 

We then identified motifs that were enriched in each subcluster per sample, as well as 

differentially enriched between the two samples (merged analysis).  To correlate regions of 

chromatin activity with scRNA data, per-sample snATAC-Seurat objects containing gene activity 

data were scaled, normalized, processed with latent semantic indexing (LSI), and UMAP 

dimensional reduction. We use all peaks that have at least 100 reads across all cells, and 

reduced dimensionality to 50, as recommended by Seurat guidelines. The processed snATAC 

dataset was then merged with the previously-described processing of scRNA data for Panc1 

samples, with merging based on common anchors identified between the datasets, using scRNA 

data as a reference (FindTransferAnchors), to ensure commonalities and cluster structure 

between the datasets. Next, gene lists were curated using the GeneCards Human Gene 

Database- genes specifically activated by each enriched motif were queried and plotted using 

scRNA data (DotPlot).  

 

Cladogram analysis of cell lines 

We sought to quantitatively assess the transcriptional similarity among the cell lines and 

establish if the families of origin for the cell lines are preserved. We use graph based methods 

called diffusion maps to compute the distances between the cell lines. In particular, we first map 

the cells from high dimensional transcriptomic space to a low dimensional rescaled diffusion 

space80, where phenotype distance between cells are more faithfully represented and compute 

distances between the cells in this new space.  

Briefly, diffusion maps81 is a family of techniques to reduce the dimensionality of any high-

dimensional data and have gained a lot of application in the analysis of single-cell data82,83,84. 

Essentially, they transform data from high dimensional gene expression space to a space of 
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much lower dimensions, where usual Euclidean distance is reflective of the cellular phenotypic 

distance. Computing distances in diffusion space requires choosing the optimal number of 

diffusion coordinates. However, it has been proposed that rescaling the diffusion coordinates by 

their eigenvalues can circumvent this issue80.  

For this, we combined all the samples and the resulting data was then reduced in 

dimensionality first using PCA. Diffusion Maps was then computed on the resulting PCA for which 

we first constructed a k-nearest neighbor (k = 30) graph using Euclidean distance and converted 

the resulting distance matrix into an affinity matrix using an adaptive Gaussian kernel (Setty 2019, 

van Dijk 2018). The resulting affinity matrix was row normalized (each row sum to 1) to obtain a 

Markov matrix, whose eigenvectors represent the diffusion coordinates. These coordinates were 

rescaled using the associated eigenvalues as described in (Setty 2019). Finally, we computed 

the Euclidean distance between every pair of cells between any two samples in the rescaled 

diffusion space. Thus, we defined the phenotypic distance between the two samples as the 

average distance between all pairs of cells as computed above. The resulting distance between 

samples was represented as a cladogram using the dendrogram function on linkage function in 

the scipy.cluster.hierarchy package in Python with parameter method = “average”.  This was also 

represented as a heatmap using the clustermap function in seaborn package in Python. 

 

Phenotype map of existing gene sets 

We sought to understand the intra-sample heterogeneity of MiaPaCa2 samples by doing 

subtype analysis. We utilized gene sets from Moffitt et al. (cited in introduction) and used the 

expression of the genes to assign every cell to one of the subtypes. We constructed a simple 

assignment scheme to achieve this. We began by computing the average subtype expression 

for each single cell, i.e. average over the genes that define the subtype. We then reasoned that 

a single cell can be labeled as belonging to the subtype with the highest average expression. 

 

scCNV processing for scRNA clonal expression correlates 
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CNV calls per segment, per cell (from “node_cnv_calls.bed”) were intersected with 

mappable regions (as defined in “mappable_regions.bed”) using bedtools (v2.29.2). Next, the 

copy number for each mappable region for each cell was defined as the integer copy number 

with the most total bases covering the region. Finally, only regions of at least 2Mb on autosomes 

(chr1-22) were retained for downstream analysis. Cells defined as noisy in the QC summary file 

(“per_cell_summary_metrics.csv”) were removed prior to downstream analysis as well. 

This data was converted to a cell x region matrix, with all integer values. Next, for each 

chromosome and chromosome arm, mean copy number was calculated by weighting based on 

the total length at each integer copy number, across all mappable regions. Ploidy was defined 

based on the median of these values across all whole chromosomes. Cells with ploidy more than 

one standard deviation from the mean across cells were removed. 

Next, visual assessment of the chromosome arm mean copy number values per cell was 

used to determine which regions warranted further examination. Per sample, the chromosome 

arms that showed variation in a large percentage of cells were: MP2-B – chr7p, chr10p, chr10q, 

chr12q; MP2-C - chr5p, chr5q, chr10p, chr10q, chr14q; Panc1-2D – chr14q, chr15q. Next, all 

mappable regions in these chromosome arms were plotted for further visual assessment. In 

Panc1-2D, chr15q mappable regions starting at coordinates <40Mb or >80Mb, which showed a 

different profile from the other mappable regions, were also excluded. In MP2-B, only mappable 

regions from 93.5-126.3Mb on chr12q were considered, as the remaining regions had consistent 

copy number across cells. As all examined cell lines appeared to be triploid overall, deletion 

defined as mean copy number < 2.75, while amplification defined as mean copy number >= 3.75. 

Next, clones were defined as described in the main text. The end result of the scCNV workflow 

for each sample was a segment x clone matrix, where the segments were the mappable region 

coordinates and the values were integer copy number values. 

 

scCNV-scRNA integration 
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 The mappable region coordinates were intersected with the gene coordinates (from 

Ensembl v84, same as in the CellRanger reference) to produce a gene x clone matrix. This matrix 

was used as input to clonealign (v2.0), which was used to assign cells in the RNA to each clone. 

Default parameters (including min total nUMI per gene of 20 and min total nUMI per cell for all 

copy-variant genes of 100) were used to filter genes and cells before running clonealign. Next, 

clonealign was also run with default parameters, except for the minimum probability required to 

call a cell as assigned to each clone. This parameter was set to 90% for MP2-B and Panc1-2D. 

For MP2-C this was lowered to 50%, due to very low numbers of cells with high confidence clone 

calls found in this sample. 

Seurat (v3.1) was used for dimension reduction (UMAP). For this analysis, all annotated 

genes expressed in at least 10 cells were included. Next, only cells assigned to a clone with 

confidence above the threshold were included for downstream analysis. Finally, standard 

analysis was performed including SCTransform for normalization and variable gene selection, 

followed by principal component calculation on the variable genes (RunPCA). The first 30 PCs 

were used for input into UMAP (RunUMAP) for the MiaPaca2 samples, while the first 50 were 

used for Panc1. 

 Seurat’s FindMarkers command was used for differential expression between clones. For 

MP2-C, clones 1 and 3 were combined into one group to create a pairwise comparison versus 

clone2. This was because cells called as either of these clones showed very similar expression. 

All default parameters were used except for reducing the log-fold-change threshold to 0.10 from 

0.25. 

 

GSEA of clonealign-defined scRNA clones 

Pre-ranked GSEA was thus performed via the GSEA software version GSEA_4.0.3. 

Molecular Signature Databases h.all.v7.1.symbols_1.gmt (hallmark pathways) and 

c6.all.v7.2.symbols.gmt (oncogenic signature gene sets) were both used to align gene lists 

extracted from clonealign-defined-scRNA clones in Seurat (see figures 2G, 2J, Supp. 6C, Supp. 
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6D), as described above using FindMarkers. A false discovery rate (FDR) cutoff of 25% was 

used to analyze the GSEA results for significant pathway enrichment per sample. Manual 

curation of genes lists from significantly-enriched per-clone pathways was conducted to identify 

individual genes relevant to pancreatic cancer biology (ie KRT13, LGALS1).   

 

Dimensionality reduction and cell clustering of PDO Pair 

         Initial single-cell analysis was performed using Seurat v3.1.0 (1). Cells containing less 

than 200 genes were removed, and log-normalized expression of 2,000 variable genes were 

used to reduce the data into two-dimensional space. Cells from PDO1 early and PDO1 late 

samples were combined using FindIntegrationAnchors and IntegrateData functions. To retain the 

highest number of cells for subsequent analyses, no additional filters were initially applied. Cells 

with higher expression of mitochondrially encoded genes were filtered out post hoc based on the 

results of the clustering. 

  

Cell state trajectory analysis of PDO Pair 

         Trajectory inference was performed using Monocle v2.13.0 (2). Analysis was done using 

raw counts obtained from Seurat objects with preserved cellular metadata. Top 1,000 variable 

genes were used to reduce the data and order the cells. Pseudotime heatmap was created using 

genes with dynamic expression changes obtained using differentialGeneTest function specifying 

fullModelFormulaStr = “~sm.ns(Pseudotime)” and q-value cutoff of 1 x 10-40. Branched 

pseudotime heatmap was created using BEAM function and q-value cutoff of 1 x 10-5. Genes 

were clustered based on pattern of expression changes and extracted from Monocle object for 

subsequent analysis. 
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Chapter 1 Results 

Single cell analysis identifies clonal heterogeneity of pancreatic cancer and non-

transformed cells.  

We cultured six pancreatic cell lines, including three MiaPaca2 lines from independent 

sources and a pair of Panc1 lines subjected to differing growth conditions, for a total of nine 

samples analyzed with single-cell transcriptomic profiling (scRNAseq, 10x Genomics) and seven 

samples also analyzed with genomic copy number variant detection (scCNVseq, 10x Genomics). 

All samples were submitted for fingerprinting via MD Anderson Core Facilities prior to sequencing 

to confirm cell line identity. Visualization of the combined scRNA-seq data (77,068 cells) with 

UMAP85 (Figure 3A) revealed substantial heterogeneity across the cell lines, including only 

partial overlap in apparently identical cells obtained from distinct sources or cultured under 

different conditions (see later). We first validated that cell lines of published epithelial or 

mesenchymal differentiation state maintained key marker identities 86 (Figure 3B). For example, 

we observed high expression of the epithelial transcripts EPCAM and KRT8 in the previously 

described “epithelial” lines, HPAF-II and BxPC3, and conversely, the prototypal mesenchymal 

transcript vimentin (VIM) was essentially restricted to the previously described “mesenchymal” 

lines Panc1 and MiaPaca2. HPNE cells, which were originally derived from a nestin (NES) and 

NOTCH2 expressing pancreatic progenitor cellular population 87, were confirmed to retain both 

markers (Figure 3B). Notably, HPNE cells, along with Panc1 and MiaPaca2, also demonstrated 

extensive CD44 expression, underscoring the enrichment of putative stem-like cells in culture. 

We observed that cell lines that had undergone differing culture conditions (Panc1 2D, Panc1 

3D) or were from distinct laboratories of origin (MiaPaca2-A, B, and C) were still more 

transcriptionally similar to each other than to the other cell lines (Figure 3A).  
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To quantify transcriptional similarity, we computed phenotypic distance, defined as the 

distance between the samples in the diffusion space (see Methods). Upon projecting the 

distances onto a cladogram, we observed that all three culture variations of MiaPaCa2 cell lines 

fall into a common clade (MP2-A, MP2-B, MP2-C), while Panc1 cells, irrespective of growth as 

monolayer or in 3D, branch into their own clade (Figure 4). To ensure rigor and reproducibility in 

our work, and to assure the reliability of our analysis when yet simpler algorithms are applied, we 

confirmed our findings by running a Pearson correlation analysis (data not shown) 88. In doing 

so, we report that the overarching structure of how cell line clades are organized remains highly 

similar to what was determined by diffusion mapping. 

 

 

Next after the scRNA-seq data, we moved on to look at the scCNV analysis. The scCNV 

analysis demonstrated an overall striking degree of subclonal heterogeneity within each of the 

pancreatic cell lines, with various divergent genome-wide copy number alterations identified 
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within subsets of each parental entity (Figure 3C). We found 10x Cell Ranger DNA software had 

underestimated scCNV event calls, likely due to low sequencing coverage susceptible to this 

data type. To adjust for underestimation, we used our in-house bulk WES data for HPDE and 

HPNE as bioinformatic controls to re-estimate baseline CNV events, and then normalized cells 

across each sample to create a “pseudo-bulk” profile based on copy number ratios for each cell 

line (Figure 4C). In this “pseudo-bulk” summary, previously described hallmark genomic events 

characteristic of PDAC lesions 1-6 were readily observed, albeit in some cases only in a subset 

of genomic subclones for each line. Specifically, amplifications in regions of chromosomes 

1,2,3,5,7,8,11,14, and 17, and losses at regions of chromosomes 3 (HPDE), 9 (BxPC3, MP2-B, 

MP2-C, HPDE), and 13 (HPAF-II) were distinguishable. 

Finally, we mapped the clonal families of each cell line to genes known to be amplified, 

deleted, or mutated in PDAC (see Methods), and uncovered extensive heterogeneity in 

amplification and deletion profiles on a per-locus basis (Figure 5). We report that HPNE has a 

benign CNV profile at these loci, with little heterogeneity in copy number across clones of this 

culture (Figure 5A). Conversely, the BxPC3 cell line, which is historically used as a KRAS wild 

type PDAC cell line, harbors copy number >= 4 in nearly all clones at the TERT gene locus, 

wherein over 2/3 of cells have a copy number for TERT more than 1 above the mean ploidy 

(Figure 5B).  
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BxPC3 TERT copy number was also confirmed via fluorescence in situ hybridization 

(FISH), as compared to copy number events at this locus in cell lines HPDE, HPNE and HPAF-

II (Figure 6). Of interest, a number of BxPC3 clones harbored amplifications at the BRAF locus 

(Figure 5B).  It is known that in contrast to melanoma, cases of KRAS wild type PDAC, including 

the BxPC3 cell line itself, acquire in-frame deletions of BRAF that result in constitutive activation 

of the kinase domain 89. However, amplification of the mutated “driver” oncogenic locus (e.g. 

KRAS, BRAF, EGFR) is not unusual, as it can provide additional survival and growth cues. 
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Single cell profiling reveals pitfalls of commonly utilized immortalized pancreatic controls. 

 The Human Pancreatic Duct Epithelial (HPDE) cell line is a widely used model system 

for human pancreatic carcinogenesis 13,90 typically as a non-transformed, immortalized 

“control”.  HPDE cells were derived from explanted human pancreatic ductal epithelium obtained 

from a pancreas resected for benign etiology, and immortalized using retrovirus-mediated 

expression of human papillomavirus 16 (HPV16) oncoproteins E6 and E7 33. The immortalizing 

effects of E6 and E7 are mediated primarily by targeting of the p53 and retinoblastoma (Rb) 

tumor suppressor genes 91. Parental HPDE cells are wild type at the endogenous KRAS locus, 

non-transformed in vitro, and non-tumorigenic in mice, unless transformed through ectopic 

expression of mutant KRAS, in combination with other tumor promoting genomic events 92. 
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We thus hypothesized that the HPDE cell line would be transcriptomically distanced from 

the PDAC-derived lines, given its broad experimental application as a control line. However, our 

scRNAseq interrogation instead shows HPDE is most transcriptionally similar to HPAF-II, and on 

a distinct clade from the second commonly used “control” line, HPNE (Figure 4B). On scCNV 

profiling, we find that HPDE cells retain a subclonal architecture akin to a neoplastic genotype in 

some clones (Figures 3C and 3E). We also find evidence of distinct amplification and deletions 

at loci linked to key PDAC-progressor genes (Figure 5B). We conducted “conventional” bulk 

whole exome sequencing (WES) on HPDE cells curated in our laboratory from the same pool 

used to generate scCNV and scRNAseq datasets (see Methods). This confirmed that HPDE cells 

had undergone further bi-allelic losses of chromosomal arms 3p, 8p, and 9p, which are all “hot 

spots” housing known tumor suppressor genes in PDAC and other solid tumors (Figure 3E, top), 

and this finding was validated in the “pseudo-bulk” CNV profile generated from scCNV data 

(Figure 3E, bottom). Notably, all HPDE subclones harbor an amplification event (CN >10 in a 

minor fraction of subclones) at chromosome 20q (Figure 3G), bookending the AURKA gene 

locus within the most common region of overlap. Almost no heterogeneity was detected in the 

amplification event, reiterating that all HPDE single cells sequenced have undergone this 

amplification at some level (Figure 3G, bottom purple bar measuring near-0 Heterogeneity 

value). FISH confirmed AURKA amplification in HPDE (Figure 6), indicating that high AURKA 

copy numbers in scCNV clones were not a function of technical artifacts in this dataset. 

Examination of AURKA transcript expression, when HPDE scRNAseq data was normalized to 

HPNE scRNAseq data, showed a spectrum of expression levels in HPDE, at least 20% of cells 

(presumably representing the subclones with highest levels of genomic amplification) expressing 

2-4 fold higher expression of AURKA transcripts compared to HPNE cells (Figure 3H). The 

encoded protein Aurora kinase A is commonly overexpressed in pancreatic cancers, and 

contributes to both chromosomal instability through destabilization of the mitotic spindle 

assembly and towards tumor progression via phosphorylation of substrate proteins 93,94. One can 

speculate that the widespread genomic perturbations observed in HPDE are at least partially a 
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consequence of instability introduced by aberrant AURKA activity, in conjunction with the 

functional inactivation of p53 caused by HPV oncoprotein expression. To the best of our 

knowledge, this is the first description of AURKA amplification in HPDE, a purportedly “control” 

cell used in PDAC research, including in experimental therapeutics studies. 

These findings in HPDE demarcate an important distinction from the second immortalized 

cell line commonly used as an experimental “control”, Human Pancreatic Nestin-expressing 

(HPNE) cells 30. In contrast to HPDE, HPNE cells are non-ductal in derivation (as demonstrated 

by lack of epithelial markers, and widespread expression of progenitor cell transcripts NES, 

NOTCH2 and CD44 on scRNA-seq (Figure 3B). In contrast to HPDE, HPNE cells were 

immortalized using retroviral transduction of the human telomerase reverse transcriptase 

(hTERT), which has been used in more recent times for derivatizing immortalized epithelial cells. 

Unlike HPDE cells, scCNV sequencing demonstrates that HPNE cells have not evolved a 

divergent subcellular taxonomy, but rather are extremely homogenous in their copy number 

profiles when viewed both broadly and at key oncogenic loci (Figure 3C, Figure 5A). This scCNV 

finding is consistent with WES analysis of HPNE (Figure 3D, top), which shows a “flat” bulk 

segmentation profile, and is confirmed on the “pseudo-bulk” profile generated from scCNV data 

(Figure 3D, bottom).  

While we do not observe amplifications or deletions of most of the HPNE genome, there 

is a discernible amplification event at chromosome 17q. As with HPDE, we interrogated genes 

contained within the amplified 17q locus (Figure 3F), and BRCA1, among others, stood out as a 

candidate gene. When interrogating scRNAseq data, we report that at least 24% of HPNE cells 

in culture highly express BRCA1 transcripts relative to HPDE cells (Figure 3H) The encoded 

Brca1 protein is a component of the homologous recombination repair (HRR) machinery, and 

BRCA1 is uncommonly mutated in PDAC (~1%), typically in the germline, and associated with 

HRR defective cancers 95-96. While the direct mechanism by which 17q would have been 

amplified remains to be investigated, we speculate that in the case of HPNE, the relative 
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“genomic quiescence” reported here may be due, in part to the overexpression of BRCA1 

enabling DNA repair mechanisms.  

Ultimately, while HPNE does not exhibit the subclonal heterogeneity observed with 

HPDE, its lack of a ductal transcriptional profile and enrichment in markers associated with 

progenitor populations of uncertain histogenesis need to be factored in the use of these cells as 

an appropriate control for PDAC cells. To that end, the need for developing improved preclinical 

patient-derived “control” models for PDAC research is apparent from our findings.   

 

Custodial variability of MiaPaca2 cell lines drives transcriptomic heterogeneity. 

An identical parental line, when maintained under comparable passaging conditions in 

different laboratories (MiaPaca2), reflects a degree of custodial variability that impacts the 

translational value of that cell line as a controlled model. Previous work challenged the long-

maintained assumption in cancer biology research that cell lines are clonal, stable entities, and 

explored the existence of phenotypic variability between widely used HeLa 15 and MCF7 16 cell 

lines via cross-laboratory multi-omic comparisons. In such studies, cultured cells were 

maintained in uniform conditions after being obtained from different laboratory settings. 

Subsequent analysis revealed extensive inter-laboratory heterogeneity with respect to 

phenotype, copy number variations, and even drug response experiments, elucidating the high 

degree of variability underlying presumed “same” cell lines. Now, in light of single-cell analytics, 

we sought to investigate the extent of deviation from assumptions of clonality, both within and 

between cultures, in PDAC cell lines. 

The MiaPaca2 cell line was initially generated from a primary PDAC lesion of a 65-year-

old male, where the tumor had involved the pancreatic body, tail, and demonstrated periaortic 

invasion 11. We assayed 3 “strains'' of the MiaPaca2 cell line: one ordered directly from the 

American Type Culture Collection (ATCC), located in Gaithersburg, MD (MP2-A), a vial 

originating from an academic laboratory in Boston (MP2-B) and one that had been grown in our 

laboratory at MD Anderson Cancer Center (MP2-C). Following fingerprinting of the MiaPaca2 
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cells, we confirmed using ddPCR that all three versions of the cell line carried the same activating 

KRASG12C mutation (Figures 7A-C), as previously published in characterization studies of this 

cell line 11,97,98. 
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We report phenotypic divergence between these assumptively “identical” cultures that 

appears to be driven by changes at the RNA level. In our comparative scRNA-seq analysis of 

these samples, we find that the MiaPaca2 lines segregate mostly independently, with only a 

single small cluster where all three overlap (Figures 8A, 8B). MP2-A and MP2-B also share an 

additional region of overlap, but distinct from MP2-C.  

Gene Set Enrichment Analysis (GSEA) was performed to identify general pathways that 

are differentially altered between the samples (Figure 8C). MP2-A is enriched in GSEA hallmark 

pathways related to p53, oxidative phosphorylation, and protein secretion. In contrast, MP2-B 

downregulated GSEA hallmark interferon gamma response, and MP2-C has no statistically 

significant enrichment in hallmark pathways based on scRNA-seq GSEA analysis (Figure 8C). 
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We find evidence for a highly similar ancestral clone between the MP2-B and MP2-C 

strains, including several examples of chromosomes ubiquitously amplified in one strain versus 

subclonally amplified in the other (chromosomes 3q, 5, 7p) (Figure 3C). We were also able to 

orthogonally validate this when we applied InferCNV 99 to scRNAseq MP2 data (Figure 8D). 

Further, these strains markedly differ in amplification and deletion events that correspond to 

chromosomal loci implicated in PDAC. For example, in MP2-C we find that nearly all cells have 

copy number >= 4 for oncogenes BLC6, PIK3CA, and BRAF. In contrast, MP2-B has lower copy 
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number for these genes in a large fraction of cells, despite similar overall ploidy levels (Figure 

5B).  These initial findings demonstrate the remarkable heterogeneity, when viewed at the single 

cell level, across cell lines assumed to be derived from the identical parental origin.  

 
Evolution of divergent genomic subclones in MiaPaca2 strains has transcriptomic 
implications. 
 

While profiling at single-cell resolution makes evident the transcriptional and genomic 

heterogeneity of PDAC cell lines, integrating subclonal lineages and relationships between these 

independent datasets is crucial towards uncovering the impact of genomic alterations on 

transcriptomic diversity. Previous work in which DNA and RNA were assayed in the same cells 

has shown that many genes display copy-number gene-dosage effects on transcriptional 

expression 100,101,102. Building on this finding, Campbell et al. developed the clonealign algorithm 

103, which established a framework for how genomic-transcriptome associations may be mapped 

in single-cell datasets derived from the same parental culture, but generated using individual 

assays. Using paired scRNA and scCNV from MiaPaca2 cells as a proof-of-concept for this 

method, we applied segmentation and copy number profiling from the scCNV data to clusters 

identified in scRNA transcriptomic profiles using clonealign (see Methods). An important caveat 

of this method is that clonealign’s inherent design filtered out a large number of cells sequenced 

by scCNVseq. Thus, the findings discussed here are based on a subset of the more 

comprehensive subclonal families and profiles previously described. Using clonealign filtering 

criteria to scCNV-derived MP2-B cells (Figure 8E), two distinct subclones were defined. One 

with 4 copies of chromosome arm 7p and 2 copies of chr10 (p and q), versus one with 3 copies 

for all of these chromosome arms. Of note, the clone with 3 copies of 7p (instead of 4 copies) 

also had lower copy number for a subset of 12q (2 vs. 3). Applying the same clonealign filtering 

criteria to scCNV-derived cells from MP2-C (Figure 8H), three distinct subclones were defined: 

1. With lower copy number (2 vs. 3) in chromosome 10 (p and q arms) and 14q. 2. With copy 

number = 3 in all of chr5, chr10, and chr14q. 3. With higher copy number (4 vs. 3) in chr5, and 

lower copy number (2 vs. 3 copies) in 10p, but higher in 10q and 14q (3 vs. 2 copies). 
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After the major subclonal populations were established from scCNV profiles, we used 

clonealign to identify subclones in the scRNA data that could be reliably mapped back to scCNV 

profiles (see Methods). Notably, we find that for MP2-B, the two unique genomic profiles we see 

in the scCNV data (Figure 8E) correspond almost perfectly to transcriptional subpopulations as 

visualized in our UMAP analysis (Figures 8F, 8G). Next, we used GSEA analysis to search for 

differences in expression signatures within each of the two delineated subclones. Subclone 1 of 

MP2-B (1096 cells) is characterized by four hallmark pathways, while MP2-B subclone 2 (813 

cells) is defined by six, completely distinct gene sets (Table 1).  
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Given the difference in enrichment of cancer-related hallmark pathways that we found between 

the two MP2-B subclones, we then re-ran GSEA versus MSigDB’s Oncogenic signatures. We 

found that subclone 1 is enriched for oncogenic pathways LEF1 upregulation, P53, and Cyclin 

D1, whereas subclone 2 is enriched for MTOR upregulation, EIF4E, RAF, and NEF2L2 (Table 

1). 
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Interesting significantly upregulated genes in subclone 1 from these oncogenic pathways 

include KRT13 and LGALS1 (in the LEF1 upregulation pathway; padj=4.39e-49 and 1.35e-21 

respectively). Although KRT13 is not ubiquitous in clone 1, the difference in percent of cells that 

express the gene is striking (32% in clone 1 vs. 3% in clone 2). This gene has previously been 

shown to predict worse overall survival in pancreatic cancer 104. LGALS1 overexpression has 

also been negatively associated with survival in PDAC patients 105, and knockdown of LGALS1 

in vitro reduced cell migration and invasion capabilities in pancreatic cancer associated cells 106. 

Clone 2 shows significant upregulation of NEAT1 (in the MTOR pathway, padj=1.20e-9). This 

gene has also been shown to promote PDAC growth and metastasis and predict poor prognosis 

107. As both subclones were found at relatively high frequency (Figure 8I), it would suggest that 

neither has a clear fitness advantage over the other. Therefore it is not entirely unexpected that 

we see different genes that promote cancer growth in each subclone. 

 For MP2-C, we also see some degree of correspondence between the genomic profiles 

(Figure 8H) and the transcriptional subpopulations (Figures 8I, 8J), but the correlation is less 

striking than the one-to-one correspondence observed in MP2-B. In MP2-C, a very different 

pattern of enrichment is observed in both hallmark and oncogenic pathway sets. MP2-C 

subclones 1 and 3 were merged (due to very similar distribution across RNA transcriptomic 

clusters) for a total of 1208 cells, the population of which is significantly enriched for two hallmark 

pathways and five oncogenic pathways (Table 1). Surprisingly, MP2-C subclone 2 (871 cells) is 

not significantly enriched for any hallmark or oncogenic gene sets (Table 1). Importantly, there 

were also zero overlapping gene sets between MP2-B and MP-C, across any subclonal 

comparison. 

In summary, we confirm previous reports that progeny of the apparently identical parental 

cell line experience substantial genomic and transcriptomic divergence on prolonged ex vivo 

passaging, that such divergence is observed both within, and across, cultures of the parental cell 

line, and at least in some instances, the transcriptomic divergence can be ascribed to distinct 

subclonal genomic alterations.  
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Modeling of tissue-based transcriptional PDAC subtypes using scRNA-seq data in 
established cell lines. 
 

Recently developed transcriptome-based subtyping of PDAC have demonstrated both 

predictive and prognostic significance in early studies. The dichotomous Moffitt classification 

schema of “basal-like” and “classical” subtypes was initially established using bulk RNA 

sequencing strategies applied to human tumor samples49. PDAC transcriptional subtypes are 

known to associate with specific microenvironmental niches, and primary tumors have been 

shown to undergo subtype switching in response to microenvironmental cues108. However, it is 

not well established whether cell lines can reliably classified into Moffitt subtypes as freshly 

dissociated tumor tissue or PDO models, nor whether there would be an observable degree of 

subtype admixture when single-cell methods are applied to subclonal derivatives of parental cell 

lines. To investigate this, we sought to group the MiaPaca2 transcriptomic subclones into the 

dichotomous PDAC subtypes of the Moffit classification schema. 

 We observed that MP2-A and MP2-C have all (9,768 and 10,886 cells respectively) 

represented by the Moffitt “basal-like” subtype, while MP2-B has subtype admixture, with 3,456 

cells sorting as the “basal-like” subtype and 3,556 cells sorting as “classical” (Table 2).  

 



43 

 

Upon further investigation, we found that these samples were being “forced” into one subtype or 

the other on the basis of a few genes being present or absent, as opposed to having a robust 

expression of the majority of genes specified by “basal-like” or “classical” subtypes. For example, 

MP2-A cells were sorted as “basal-like” based on the expression of AREG and KRT15 (Figure 

9A), while MP2-C cells were sorted to “basal-like” based only on the expression of AREG, 

GPR87, KRT15, and LEMD1 (Figure 9C). Similarly, the MP2-B sample, for which we detected 

genes relevant for both “basal-like” and “classical” subtyping, we found that “classical-like” cells 

were classified as such based on only LYZ, while “basal-like” cells were classified as such due 

to expression of AREG, GPR87, KRT15, and KRT7 (Figure 9B). 
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 Given the thousands of cells present and the depth of sequencing on these samples, it is 

unlikely that this scant gene representation is due to dropout rates or data sparsity, which could 

result in skewed scRNA data. Rather, our data indicates that PDAC cell lines are sub-optimal 

models for application of tissue-based classification systems like Moffitt, largely because they 

might lack expression of substantial numbers of transcripts required for meaningful classification. 

This finding may impact how prevalent PDAC classification schemes are applied to monolayer 
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culture models and any subtype-based therapeutic outcome predictions derived from these that 

are then extrapolated to patients. 

 
 
Epigenetic alterations define transcriptional divergence observed in monolayer and 3D 
models. 
 

 Ex vivo 3D models of tumor growth are being increasingly adopted, as a number of 

comparative studies between 3D spheroids and 2D monolayer cultures have shown that 3D 

culture more faithfully recapitulates in vivo biology 109,110,111. Additional work has also shown that 

2D monolayers might lack critical features associated with in vivo tumor progression, such as 

hypoxia 112-113. Within the context of single-cell analytics, there is scant data to address the extent 

of transcriptional adaptations that occur in the process of modifying “conventional” monolayer 

culture to a 3D spheroid model. We find here that upon growth in 3D, Panc1 cells exhibit 

demonstrable transcriptomic divergence, as well as increased transcriptional diversity, compared 

to matched 2D culture grown from the same parental vial, upon scRNA-seq analysis. While 

Panc1-2D and Panc1-3D cultures are overall more similar to each other compared to other cell 

lines at the transcriptome level (Figure 3 and Figure 4B), they do not overlap when visualized 

using UMAP (Figure 10A, left). To look further into pathway level differences between the 2D 

and 3D models, we computed differentially expressed genes and processed them with GSEA 

(Figure 10B; also see Methods). This differential expression was done by subcluster within each 

of the monolayer and spheroid, so that one can see heterogeneity both within and between each 

of these. Panc1 spheroids show upregulation of epithelial mesenchymal transition in the largest 

subcluster relative to the monolayer. Meanwhile, we also see strong differences in pathways 

within spheroid subclusters, with significant upregulation of the p53 pathway and downregulation 

of G2M checkpoint and E2F target pathways in one subcluster relative to the other two. This kind 

of heterogeneity was not seen within the 2D model, with no significant difference in pathways 

found between the two subclusters. 
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 As with MiaPaca2 samples, we sought to understand the basis of transcriptomic 

differences observed on scRNA-seq data, but using a slightly different analytic approach. As 

described earlier, spheroids were grown from the same parental population of Panc1 cells as the 

monolayer culture. scCNVseq was conducted on this parental population, and subsequent 

scRNAseq + snATACseq was conducted after culturing the cells in their respective conditions. 

We then mapped this parental scCNV profile to paired scRNAseq data after growth under 

monolayer or spheroid conditions, to understand subsequent transcriptomic reprogramming 

given identical parental genomic material. 

Applying the same clonealign filtering criteria we used in our approach for MP2 cells, we 

defined two mutually exclusive subclones based on lower copy number (2 vs. 3) in either 15q 

(subclone 1) or 14q (subclone 2) for Panc1 (Figures 11A, 11B). When we mapped these 

clonealign-defined unique genomic subclones to specific transcriptional programs across the two 

datasets, subclone 1 was comprised of 3,251 cells and subclone 2 of 404 cells in Panc1 2D 
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scRNA-seq data (Figure 11C), while in the Panc1-3D scRNA dataset, subclone 1 was 

represented by 904 cells, and subclone 2 by 223 cells (Figure 11D). To confirm that these 

clonealign calls were not an artifact and that the monolayer and spheroid truly share similar 

scCNV profiles, we ran InferCNV 44 on the scRNA data for each growth condition (Figure 11E). 

This confirmed the clonealign results, with the majority of (but not all) cells in each condition 

showing lower copy number in chr15 compared to chr14 and a small subset of cells showing the 

reverse. 

 

 

There was little to no overlap in the enriched hallmark pathways (sharing only late 

estrogen response and cholesterol homeostasis pathways) or oncogenic gene sets (no common 

pathways) for either of the two subclones between the two growth conditions, with only subclone 

1 in Panc1 3D even demonstrating a substantial number of discernible gene sets (Table 2). In 
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other words, despite the common parental scCNV profiles, the transcriptomic divergence 

between the two growth conditions appears to be driven almost entirely by non-genomic events, 

such as epigenetic alterations. 

Given the observed decoupling between Panc1 scCNV and scRNA datasets when 

comparing spheroids to 2D monolayer, we thus hypothesized that epigenetic modifications may 

be responsible for remodeling in the spheroid setting. To address this, we performed snATAC-

seq and applied the Seurat analysis extension package Signac 114 across a population of 9,785 

nuclei analyzed from Panc1 monolayer and 7,453 nuclei analyzed from Panc1 spheroids isolated 

from the same population, processed in parallel, as the cells used for scRNAseq. As a first 

measure of epigenetic heterogeneity after conducting a quality control analysis on the sequenced 

nuclei (Figures 12A, 12B), we find the nuclei in at least two different chromatin states within 

each growth condition (Figures 12C, 12F). Further motif enrichment analysis within each 

population shows unique subcluster motif profiles (Figures 12D, 12E, 12G, 12H).  
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We bioinformatically merged Panc1-2D with Panc1-3D nuclei to obtain a differential motif 

enrichment profile between the samples (Figure 10C). Notably, we observed enrichment of 

Sp/Klf-associated motifs in the spheroid model (Figure 10D), and Fos/Jun motifs enriched in the 

2D snATAC-seq data (Figure 10E). We then confirmed the overexpression of putative target 

candidate genes in scRANseq data affiliated with the enriched motifs that we had identified in 

corresponding snATAC-seq datasets (Figures 10F, 10G). In doing so, we find that the regulatory 

consequences of Sp/Klf motif enrichment are in genes associated with modulation of reactive 

oxygen species and metabolism such as SOD1 115, ID1 116, and NDUFV2 117. The low expression, 

or, in some cases, downregulation, of these genes in the monolayer culture suggest that in the 

process of epigenetic reprogramming, Panc1 spheroids also undergo a metabolic 

reprogramming by upregulating oxidative phosphorylation or glycolysis. Conversely, the 

enrichment of Fos/Jun motifs results in the transcriptional upregulation of classic effectors in this 

signaling pathway, such as SMAD3, SMAD4, TGFB1, and DDIT3118. These starkly different 

expression and chromatin profiles between these models could have implications in the results 

of studies concerning metabolism in PDAC. 

In summary, our results suggest that the striking differences observed in scRNA-seq 

profiles between spheroid and monolayer growth systems are due to a divergence in the 

underlying epigenetic landscape, and the resulting differences in transcription factor activity and 

downstream pathways may have significant implications for the way these models are used 

interchangeably for in vitro experimentation.  

 
 
Long-term maintenance of organoids leads to transcriptomic change. 
 

 PDOs have emerged as a promising preclinical model for therapeutic prediction and 

functional studies across multiple cancer types, including in PDAC18,19,119,120,121. Much like 

established cell lines, PDOs are maintained and expanded via ex vivo passaging in specially 
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formulated “organoid” media. Early passages of PDOs retain the clonal genomic alterations 

observed in the parental tumor, as well as the transcriptomic signature(s) predictive of response 

to cytotoxic agents. However, whether the transcriptome of PDOs evolves over time in culture is 

less well studied. Therefore, we generated scRNA-seq profiles on a PDAC PDO at two 

timepoints, “early” and “late”, separated by 10 passages. 

We found that in the later passage of the PDO, two transcriptionally distinct clusters 

(Figure 13A) had emerged, which respectively formed two separate cell fates on trajectory 

inference (Figure 13B). Transcripts upregulated in cell fate 1 showed enrichment of epithelial-

mesenchymal transition, cell growth, reactive oxygen species (ROS) biosynthesis, and axon 

development, while transcripts in cell fate 2 were enriched for telomere maintenance, DNA 

replication, cell cycle, and hypoxia pathways (Figure 13C). To test whether there were genomic 

alterations accompanying the transcriptomic divergence, we inferred copy number aberrations 

from the scRNA-seq data using the inferCNV package 44 , which revealed a chromosome 16p 

gain in the later passage PDO, and an additional chromosome 19q loss specifically in cell fate 2 

(Figure 13D).  

Bearing in mind the emerging translational relevance of transcriptional subtyping of 

PDOs, we paneled for genes relevant to the Moffitt subtyping schema to understand subtype-

specific shifts that may occur during ex vivo passaging. The earlier passage PDO has 

demonstrable expression of “basal-like” transcripts (Figure 13E, bottom), but these did not 

overlap with the “basal-like” transcripts expressed by the later passage PDO (Figure 13E, top). 

More striking was the differential expression of transcripts that define the “classical” subtype, 

which are expressed almost exclusively by the later passage PDO (Figure 13F, top).  
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We confirmed that this mix of classical and basal genes in PD01late is not due solely to 

admixture within any given cell, and show that some cells classify as basal and others as 

classical, resulting in a true subtype admixture that suggests gradual transcriptional 

reprogramming in the PDO over time (Figure 14). We thus observe a subtype admixture over 

time, which is consistent with findings by Raghavan et al. 20,   demonstrating that later passages 

of PDOs in culture undergo transcriptional reprogramming towards a “classical” phenotype, and 

reiterating the inherent plasticity of cellular subtypes. Of note, a recent assessment for “basal-

like” and “classical” cells in PDAC tissues by subtype-specific protein markers has uncovered bi-

phenotypic “hybrid” cells 122 , while Ting and colleagues have shown evidence of subtype “drift” 

in PDAC tissues with various therapies 123 , both lines of evidence supporting the plasticity of 

subtype states. As PDOs become increasingly adopted in translational research, the impact of 
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transcriptomic reprogramming in later passages should be accounted for in the context of any 

predictive modeling studies. 

 

 

 

Chapter 1 Discussion 

 As a globally utilized backbone of cancer research, established PDAC cell lines have 

played an indispensable role in enhancing our understanding of disease biology, and therefore, 

ensuring the accurate characterization of these tools is a prerequisite for ensuring downstream 

success in translational studies.  Using in depth single cell analytics, we demonstrate striking 

subclonal heterogeneity in the most commonly used PDAC cell lines. While established PDAC 

models are assumptively oligoclonal and reflect human tumors on a global level based on 

published data 11,19 , the level of subclonal heterogeneity observed on single cell analysis here is 

unexpected, leading us to propose the phrase “occult polyclonality” as the overarching genomic 

sine qua non of PDAC cell lines. Our data are comparable to the recent findings of Navin, Michor 

and colleagues, who identified between seven to 22 subclones on scCNV analysis of triple 

negative breast cancer tumors and cell lines 124. 
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Notably, these investigators also reported that cancer cells retain a “reservoir” of 

subclonal diversity, such that isolated single cell clones re-diversify their genomes within a 

relatively short time frame, at a calculated pace of one CNV event every four cell divisions. In 

line with this observation, we report that three independent strains of the same PDAC parental 

cell line (MiaPaCa2) demonstrably deviate from one another on single cell analysis, both in terms 

of underlying transcriptional profiles and the outgrowth of unique genomic subclones. As another 

concordant finding between the two studies, we confirm that “major” subclonal genomic events 

have a significant impact on transcriptomic divergence and clustering, not only within the altered 

chromosomal loci, but also more broadly in terms of enriched gene sets and pathways. The 

report by Navin, Michor and colleagues in breast cancer, and our own data in PDAC, harbors the 

potential to have a profound impact on the rigor and reproducibility of research, both within and 

across laboratories. For example, it calls into question the assumptions behind isogenic 

perturbation experiments in cultured cell lines, or the use of archived cell line specific profiling 

data for drawing inferences that are temporally disparate from the data generation point.  

We further show that culturing a PDAC cell line typically grown in adherent monolayers 

as a spheroid model alters the underlying chromatin architecture and induces a more diverse 

transcriptional repertoire. In particular, we demonstrate acquisition of transcription factor 

programs in 3D culture that could confound the interrogation of therapeutic dependencies when 

compared to the identical cell line grown in a 2D condition. While we do not posit that one culture 

condition is necessarily more reflective of in vivo biology than the other, it is noteworthy that 

certain dependencies (such as metabolic dependencies) initially identified in monolayer 

conditions have not subsequently been validated within an in vivo context. 

As model sophistication increases to more widespread adoption of the PDO format, we 

also report that, perhaps not unexpectedly, the molecular identities of PDOs tend to evolve over 

time, recapitulating what is observed with cell lines. In particular, our demonstration of selection 

against a basal phenotype in a PDO during ex vivo culture contributes to the growing body of 

evidence that therapeutic prediction studies germane to the parental tumor are best limited to 
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early passages of derivative PDOs. While later passages of PDOs can continue to serve as a 

bona fide preclinical model for PDAC research, they might need periodic re-interrogation with 

single cell analytics (or a reliable surrogate assay) to measure divergence over time.  

Finally, we report here that the commonly used contemporaneous “controls” for PDAC 

cell lines, especially HPDE cells, are not actually as “normal” as current literature would lead one 

to believe. Previously undescribed in the literature, we identify considerable subclonal 

heterogeneity using single cell analysis (with an “occult polyclonality” that mirrors PDAC cell 

lines), and “major'' chromosomal copy number events in HPDE and HPNE that translate to 

transcriptional upregulation of AURKA and BRCA1, respectively. Future studies may warrant a 

thorough investigation of whether omission of these chromosomal events in the context of 

comparative functional assays led to skewed results. Better yet, the systematic development, 

characterization, and dissemination of more reliable in vitro cell line “normal” controls for PDAC 

studies may be a requisite for maintaining the rigor of preclinical findings in the field.  
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Chapter 2: AP1 transcription factor enrichment facilitates resistance to histone 

deacetylase inhibitors in pancreatic cancers. 
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Chapter 2 Introduction 

Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in 

the United States, with a 5-year survival rate hovering near 5%1. Current chemotherapeutic 

regimens extend survival by merely a few months, while immunotherapy with immune checkpoint 

inhibitors (e.g. anti-PD1) have essentially led to no meaningful responses in this malignancy. 

DNA sequencing studies have shown that less than a quarter of PDAC cases harbor actionable 

DNA mutations65, although the advent of KRAS inhibitors 125,126,127 has the potential to change 

the actionable genomic landscape of this malignancy. Moreover, studies using “warm autopsy” 

tissues in terminal PDAC have demonstrated significant transcriptomic and epigenomic 

heterogeneity128,129,130,131, underscoring the need to expand beyond DNA mutations for 

interrogating potential treatment vulnerabilities. PDAC lesions are known to employ a near-

unlimited biological armamentarium to persist and develop therapeutic resistance, included but 

not limited to repurposing DNA repair pathways, developing new mutations in oncogenic KRAS, 

upregulating autophagy, and altering their metabolism132. Single cell profiling studies in PDAC 

samples have reiterated the existence of profound transcriptomic subclonal diversity in 

metastatic PDAC, which likely underlies the divergent therapeutic responses observed in any 

given patient, and eventual treatment failure133,134,135. Thus, elucidating pharmacological 

vulnerabilities within distinct clonal subpopulations of individual tumors, and how therapeutic 

agents reprogram subpopulations towards a resistant phenotype, represents a unique 

opportunity to develop effective precision medicine strategies13.  

 

In alignment with this goal, a number of clinical trials are now being designed to include biopsies 

of solid tumors pre- and post-administration of anticancer therapies (Mirati KRYSTAL and Matrix 

trials, for example), wherein post-treatment biopsies are collected seven days after cycle 1 

administration of KRAS G12C inhibitors. Complementary to these approaches are paired 

preclinical studies utilizing patient-derived organoids to “match” responses on therapy136. These 
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approaches, new as they are, have yet to be applied to modeling responses to epigenetically-

targeted agents.  

 

The epigenome of PDAC is of great interest, as recent work has shown that epigenetic 

reprogramming in the primary tumor can 1) prime neoplastic cells for metastatic dissemination 

and 2) cause subtype differentiation between the so-called “basal” and “classical” phenotypes in 

PDAC49,137,138,139. One of the most commonly used epigenetic therapies in the clinic is the class 

of agents known as histone deacetylase inhibitors (HDACi), including vorinostat (SAHA)140. 

Normal cells are relatively more resistant to HDACi-induced cell death as compared to tumor 

cells 141. As such, in both solid tumors and leukemias, HDACi are undergoing clinical trials as 

monotherapy, or more commonly, in conjunction with other epigenetic agents (such as BET 

bromodomain inhibitors142, chemotherapeutics, and radiotherapies143. One enticing opportunity 

for HDACi is the potential for combination with immunotherapy, due to preclinical data suggesting 

that chromatin “marks” can regulate expression of genes involved in immune suppression (e.g., 

PD-L1). For example, preclinical studies in melanoma models revealed that treatment with class 

I HDACis upregulated expression of PD-L1 in melanoma samples, leading to enhanced and 

durable gene expression that could be effectively leveraged with PD-1 blockade treatment to 

achieve a meaningful clinical response144. Unfortunately, in PDAC, the landscape of HDACi has 

been disappointing, although the mechanistic underpinnings for why these agents have failed 

are unknown.  

 

AP1 transcription factors (TFs) are widely studied and well known to play critical roles in the 

development of human cancers, including PDAC145,146,147. In addition to playing a role in PDAC 

inhibition in the context of oncogenic mutant-KRAS, the JUN/AP1 family further promotes 

tumorigenesis by directing cross-talk between epithelial cells and the PDAC tumor 

microenvironment (TME), with higher AP1 enrichment underlying a more aggressive, poorly-

differentiated tumor phenotype148. AP1 transcription factors Junb and Fosl1 are also known to 
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initiate PDAC in the context of KRAS G12D mutations149. Previous studies have also suggested 

that AP1 family members may be enriched following treatment with HDACi150,151. However, it is 

unknown whether elevated AP1 in pre-treated PDAC lesions may be augmented by treatment 

with SAHA, representing an innate HDACi-resistance mechanism in PDAC and thus providing 

one possible explanation for the clinical failures of SAHA monotherapy.  

 

As explained previously, baseline biopsies alone are insufficient to mediate the course of therapy 

for PDAC patients, as adaptive genetic mutations can occur as early as 1 cycle into a therapeutic 

regimen, rendering the treatment plan ineffective152. Using PDOs to model the acute adaptive 

mechanisms of response to epigenetic therapy, here we provide a “therapeutically informed” 

rationale for understanding adaptive resistance. We hypothesized that SAHA-induced epigenetic 

remodeling of PDAC lesions may be pivotal to treatment failure and tumor progression, and 

employed patient-derived organoid models (PDOs), paired single-cell RNA sequencing 

(scRNAseq) + single-nuclei ATAC sequencing (snATACseq), drug validation assays, and 

multiplexed immunofluorescence (OPAL) in clinical specimens to address this. Ultimately, our 

data show a consistent pattern of AP1 motif enrichment following SAHA monotherapy. By 

combining SAHA with potent AP1 inhibitor, T-5224, we report higher PDO cell death with 

combination therapy than either SAHA or T-5224 monotherapies achieved. Collectively, these 

data indicate a mechanistic synergy between HDACi and AP1 inhibition that could warrant potent 

in vivo potential.    

 

Materials and Methods included in Chapter 2 

Sample acquisition for organoid generation 

A patient was recruited at the University of Texas MD Anderson Cancer Center through informed 

written consent following institutional review board approval (Lab00-396 and PA15-0014). The 

study was conducted in accordance with Good Clinical Practices concerning medical research 

in humans per the Declaration of Helsinki. An EUS-FNA biopsy procedure was conducted and 



59 

confirmation of pancreatic ductal adenocarcinoma present in biopsy-obtained tissue specimens 

was provided by a pathologist. The tissue specimens were subsequently delivered to the 

research laboratory setting, where they were processed for organoid generation.  

 

Organoid generation  

Briefly, upon arrival of tissue to the laboratory (within 2 hours of procedure), samples were 

minced with sterile surgical scalpels to 0.5–1 mm fragments in approximately 1 mL of media 

(RPMI supplemented with 1% BSA, Thermo Fisher). After centrifugation for 3 minutes at 125 ×g, 

cells were resuspended in DMEM with 2 mg/mL Dispase (Gibco), 1 mg/mL Collagenase II 

(Gibco), and 1% penicillin-streptomycin (Corning) and incubated in an orbital shaker for 45 

minutes at 37°C. Dispase + Collagenase activity was quenched with 5% FBS, 1% penicillin-

streptomycin in DMEM (Wash Media) followed by centrifugation for 5 minutes at 125 ×g. Cells 

were resuspended in 4 mL TryplE (Gibco) and incubated in an orbital shaker for 8 minutes at 

37°C. TryplE was quenched with Wash Media, cells were centrifuged again for 5 minutes at 125  

×g,  and dissociated cells were counted and resuspended in 350-700uL (depending on cell pellet 

size) of Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane 

Matrix (Gibco) and plated as domes on a Nunclon Delta Surface 12-well plate (Thermo Fisher). 

Matrigel was allowed to solidify for up to 45 minutes at 37°C, at which point approx. 1mL of  

PaTOM media68 supplemented with Y-27632 dihydrochloride (Tocris) was added to each well of 

the 12-well plate, to ensure full submergence of organoid domes. Organoids were grown for a 

minimum of 7 days after seeding before being passaged for the first time.  

 

Characterization of PDO responses to vorinostat and T5224 as single agents 

To identify the vorinostat IC50 for each PDO, PDOs were harvested after 7-10 passages 

(depending on the individual growth rates of each sample for sufficient cell number). For 

dissociation, PaTOM media was removed and matrigel domes were dissolved using 1mL of 

Dispase in PBS solution (2mg Dispase/mL PBS added to each well of 12-well plate) at 37°C for 
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15 minutes with mechanical disruption. PDO cells were collected in a 15mL conical tube, washed 

with 5mL Wash Media (see above), centrifuged for 3 minutes at 125 ×g, and resuspended in 

4mL TryplE at 37°C until PDOs were fully dissociated into single cells. TryplE was quenched 

using Wash Media, and cells were resuspended in PaTOM + 10% matrigel solution for counting 

and plating at a density of 2,000 cells/well in Ultra Low Attachment clear 96-well round-bottom 

plates (Corning). PaTOM + 10% matrigel solution was then added to each well for a final volume 

of 50uL. Following plating, plates were centrifuged at 850 rpm for 5 minutes, and incubated at 

37°C. After 2 days, either vorinostat (10mM in DMSO stock, SelleckChem) or T5224 (Cayman 

Chemical, Item No. 22904) was diluted and administered to PDOs in a dose range of 100pM - 

100uM (5 replicates per dose) for a total volume for 100uL per well for each experimental 

condition. After 5 days, cell viability was measured using CCK8 assay (Dojindo) on a Cytation 5 

(BioTek) instrument using Gen5 software. Luminescence values of vorinostat-treated cells were 

then normalized to media and untreated controls and analyzed for IC50 values using Prism 9 

software.  

 

Characterization of PDO responses to vorinostat + T5224 as combination therapies 

To identify potential additive impacts of AP1 inhibition with vorinostat in each PDO, PDOs were 

harvested, dissociated, and plated in 96-well plates as described above. After 2 days, vorinostat 

(10mM in DMSO stock, SelleckChem) was diluted to a 1uM dose, used as the “base solution” 

into which and T5224 was diluted for dose combinations of 1uM SAHA + T5224 (100pM - 

100uM). Drugs were then administered to PDOs at 5 replicates per dose mixture (1uM SAHA + 

100 pM T5224 per 5 replicates, 1uM SAHA + 1nM T5224 per 5 replicates, 1uM SAHA + 10nM 

T5224 per 5 replicates, and so on) for a total volume for 100uL per well for each experimental 

condition. After 5 days, cell viability was measured using CCK8 assay (Dojindo) on a Cytation 5 

(BioTek) instrument using Gen5 software. Luminescence values of vorinostat-treated cells were 

then normalized to media and untreated controls and analyzed for IC50 values using Prism 9 

software.  
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Vorinostat treatment to characterize acute PDO response, sequencing library preparation 

After 7-10 passages (depending on the PDO line and individual growth rates) of growing as 

domes submerged in PaTOM, PDOs were dissociated using Dispase and TryplE (described 

previously), counted, and plated at a density of approximately 500,000 cells/200uL matrigel 

domes. PDOs were allowed to grow in drug-free media for 5 days, and were then treated with 

1uM vorinostat for 24 hours. After 24 hours, ½ of PDO single cell suspensions were harvested 

for scRNAseq library preparation (3prime, 10x Genomics, target 5,000 cells per sample), and the 

remaining cells were used for nuclei isolation for snATACseq library preparation according to 10x 

specifications (10x Genomics nuclei isolation protocol CG000212 Rev D, target 2,000-5,000 

nuclei per sample).  

 

Single-cell RNA sequencing and data pre-processing 

All sample libraries constructed with 10x Genomics 3prime v3 Chemistry were assessed for 

quality on Agilent TapeStation 2200 and quantified using both Agilent TapeStation 2200 reagents 

and Qubit dsDNA HS Reagent kits (Invitrogen Cat. Q33231) before loading onto NextSeq500 

(Illumina). Samples were sequenced in paired batches, such that each PDO’s treated and 

untreated datasets were generated simultaneously to avoid introducing batch effects in 

downstream pairwise scRNAseq analyses. Multiplexed scRNA libraries were sequenced using 

150-cycle kits, paired-end, Read 1 26 cycles, Read 2 98 cycles, i7 index 8 cycles, i5 index 0 

cycles. Cell Ranger version 2.0 was used to convert Illumina base calls (bcls) to FASTQ files. 

FASTQ files scRNA were aligned to the reference genome hg19 using files provided by 10x 

Genomics. 

 

scRNA Seurat analysis of cell lines 

Seurat (v3.1)153 merged analysis was used to profile the scRNAseq data of PDO pairs. Treated 

and untreated pairs were merged into single Seurat objects (Seurat merge). For removal of 
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mitochondrial genes in cell lines, we subsetted all cells with less than 20% mitochondrial gene 

expression. Log normalization, variable feature identification (FindVariableFeatures), z-scoring 

(ScaleData) were applied to the merged object of all cell lines, and principal component analysis 

(RunPCA, npcs = 30) and subsequent dimension reduction (UMAP) were applied.  

 

Single-nuclei ATAC sequencing and data pre-processing 

Isolated nuclei suspensions were processed using 10x Genomics Single Cell Atac Kit, v1. As 

with the previously described scRNA libraries, all quantification and quality control was 

conducted on an Agilent 2200 TapeStation using D1000 High Sensitivity reagents, with additional 

quantification using Qubit dsDNA HS Reagent kits. A pooled library containing sample-specific 

treated and untreated PDO sample snATAC libraries was loaded on the NextSeq500 using 150-

cycle kits (3 PDO pairs in one sequencing run, 2 PDO pairs in another). Sequencing was done 

using paired-end, dual-index mode, Read 1 50 cycles, Read 2 50 cycles, i5 index 16 cycles, i7 

index 8 cycles. Cell Ranger version 3.1.0 and cellranger-atac version 1.2.0 were used to convert 

Illumina bcls to fastq files and align samples to reference genome GrCh38 to be compatible for 

downstream analysis requirements with the Seurat Signac toolkit.    

 

Downstream pairwise analysis of snATACseq data to detect differentially enriched motifs in 

treatment groups 

Using Seurat v3 and its extension package Signac version 1.5.0 

(https://github.com/timoast/signac)114, along with additional R packages for gene annotation 

(EnsDb.Hsapiens.v86) and the JASPAR 2021 Motif Database (JASPAR2021), 10x genomic 

output files (metadata, fragments file, fragments index, filtered peak matrices) to generate Seurat 

objects containing motif information, gene annotations, and genomic ranges. Quality control on 

nuclei was done by quantifying nucleosome signal, TSS enrichment,  number of peaks in 

fragmentation regions, and nucleosome signal according to Signac software recommendations 

(TSS Enrichment > 2, nucleosome signal < 10,  blacklist ratio < 0.05, percent reads in peaks > 
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15, peak region fragments between 1,000 and 20,000). PDO sample pairs were normalized using 

term frequency-inverse document frequency (TF-IDF) normalization, top features were identified, 

and dimensional reduction using singular value decomposition (SVD) on the TF-IDF matrix using 

peaks as features was done on both individual samples and a merged analysis object that had 

been created using fragmentation and peak data to identify common features to use as merging 

anchors. Motif activities were subsequently calculated using chromVar, as adapted for Signac. 

We then identified motifs that were enriched in each subcluster per sample, as well as 

differentially enriched between the two samples of each PDO pair (merged analysis). To correlate 

regions of chromatin activity with matched scRNA data, per-sample snATAC-Seurat objects 

containing gene activity data were scaled, normalized, processed with latent semantic indexing 

(LSI), and UMAP dimensional reduction. We use all peaks that have at least 100 reads across 

all cells, and reduced dimensionality to 50, as recommended by Seurat guidelines. The 

processed snATAC dataset was then merged with the previously-described processing of scRNA 

data for each PDO sample, with merging based on common anchors identified between the 

datasets, using scRNA data as a reference (FindTransferAnchors), to ensure commonalities and 

cluster structure between the datasets. Next, gene lists were curated using the GeneCards 

Human Gene Database- genes specifically activated by each enriched motif were queried and 

plotted using scRNA data (DotPlot).  

 

Validation of AP1 proteins in HDACi-treated PDOs and Cholangiocarcinoma tissues 

Tissue sections of clinical biopsy specimens from Johns Hopkins University were obtained from 

the lab of Dr. M. Baretti via a Materials Transfer Agreement with the Maitra Lab, approved by MD 

Anderson Cancer center. For deparaffinization of tissue slides in preparation for multiplexed 

immunofluorescence staining, slides were warmed at 65C for 90 minutes then rinsed with 

xylenes (3x10 minutes) followed by rehydration in alcohol dilutions (100%, 95%, 70%, 10 minutes 

each), rinsing with DI water, and fixation in 10% neutral-buffered formalin (NBF) for 20 minutes. 

Slides were then microwaved for 15 minutes at 90C (BioGenex EZ-Retriever i6000 system), and 
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stained with The Manual Opal 7-Color IHC Kit (Akoya Biosciences, Cat. NEL811001KT) following 

manufacturer protocols and specifications. Antibody dilutions, catalog information, and 

incubation times, and Opal color pair are listed below in Table 3.  

After application of all antibodies to tissue specimens, slides were scanned using a Vectra 

Polaris Automated Quantitative Pathology Imaging System (PerkinElmer) through the MD 

Anderson Cancer Center North Campus Research Histology Core Laboratory with the following 

spectral scanning exposure times: DAPI 3.74ms, OPAL-520 40ms, OPAL-690 13.35ms, and 

OPAL-780 60ms. Phenochart Whole Slide Viewer Software (Akoya Biosciences) was used for 

visualization of fluorescent images, and figure generation. Cell segmentation spectral intensity 

quantification was done using VisioPharm software, also through the MD Anderson Cancer 

Center North Campus Research Histology Core Laboratory. VisioPharm Software applies a 

deep learning algorithm, via the custom development of analysis in-software apps, to segment 

tumor cells based on EpCAM staining intensity per image pixel, and subsequently quantify 

JunB expression in neural-network-determined tumor regions. Thus, “JunB intensity” as 

depicted in Figure 3 and Supplemental Figure 5 represents the JunB median intensity value 

after thousands of computational iterations across each pixel on a slide image, measuring JunB 

expression in EpCAM-positive tumor-segmented regions of interest across pre- and post-

treatment biopsy samples. Ratio paired t-tests of pre-treatment versus post-treatment JunB 

intensities were conducted using Prism 9 software to generate two-tailed p values. 

 

 



65 

Chapter 2 Results 

PDAC organoids demonstrate variable responses to SAHA monotherapy. 

Given the inherent heterogeneity of PDAC lesions and the translational applicability of the PDO 

model to understanding therapeutic responses of this disease154,155, we hypothesized that each 

PDO in this study may have a unique range of sensitivity to vorinostat as a monotherapy. PDOs 

were generated from pathologically-confirmed PDAC tissue, obtained fresh from lesions that had 

either been surgically resected or undergone endoscopic ultrasound-guided fine-needle 

aspiration (see Methods). We first characterized the responses PDOs across a range of doses, 

and report a relative IC50 of 1uM across all samples (Fig 15A). Next, we evaluated scRNAseq 

data of all PDOs (Figure 15B) to investigate whether there were any transcriptional or pathway 

similarities between the PDOs that may suggest an obvious “innate” resistance mechanism to 

HDACi, but found no clear patterns of common gene up- or downregulation when querying 

MSigDB Cancer Hallmark Pathways (Figure 15C) or scRNAseq cluster overlap in batch-

corrected data between samples (Figure 16). This suggests intra-PDO heterogeneity (IPH) is 

likely a greater determinant of response to SAHA than inter-PDO heterogeneity in the 

monotherapy context.  
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AP1 family member motifs and genes are enriched in vorinostat-treated PDAC PDOs.  

We next sought to characterize early vorinostat-induced chromatin modifications and their impact 

on response to HDAC inhibition in PDOs. Briefly, PDAC PDOs were plated and treated with 1uM 

of vorinostat for a 24-hour period, after which they were harvested for parallel scRNAseq + 

snATACseq library construction (10x Genomics) and sequencing (Illumina, see Methods). After 

quality controls of snATACseq libraries, 2 PDO snATACseq datasets had to be excluded from 

our analysis. However, after analyzing a minimum of 2,000 nuclei per sample with Seurat32 

extension package Signac33 from the remaining 3 pre- and post-treatment nuclei (PDO2 shown 

in Figure 17A, PDOs 1, 3, and 4 in Figure 18), we discovered a clear pattern of AP1 motif 

enrichment (pval<0.005 for 6 AP1-associated motifs per sample comparison) in post-treatment 

nuclei compared (Figure 17B) to untreated controls (Figure 17B, Figure 18). Further, we find 

an increased number of peaks at loci of genes in the AP1 family24,156,157, such as FOS and JUN 

(Figure 17C). We then validated snATACseq-based AP1 enrichment in our paired scRNAseq 

data of all 5 PDOs (16,171 control cells, 11,970 vorinostat-treated cells), analyzed with Seurat 

and scMC158 algorithms to ameliorate any potential batch effects that might influence our results 

(Figure 17D). We used R package escape159 with ssGSEA160 and found broad AP1 pathway 

enrichment in SAHA-treated samples when analysis across 6 MSigDB AP1-based pathways in 

4 of 5 PDO pairs (Figure 19, see Methods), in addition to clear expression level changes of 

individual genes associated with AP1 in all 5 PDO pairs (Figure 17E). While briefly described in 

the introduction of this chapter and by Wu et al. (2021, referenced above), the AP1 family of 

transcription factors was first discovered in the 1980s with the identification of v-Fos and v-Jun 

and their associations with oncogenic viruses, and follow up studies revealed the myriad roles of 

these transcriptional complexes in cell proliferation, growth, oncogenesis, cell differentiation, and 

apoptosis161. Capable of literally bending DNA as Fos, Jun, and company form complicated 

heterodimers with each other, the “transcriptional potential” of AP1 family transcription factors  is 

broad and far-reaching, but their unique binding properties make AP1-family-regulated-

transcription a highly specific and well-coordinated process162. AP1 transcription factors are not 



68 

ubiquitously expressed- they are present in only select cell types (are highly tissue-specific), and 

the level of activation of specific family-member components fluctuates depending on 

extracellular stimuli. While fleshing out all the known mechanisms of AP1 activation and 

recruitment of transcriptional machinery in different tissues and disease states is not the goal of 

this dissertation chapter, appreciating the critical role these transcription factors play in cellular 

growth, differentiation, and tumor progression is critical for conveying the relevance of the 

discovery of a potential HDACi-attenuated AP1 activation mechanism in pancreatic cancers.  

Further, pancreatic  tumor cells deliberately activating AP1 as a way to skirt death via HDAC 

inhibitors presents a fascinating role for this developmentally-critical transcriptional family.    
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Combination with AP-1 inhibition enhances sensitivity to HDACi in PDAC. 

Because the pattern of AP1-motif enrichment at either the chromatin, RNA, or both datasets was 

apparent across this cohort of PDOs, we that inhibiting the AP1 pathway was the most obvious 

mechanistic target to prevent PDAC cells from developing SAHA resistance. Using a high-

throughput drug screen format (see Methods) and potent AP1 inhibitor T-5224163,164, we treated 

each PDO with a range of doses of T-5224 monotherapy, SAHA monotherapy, and a 

combination regimen of 1uM SAHA + varying T-5224 doses (see Methods). We report that while 

T-5224 at any dose did not impact PDO viability (Figure 20A, blue), combination of 1uM SAHA 

+ T5224 did lower PDO viability at all T5224 doses administered (Figure 20A, red), achieving 

lower cell viability than 1uM SAHA alone (Figure 20A, black line). The combination result 

evidentiates a true HDACi + AP1i synergy that may be successfully leveraged in the in vivo or 

clinical settings to bolster the anti-cancer potency of vorinostat. Given these results, we 

wondered whether pretreatment expression of AP1 genes might have predictive value in 

determining a patient’s response to SAHA monotherapy. Upon correlation analysis of scRNAseq-

derived average expression of Fos and Jun in untreated PDO cells with PDO viability at 1uM 

SAHA (Figure 20B), we find no correlation whatsoever (FOS R2  = 0.4977, JUN R2 = 0.0604).  

To confirm that AP1 transcription factors were being upregulated in a clinical setting 

following HDACi administration, we applied multiplexed immunofluorescence (mIF, AKOYA 

Biosciences OPAL kit, see Methods) to biopsies obtained pre- and post- administration of HDACi 

entinostat + pembrolizumab of cholangiocarcinoma samples. Unlike vorinostat, which is a pan-

HDACi, entinostat only inhibits HDACs of Class I165, therefore has a more limited repertoire of 

functional capability, and may not have as profound a chromatin remodeling impact on tumor 

cells as pan-HDACi compounds.  

Consistent with our goal to profile the acute responses and epigenetic remodeling 

induced by HDACi in GI tumors, all “post” biopsies were collected following administration of 

Cycle 1 of therapy to patients. Indeed, we find that in 7/11 patients’ post-treatment biopsies, AP1-

family member JunB was widely upregulated in tumor epithelial cells (EPCAM) at the protein 
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level, and not in fibroblasts (ɑSMA) comprising the adjacent tumor microenvironment (Ratio 

paired t-test of pre- vs post-treatment JunB intensity values, two-tailed pval = 0.0116, Figures 

20C-E). Clinically, all 11 patients in this Phase I trial progressed on therapy, suggesting that there 

may be a range of potential resistance mechanisms at play in cholangiocarcinomas including but 

not limited to AP1 activation.   

 The caveats of these mIF validation results, of course, are the small sample size,  and 

most obviously the fact that these cholangiocarcinoma patients were given an 

immunomodulatory drug in addition to an HDAC inhibitor. It is absolutely reasonable to assume 

that, given the role immunotherapies play in reshaping the TME as well as primary tumor cells, 

patients in this cohort may have had better responses to the combinatorial regimen, and AP1 

upregulation in primary tumor cells as a resistance mechanism to HDACi may have been ablated 

by pembrolizumab while the tumor cells opted for a different, currently unknown mechanism of 

resistance. Regardless, 7/11 patients with increased JunB in post-treatment biopsies still 

represents >60% of a cohort, and provides support for a model wherein HDACi induces an 

enrichment of AP1 motifs in tumor epithelial cells, and likely other gastrointestinal malignancies, 

which can then be attenuated to achieve tumor cell death.  
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Chapter 2 Discussion 

Determining mechanisms of adaptive resistance to anticancer therapies represents a critical 

effort to improve clinical outcomes for pancreatic cancer patients. Here we provide evidence to 

suggest that PDAC, and potentially other GI malignancies, selectively activate AP1 transcription 

factors as a response to HDAC inhibition. In addition to initiating pancreatic cancer in the context 

of oncogenic mutant-KRAS, the JUN/AP1 family further promotes tumorigenesis by directing 

cross-talk between epithelial cells and the PDAC tumor microenvironment (TME), with higher 

AP1 enrichment underlying a more aggressive, poorly-differentiated tumor phenotype. However, 

it was unknown whether AP1 motif enrichment or baseline expression of AP1-family constituent 

genes in pre-treated pancreaticobiliary lesions may be augmented by treatment with SAHA, 

representing an innate HDACi-resistance mechanism in PDAC and thus providing one possible 

explanation for the clinical failures of SAHA monotherapy.  

 

We show here that tumor cell remodeling brought on by AP1 activation, at the very least, staves 

off tumor cell death, decreases HDACi potency, and results in the survival of a more resistant 

cell population and tumor persistence. By inhibiting AP1 in combination with HDACi agents, 

increased tumor cell death can be achieved.  While we do demonstrate inter-sample 

heterogeneity that impacts measurable PDO responses, the trend of AP1 activation is conserved 

across 5 different patient models in vitro by multimodal sequencing and profiling approaches, 

and further confirmed in clinical patient samples (7/11 patients). The caveats of our mIF validation 

results, of course, are the small sample size, and most obviously the fact that these 

cholangiocarcinoma patients were given an immunomodulatory drug in addition to an HDAC 

inhibitor. Further, entinostat may not have as profound a chromatin remodeling impact on tumor 

cells as pan-HDACi compounds, and may have even less of an AP1-activating effect in a GI 

tumor type with a markedly different TME composition. It is absolutely reasonable to assume 

that, given the role immunotherapies play in reshaping the TME as well as primary tumor cells, 

patients in this cohort may have had better responses to the administered combinatorial 
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regimen.  AP1 upregulation in primary tumor cells as a resistance mechanism to HDACi may 

have been ablated by nivolumab while the tumor cells in the 4/11 patient samples that did not 

show elevated JunB in post-treatment biopsies opted for a different, currently unknown 

mechanism of resistance. Regardless, 7/11 patients with increased JunB in post-treatment 

biopsies still represents >60% of a cohort, and provides support for a model wherein HDACi 

induces an enrichment of AP1 motifs in tumor epithelial cells, and likely other gastrointestinal 

malignancies, which can then be attenuated to achieve tumor cell death.  

Ultimately, this biological paradigm would benefit from further in vivo study and validation, as well 

as characterizing the degree of AP1 activation across other HDAC inhibitors not tested in the 

studies presented here. This study also provides a rationale to support characterization of the 

acute, early responses of tumor cells to therapeutic administration. We show that PDAC epithelial 

cells that persist after therapeutic administration are indeed more aggressive, and could thus 

comprise the predominating resistant cell populations in even a small subset of patients who 

eventually fail on therapy. 
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Chapter 3: Mechanisms of innate and adaptive resistance to direct KRAS small molecule 

inhibitors in pancreatic cancer, a preliminary investigation. 
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Chapter 3 Introduction  

 

More than 90% of PDACs harbor KRAS mutations, and oncogenic Ras signaling is 

implicated in both tumor initiation and maintenance. Until recently, Ras was considered the 

“undruggable” oncogenic driver in PDAC, as developing effective targeted therapeutic strategies 

had proven challenging, as  designing compounds or strategies optimized to targeting a small 

membrane-bound GTPase is apparently a very serious biochemical undertaking. Because of 

this, scientists in recent decades (yes, decades) have employed an abundance of strategies to 

target Ras pathway-adjacents (MEK, ERK, SOS, mTOR, RTK, etc166 ) across a wide breadth of 

cancers. In other words, we’ve truly tried everything we could think of when it comes to targeting 

Ras and understanding its biology. As if the technical challenges weren’t great enough, the 

toxicities associated with drug combinations targeting downstream effectors like PI3K and MAP 

kinase have also posed a challenge to therapeutic administration. The discovery of direct allele-

specific KRAS inhibitors (including the approval of the first inhibitor against KRAS G12C in lung 

cancer167) has the potential to transform the landscape of RAS-targeted therapeutics. However, 

resistance of tumor cells through adaptive genomic and non-genomic mechanisms, as well as 

altered metabolism and heterotypic cellular interactions within the tumor microenvironment 

(TME) will likely prevent monotherapies from producing durable responses168,169. With many 

promising new KRAS-targeting therapies on the horizon, we are on the cusp of a potential 

paradigm shift in treatment for PDAC patients, and there is an urgent need to understand how to 

effectively implement Ras inhibition to maximally benefit patients.  

The KRAS G12C mutation (G12C*) is present in approximately 1.6% of all PDACs, 

representing a rare but important mutational cohort of this disease. Mirati Therapeutics has 

developed a KRAS G12C* inhibitor (Adagrasib) and has begun clinical trial recruitment at MD 

Anderson for the first PDAC-centric trial of Adagrasib in KRAS G12C mutant-cases (MATRIX 

trials). Through the MDACC-Mirati alliance and the BTC initiative, the Maitra Lab, during the last 

part of my doctoral training, has been receiving pre- and post-treatment biopsies for generating 
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patient-derived organoid (PDOs) to “phenocopy” the disease course of patients in the clinic, and 

to interrogate resistance mechanisms in tumor cells exposed to Ras inhibition. As very 

preliminary work on these projects, I have begun to conduct PDO-based assays across a panel 

of KRAS G12C* inhibitors (MRTX849, AMG510, BI-3911 and BI-0800) to understand differential 

evolution in preclinical specimens, as each of these inhibitors targets mutant Ras in slightly 

different ways (more on this later).  

In addition to being able to study the impacts of inhibiting the KRAS G1C mutation, 

preclinical modeling of response and resistance to inhibitors targeting mutant KRAS G12D 

(G12D*) in PDAC PDOs is also a key part of these study goals. The KRAS G12D* is present in 

nearly 41% of PDAC. Thus, the availability of the first two KRAS G12D inhibitors (MRTX1133 

and BI-3052310) opens up yet another realm of possibilities for targeting mutant KRAS in PDAC 

due to the significant frequency of this alteration in patient populations. As such, I have begun to 

assess the efficacy of both KRAS G12D inhibitors in a panel of PDOs bearing KRAS G12D*.  

 

Mutationally-specific Ras inhibitors provide boundless opportunities for many exciting 

experiments, but it is worth describing other important, mutationally-agnostic Ras-targeting 

agents that have been developed in recent years and are now also at the disposal of the Maitra 

Lab as a function of collaborations with MD Anderson’s TRACTION platform. In 2019, 

Boehringer-Ingelheim announced the development of  “pan-KRAS” inhibitors (BI-1701963 as an 

example), some of which are now undergoing study in clinical trials170. Very generally speaking, 

this class of RAS inhibitors tends to function as  protein-protein inhibitors targeting the molecular 

interaction between SOS1 (Son of sevenless homolog 1) with KRAS, locking KRAS into the GDP-

bound (off) state171. Often referred to in the literature as the “pacemaker” of KRAS, SOS1 binding 

GDP-KRAS catalyzes KRAS’s cycling into its GTP-bound (on) state. SOS1 inhibition does 

appear to lead to antiproliferative effects in some cancer types172, and are anticipated by the 

research community to yield adaptive resistance mechanisms in tumors173, 174 similar to what has 

been observed and reported for the mutation-specific KRAS inhibitors. This mechanism is not to 
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be confused with an even newer class of “pan-RAS” inhibitors, which are rumored to work by 

binding KRAS G12D* in the GDP-bound state. These compounds are off-label, and I am scared 

of lawyers. For this reason, I will not be disclosing the name of the pan-RAS, GDP-binding 

inhibitory compound we’ve been given, I am utterly ignorant of its structure and direct binding 

sites to the Off-RAS protein, and am writing these words now to protect myself from legal 

prosecution and prevent accidentally spilling any industry secrets. This is a non-disclaimer 

disclaimer. Regardless, the applicability, efficacy, and adaptivity of these inhibitors with 

pancreatic malignancies remains unknown. Ultimately, the performance of these “more agnostic” 

agents against the mutationally-specific inhibitors described here will be explored by Maitra Lab 

members after I’ve departed from the group, using the experimental frameworks for evaluation 

that I’ve established. 

 An important note on the biological  context of the samples discussed in this chapter: at 

the time of presentation to the clinic for trial recruitment and sample acquisition for PDO 

generation, the far majority of MD Anderson PDAC patients have advanced disease. Many have 

already been given and failed standard-of-care (SOC) regimens like Gemzar + Abraxane or 

FOLFIRINOX. Therefore, the “pre-treatment” biopsy samples the Maitra Lab receives refers only 

to pre-G12Ci/G12Di, and not “treatment naive”. What we are able to evaluate as “adaptive 

response” following the administration of KRAS inhibitors, then, is in the context of a tumor that 

is already resistant to standard of care. What we are interested in exploring, given these clinical 

histories, is what additional genomic aberrations, transcriptional adaptations, or metabolic 

disruptions might be further introduced by a RAS inhibitor, and determining whether viable 

treatment options may be predicated upon profiling drivers of tumor evolution.   

 

Materials and Methods included in Chapter 3 

Organoid generation  

Briefly, upon arrival of tissue to the laboratory (within 2 hours of procedure), samples were 

minced with sterile surgical scalpels to 0.5–1 mm fragments in approximately 1 mL of media 



81 

(RPMI supplemented with 1% BSA, Thermo Fisher). After centrifugation for 3 minutes at 125 ×g, 

cells were resuspended in DMEM with 2 mg/mL Dispase (Gibco), 1 mg/mL Collagenase II 

(Gibco), and 1% penicillin-streptomycin (Corning) and incubated in an orbital shaker for 45 

minutes at 37°C. Dispase + Collagenase activity was quenched with 5% FBS, 1% penicillin-

streptomycin in DMEM (Wash Media) followed by centrifugation for 5 minutes at 125 ×g. Cells 

were resuspended in 4 mL TryplE (Gibco) and incubated in an orbital shaker for 8 minutes at 

37°C. TryplE was quenched with Wash Media, cells were centrifuged again for 5 minutes at 125  

×g,  and dissociated cells were counted and resuspended in 350-700uL (depending on cell pellet 

size) of Geltrex™ LDEV-Free, hESC-Qualified, Reduced Growth Factor Basement Membrane 

Matrix (Gibco) and plated as domes on a Nunclon Delta Surface 12-well plate (Thermo Fisher). 

Matrigel was allowed to solidify for up to 45 minutes at 37°C, at which point approx. 1mL of  

PaTOM media175 supplemented with Y-27632 dihydrochloride (Tocris) was added to each well 

of the 12-well plate, to ensure full submergence of organoid domes. Organoids were grown for a 

minimum of 7 days after seeding before being passaged for the first time.  

 

Characterization of PDO responses to KRAS inhibitors 

To identify IC50 values across samples for each inhibitor employed in this study, PDO cells were 

harvested after 2-4 passages (depending on growth rates for sufficient cell number). The same 

method was followed for each KRAS G12D* PDO (AM67, MS05, and Panc1 cells grown as 3D 

spheroids) used to study responses to G12D* small molecule inhibitors. For PDO matrigel 

dissociation, PaTOM media was removed and matrigel domes were dissolved using 1mL of 

Dispase in PBS solution (2mg Dispase/mL PBS added to each well of 12-well plate) at 37°C for 

15 minutes with mechanical disruption. PDO cells were collected in a 15mL conical tube, washed 

with 5mL Wash Media (see above), centrifuged for 3 minutes at 125 ×g, and resuspended in 

4mL TryplE at 37°C until PDOs were fully dissociated into single cells. TryplE was quenched 

using Wash Media, and cells were resuspended in PaTOM + 10% matrigel solution for counting 

and plating at a density of 2,000 cells/well in Ultra Low Attachment clear 96-well round-bottom 
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plates (Corning). PaTOM + 10% matrigel solution was then added to each well for a final volume 

of 50uL. Following plating, plates were centrifuged at 850 rpm for 5 minutes, and incubated at 

37°C. After 2 days, vorinostat (10mM in DMSO stock, SelleckChem) was diluted and 

administered to PDOs in a dose range of 100pM - 100uM (5 replicates per dose) for a total 

volume for 100uL per well for each experimental condition. After 5 days, cell viability was 

measured using CCK8 assay (Dojindo) on a Cytation 5 (BioTek) instrument using Gen5 software. 

Luminescence values of G12Ci-treated cells were then normalized to media and untreated 

controls and analyzed for IC50 values using Prism 9 software. 

 

Chapter 3 Background and Significance  

The overarching goal of this proposal is to elucidate the molecular mechanisms of resistance 

against recently developed allele-specific KRAS inhibitors in PDAC. As part of a strategic alliance 

between MDACC and two companies developing direct KRAS inhibitors - Mirati Therapeutics 

and BI, we will have access to three KRAS G12C inhibitors (adagrasib [clinical], BI-3911 and BI-

0800 [preclinical]), to the first ever KRAS G12D inhibitors (MRTX1133, and BI-3052310), and to 

a preclinical investigative pan-RAS inhibitor, BI-6674 for preclinical studies (Table 4). Ras 

normally functions as a molecular switch that cycles between an active, guanosine-5'-

triphosphate (GTP)-bound state and an inactive, guanosine 5′-diphosphate (GDP)-bound form122 

(Figure 21). Oncogenic mutations in KRAS typically increase the steady-state levels of Ras in 

the GTP-bound state capable of driving pro-tumorigenic signaling through downstream effector 

pathways. Genetic ablation of KRAS expression leads to cell cycle arrest and death in cell line 

models and potent tumor regressions in animal models of PDAC176,177,178. Drug combinations 

that inhibit Ras downstream signaling can have potent anti-tumor effects but efficacy has been 

limited by toxicity in patients. Recent advances in medicinal chemistry have enabled 

development of direct small molecule inhibitors of KRAS, including most notably covalent 

inhibitors of the KRAS G12C and G12D oncoproteins that impair oncogenic signaling and cause 

tumor regressions in preclinical models179. 



83 

 

 

 



84 

To study the impact of these inhibitors in the translational preclinical setting, I have employed 

PDOs and sought to “repurpose” experimental and sequencing methodologies developed and 

described in Chapter 2. In those experiments, I demonstrated that single cell RNA sequencing 

(scRNAseq) profiles from PDAC PDOs can be derivatized using appropriate bioinformatics 

pipelines to “match” with vulnerability signatures to specific pharmacological agents, including 

clinically feasible combinatorial regimens. As an example of preliminary data to demonstrate 

technical feasibility for proposed approaches, as described in Chapter 2, scRNAseq and 

snATACseq of vorinostat-treated PDOs finds a limited repertoire of actionable transcription 

factors (TFs) that is enriched within the resistant subclone, the inhibition of which could overcome 

the observed resistance to epigenetic therapies in PDAC. Given the success of this method in 

identifying complex mechanisms of resistance to therapeutic agents, it is my intention to use this 

platform to elucidate the mechanisms of resistance to KRAS-based therapies in PDOs, and in 

post-treatment biopsies from the 1st G12C trial (Mirati) ever conducted in pancreatic cancers. 

Additionally, I will be extending these approaches to a panel of KRAS G12D* PDOs to elucidate 

endogenous, underlying mechanisms of resistance to this even-newer class of small molecule 

inhibitors for pancreatic cancers. PDOs of both mutational backgrounds will eventually also be 

studied using pan-Ras inhibitors, as a point of comparison between upstream pathway inhibition 

of RAS versus targeting specific aspects of the mutant Ras protein complexes.   

 

Chapter 3 Results 

Preclinical assessment in G12C* PDOs shows differential small molecule sensitivity to 

KRAS inhibition. 

Early clinical trials of two different KRASG12C inhibitors, sotorasib (AMG510) and adagrasib 

(MRTX849), have shown promising efficacy in non-small cell lung cancer (NSCLC) and 

colorectal cancer (CRC)180,181,182,183,184. While KRAS G12C mutations are rare in PDAC, multiple 

PDAC patients have now been treated with either sotorasib or adagrasib, with several patients 

demonstrating significant clinical benefit from these agents. Most notably, the KRYSTAL-1 study 
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of adagrasib monotherapy in KRAS G12C* tumors included ten PDAC patients who received the 

recommended phase II dose of the drug as second or third-line therapy (after standard 

chemotherapy). All ten (100%) of these patients received clinical benefit from the therapy, with 

five patients exhibiting partial responses (PR). Progression-free survival (PFS) for this small 

cohort of patients treated with adagrasib was 6.3 months – a remarkable observation. These 

data suggest that direct KRAS inhibition can confer substantial clinical benefit to PDAC patients, 

even in advanced, previously treated disease where patients have no other effective options. My 

own preliminary data, however, shows that G12C* PDOs do indeed harbor differential sensitivity 

to KRAS-on (BI-0800) versus KRAS-off (MRTX849, AMG510, BI-3911), with the singular KRAS-

on compound in this assay being significantly more potent than the KRAS-off competitors (Figure 

22A).  
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Thus, as future work following the completion of my doctoral studies, I will validate these reported 

findings in PDOs from patients enrolled in a multi-center clinical trial of KRAS G12C inhibitor 

adagrasib (MATRIX trial led by Dr. Pant at MDACC), and will deeply interrogate human 

biospecimens from this trial to understand response and resistance, ultimately enabling rational 

design of future KRAS inhibitor strategies. 
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PDAC PDOs develop resistance to KRAS inhibition after long term treatment with small 

molecule inhibitors.  

In this part of my work, I hope to identify and validate KRAS G12Ci resistance mechanisms 

discovered in longitudinal PDO studies as a preclinical correlate to clinical evolution of 

therapeutic resistance. Patients enrolled in the MATRIX trial (PI Pant) will undergo longitudinal 

follow up with liquid biopsies and tumor biopsies at the time of eventual progression on therapy. 

As published by Awad150 and others185, treatment with KRAS inhibitors may allow for the 

proliferation of “baseline present” low-frequency sub-clonal populations which may provide 

mechanisms of secondary resistance likely evident in post-treatment biopsies. Convoluting the 

potential evolved resistance mechanisms to RAS inhibition in PDAC are recent studies showing 

that while KRAS signaling plays a critical role in shaping the PDAC tumor microenvironment 

(TME)181, remodeling of the TME enables PDAC to bypass its dependency on oncogenic KRAS 

and develop secondary survival pathways186. Eventually, understanding how KRAS inhibition 

impacts both PDAC lesions and the surrounding TME will be a top priority for developing 

therapeutic strategies in the clinic. In the PDO context, 1 PDO sample does indeed have 

autologous fibroblasts in co-culture with epithelial cells, allowing us to study (albeit in a very 

limited fashion) the potential differential impacts of KRAS inhibitory molecules in both PDAC 

tumor epithelial cells and cancer-associated fibroblasts (CAFs). MRTX849 and BI-0800 were the 

most potent G12C inhibitors against this PDO sample (Figure 22), and were therefore selected 

for long term study. As a “first step” in studying the evolution of resistance, a series of long term 

PDO cultures were established: G12C* PDO DH50 was grown under three culture conditions: 1) 

untreated control, 2) treatment at IC50 of MRTX849, and 3) treatment at IC50 of BI-0800 (Figure 

23A). Dosing of KRAS inhibitors was doubled every 2 passages, until a dose was reached where 

PDO cell growth was unrestrained by the administration of increasingly high doses of KRAS 

inhibitor (Figure 23B).  
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Upon rechallenging the long term- treated PDOs with the range of G12Ci doses from 

which initial, acute sensitivity was determined, we report that the IC50s for both MRTX849 and 

BI-0800 have indeed shifted right-ward in sample DH50, when compared to the long term 

untreated controls. This indicates that drug resistance has been achieved in this specimen for 

both inhibitors, when factors endogenous to in silico drift are accounted for (Figures 24A, 24C). 

However, upon comparison of baseline response values to long term culture responses to acute 

exposure for either inhibitor, we report that the long term cultures exhibit much lower viability 
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measurements at all doses of each drug (Figures 24B, 24D). This finding suggests that PDO 

DH50 may, over time and as a function of “drift” in silico, be becoming a “more docile” and “more 

sensitive” PDO in general, but not as a function of exposure to KRAS inhibition. This shift in PDO 

character would be consistent with previous reports by us and others (see Chapter 1) suggesting 

that organoids tend to become less aggressive over passage time.  

In this same experiment, we also tested whether DH50 treated long term with BI-0800 (a 

G12C-on mechanism of  KRAS inhibition) might have become sensitive to MRTX849 (a G12C-

off mechanism of KRAS inhibition), and vice-versa. We report that DH50 treated long term with 

BI-0800 is no more sensitive to treatment with acute MRTX849 than it is to being rechallenged 

with acute BI-0800 (Figure 24E, no statistically significant differences between green and gray 

bars at any dosage). Conversely, DH50 treated long term with MRTX849 appears more resistant 

to acute treatment with BI-0800 than it is to acute rechallenging with MRTX849 (Figure 24F, blue 

bars slightly taller than gray bars measuring viability).   
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Mutation-specific inhibition is more effective than pan-RAS inhibition in acute G12C* 

context. 

Also as a result of collaborations with MD Anderson’s TRACTION platform,  the Maitra Lab has 

acquired therapeutic agents under development with Boehringer-Ingelheim, the purported pan-

RAS inhibitors mentioned above, and I’ve been eager to evaluate the effects of pan-RAS versus 

mutation-specific inhibition in patient-derived samples. As such, I’ve used MiaPaca-2 cell lines 

to evaluate the efficacy of pan-RAS-Off versus G12*-On inhibition, compared to 2 G12C* PDX 

lines acquired through an MTA with the NCI, so-called specimens 65R and 76R. I have found 

that, especially at low doses, BI-0800 (which covalently binds the GTP-bound mutant G12C Kras 

protein) outperforms the pan-RAS inhibitor compound (Figures 25A, C, E). Both agents, 

however, are much better at killing G12C* pancreatic cancer cells than the commonly-

administered Gemcitabine, as well as the Mirati Therapeutics G12C-Off inhibitor, MRTX849 

(Figures 25B, D, F). Of note, both NCI-PDX samples are slower-growing than MP2 cells, with 

PDX-76R being the slowest-growing of all. NCI-PDX-65R is also the most sensitive specimen to 

all therapies, with viability ranges achieved by Gemcitabine alone to be far below 50% at even 

very low doses of drug administration (Figure 25D). In all cases, Normalized CCK8 viability =  

(raw treated counts - raw media background value) / (raw untreated counts - raw media 

background value).  
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Preliminary Characterization of PDO responses to KRAS G12D* inhibitors. 

Given the prevalence of the KRASG12D mutation in PDAC lesions (>40%), deciphering 

mechanisms underlying resistance to G12Di is paramount to the success of these agents in the 
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clinic. Recent work in KRASG12D* animal models has shown that ablating KRAS reduces, but does 

not fully abolish the tumorigenic capacity of PDAC cells187. These reports suggest that resistance 

to KRAS G12D inhibition may be innate to these tumors, and that innovating effective 

combinatorial regimens will be of the utmost importance in these PDAC cases. Indeed, in my 

own assays, I find that in both G12D* PDO samples and G12D* PDAC cell lines, total cell death 

is certainly not achieved, as viability at any dose administration of G12Di remains at or above 

50% in all samples (Figure 26), where a G12C inhibitor positive control (MRTX849) yielded 

toxicity-associated PDO death at doses where the G12D inhibitor remained ineffectual on cell 

survival. It is important to note that the samples tested here were positive for KRAS G12D* variant 

allele fraction (VAF) by ddPCR in over 95% of cells.  

 

 

Chapter 3 Discussion 

While I will not be able to harvest post-treatment cells for sequencing or profiling before this 

dissertation is due, what characteristics possessed by the 50% of tumor cells alive at should-be 

intolerable G12Di and G12Ci doses is certainly an area for future study that the Maitra Lab has 

a vested interest in pursuing. Previous studies by Sivakumar et al to understand the “master 

regulators” of KRAS in pancreatic cancers suggest that differences in Hedgehog, Notch, and Cell 

Cycle signaling pathways may be the most predominating programs determining cellular 

responses to manipulation of oncogenic KRAS signaling188. However, whether the same 

pathways that govern how tumors behave as a function of an oncogenic RAS mutation, versus 
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what “salvage pathways” are employed when oncogenic RAS is inhibited in the acute treatment 

setting is very much so a robustly-developing research area.  

The “same” needs apply for determining what mechanisms arise after longterm treatment 

with any KRAS inhibitor, weighing those molecular programs against the responses induced by 

acute treatment administration, and identifying useful strategies to anticipate the extent of the 

biological havoc treatment-induced adaptations will wreak in a patient. Whether PDOs, and 

patient tumors, for that matter, harbor sneaky mutations that are recalcitrant to inhibition of any 

kind, or whether they may have evolved mutations in actionable genomic regions will be critical 

to discern, if not just for the sake of scientific inquiry but for the eventual implementation of data-

driven treatment plans in the clinical setting.  
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Conclusions and Final Thoughts  

 

I have put off concluding for weeks, as I’ve tried to level with the task of neatly and succinctly 

summarizing the work presented in this dissertation. I’ve struggled, as each of these chapters, I 

feel, very much tell their own story and inform the scientific community of ways we can come to 

understand pancreatic ductal adenocarcinoma, and how we can employ various methods, 

analyses, hypotheses, and interpretations to make sense of it all. I have tried to illustrate, also, 

the value of orthogonal validation, wanting to emphasize that in science, there is certainly more 

than one way to do something, and the only way to arrive at Ground Truth is to demonstrate 

something in no short of a million different ways.  

 

I came to graduate school as an Evolutionary Biologist, and now reflect on how the fundamental 

laws underlying ecosystem biology and species evolution are alive and well in pancreatic tumors. 

The methods that Cancer Biologists (me, included) employ to characterize tumor heterogeneity, 

measure clonal outgrowth, and identify resistant cells- these can all be likened to the same ways 

ecologists think about population growth, edge communities, and resource scarcity or geographic 

location driving speciation. PDAC lesions are every bit as much their own ecosystem as they are 

a part of a larger biological entity, and I have done my best to understand how their population 

dynamics ebb and flow as these cells cope with the survival challenges imposed by treatment 

regimens, surgeries, immune systems, and the myriad other strategies humans leverage to kill 

them off. This is a lethal malignancy that I’ve spent my time studying- the adaptive measures 

PDAC tumors will take to improve their chances of survival, against what we’d think are all odds, 

are nothing short of an evolutionary marvel.  

 

I began by questioning the assumptions of what we, as a PDAC community, understood about 

the features determining how PDAC behaves. In Chapter 1, I discussed the underlying 

heterogeneity, indeed the occult polyclonality, that single cell technologies at multiple levels of 
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biological organization have enabled us to discover and systematically interrogate. Pancreatic 

cancer cell lines, the most commonly used unit of study for PDAC research, are not so isogenic 

as we (used again Royally) had asserted they are. Whether we were using the correct “normal 

controls” to benchmark our studies, if amplification or deletion events of large swaths of the 

genome have endowed certain groups of cells in culture with an evolutionary advantage, if 

chromatin recoiling as a function of a matrigel scaffold determines the response to a therapeutic 

agent in silico or if and how PDAC organoids change in time are topics that had not been fully 

divulged prior to this dissertation. The findings discussed in Chapter 1 may have broad 

implications for future work, as researchers may now understand the importance of fully 

characterizing any of their study models prior to assuming the contextual applicability of their 

own studies. Further, the results described in Chapter 1 may (hopefully) provide a “roadmap” of 

the level of granularity required to meaningfully profile PDAC lesions in the clinic, in our efforts 

to provide Precision Medicine-based treatment strategies to patients. 

 

In Chapter 2, I moved into the realm of exploring how agnostic, multimodal characterization of a 

model system can lead to discovery of novel treatment combinations in PDAC. In striving to 

address the gap of knowledge left by the long history of clinical HDACi failures, we identified a 

resistance mechanism that, while not only previously unreported, could be targeted in a 

combinatorial approach to achieve tumor cell death. I cannot envision AP1 inhibitors being 

brought to clinic on account of HDACi-based trials in PDAC being all but absconded in recent 

years. However, parsing apart one of the many “why’s” of PDAC treatment failure goes beyond 

an academic exercise, and instead exemplifies how multiple levels of biological activity are co-

opted into promoting post-treatment tumor growth.  

 

Finally, in my last chapter, I sought to understand, and possibly anticipate, how PDAC lesions 

will respond to the inhibition of the “holy grail” of cancer genes: KRAS. That PDAC patients harbor 

different KRAS mutations and have different response capabilities to KRASi was an inevitability 
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the research community would have to confront eventually. While the earlier literature on the 

subject seemed to suggest that knocking out KRAS would bring tumors to their metaphorical 

knees, we soon learned by way of clinical trial results and more accurate preclinical modeling 

methods that tumors will upregulate any number of survival pathways when the Big Red KRAS 

Button gets pushed. These pathways include but are not limited to autophagy, SOS1 and RTK 

signaling, and tumors often combine a multitude of pathways to avoid death by KRASi. By 

inhibiting cancer’s so-called “heart”, we’ve managed to seemingly give a pancreatic tumor the 

ability to grow at least seven new heads in addition to activating a second heart it kept handy in 

a storage closet. I know, science is no place for metaphor, but in this case, you get the point. By 

studying differential responses to KRAS G12C and G12D inhibitors, I’ve shown that while nearly 

all cells in a cultured population harbor a KRAS mutation, only about half of them (at best) are 

completely incapacitated by inhibiting KRAS. The other half of the tumor cells have, perhaps, 

evolved beyond their KRAS activating mutation and have sought greener genetic pastures, 

instead favoring reliance on pathways and mutations that make them biologically stronger than 

an individual KRAS mutation ever could alone. By forcing a resistant phenotype to KRAS G12C 

inhibitors, I’ve also shown that treatment resistance, at unfathomably high doses of drug 

administration, can be achieved in organoid models. These early studies might suggest that 

proliferation of the surviving 50% of cells after baseline treatment administration is an altogether 

possible reality, and characterization of those remaining cellular stalwarts ought to be of top 

priority to anticipate tumor outgrowth after an initial lesion regression. For this reason, a shift 

towards conducting followup patient biopsies in the clinic, to catalog the dynamic changes and 

growth of tumor cells, ought to be implemented. Initiatives like Break Through Cancer have begun 

to sort this out, but there is a long way to go on the clinical front in order to achieve meaningful, 

durable responses that are mindful of ever-evolving resistance dynamics. 

 

In my time as a graduate student, I have watched the 5-year survival rate of pancreatic cancer 

patients be nudged from 8% to 11%. This is a significant improvement, but we have so much 
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farther to go. With the advancement of technologies and study platforms, the sophistication of 

targeted compounds, the multidisciplinary approaches being taken by physicians and scientists, 

et cetera, I am confident that the 5-year survival rate of pancreatic cancer patients will continue 

to increase. If there’s anything I’ve learned, it’s that the easiest pancreatic cancer patient to treat 

is one who has not yet developed a pancreatic tumor. These are patients who, while they may 

have a low grade IPMN or a small cyst, have not developed a jungle of oncogenic driver 

mutations, nor have their tissues been tried and tested with vicious chemotherapeutics. These 

are patients with a low prevalence of a KRAS mutation, perhaps a TP53 mutation, and (hopefully) 

little else. If we are to see an improvement in pancreatic cancer survival, I believe that this pre-

cancer cohort is the one that would benefit the most from targeted KRAS inhibitors, and where I 

would most like to see these compounds tested. If i were granted unlimited time and resources 

in the Maitra Lab, these are the future directions I would like most to explore, and that I hope are 

expanded upon by researchers who come after me. This is currently not the focus of ongoing 

RAS-centric studies, and I must admit that I have grown weary of chasing down the rabbit-holes 

of acquired RAS resistance. Understanding how to best treat late-stage patients is, of course, a 

hugely important endeavor and one that I take very seriously. However, RAS biology and 

resistance becomes very complicated very quickly, and tumor cells have, as I’ve tried to show in 

this dissertation, a near-unlimited repertoire of strategies to keep on living in the face of RAS-

induced adversity. By inhibiting RAS in its “toddler stage”, while pancreata have detectable 

precursor lesions instead of “matured” RAS-driven tumors, I think we stand a much better chance 

of both  decreasing the incidence of pancreatic cancers and continuing to improve PDAC survival 

rates.  
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