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INVERSION FORMULAE FOR THE INTEGRAL

TRANSFORM ON A LOCALLY COMPACT

ZERO-DIMENSIONAL GROUP

Francesco Tulone

ABSTRACT. Generalized inversion formulae for multiplicative integral trans-
form with a kernel defined by characters of a locally compact zero-dimensional
abelian group are obtained using a Kurzweil-Henstock type integral.

1. Introduction

In this paper, we consider integral transforms with kernels defined by char-
acters of a locally compact zero-dimensional abelian group. Transforms of this
kind are usually called multiplicative transforms (see [1]).

The problem of getting an inversion formula for integral transform is a contin-
ual analogue of the one of recovering the coefficients of a convergent series with
respect to characters of a compact zero-dimensional abelian group considered
in [6]. So, we use those results on series to obtain the correspondent results on
transforms. As in [5] and [6], we will use here the Kurzweil-Henstock method of
integration.

Our first result is a locally compact version of [6, Theorem 4.2]. The sec-
ond result is a generalization of [5, Theorem 5.1], where we are weakening the
conditions on the way of convergence of the transform.

In comparison with [4], we consider here transforms directly on the group
instead of using a mapping of this group on the real line. That mapping was
connected with introduction of a certain ordering in this group which can be
avoided here.
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2. Preliminaries

Let G be a zero-dimensional locally compact abelian group which satisfies
the second countability axiom. We also suppose that the group G is periodic. It
is known (see [1]) that a topology in such a group can be given by a chain of
subgroups

. . . ⊃ G−n ⊃ . . . ⊃ G−2 ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ G2 . . . ⊃ Gn ⊃ . . . (1)

with G =
⋃+∞

n=−∞ Gn and {0} =
⋂+∞

n=−∞ Gn. The subgroups Gn are clopen sets
with respect to this topology. As G is periodic, the factor group Gn/Gn+1 is
finite for each n and this implies that Gn (and so, also all its cosets) is compact.
Note that the factor group Gn/G0 is also finite for any n < 0, and so, the factor
group G/G0 is countable. We will use the notation given in [6], in particular,
we denote by Kn any coset of the subgroup Gn and by Kn(g) the coset of the
subgroup Gn which contains the element g. For each g ∈ G the sequence

{
Kn(g)

}
is decreasing and {g} =

⋂
n Kn(g).

Now, for each coset Kn of Gn, we choose and fix an element gKn
for the rest

of the paper. Then, for each n ∈ Z, we can represent any element g ∈ G in the
form

g = gKn
+ {g}n, (2)

where {g}n ∈ Gn. Indeed let g ∈ Kn, for some n, then g = gKn
+g−gKn

and we
can put {g}n := g − gKn

. We agree to put gGn
= 0, so that g = {g}n if g ∈ Gn.

Let Γ denotes the dual group of G, i.e., the group of characters of the group G.
It is known (see [1]) that under the assumption imposed on G, the group Γ is
also a periodic locally compact zero-dimensional abelian group (with respect to
the pointwise multiplication of characters) and we can represent it as a sum of
increasing sequence of subgroups

. . . ⊃ Γ−n ⊃ . . . ⊃ Γ−2 ⊃ Γ−1 ⊃ Γ0 ⊃ Γ1 ⊃ Γ2 ⊃ . . . ⊃ Γn ⊃ . . . (3)

introducing a topology in Γ. Then Γ =
⋃+∞

i=−∞ Γi and
⋂+∞

i=−∞ Γi =
{
γ(0)

}
,

where
(
g, γ(0)

)
= 1 for all g ∈ G (here and below, (g, γ) denote the value of

a character γ at a point g). For each n ∈ Z the group Γ−n is the annulator
of Gn, i.e.,

Γ−n = G⊥
n :=

{
γ ∈ Γ : (g, γ) = 1 for all g ∈ Gn

}
.

The representation (2), the properties of a character and of the annulator
imply

(g, γ) = (gKn
, γ) · ({g}n, γ) = (gKn

, γ).

So, with a fixed element gKn
, the value (g, γ) is constant for all g ∈ Kn.

The factor groups Γ−n−1/Γ−n = G⊥
n+1/G

⊥
n and Gn/Gn+1 are isomorphic

(see [1]) and so they are of a finite order for each n ∈ Z. This implies that the
group Γ−n/Γ0 is also finite for any n > 0, and Γ/Γ0 is countable.
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Now, as we have done above for the group G, we choose and fix an element
γ

J
∈ J for each coset J of Γ0. Then, using multiplication as the group operation

on the group Γ, we can represent any element γ ∈ Γ in the form:

γ = γ
J
· {γ}, (4)

where {γ} ∈ Γ0. We agree to put γ
Γ0

= γ(0), so that γ = {γ} if γ ∈ Γ0.

We denote by μG and μΓ the Haar measures on the groups G and Γ, respec-
tively, and normalize them so that μG(G0) = μΓ(Γ0) = 1. We can make these
measures complete by including all the subsets of the sets of measure zero into
the respective class of measurable sets.

3. Results related to the compact case

We remind here some definitions and results given in the papers [5] and [6].
We consider derivation basis BG constituted by the family of basis sets

βν =
{
(I, g) : g ∈ G, I = Kn(g), n ≥ ν(g)

}
,

where ν runs over the set of all integer-valued functions on G.

In the terminology of the derivation basis theory, any coset Kn, n ∈ Z, can
be called BG-interval.

This basis has all the usual properties of a general derivation basis (see [2], [7]).

A βν-partition is a finite collection π of elements of βν , where the distinct
elements (I ′, g′) and (I ′′, g′′) in π have I ′ and I ′′ disjoint. If L is a BG-interval
and

⋃
(I,g)∈π I = L, then π is called βν -partition of L.

For each BG-interval L and for any βν ∈ BG there exists a βν-partition of L.

The following Kurzweil-Henstock type integral was defined in [5]:

���������� 3.1� Let L be a BG-interval. A complex-valued function f on L
is said to be Kurzweil-Henstock integrable with respect to basis BG (or HG-
-integrable) on L, with HG-integral A, if for every ε > 0, there exists a function
ν : L �→ Z such that for any βν -partition π of L we have:∣∣∣∣∣∣

∑
(I,g)∈π

f(g)μG(I)−A

∣∣∣∣∣∣ < ε.

We denote the integral value A by (HG)
∫
L
f dμG.

Remark 3.1� We note that all the above definitions depend on the structure of
the sequence of subgroups (1). So, if we consider for the group Γ the definitions
of the BΓ-basis and the HΓ-integral, then we should use the sequence (3) in our
construction.

55



FRANCESCO TULONE

Remark 3.2� It is easy to check that HG-integral is invariant under translation
given by some element g ∈ G.

We also need the following extension of Definition 3.1 to the case of functions
defined only almost everywhere on L.

���������� 3.2� A complex valued function f defined almost everywhere on
a BG-interval L is said to be HG-integrable on L, with integral value A, if the
function

f1(g) :=

{
f(g), where f is defined,

0, otherwise

is HG-integrable on L to A in the sense of Definition 3.1.

It is clear that a complex-valued function is HG-integrable if and only if both
its real and imaginary parts are HG-integrable.

If the group G is compact, as it is in [6], the chain (1) is reduced to the
one-side sequence

G = G0 ⊃ G1 ⊃ G2 . . . ⊃ Gn ⊃ . . .

In this case theHG-integral is defined on the whole groupG. Moreover, the group
Γ of characters of the group G is discrete now (see [1]) and can be represented
as a sum of increasing chain of finite subgroups

Γ0 ⊂ Γ−1 ⊂ Γ−2 ⊂ . . . ⊂ Γ−n ⊂ . . . ,

where Γ0 =
{
γ(0)

}
with

(
g, γ(0)

)
= 1 for all g ∈ G.

Characters γ constitute a countable orthonormal system on G with respect
to the normalized measure μG (see [5]) and we can consider a series∑

γ∈Γ

aγγ (5)

with respect to this system. The convergence of this series at a point g is defined
in [6] as the convergence of its partial sums

Sn(g) :=
∑

γ∈Γ−n

aγ(g, γ) (6)

when n tends to infinity.

With the series (5) we associate a function F defined on each coset Kn by

F (Kn) :=

∫
Kn

Sn(g) dμG. (7)

The above integral can be understood in the Lebesgue sense. F is known to be
an additive function on the family of all BG-intervals.
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The next theorem is proved in [6].

	
����� 3.1� Suppose that the partial sums Sn(g) of a series
∑

γ∈Γ aγγ and
a HG-integrable function f satisfy the inequalities

lim inf
n→∞ Re Sn(g) ≤ Re f (g) ≤ lim sup

n→∞
Re Sn(g), (8)

lim inf
n→∞ Im Sn(g) ≤ Im f (g) ≤ lim sup

n→∞
Im Sn(g) (9)

everywhere on G except on a countable set S, where

lim inf
n→∞ μ(Kn)Re Sn(g) ≤ 0 ≤ lim sup

n→∞
μ(K n)Re Sn(g), (10)

lim inf
n→∞ μ(Kn)Im Sn(g) ≤ 0 ≤ lim sup

n→∞
μ(K n)Im Sn(g) (11)

hold. Then the series
∑

γ∈Γ aγγ is convergent to f a.e. and it is the HG-Fourier
series of f .

Another version of the theorem on the recovering coefficients was proved in [5]:

	
����� 3.2� Suppose that the partial sums Sn(g) of a series
∑

γ∈Γ aγγ con-
verge almost everywhere on G to a function f and satisfy the conditions

−∞ < lim inf
n→∞ Re Sn(g) ≤ lim sup

n→∞
Re Sn(g) < +∞, (12)

−∞ < lim inf
n→∞ Im Sn(g) ≤ lim sup

n→∞
Im Sn(g) < +∞ (13)

everywhere on G except on a countable set S, where

Sn(g) = o

(
1

μG

(
Kn(g)

)
)

(14)

holds. Then f is HG-integrable in the sense of Definition 3.2 and the series∑
γ∈Γ aγγ is the HG-Fourier series of f .

We need also the following theorem (see [5]).

	
����� 3.3� The partial sums Sn(f, g) of the HG-Fourier series of a HG-
-integrable on G function f are convergent to f almost everywhere on G.

4. Inversion formula for transform in the locally compact
case

To simplify our notation, in this section we will put K = K0, [g] := gK ,
{g} := {g}0, so that representation (2) with n = 0 for any element g of some
coset K of G0 can be rewritten in the form g = [g] + {g}, where [g] is a fixed
element of K and {g} ∈ G0. Similarly, we will sometimes use the notation
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[γ] := γ
J
to underline duality, so the representation (4) for any element γ of

some coset J of Γ0 can be rewritten in the form γ = [γ] · {γ}, where [γ] is a fixed
element of J and {γ} ∈ Γ0.

Using this notation and the properties of a character γ, we can write

(g, γ) =
({g}, [γ]) · ([g], [γ]) · ({g}, {γ}) · ([g], {γ}). (15)

Now we observe that:

1) {g} ∈ G0 and {γ} ∈ Γ0 = G⊥
0 . So

({g}, {γ}) = 1, and we can eliminate({g}, {γ}) from representation (15) getting

(g, γ) =
({g}, [γ]) · ([g], [γ]) · ([g], {γ}). (16)

2) [γ] ∈ Γ−m(γ) = G⊥
m(γ)where m(γ) ≥ 0 and [γ]�

G0
is a character of the

subgroup G0.

3)
(
[g], [γ]

)
is constant if g belongs to a fixed coset of G0 and γ belongs to

a fixed coset of Γ0.

4) Using the duality between G and Γ we can state that g represents a char-
acter of Γ and, similarly to the property 2), [g]�Γ0

is a character of Γ0. So(
[g], {γ}) is a value of this character at the point {γ}.

Therefore, according to (16), if g belongs to a fixed coset of G0 and γ belongs to
a fixed coset of Γ0, we can represent (g, γ), up to a constant multiplier

(
[g], [γ]

)
,

as a product of
({g}, [γ]) considered as a value of the character [γ] at {g}, and(

[g], {γ}) considered as a value of the character [g] at {γ}.
We now generalize Theorem 3.1 and Theorem 3.2 to a locally compact case.

In what follows, all the integrals are either HG- or HΓ-integrals. The measure
μG or μΓ, written under the integral sign, will indicate which of the integrals is
used.

	
����� 4.1� Assume that G is the group described in Section 2, Γ being its
dual group. Let a(γ) be a locally HΓ-integrable function and let for some locally
HG-integrable function φ the following inequalities hold:

lim inf
n→∞ Re

∫
Γ−n

a(γ)(g, γ) dμΓ ≤ Reφ(g) ≤ lim sup
n→∞

Re

∫
Γ−n

a(γ)(g, γ) dμΓ, (17)

lim inf
n→∞

Im

∫
Γ−n

a(γ)(g, γ) dμΓ ≤ Imφ(g) ≤ lim sup
n→∞

Im

∫
Γ−n

a(γ)(g, γ) dμΓ (18)
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everywhere on G expect on a countable set T, where we have

lim inf
n→∞

μG(Kn
) Re

∫
Γ−n

a(γ)(g, γ) dμΓ (19)

≤0 ≤ lim sup
n→∞

μG(Kn) Re

∫
Γ−n

a(γ)(g, γ) dμΓ,

lim inf
n→∞ μG(Kn

) Im

∫
Γ−n

a(γ)(g, γ) dμΓ (20)

≤ 0 ≤ lim sup
n→∞

μG(Kn
) Im

∫
Γ−n

a(γ)(g, γ) dμΓ.

Then the function a(γ) can be recovered from φ by the following inversion for-
mula:

a(γ) = lim
n→∞

∫
G−n

φ(g)(g, γ)dμG a.e. on Γ.

A particular case of the previous theorem is the following

�������� 4.2� With the same assumptions on G, Γ and α(γ), let

lim
n→∞

∫
Γ−n

a(γ)(g, γ) dμΓ = φ(g)

a.e. on G, where φ is a locally HG-integrable function on G. Moreover, every-
where on G expect on a countable set T , we have

lim sup
n→∞

∣∣∣∣∣∣∣
∫

Γ−n

a(γ)(g, γ) dμΓ

∣∣∣∣∣∣∣ < +∞

and for g ∈ T, we have

lim
n→∞μ

(
Kn(g)

) ∫
Γ−n

a(γ)(g, γ) dμ = 0.

Then the function a(γ) can be recovered from φ by the following inversion for-
mula:

a(γ) = lim
n→∞

∫
G−n

φ(g)(g, γ)dμG a.e. on Γ.
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����� 4.3� Assume that G is a group described above, Γ being its dual group.
Let a(γ) be a locally HΓ-integrable function and

lim
n→∞

∫
Γ−n

a(γ)(g, γ) dμΓ = φ(g) (21)

a.e. on G. Moreover, everywhere on G expect on a countable set T, we have

lim sup
n→∞

∣∣∣∣∣∣∣
∫

Γ−n

a(γ)(g, γ) dμΓ

∣∣∣∣∣∣∣ < +∞ (22)

and for g ∈ T we have

lim
n→∞μG

(
Kn(g)

) ∫
Γ−n

a(γ)(g, γ) dμΓ = 0. (23)

Then φ is locally HG-integrable and the function a(γ) can be recovered from φ
by the following inversion formula:

a(γ) = lim
n→∞

∫
G−n

φ(g)(g, γ)dμG a.e. on Γ. (24)

P r o o f o f T h e o r e m 4.1 a n d T h e o r e m 4.3. We sketch the proof fol-
lowing the lines of the proof of a similar result given in [5] indicating the step
where we use different theorems on recovering the coefficients of series.

Having fixed a coset K, suppose that g ∈ K, and let J denote any coset of Γ0.
Then, by (16),∫

Γ−n

a(γ)(g, γ) dμΓ =
∑

J⊂Γ−n

∫
J

a(γ)
({g}, [γ]) · ([g], [γ]) · ([g], {γ}) dμΓ

=
∑

J⊂Γ−n

({g}, γJ) ·
∫
J

a(γ)
(
[g], [γ]

) · ([g], {γ})dμΓ. (25)

The latter sum can be considered as a partial sum∑
J⊂Γ−n

b
(K)
J

({g}, γJ) (26)

of the series with respect to the system of characters {γJ}J , at the point {g},
with the coefficients

b
(K)
J =

∫
J

a(γ)
(
[g], [γ]

)(
gK , {γ})dμΓ.

Now, we are going to apply Theorem 3.1 or Theorem 3.2 to this series.

60



INVERSION FORMULAE FOR THE INTEGRAL TRANSFORM ON A GROUP

In the case of Theorem 4.1, we obtain, according to the inequalities (17), (18),
(19), (20) and the equality (25), that for the last series the following inequalities
hold

lim inf
n→∞

Re Sn(g) ≤ Reφ(g) ≤ lim sup
n→∞

Re Sn(g), (27)

lim inf
n→∞ Im Sn(g) ≤ Imφ(g) ≤ lim sup

n→∞
Im Sn(g) (28)

except on a countable set T where (10) and (11) hold.

We now introduce the variable t = {g} ∈ G0 and we can consider the above
inequalities to hold on G0 for the function f(t) = φ(gK + t). This means that
the partial sums of our series and the function f satisfy on G0 all the conditions

of Theorem 3.1. Applying this theorem we get that the coefficients b
(K)
J are the

HG-Fourier coefficients of f(t), with respect to characters γJ , i.e.,

b
(K)
J =

∫
J

a(γ)
(
[g], [γ]

)(
gK , {γ}) dμΓ

=

∫
G0

f(t)
({g}, γJ) dμG (29)

=

∫
K

φ(g)
({g}, γJ) dμG

(in the last equality we use Remark 3.2)

In the case of Theorem 4.3, we obtain, according to the assumption (21) and
the equality (25) that partial sums (26) are convergent almost everywhere on K
to a function φ(g).

Introducing the variable t = {g} ∈ G0 once again, we can consider this series
to be convergent almost everywhere on G0 to the function f(t) = φ(gK + t). The
partial sums (26) are bounded, according to (22) and (25), except on a countable
set S = {t ∈ G0 : gK + t ∈ T}, where (23) holds corresponding to the condition
(14) applied to t ∈ S.

Therefore, by Theorem 3.2, the function f is HG-integrable on G0, and so,

φ is HG-integrable on K and the coefficients b
(K)
J are the HG-Fourier coefficients

of f(t), with respect to characters γJ getting again the equality (29).

Now, we can finish the proof of both theorems. By observation 3), ([g], [γ]) is
constant when g ∈ K and γ ∈ J with

∣∣([g], [γ])∣∣ = 1. Hence (29) implies∫
J

a(γ)
(
gK , {γ}) dμΓ =

∫
K

φ(g)
(
[g], [γ]

)({g}, γJ) dμG. (30)

Now, we notice that for each fixed J , the value
∫
J
a(γ)

(
gK , {γ})dμΓ is the

HG-Fourier coefficient, with respect to the character gK , of the HG-integrable
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function a(γ) = a
(
[γ] · {γ}) considered as a function of {γ} ∈ Γ0. Applying

Theorem 3.3 to this HG-Fourier series, we get

lim
n→∞

∑
K⊂G−n

∫
J

a(γ)
(
gK , {γ})dμΓ · (gK , {γ}) = a

(
[γ] · {γ}) = a(γ)

for almost all values of {γ} on Γ0, i.e., a.e. on J . Hence using (30) and then (16),
we compute

lim
n→∞

∑
K⊂G−n

∫
J

a(γ)
(
gK , {γ}) dμΓ · (gK , {γ})

= lim
n→∞

∑
K⊂G−n

∫
K

φ(g)
(
[g], [γ]

)({g}, γJ) dμG · (gK , {γ})

= lim
n→∞

∫
G−n

φ(g)
({g}, γJ) · (gK , {γ}) · ([g], [γ]) dμG

= lim
n→∞

∫
G−n

φ(g)(g, γ)dμG = a(γ) a.e. on J.

The last equality is true for any J , so we get (24), completing the proof. �

We remark that Theorems 4.1 is not true if we use Denjoy-Khintchine inte-
grable function φ (see [3] for the compact case), but it becomes true with this
last integral if we put some additional hypothesis on the group and on the type
of convergence (see [8]).
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