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Abstract
Machine learning (ML) is increasingly often used to inform high-stakes decisions. As com-
plex ML models (e.g., deep neural networks) are often considered black boxes, a wealth of 
procedures has been developed to shed light on their inner workings and the ways in which 
their predictions come about, defining the field of ‘explainable AI’ (XAI). Saliency meth-
ods rank input features according to some measure of ‘importance’. Such methods are dif-
ficult to validate since a formal definition of feature importance is, thus far, lacking. It has 
been demonstrated that some saliency methods can highlight features that have no statisti-
cal association with the prediction target (suppressor variables). To avoid misinterpreta-
tions due to such behavior, we propose the actual presence of such an association as a nec-
essary condition and objective preliminary definition for feature importance. We carefully 
crafted a ground-truth dataset in which all statistical dependencies are well-defined and 
linear, serving as a benchmark to study the problem of suppressor variables. We evaluate 
common explanation methods including LRP, DTD, PatternNet, PatternAttribution, LIME, 
Anchors, SHAP, and permutation-based methods with respect to our objective definition. 
We show that most of these methods are unable to distinguish important features from sup-
pressors in this setting.

Keywords Explainable AI · Saliency methods · Ground truth · Benchmark · Linear 
classification · Suppressor variables

1 Introduction

With AlexNet  (Krizhevsky et  al. 2012) winning the ImageNet competition, the machine 
learning (ML) community started into a new era. Within few years, novel models achieved 
massive leaps in performance for challenging problems in computer vision, natural lan-
guage processing, and reinforcement learning (e.g., Jaderberg et  al. 2015; LeCun et  al. 
2015; Silver et  al. 2017). In several real-world tasks, ML models became on par with 
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human experts or achieved even super-human performance (Silver et al. 2017). Nowadays, 
there are increasing efforts to also leverage their predictive power in fields such as health-
care and criminal justice, where they may support high-stake decisions that have a pro-
found impact on human lives (Lapuschkin et al. 2019; Rudin 2019).

The complexity of current ML models makes it hard for humans to understand the ways 
in which their predictions come about. Especially in highly safety- or otherwise critical 
fields such as medicine, finance, or automatic driving, ethical and legal considerations have 
led to the demand that predictions of ML models should be ‘transparent’, establishing the 
field of ‘interpretable’ or ‘explainable’ AI (XAI, e.g.,  Dombrowski et  al. 2022; Samek 
et al. 2019). Current XAI approaches can be categorized along various dimensions (Arri-
eta et al. 2020). Some methods provide ‘explanations’ for single input examples (instance-
based), while others can be applied to entire models only (global). A common paradigm is 
to provide ‘importance’ or ‘relevance’ scores for single input features. Respective methods 
are called ‘saliency’ or ‘heat’ mapping approaches. Another distinction is made between 
model-agnostic methods  (e.g. Štrumbelj and Kononenko 2014; Lundberg and Lee 2017; 
Ribeiro et al. 2016), which are based on a model’s output only, and methods that are tai-
lored to a specific class of models  (e.g., neural networks, Bach et al. 2015; Binder et al. 
2016; Kim et al. 2018; Montavon et al. 2017; Montavon et al. 2018; Samek et al. 2021; 
Springenberg et  al. 2015; Zeiler and Fergus 2014). Finally, linear ML models with suf-
ficiently few features as well as shallow decision trees have been considered intrinsically 
‘interpretable’  (Rudin 2019), a notion that has also been challenged  (Haufe et  al. 2014; 
Lipton 2018; Poursabzi-Sangdeh et al. 2021), and that is further scrutinized here.

It is understood that XAI methods can serve quality control purposes only under the 
provision of being trustworthy themselves. However, it is still under scientific debate what 
specific formal problems XAI is supposed to solve and what requirements respective meth-
ods should fulfill (Doshi-Velez and Kim 2017; Lipton 2018; Murdoch et al. 2019). Existing 
formulations of such requirements are often relatively vague and lack precise mathematical 
language. Terms like ‘explainable’ or ‘interpretable’ are used by many XAI authors with-
out specifying how results of a given method should be interpreted, i.e., what exact for-
mal conclusions can be deduced. Authors of XAI papers frequently suggest interpretations 
that are either not formally justified or not precise enough to be formally verified. LIME 
(Ribeiro et al. 2016), for example, includes the following example: “A model predicts that 
a patient has the flu, and LIME highlights the symptoms in the patient’s history that led to 
the prediction. Sneeze and headache are portrayed as contributing to the ‘flu’ prediction, 
while ‘no fatigue’ is evidence against it. With these, a doctor can make an informed deci-
sion about whether to trust the model’s prediction.” As we will discuss, nescience about 
the capabilities of XAI methods can lead to misinterpretations in practice.

Importantly, the lack of quantifiable formal criteria also currently prohibits the objec-
tive validation of XAI. Rather than using ground-truth data, current validation schemes are 
often either restricted to subjective qualitative assessments or use surrogate performance 
metrics such as the change in model output or performance when manipulating or omitting 
single features (e.g., Alvarez-Melis and Jaakkola 2018; Fong and Vedaldi 2017; Hooker 
et al. 2019; Samek et al. 2016). In this paper, we aim to make a first step towards an objec-
tive validation of saliency methods. To this end, we devise a purely data-driven criterion 
of feature importance, which defines the superset of features that any XAI method may 
reasonably identify. Based on this definition, we generate simple synthetic ground-truth 
data with linear structure, which we use to quantitatively benchmark a multitude of existing 
XAI appproaches including LIME (Ribeiro et al. 2016), SHAP (Lundberg and Lee 2017), 
and LRP (Bach et al. 2015) with respect to their explanation performance.
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2  Formalization of feature importance

Let us consider a supervised prediction task, where a model f � ∶ ℝ
D
→ Y learns a map-

ping from a D-dimensional feature space to a label space Y from a set of N i.i.d. train-
ing examples D = {(�n, yn)}N

n=1
, �n ∈ F ⊆ ℝ

D, yn ∈ Y, n ∈ {1,… ,N} . The �n and yn are 
realizations of random variables � and Y with joint probability density function p

�,Y (�, y) . 
Saliency maps may either be obtained for entire ML models or on a single-instance basis. 
It is, thus, a function �(f �, �∗,D) ∈ ℝ

D that depends on the model f � as well (option-
ally) the training data D and/or an input example �∗ . The map � is supposed to quantify 
the ‘importance’ of each feature d ∈ {1,… ,D} either for the prediction of the sample 
�∗ or for the predictions of the model f � in general, according to some criterion. Ideally, 
one would like to have a way of defining the ‘correct’ saliency map for a certain com-
bination of model and data. Coming up with such a definition is, however, difficult. We, 
therefore, constrain ourselves to the simpler problem of partitioning the set of features 
into ‘important’ and ‘unimportant’ ones. Thus, we are looking for functions � , where 
�(f �, �∗,D) ∈ {0, 1}D . Here, F+ ∶= {d ∶ hd(f

�, �∗,D) = 1} is the set of ‘important’ fea-
tures and F− ∶= {d ∶ hd(f

�, �∗,D) = 0} is the set of ‘unimportant’ features. For a given 
saliency map � , a corresponding dichotomization function � can be obtained by tresholding 
its output, for example based on a statistical hypothesis test.

2.1  Importance as influence on the model decision

The indicator function � facilitates possible formalizations of ‘importance’. Most current 
saliency methods – implicitly or explicitly – usually seek to identify those features that 
significantly influence the decision of a model. For some models, the corresponding sets, 
F+

model
 and F−

model
 , can indeed be defined in a straightforward manner. Examples are lin-

ear models, for which F+
model

 can be defined as the set of features with non-zero (not sig-
nificantly different from zero) model coefficients. For more complex models, such a direct 
definition is, however, more difficult, and we refrain from attempting a more precise for-
malization here.

2.2  Importance as statistical relation to the target

It is often implicitly assumed that XAI methods provide qualitative or even quantitative 
insight about statistical or mechanistic relationships between the input and output vari-
ables of a model  (Binder et  al. 2016; Ribeiro et  al. 2016). In other words, it is asserted 
that F+ must contain only features that are at least in some way structurally or statistically 
related to the prediction target. As an example, a brain region that is highlighted by an XAI 
method as ‘important’ for predicting a neurological disease will typically be interpreted as 
a correlate or even causal drive of that disease and be discussed as such. Such interpreta-
tions are, however, invalid, as it is possible that features lacking any structural or statistical 
relationship to the prediction target do significantly reduce the model’s prediction error 
(thus, are in F+

model
 ) (Haufe et al. 2014). Such features have been termed suppressor vari-

ables (Conger 1974; Friedman and Wall 2005).
Suppressor variables may contain side information, for example, on the correlation struc-

ture of the noise, that can be used by a model to predict better. But they themselves do not 
provide any satisfactory ‘explanation’ about the actual relationship between input and output 
variables (Haufe et al. 2014). Such features are prone to be misinterpreted, which could have 
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severe consequences in high-stakes domains. We, therefore, argue that a genuine statistical 
dependency between a feature and the response variable should be a prerequisite for that fea-
ture to be considered important. In other words, the set of important features identified by any 
saliency method should be a subset of a set F+

dep
 that can be defined based on the data alone as

where 

 for some choice of xd, y . The set of unimportant features is defined as the complement 

.
Notably, a data-driven mathematical definition of feature importance such as ours also 

provides a recipe to generate ground-truth reference data with known sets of important fea-
tures. This paves the way for an objective evaluation of XAI methods, which is the purpose 
of this paper.

3  Suppressor variables

To understand how suppressor variables can cause misinterpretations for existing saliency 
methods, consider the following linear generative model (c.f., Haufe et al. 2014) with two 
features x1, x2 ∈ ℝ and a response (target) variable y ∈ ℝ:

Here, � and � ∈ ℝ are random variables called the signal and distractor, respectively, and 
a1, b1 and b2 ∈ ℝ are non-zero coefficients. The mixing weight vectors � = [a1, 0]

⊤ and 
� = [b1, b2]

⊤ are called signal and distractor patterns, respectively (see Haufe et al. 2014; 
Kindermans et al. 2018). The learning task is to predict labels y from features � = [x1, x2]

⊤ . 
This task is solvable using x1 alone, since x1 and y share the common signal � . However, the 
presence of the distractor in x1 limits the achievable prediction accuracy. Since x2 and y do 
not share a common term, no prediction of y above chance-level is possible using x2 . How-
ever, a bivariate model using both features can eliminate the distractor so that the label can 
be perfectly recovered. Specifically, the linear model f�(�) = �⊤� with demixing weight 
vector (also called extraction filter) � = [1∕a1,−d1∕(a1d2)]

⊤ achieves that:

According to the terminology introduced above, the set of features statistically related to 
the target is F+

dep
= {1} , while the set of ‘influential’ features is F+

model
= {1, 2} . The influ-

ence of x2 on the prediction is certified by the non-zero coefficient w2 = −d1∕(a1d2) of the 
optimal prediction model. Depending on the coefficients a1 , d1 and d2 , this influence can 

(1)

(2)

x1 = a1� + d1�

x2 = d2�

y = � .

(3)�
⊤
� = 𝜍 +

d1

a1
𝜌 −

d1

a1d2
d2𝜌 = 𝜍 = y .
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have positive or negative polarity, and its strength can be smaller or bigger than w1 = 1∕a1 , 
provoking diverse conjectures about the nature of its influence. However, x2 itself has no 
statistical relationship to y by construction. It is, therefore, a suppressor variable (Conger 
1974; Friedman and Wall 2005; Haufe et al. 2014; Horst et al. 1941).

In a real problem setting, y could be a disease to be diagnosed and � could be a (perfect) 
physiological marker. The baseline level of that marker could, however, be different for the 
two sexes, encoded in the distractor � , even if the prevalance of the disease does not depend 
on sex. A bivariate ML model can subtract the sex-specific baseline and, thereby, diagnose 
the disease more accurately than a univariate model based on the measured marker alone. 
A clinician confronted with the influence of sex on the model decision may thus errone-
ously conclude that sex is a factor that also correlates with or even causally influences the 
presence of the disease. Such examples refute the widely accepted notion (Ribeiro et al. 
2016; Rudin 2019) that linear models are easy to interpret (Haufe et al. 2014).

4  Methods

We generate synthetic images of two classes in the spirit of the linear example introduced 
in Sect. 3; thus with known sets F+

dep
 of class-specific pixels. These are then used to train 

linear classifiers to discriminate the two classes. The resulting models are analyzed by a 
multitude of XAI approaches in order to obtain ‘saliency’ maps. The performance of these 
methods w.r.t. recovering (only) pixels in F+

dep
 is then quantitatively assessed using appro-

priate metrics. The techniques used in these steps are described in the following.

4.1  Data generation

Following  Haufe et  al. (2014), we extend the two-dimensional example of a suppres-
sor variable (2) and create synthetic data sets D = {(�n, yn)}N

n=1
 of i.i.d. observations 

(�n ∈ ℝ
D, yn ∈ {−1, 1}) according to the generative model

with activation pattern � ∈ ℝ
D and distractor pattern � ∈ ℝ

D . The signal is directly 
encoded using binary class labels y ∈ {−1, 1} ∼ Bernoulli(1∕2) . The distractor 
� ∈ ℝ ∼ N(0, 1) is sampled from a standard normal distribution. The multivariate noise 
��� ∈ ℝ

D ∼ N(�,ΣΣΣ) is modelled according to a D-dimensional multivariate Gaussian distri-
bution with zero mean and random covariance matrix ΣΣΣ = ���⊤ , where � is uniformly 
sampled from the space of orthogonal matrices and � = diag (�) is a diagonal matrix of 
eigenvalues sampled as � = [e1 + c,… , eD + c] , where c ∶= max(�)∕100 and 
ed ∼ U(0, 1), d ∈ {1,… ,D} . The signal, distractor, and noise components �[y1,… , yN] , 
�[�1,… , �N] , and [���1,… ,���N] ∈ ℝ

D×N are normalized by their respective Frobenius norms, 
e.g., [���1,… ,���N] ← [���1,… ,���N]∕

�∑N

n=1

∑D

d=1
��n

d
�2 . The observed features are then 

obtained as a weighted sum of the three components, where the factors �i with 
∑3

i
�i = 1 

adjust the influence of each component in the sum, defining the signal-to-noise ratio 
(SNR). For a given SNR factor �1 , we here set �2 = �3 = (1−�1)∕2.

Note that the activation pattern � represents the ground truth feature importance map 
according to our definition (1). To be comprehensible by a human, it would be desirable for 
� to have a simple structure (e.g. sparse, compact). As it is an intrinsic property of the data, 

(4)� = �1�y + �2�� + �3���,
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this cannot be ensured in practice, though. However, estimates of � can be biased towards 
having simple structure.

4.2  Classifiers

The generative model (4) leads to Gaussian class-conditional distributions with equal 
covariance matrices for both classes. Thus, Bayes-optimal classification can be achieved 
using a linear discriminant function f� ∶ ℝ

D
→ ℝ parametrized by a weight vector � . We 

here use two different implementations of linear logistic regression (LLR). The first one is 
part of scikit-learn (Pedregosa et al. 2011), where we use the default parameters, no regu-
larization, and no intercept. This implementation is employed in combination with model-
agnostic XAI methods (Pattern, PFI, EMR, FIRM, SHAP, Pearson Correlation, Anchors 
and LIME, see below). The second implementation is a single-layer neural network (NN) 
with two output neurons and softmax activation function, which was built in Keras with a 
Tensorflow backend. The network is trained without regularization using the Adam opti-
mizer. This implementation is employed for model-based XAI methods defined on neu-
ral networks only (Deep Taylor, LRP, PatternNet and PatternAttribution, see description 
below). Note that, while both implementations should in theory lead to the same discri-
minant function, slight discrepancies in their weight vectors are observed in practice (see 
supplementary Figure S8).

4.3  XAI methods

We assess the following model-agnostic and NN-based saliency methods. All methods can 
be used to generate global maps, while only some are capable of generating sample-based 
heat maps. All methods provide continuous-valued saliency maps � , which are compared to 
the binary ground truth (encoded in the sets F+

dep
 and F−

dep
 ) using metrics from signal detec-

tion theory (see Sect. 4.4). Thus, we do not require any method to provide a dichotomiza-
tion function �.

Linear model weights (extraction filters)
For linear models f�(�) = �⊤� + b , the model weights � are most commonly used for 

interpretation. Thus, the function

provides a global saliency map, which we call the linear extraction filter. Notably, saliency 
methods based on the gradient of the model output with respect to the input features (Bae-
hrens et al. 2010; Simonyan et al. 2013) reduce to the extraction filter for linear prediction 
models (Kindermans et al. 2018).

As has been noted in Sect. 3 and, in more depth, in Haufe et al. (2014), extraction filters 
are prone to highlight suppressor variables. This also holds for sparse weight vectors, as 
the inclusion of suppressor variables in the model may be necessary to achieve optimal 
performance (Haufe et al. 2014).

Linear activation pattern
The set F+

dep
 can be estimated from empirical data by testing the dependency between 

the target y and each feature xd using a statistical test for general non-linear associations 
(e.g., Gretton et al. 2007). For the linear generative model studied here, it is sufficient to 
evaluate the sample covariance Cov [xd, y] between each input feature xd, d ∈ {1,… ,D} 

(5)�
filter(D) = �
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and the target variable y. To obtain a model-specific output, we can further replace the 
target variable y by its model approximation �⊤� , leading to sd(D) ∶= Cov [xd,�

⊤�] , 
for d ∈ {1,… ,D} . The resulting global saliency map

where �
�
= Cov[�, �] is the sample data covariance matrix, called the linear activation pat-

tern (Haufe et al. 2014). The linear activation pattern is a global saliency map for linear 
models that does not highlight spurious suppressor variables (Haufe et al. 2014). Note that 
�pattern is a consistent estimator for the coefficients � of the generative model in our suppres-
sor variable example (2). In particular, spattern

2
→ 0 for N → ∞.

Pearson correlation Since the linear activation pattern corresponds to the covari-
ance of each feature with either the target variable or model output, a natural idea is to 
replace it with Pearson’s correlation

in order to obtain a normalized measure of feature importance. However, due to the nor-
malization terms in the denominator, this measure is more strongly affected by noise than 
the covariance-based activation pattern.

Permutation feature importance (PFI) and empirical model reliance (EMR)
The PFI approach was introduced by Breiman (2001) to assess the influence of fea-

tures on the performance of random forests. The idea is to shuffle the values of one 
feature of interest, keep the remaining features fix, and to observe the effect on the miss-
classification rate. In a same style, Fisher et al. (2019) introduced the notion of model 
reliance, a framework for permutation feature importance approaches. In our work, we 
utilize the empirical model reliance (EMR), which measures the change of the loss 
function after shuffling the values of the feature of interest. As such, PFI and EMR pro-
vide global saliency maps.

Feature importance ranking measure (FIRM) The feature importance ranking meas-
ure (FIRM, Zien et  al. 2009) takes the underlying correlations of the features into 
account, by leveraging the conditional expectation of the model’s output function, given 
the feature of interest, and measuring its deviation. As such, FIRM provides a global 
saliency map. While intractable for arbitrary models and data distributions, FIRM 
admits a closed-form solution for linear models and Gaussian distributed data, which 
we implemented. Notably, under these assumptions, FIRM is equivalent to the linear 
activation pattern (see above) up to a re-scaling of each feature by its standard deviation 
(Haufe et al. 2014).

Local interpretable model-agnostic explanations (LIME) To generate a saliency 
map for a model’s prediction on a single example, LIME (Ribeiro et al. 2016) samples 
instances around that instance, and weights the samples according to their proximity to 
it. LIME then learns a linear surrogate model in the vicinity of the instance of interest, 
trying to linearly approximate the local behavior of the model, which is then interpreted 
by examining the weight vector (extraction filter) of that linear model. As such, LIME 
inherits the conceptual drawbacks of methods directly interpreting gradients or model 
weights in the presence of suppressor variables.

Shapley additive explanations (SHAP) The Shapley value (Shapley 1953) is a game 
theoretic approach to measure the influence of a feature on the decisions of a model on 

(6)�
pattern(D) = �

�
�,

(7)scorr
d

(D) ∶= Corr [xd,�
⊤
�] =

Cov [xd,�
⊤�]

√
Var [xd] Var [�

⊤�]
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a single example. Since its computation is intractable for most real-world settings, an 
approximation called SHAP (Lundberg and Lee 2017) has become widely popular. We 
use the linear SHAP method, including the option to account for correlations between 
features.

Anchors Anchors (Ribeiro et al. 2018) seeks to identify a sparse set of important features 
for single instances, which lead to consistent predictions in the vicinity of the instance. 
Features for which changes in value have almost no effect on the model’s performance are 
considered unimportant.

Neural-network-specific methods In addition to the model-agnostic XAI methods intro-
duced above, a number of model-specific methods tailored to neural network architectures 
are considered. All these methods are based on modified backpropagation, but deal with 
nonlinearities in the network in a different way. For all methods, the implementation in the 
innvestigate1 (Alber et al. 2019) package is used.

Simonyan and Zisserman (2015) proposed a sensitivity analysis, where pixels for which 
the model output is more affected by a shift in the input signal are considered more impor-
tant. To this end, the gradient of the output with respect to the input signal is calculated. 
However, as discussed above, the gradient of a linear model reduces to its model weights 
(extraction filters): GradNN = wNN . DeConvNet  (Zeiler and Fergus 2014) and Guided 
Backpropagation (Springenberg et al. 2015) are two additional methods that again reduce 
to the gradient/extraction filter for linear models.

PatternNet (Kindermans et al. 2018) is conceptually similar to gradient analysis. How-
ever, rather than model weights, activation patterns are estimated per node and backpropa-
gated through the network. For linear networks, PatternNet coincides with the linear acti-
vation pattern approach, although we observe slight deviations between the methods in 
practice.

Lastly, layer-wise relevance propagation (LRP, Bach et al. 2015), Deep Taylor Decom-
position (DTD, Montavon et  al. 2017), and PatternAttribution  (Kindermans et  al. 2018) 
aim to visualize how much the different dimensions of the input contribute to the output 
through the layers. As such, each node in the network is assigned a certain amount of 
‘relevance’, while keeping the total ‘relevance’ per layer constant. For LRP, two different 
variants (‘rules’) are included: the z-rule and the ��-rule (Bach et  al. 2015). Deep Tay-
lor Decomposition (DTD) approximates the subfunctions learned by the different nodes 
by applying a Taylor decomposition around a root point and pooling the relevance over all 
neurons. Lastly, PatternAttribution (Kindermans et al. 2018) estimates the root point from 
the data based on the PatternNet approach.

4.4  Measures of explanation performance

While numerous subjective criteria for evaluating the success of XAI methods have been 
proposed  (e.g., Nguyen and Martínez 2020; Schmidt and Biessmann 2019), we here aim to 
provide objective, data-dependent, criteria using definition (1). Since, we know that statisti-
cal differences between classes are only present in features belonging to the set F+

dep
 , while 

features F−
dep

 are entirely driven by non-class-specific, fluctuations, the dichotomization

1 https:// github. com/ alber max/ innve stiga te.

https://github.com/albermax/innvestigate
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is used as a ground truth both for global and instance-based ‘explanations’. This binary 
ground truth is compared to the continuous-valued saliency map �(f �, �∗,D) ∈ ℝ

D of each 
XAI method.

Explanation performance is measured by comparing �true with � . To this end, saliency 
maps are rectified by taking the absolute value |�| . As performance metrics, we use the 
area under receiver operating curve (AUROC) and the precision for a fixed specificity of 
90% (PREC90), which is obtained using the lowest threshold on � for which the specific-
ity is greater or equal to 90%. Results were similar when AUROC was replaced by aver-
age precision (see supplementary material). The PREC90 metric is based on the following 
consideration: while F+

dep
 defines the set of features that any XAI method may highlight, a 

particular machine learning model may actually use only a subset of them. Thus, we would 
like to penalize false negatives (features that are in F+

dep
 but receive a low score according 

to � ) much less than false positives (features in F−
dep

 that receive a high score). To this end, 
we evaluate the precision (fraction of truly important features among those estimated to be 
important) at a high decision threshold based on the consideration that good XAI methods 
should assign very high saliency scores only to truly important features. Truly important 
features receiving low scores thus do not influence this metric.

Performance metrics are evaluated per model for global XAI methods and per sample 
for instance-based XAI methods. In addition, instance-based rectified saliency maps are 
averaged to also yield global maps

the performance of which is also evaluated. Note that, in our setting, the input-output rela-
tionships between features and target are static. Thus, the same, global, ground-truth sali-
ency map is expected to be reconstructed by each local explanation on average. While indi-
vidual explanations may be heavily corrupted by noise, this efect should be suppressed 
when averaging rectified heat maps across all samples, which is, therefore, considered 
a meaningful way to derive global explanations for instance-based XAI methods. Thus, 
instance-based XAI methods are evaluated both in terms of global and single-instance per-
formance, while global XAI methods are only evaluated with respect to the former.

5  Experiments

We conduct a set of experiments aimed to address the following questions: (i) which XAI 
methods are best able to differentiate between important (that is, class-specific) features 
and non-important features, (ii) how does the signal-to-noise ratio of the data (through the 
accuracy of the classifier) affect the explanation performance of each method. Python code 
to reproduce our experiments is provided on github2. We generate K = 100 datasets with 
N = 1000 samples each according to the model specified in Sect. 4.1. The prediction task 

(8)htrue
d

=

{
1, d ∈ F+

dep

0, d ∈ F−
dep

(9)�
global(f �,D) =

1

N

N∑

n=1

|�instance(f �, �n,D)| ,

2 https:// github. com/ brain datal ab/ scrut inizi ng- xai.

https://github.com/braindatalab/scrutinizing-xai
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is to discriminate between two categories encoded in the binary variable yn, n ∈ {1,… ,N} . 
Our feature space are images of size 8 × 8, thus D = 82 = 64 . Figure 1 depicts the static 
signal and distractor patterns � ∈ ℝ

64 and � ∈ ℝ
64 , which are identical across all experi-

ments. As can be seen, signal and distractor overlap in the upper left corner of the image, 
while the lower left corner is occupied by the signal only and the upper right corner is 
occupied by the distractor only. All pixels are moreover affected by multivariate correlated 
Gaussian noise ���.

With the signal pattern � , we control the statistical dependencies between features and 
classification target in our synthetic data. Therefore, the ground truth set of important fea-
tures in our experiments is given by

Note that noise and distractor components both do not contain any class-specific informa-
tion. The distractor, thus, merely serves as a strong one-dimensional noise component with 
predefined characteristic spatial pattern. Its main purpose in our experiments is to facilitate 
the visual assessment of saliency maps, where any importance assigned to the right half of 
the image represents a false positive.

For each dataset, class labels yn , distractor values �n , and noise vectors ���n are sampled 
independently from their respective distributions described in Sect.  4.1. Five different 
SNRs are analyzed, corresponding to five different choices of the parameter 
�1 ∈ {0.0, 0.02, 0.04, 0.06, 0.08} . Each resulting dataset Dk,�1

, k ∈ {1,… , 100} is divided 
into a train set Dtrain

k,�1
 and a validation set Dval

k,�1
 , with samples sizes N train = 800 and 

Nval = 200 , respectively.
Linear logistic regression classifiers f� are fitted on Dtrain

k,�1
 and applied to Dval

k,�1
 . The 

logistic regression implemented in scikit-learn is trained with a maximum number of 1000 
iterations. The neural network based implementation is trained for 200 epochs with a learn-
ing rate of 0.1. Since the neural network has two output neurons, its effective extraction fil-
ter �NN was calculated as the difference �NN = �

NN
1

− �
NN
2

.
Saliency maps �(f�, �n,Dtrain

k,�1
) are obtained for each of the methods described in 

Sect. 4.3 and for all datasets Dtrain
k,�1

 , where instance-based maps are evaluated on all input 

(10)F+
dep

= {d | ad ≠ 0 , 1 ≤ d ≤ 64} .

Fig. 1  The signal activation pattern � (left) and the distractor activation pattern � (right) used in our experi-
ments can be visualized as images of 8 × 8 pixels size. The signal pattern consists of two blobs with oppo-
site signs: one in the upper left and one in the lower left corner, while the distractor pattern consists of 
blobs in the upper left and upper right corners. Thus, the two components spatially overlap in the upper left 
corner
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examples �n from the corresponding validation sets Dval
k,�1

 . All XAI methods are applied 
using the default parameters, with the exception of LRP�� , for which we set � = 2 and 
� = 1 . That is, for SHAP, we use the LinearExplainer with Impute Masker, set 
feature_perturbation=correlation_dependent and perform the sampling 
with samples = 1000. For LIME, we use kernel_width = 

√
64 ∗ 0.75 , kernel = 

exp (−x2∕������_�����2)
1∕2 , discretize_continuous = False, and feature_

selection = highest_weights. For ANCHORS, we use threshold = 0.95, 
delta = 0.1, discretizer = ’quartile’, tau = 0.15, batch_size = 
100, coverage_samples = 10000, beam_size = 1, stop_on_first = 
False, max_anchor_size = 64, min_samples_start = 100, n_covered_
ex = 10, binary_cache_size = 10000, cache_margin = 1000.

6  Results

Figure 2 shows the classification accuracy achieved by the LLR classifiers as a function 
of the SNR parameter �1 . Both implementations reach near-perfect training and validation 
accuracy at an SNR of �1 = 0.08 . For �1 = 0 (no class-specific information present), the 
validation accuracy attains chance level (0.5), as expected, while the training accuracy of 
0.6 indicates a small degree of overfitting.

6.1  Qualitative assessment of saliency maps

Figure  3 depicts examples of global heat maps obtained for a randomly drawn data-
set Dk for three different SNRs, �1 ∈ {0.0, 0.04, 0.08} . Shown are rectified quanti-
ties obtained by taking the absolute value. Instance-based maps were averaged over 
all instances of the validation dataset to obtain global maps. As expected, at �1 = 0 
(lack of class-specific information; therefore, chance-level classification), none of the 

Fig. 2  With increasing signal-to-noise ratio (determined through the parameter �1 of our generative model 
(4)), the classification accuracy of the logistic regression and the single-layer neural network increases, 
reaching near-perfect accuracy for �1 = 0.08
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saliency maps resembles to the ground-truth importance map given by the pattern of 
the simulated signal. For �1 = 0.04 and �1 = 0.08 , vast differences between different 
methods appear, though. The saliency maps of the linear Pattern as well as PatternNet 
deliver the best results on this dataset, recovering the two blobs of the ground-truth 
signal pattern most closely while correctly ignoring the right half of the image. FIRM, 
Correlation and PatternAttribution do recover the lower left blob of the signal pat-
tern but assign much less importance to the upper left blob, where signal and distrac-
tor patterns overlap. All other methods including extraction filters �LLR and GradNN , 
PFI, EMR, SHAP, LIME, Anchors, DTD, and the two LRP variants assign significant 
importance to the upper right corner, in which no class-related signal is present (thus, 
to suppressor variables), even for high SNR ( �1 = 0.08 ). For some methods, the impor-
tance assigned to the distractor-only upper right blob is of the same order as the impor-
tance assigned to the upper left corner, in which signal and distractor overlap (PFI, 
EMR, LIME, Anchors, DTD and LRP). Interestingly, the signal-only lower left corner 
is assigned much less importance than the distractor-only upper right corner by some 
methods (PFI, EMR, LRP). This indicates that these methods mainly focus on the pro-
cess of optimally extracting the signal component with the distractor component rather 
than localizing the signal itself. Saliency maps provided by PFI, EMR, and Anchors 
are sparsest, focus on a small number of important as well as unimportant features, 
while gradient and extraction filter maps are the least sparse.

From the randomly chosen dataset Dk used to create Fig.  3, we further picked a 
single random instance that was correctly classified by both LLR implementations. 
Salience maps for this instance are shown in Fig.  4. At high SNR, LIME, Anchors, 
DTD, and LRP still assign importance to the right half of the image, where no statis-
tical relation to the class label is present by construction, while PatternNet, Pattern-
Attribution, and SHAP do not. Interestingly, the instance-based saliency maps of the 
best performing methods, PatternNet and PatternAttribution, closely match the global 
maps obtained from these methods, even though they barely resemble features of the 
instance they were computed for. This suggests that these methods are strongly domi-
nated by the global statistics of the training data rather than the properties of the indi-
vidual input sample.

Fig. 3  Global saliency maps obtained from various XAI methods on a single dataset. Rows represent three 
different choices of the SNR parameter �1 . In the top row, no class-related information is present, yielding 
chance-level classification, while for the bottom row near-perfect classification accuracy is obtained. The 
‘ground truth’ set of important features is defined as the set of pixels with for which a statistical relation-
ship to the class label is modeled, i.e. the set of pixels with nonzero signal patterns defined in (10). Notably, 
a number of XAI methods assign significant importance to pixels in the right half of the image, which are 
statistically unrelated to the class label (suppressor variables) by construction



1915Machine Learning (2022) 111:1903–1923 

1 3

6.2  Quantification of explanation performance

Figure 5 depicts the explanation performance of the global saliency maps provided by the 
considered XAI methods across 100 experiments. Shown are the median performance as 

Fig. 4  Saliency maps obtained for a randomly chosen single instance. At high SNR, PatternNet and Pat-
ternAttribution best reconstruct the ground truth signal pattern, while SHAP, LIME, DTD, and LRP assign 
importance to the right half of the image, where no statistical relation to the class label is present by con-
struction

Fig. 5  Quantitative explanation performance of global saliency maps attained by various XAI approaches. 
Performance was measured by the area under the receiver-operating curve (AUROC) and the precision at 
≈ 90% specificity. While chance-level performance is uniformly observed in absence of any class-related 
signal, stark differences between methods emerge for medium and high SNR ( �1 = 0.04 , and �1 = 0.08 ). 
Among the global XAI methods, the linear Pattern and FIRM consistently provide the best ‘explanations’ 
according to both performance metrics. Among the instance-based methods, the saliency maps obtained by 
PatternNet and PatternAttribution (averaged across all instances of the validation set) show the strongest 
explanation performance
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well as the lower and upper quartiles, as well as outliers. As expected, the explanation 
performance of all methods (that is, the ability to distinguish truly important from unim-
portant pixels in the image) is not significantly different from chance level (AUROC = 0.5) 
when indeed no class-specific information is present ( �1 = 0 ). At higher SNR ( �1 = 0.04 , 
and �1 = 0.08 ), most methods deviate from chance-level; however, significant differ-
ences are observed between methods. The median performances of LIME, PFI, and EMR 
quickly saturate at a low level around AUROC = 0.6. FIRM, Pattern, PatternNet and Pat-
ternAttribution have consistently higher AUROC and PREC90 scores than other methods, 
approaching perfect performance for �1 = 0.08 . The Pearson correlation between feature 
and class label can be considered as a runner-up, but is characterized by higher variance 
compared to the (covariance-based) Pattern. This can be explained by the fact that the pres-
ence of noise in the upper left corner (where both the signal and distractor are present) 
diminishes the correlation but not the covariance between the class label and the features 
in that corner. SHAP, DTD and LRP achieve moderate performance, while PFI, EMR, and 
Anchors do not perform well at all. This can only partially be explained by the sparsity of 
their saliency maps, which is penalized by the AUROC metric but not the PREC90 metric. 
Indeed, the difference between PFI, EMR, and Anchors on one hand and the rest of the 
methods on the other hand is smaller for the PREC90 than for the AUROC metric. How-
ever, the ranking of methods is similar for both metrics.

In Fig. 6, quantitative results attained – obtained per instance without averaging – are 
shown. As observed for the global saliency maps, PatternNet and PatternAttribution the 
highest scores for both medium and high SNR, followed by the gradient of the neural net-
work. Variants of LRP have achieve moderate performance in all settings. A high variance 
is, however, observed for DTD.

Fig. 6  Explanation performance of instance-based saliency maps of neural-network-based XAI methods. 
All methods perform at chance level in absence of class-related information. For medium and high SNR, 
PatternNet and PatternAttribution show the strongest capability to assign importance to those feature that 
are associated with the classification target by construction, while ignoring suppressor features
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7  Discussion & related work

‘Explainable’ artificial intelligence (XAI) is a highly relevant field that has already pro-
duced a vast body of literature. But many existing XAI approaches do not come with a 
theory on how their results should be interpreted, i.e., what formal statements can be rea-
sonably derived from them. We here formalize a minimal assumption that (as we believe) 
humans typically make when being offered ‘explanations’. Namely, that the input features 
highlighted by an XAI method must have an actual statistical relationship to the predic-
tion target. Using empirical experiments and well-controlled synthetic data we demon-
strate, however, that this is not guaranteed for a substantial number of state-of-the-art XAI 
approaches, inviting misinterpretations. In this light, interpretations such as those sug-
gested for LIME in Ribeiro et al. (2016) (see introduction) seem to be unjustified, because 
LIME cannot rule out the influence of suppressor variables. False-positive associations 
between features and a disease thereby do not seem to be the only possible misinterpreta-
tions. A doctor confronted with the high importance of a variable known to be unrelated to 
a disease (a suppressor) may not be able to recognize that but may rather erroenously come 
to the conclusion that the model is not trustworthy.

Our synthetic data were specifically designed to include suppressor variables, which are 
statistically independent of the prediction target but improve the prediction in combination 
with other variables. More specifically, suppressor variables display a conditional depend-
ency on the target given other features. In example (2), for example, the suppressor x2 is 
independent of y but becomes dependent on y given x1 . A multivariate model can leverage 
this conditional dependency to improve its prediction – here, by removing shared noise 
from feature x1 . However, ‘influential’ features showing only such conditional dependen-
cies can be of little interest in practice and need to be interpreted differently than features 
exhibiting a direct statistical relationship.

In our simulation, various XAI methods were found to be unable to reject suppressor 
variables as being unimportant. This failure was found to be aggravated in a setting where 
all signal-containing features were contaminated with the distractor (thus, the lower left 
blob in the signal pattern was absent), see supplementary material. While – based on the 
consideration made above – this behavior is expected for methods based on interpreting 
model weights, such as LIME or gradient-based approaches, it was also observed for PFI, 
EMR, SHAP, Anchors, DTD and LRP. While we suggest an explanation for that behavior 
in the following paragraph, future work will be required to theoretically study the behavior 
of each method in the presence of suppressors.

The degree to which suppressor variables affect model explanations in practice is hard 
to estimate and may differ considerably between domains and applications. Thus, the 
quantitative results presented here are not claimed to universally hold. To rule out adverse 
effects to due suppressor variables or other detrimental data properties in a particular appli-
cation, it should become common practice to conduct simulations with realistic domain-
specific ground-truth data.

7.1  Insufficiency of model‑driven XAI

In principle, one may argue that different types of interpretations can be useful in differ-
ent contexts. For example, the identification of input dimensions that have a strong ‘influ-
ence’ on a model’s output may be useful to study the general behavior of that model (e.g. 
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for debugging purposes). However, we argue that it is insufficient to analyze any model 
without taking into account the distribution of the data it was trained on. The difficulty 
of several XAI methods to reject suppressor variables can be explained by their inabil-
ity to recognize that suppressor variables and truly target-related variables (e.g., x1 and 
x2 in example (2)) are correlated and thus cannot be manipulated independently, limiting 
the degrees of freedom in which individual features can influence the model output. This 
limitation is not only inherent to several XAI methods but also to empirical ‘validation’ 
schemes based on the manipulation of single input features. As the resulting surrogates do 
not follow the true distribution of the training data, limited insight about the actual behav-
ior of the model when used for its intended purpose can be gained.

In contrast to existing predominantly model-driven and data-agnostic XAI approaches, 
we here provide a definition of feature importance that is purely data-driven, namely the 
presence of a univariate statistical interaction to the prediction target. Importantly, this def-
inition can also be tested on empirical data using statistical tests for non-linear interactions 
(Gretton et al. 2007). In the linear case studied here, it is sufficient analyze the covariance 
between features and prediction target, as described in (Haufe et al. 2014), to obtain a sali-
ency map with optimal explanation performance according to our metrics. The results of 
instance-based extensions of the linear covariance pattern, such as PatternNet and Pattern-
Attribution (Kindermans et al. 2018), however, suggest that the global covariance structure 
of the training may strongly dominate saliency maps obtained for single instances, which 
should be a subject of further investigation.

In general, features and target variables can be considered to be part of system of ran-
dom variables whose relationships are governed by structural equations (such as Eqs. (2) 
and (4)). These structural relationships determine the possible statistical relationships of 
the involved random variables, and thus give rise to an even more fundamental definition 
of feature importance compared to our current definition based on actual statistical depend-
encies (Eq. (1)). In fact, one can construct artificial settings, where structural relationships 
between features and target exist but do not manifest in statistical dependencies due to can-
cellation effects. However, we consider such situations rather irrelevant in practice. Typi-
cally, definitions based on structural and statistical relationship will coincide, which is also 
the case in our experimental setting. The advantage of definition (1) is that, while struc-
tural relationships are hard to assess in practice, the mere presence of statistical relation-
ships may be assessed empirically, offering a general way to estimate feature importance 
in practice.

Our definition encompasses the superset of features that may be found important by any 
combination of machine learning model and saliency method. In fact, a model may not 
necessarily use all features contained in the set F+

dep
 to achieve its prediction task. This is 

accounted for by our performance metric PREC90, which is designed to ignore most false 
negative omissions of important features. Practically, it may be desirable to fuse data- and 
model-driven saliency maps, e.g. by taking the intersection between the estimated set F+

dep
 

and the set identified by a conventional XAI method.

7.2  Existing validation approaches

One can distinguish three categories of existing evaluation techniques for XAI methods. 
(i) evaluating the sensitivity or robustness of explanations to model modifications and 
input perturbations, (ii) using interdisciplinary and human-centered techniques to evaluate 
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explanations, and (iii) establishing a controlled setting by leveraging a-priori knowledge 
about relevant features.

Sensitivity-and robustness-centered evaluations Assessing the robustness and sensitiv-
ity of saliency maps in response to input perturbations and model changes is a common 
strategy underlying XAI approaches and their validation. However, such approaches do not 
establish a notion of correctness of explanations but merely formulate additional criteria 
(sanity checks)  (see, e.g., Doshi-Velez and Kim 2017). For example, Alvarez-Melis and 
Jaakkola (2018) assessed model ‘explanations’ regarding their robustness – asserting that 
similar inputs should lead to similar explanations – and showed that LIME and SHAP do 
not fulfill this requirement. Several studies developed tests to detect inadequate explana-
tions (Adebayo et al. 2018; Ancona et al. 2018). Adebayo et al. demonstrated that, for some 
XAI methods, the identified features of trained models are akin to the ones identified by 
randomized models. Hooker et al. (2019) came to similar conclusions. These features often 
represent low-level properties of the inputs, such as edges in images, which do not neces-
sarily carry information about the prediction target (Adebayo et al. 2018; Sixt et al. 2020).

Human-centered evaluations Human judgement is also often used to evaluate XAI 
methods  (e.g., Baehrens et  al. 2010; Poursabzi-Sangdeh et  al. 2021; Lage et  al. 2018; 
Schmidt and Biessmann 2019). To this end, the extent to which the use of model ‘expla-
nations’ can help a human to accomplish a task or to predict a model’s behavior is typi-
cally measured. Another possibility is to define ground-truth explanations directly through 
human expert judgement (Park et al. 2018). As such, human-centered approaches also do 
not establish a mathematically sound ground-truth, as human evaluations can be highly 
biased. In contrast, we here exclusively focus on formally-grounded evaluation techniques, 
(c.f., Doshi-Velez and Kim 2017).

Ground-truth-centered evaluations Few works have attempted to use objective criteria 
and/or ground truth data to assess XAI methods. Kim et al. (2018) used synthetic data to 
obtain qualitative ‘explanations’, which were then evaluated by humans, while Yang and 
Kim (2019) derived quantitative statements from synthetic data. However, in both cases, 
the ground-truth was not defined as a verifiable property of the data but as a ‘relative fea-
ture importance’ representing how ‘important’ a feature is to a model relatively to another 
model. In other works, the importance of features was defined through a generative process 
similar to ours (Ismail et al. 2019; Tjoa and Guan 2020). Yet, these works have not pro-
vided a formal, data-driven, definition of feature importance that would provide theoretical 
basis for their ground truth. Moreover, correlated noise settings leading to emergence of 
suppressor variables, have not been systematically studied in these works but have been 
shown to have a profound impact on the conclusions that can be drawn from XAI methods 
here.

7.3  Limitations and outlook

The present paper focuses on data with Gaussian class-conditional distributions with equal 
covariance, where linear machine learning models are Bayes-optimal. While this represents 
a well-controlled baseline setting, it is unlikely that solutions for the linear case transfer to 
general non-linear settings. Non-linear extensions of the activation pattern approach, such 
as PatternNet and PatternAttribution (Kindermans et al. 2018), exist but have not been vali-
dated on ground-truth data. Our future work will address this gap by simulating non-linear 
suppressor variables, emerging through non-linear interactions between features.
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In non-linear settings, a clear distinction between features statistically related to the tar-
get or not may not always be possible. In tasks like image categorization, class-specific 
information might be contained in different features for each sample, depending on where 
in the image the target object is located. In extreme cases, objects of all classes may allo-
cate the same locations leading to similar univariate marginal feature distributions whereas 
the discriminative information is contained in dependencies between features. Future work 
will be concerned with providing ground-truth definitions better reflecting this case.

8  Conclusion

We have formalized feature importance in an objective, purely data-driven, way as the 
presence of a statistical dependency between feature and prediction target. We have further 
described suppressor variables as variables with no such statistical dependency that are, 
nevertheless, typically identified as important according to criteria that are prevalent in the 
XAI community. Based on linear ground-truth data, generated to reflect our definition of 
feature importance, we designed a quantitative benchmark including metrics of ‘explana-
tion performance’, using which we empirically demonstrated that many currently popu-
lar XAI methods perform poorly in the presence of so-called suppressor variables. Future 
work needs to further investigate non-linear cases and conceive well-defined notions of fea-
ture importance for specific non-linear settings. These should ultimately inform the devel-
opment of novel XAI methods.

Supplementary Information The online version contains supplementary material available at https:// doi. 
org/ 10. 1007/ s10994- 022- 06167-y.

Funding Open Access funding enabled and organized by Projekt DEAL.  This result is part of a project 
that has received funding from the European Research Council (ERC) under the European Union’s Horizon 
2020 research and innovation programme (Grant agreement No. 758985). KRM also acknowledges support 
by the German Ministry for Education and Research as BIFOLD – Berlin Institute for the Foundations of 
Learning and Data (ref. 01IS18025A and ref. 01IS18037A), and the German Research Foundation (DFG) 
as Math+: Berlin Mathematics Research Center (EXC 2046/1, project-ID: 390685689), Institute of Informa-
tion & Communications Technology Planning & Evaluation (IITP) grants funded by the Korea Government 
(No. 2019-0-00079, Artificial Intelligence Graduate School Program, Korea University).

Availability of data and material All data used here can be generated using the provided code.

Code availability https:// github. com/ brain datal ab/ scrut inizi ng- xai.

Declarations 

Conflicts of interest/Competing interests The authors declare no conflicts of interest/competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

https://doi.org/10.1007/s10994-022-06167-y
https://doi.org/10.1007/s10994-022-06167-y
https://github.com/braindatalab/scrutinizing-xai
http://creativecommons.org/licenses/by/4.0/


1921Machine Learning (2022) 111:1903–1923 

1 3

References

Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., & Kim, B. (2018). Sanity checks for saliency 
maps. In: Proceedings of the 32nd International Conference on Neural Information Processing Sys-
tems, Curran Associates Inc., Montréal, Canada, NIPS’18, pp 9525–9536.

Alber, M., Lapuschkin, S., Seegerer, P., Hägele, M., Schütt, K. T., Montavon, G., et al. (2019). Innvestigate 
eural networks! J Mach Learn Res, 20(93), 1–8.

Alvarez-Melis, D., & Jaakkola, T.S. (2018). On the Robustness of Interpretability Methods. arXiv: 18060 
8049 [cs, stat] ArXiv:  1806. 08049.

Ancona, M., Ceolini, E., Öztireli, C., & Gross, M. (2018). Towards better understanding of gradient-based 
attribution methods for deep neural networks. In: ICLR.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A., García, S., Gil-López, 
S., Molina, D., Benjamins, R., et al. (2020). Explainable artificial intelligence (xai): Concepts, taxono-
mies, opportunities and challenges toward responsible ai. Information Fusion, 58, 82–115.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., & Samek, W. (2015). On pixel-wise 
explanations for non-linear classifier decisions by layer-wise relevance propagation. PLOS One, 10(7), 
e0130140.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., & Müller, K. R. (2010). How to 
explain individual classification decisions. The Journal of Machine Learning Research, 11, 1803–1831.

Binder, A., Bach, S., Montavon, G., Müller, K. R., & Samek, W. (2016). Layer-Wise Relevance Propa-
gation for Deep Neural Network Architectures. In K. J. Kim & N. Joukov (Eds.), Information Sci-
ence and Applications (ICISA) 2016 (pp. 913–922). Lecture Notes in Electrical Engineering: Springer, 
Singapore.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Conger, A. J. (1974). A revised definition for suppressor variables: a guide to their identification and inter-

pretation, a revised definition for suppressor variables: A guide to their identification and interpreta-
tion. Educational and Psychological Measurement, 34(1), 35–46.

Dombrowski, A. K., Anders, C. J., Müller, K. R., & Kessel, P. (2022). Towards robust explanations for deep 
neural networks. Pattern Recognition, 121, 108194.

Doshi-Velez, F., & Kim, B. (2017). Towards a rigorous science of interpretable machine learning. arXiv: 
17020 8608 [cs, stat] ArXiv:  1702. 08608.

Fisher, A., Rudin, C., & Dominici, F. (2019). All models are wrong, but many are useful: Learning a vari-
able’s importance by studying an entire class of prediction models simultaneously. Journal of Machine 
Learning Research, 20(177), 1–81.

Fong, R.C., & Vedaldi, A. (2017). Interpretable explanations of black boxes by meaningful perturbation. In: 
Proceedings of the IEEE International Conference on Computer Vision, pp 3429–3437.

Friedman, L., & Wall, M. (2005). Graphical views of suppression and multicollinearity in multiple linear 
regression. The American Statistician, 59(2), 127–136.

Gretton, A., Fukumizu, K., Teo, C. H., Song, L., Schölkopf, B., Smola, A. J., et al. (2007). A kernel statisti-
cal test of independence. Nips Citeseer, 20, 585–592.

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J. D., Blankertz, B., & Bießmann, F. (2014). On 
the interpretation of weight vectors of linear models in multivariate neuroimaging. NeuroImage, 87, 
96–110.

Hooker, S., Erhan, D., Kindermans, P.J., & Kim, B. (2019). A benchmark for interpretability methods in 
deep neural networks. In: Wallach H, Larochelle H, Beygelzimer A, d’Alché-Buc F, Fox E, Garnett 
R (eds) Advances in Neural Information Processing Systems, Curran Associates, Inc., vol  32, pp 
9737–9748.

Horst, P., Col  Wallin, P., Col  Guttman, L., Brim Col  Wallin, F., Clausen, J.A., Col  Reed, R., & 
Col Rosenthal, E. (1941). The prediction of personal adjustment: A survey of logical problems and 
research techniques, with illustrative application to problems of vocational selection, school success, 
marriage, and crime. Social science research council.

Ismail, A.A., Gunady, M., Pessoa, L., Corrada Bravo, H., & Feizi, S. (2019). Input-cell attention reduces 
vanishing saliency of recurrent neural networks. In: H. Wallach, H. Larochelle, A. Beygelzimer, F. 
d’Alché-Buc, E. Fox, R. Garnett (eds) Advances in Neural Information Processing Systems, Curran 
Associates, Inc., vol 32, pp 10814–10824.

Jaderberg, M., Simonyan, K., Zisserman, A., & Kavukcuoglu, K. (2015). Spatial transformer networks. In: 
Proceedings of the 28th International Conference on Neural Information Processing Systems-(Vol. 2, 
pp 2017–2025).

http://arxiv.org/abs/180608049
http://arxiv.org/abs/180608049
http://arxiv.org/abs/1806.08049
http://arxiv.org/abs/170208608
http://arxiv.org/abs/170208608
http://arxiv.org/abs/1702.08608


1922 Machine Learning (2022) 111:1903–1923

1 3

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., & Sayres, R. (2018). Interpretability 
beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: Interna-
tional Conference on Machine Learning, PMLR, pp 2668–2677.

Kindermans, P., Schütt, K.T., Alber, M., Müller, K., Erhan, D., Kim, B., & Dähne, S. (2018). Learning how 
to explain neural networks: Patternnet and patternattribution. In: ICLR.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neu-
ral networks. Advances in Neural Information Processing Systems, 25, 1097–1105.

Lage, I., Ross, A., Gershman, S.J., Kim, B., & Doshi-Velez, F. (2018). Human-in-the-Loop Interpretabil-
ity Prior. In: S. Bengio,H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, R. Garnett (eds) 
Advances in Neural Information Processing Systems 31, Curran Associates, Inc., pp 10159–10168.

Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., & Müller, K. R. (2019). Unmask-
ing Clever Hans predictors and assessing what machines really learn. Nature Communications, 10(1), 
1096.

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.
Lipton, Z. C. (2018). The mythos of model interpretability: In machine learning, the concept of interpret-

ability is both important and slippery. Queue, 16(3), 31–57.
Lundberg, S.M., & Lee, S.I. (2017). A Unified Approach to Interpreting Model Predictions. In: I. Guyon, 

U.V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, R. Garnett (eds) Advances in Neu-
ral Information Processing Systems 30, Curran Associates, Inc., pp 4765–4774.

Montavon, G., Bach, S., Binder, A., Samek, W., & Müller, K. R. (2017). Explaining nonlinear classification 
decisions with deep Taylor decomposition. Pattern Recognition, 65, 211–222.

Montavon, G., Samek, W., & Müller, K. R. (2018). Methods for interpreting and understanding deep neural 
networks. Digital Signal Processing, 73, 1–15.

Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., & Yu, B. (2019). Definitions, methods, and appli-
cations in interpretable machine learning. Proceedings of the National Academy of Sciences, 116(44), 
22071–22080.

Nguyen, A.p., & Martínez, M.R. (2020). On quantitative aspects of model interpretability. arXiv: 20070 7584 
[cs, stat] ArXiv:  2007. 07584.

Park, D.H., Hendricks, L.A., Akata, Z., Rohrbach, A., Schiele, B., Darrell, T., & Rohrbach, M. (2018). Mul-
timodal explanations: Justifying decisions and pointing to the evidence. In: Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition (CVPR).

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, 
P., Weiss, R., Dubourg, V., & others. (2011). Scikit-learn: Machine learning in Python. Journal of 
Machine Learning Research 12:2825–2830

Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Wortman  Vaughan, J.W., & Wallach, H. (2021). 
Manipulating and measuring model interpretability. In: Proceedings of the 2021 CHI Conference on 
Human Factors in Computing Systems, pp 1–52.

Ribeiro, M.T., Singh, S., & Guestrin, C. (2016). “ why should i trust you?” explaining the predictions of any 
classifier. In: Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery 
and data mining, pp 1135–1144.

Ribeiro, M.T., Singh, S., & Guestrin, C. (2018). Anchors: High-Precision Model-Agnostic Explanations. In: 
AAAI.

Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use 
interpretable models instead. Nature Machine Intelligence, 1(5), 206–215.

Samek, W., Binder, A., Montavon, G., Lapuschkin, S., & Müller, K. R. (2016). Evaluating the visualization 
of what a deep neural network has learned. IEEE Transactions on Neural Networks and Learning Sys-
tems, 28(11), 2660–2673.

Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., & Müller, K. R. (2019). Explainable AI: Interpret-
ing, explaining and visualizing deep learning (Vol. 11700). New York: Springer.

Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., & Müller, K. R. (2021). Explaining deep neu-
ral networks and beyond: A review of methods and applications. Proceedings of the IEEE, 109(3), 
247–278.

Schmidt, P., & Biessmann, F. (2019). Quantifying interpretability and trust in machine learning systems. 
arXiv: 19010 8558 [cs, stat] ArXiv:  1901. 08558.

Shapley, L. S. (1953). A value for n-person games. Contributions to the theory of games, 2(28), 307–317.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, 

M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Has-
sabis, D. (2017). Mastering the game of Go without human knowledge. Nature, 550(7676), 354–359.

Simonyan, K., & Zisserman, A. (2015). Very deep convolutional networks for large-scale image recogni-
tion. arXiv: 14091 556 [cs] ArXiv:  1409. 1556.

http://arxiv.org/abs/200707584
http://arxiv.org/abs/2007.07584
http://arxiv.org/abs/190108558
http://arxiv.org/abs/1901.08558
http://arxiv.org/abs/14091556
http://arxiv.org/abs/1409.1556


1923Machine Learning (2022) 111:1903–1923 

1 3

Simonyan, K., Vedaldi, A., & Zisserman, A. (2013). Deep inside convolutional networks: Visualising image 
classification models and saliency maps. arXiv preprint arXiv: 13126 034.

Sixt, L., Granz, M., & Landgraf, T. (2020). When explanations lie: Why many modified bp attributions fail. 
In: International Conference on Machine Learning, PMLR, pp 9046–9057.

Springenberg, J.T., Dosovitskiy, A., Brox, T., & Riedmiller, M.A. (2015). Striving for simplicity: The all 
convolutional net. CoRR arXiv: 1412. 6806.

Tjoa, E., & Guan, C. (2020). Quantifying explainability of saliency methods in deep neural networks. arXiv: 
20090 2899 [cs] ArXiv:  2009. 02899.

Yang, M., & Kim, B. (2019). Benchmarking attribution methods with relative feature importance. arXiv: 
19070 9701 [cs, stat] ArXiv:  1907. 09701.

Zeiler, M. D., & Fergus, R. (2014). Visualizing and Understanding Convolutional Networks. In D. Fleet, 
T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision - ECCV 2014 (pp. 818–833). Lecture 
Notes in Computer Science: Springer International Publishing, Cham.

Zien, A., Krämer, N., Sonnenburg, S., & Rätsch, G. (2009). The Feature Importance Ranking Measure. In 
W. Buntine, M. Grobelnik, D. Mladenić, & J. Shawe-Taylor (Eds.), Machine Learning and Knowl-
edge Discovery in Databases (pp. 694–709). Lecture Notes in Computer Science: Springer, Berlin, 
Heidelberg.

Štrumbelj, E., & Kononenko, I. (2014). Explaining prediction models and individual predictions with fea-
ture contributions. Knowledge and Information Systems, 41(3), 647–665.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Authors and Affiliations

Rick Wilming1  · Céline Budding2 · Klaus‑Robert Müller1,3,4,5  · Stefan Haufe1,6,7 

 Rick Wilming 
 rick.wilming@tu-berlin.de

 Céline Budding 
 c.e.budding@tue.nl

 Klaus-Robert Müller 
 klaus-robert.mueller@tu-berlin.de

1 Technische Universität, Berlin, Germany
2 Eindhoven University of Technology, Eindhoven, The Netherlands
3 BIFOLD – Berlin Institute for the Foundations of Learning and Data, Berlin, Germany
4 Korea University, Seoul, South Korea
5 Max Planck Institute for Informatics, Saarbrücken, Germany
6 Physikalisch-Technische Bundesanstalt, Berlin, Germany
7 Charité – Universitätsmedizin, Berlin, Germany

http://arxiv.org/abs/13126034
http://arxiv.org/abs/1412.6806
http://arxiv.org/abs/200902899
http://arxiv.org/abs/200902899
http://arxiv.org/abs/2009.02899
http://arxiv.org/abs/190709701
http://arxiv.org/abs/190709701
http://arxiv.org/abs/1907.09701
http://orcid.org/0000-0002-7237-4322
http://orcid.org/0000-0002-3861-7685
http://orcid.org/0000-0003-1470-9195

	Scrutinizing XAI using linear ground-truth data with suppressor variables
	Abstract
	1 Introduction
	2 Formalization of feature importance
	2.1 Importance as influence on the model decision
	2.2 Importance as statistical relation to the target

	3 Suppressor variables
	4 Methods
	4.1 Data generation
	4.2 Classifiers
	4.3 XAI methods
	4.4 Measures of explanation performance

	5 Experiments
	6 Results
	6.1 Qualitative assessment of saliency maps
	6.2 Quantification of explanation performance

	7 Discussion & related work
	7.1 Insufficiency of model-driven XAI
	7.2 Existing validation approaches
	7.3 Limitations and outlook

	8 Conclusion
	References




