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Abstract. In this paper a fast solver for three-dimensional elastodynamic BEM problems formulated in the 

Laplace transform domain is presented, implemented and tested. The technique is based on the use of 

hierarchical matrices for the representation of the collocation matrix for each value of the Laplace 

parameter of interest and uses a preconditioned GMRES for the solution of the algebraic system of 

equations. The preconditioner is built exploiting the hierarchical arithmetic and taking full advantage of the 

hierarchical format. An original strategy for speeding up the overall analysis is presented and tested. The 

reported numerical results demonstrate the effectiveness of the technique. 

Introduction

The analysis of elastic dynamic problems through reliable numerical techniques is a subject of great 

relevance in many fields of science and engineering. The Boundary Element Method (BEM) has been 

effectively employed for the analysis of dynamic problems using several different strategies, like the time 

domain formulation, the Fourier and Laplace transform techniques or the dual reciprocity method [1-3]. 

In the context of Fracture Mechanics, to mention a field of interest to the authors, dynamic crack 

problems have been successfully solved using the Dual Boundary Element Method in the time domain [4] 

(Time Domain Method, TDM), in the Laplace transform domain [5,6] (Laplace Transform Method, LTM) 

and in conjunction with the dual reciprocity method [7] (Dual Reciprocity Method, DRM) and the 

performances of the three approaches have been compared, in terms of analysis time and memory 

consumption, for both two-dimensional [8] and three-dimensional [9] cases. 

In these works it was found that the Laplace Transform Method, although very accurate, is 

computationally expensive, in terms of computational time, in comparison to the other techniques. 

Moreover, although the storage memory required for the analysis in the transform domain is less than that 

required by the other strategies for dynamics, it is however larger than that needed by the corresponding 

static problem. On the other hand, it is well known that the BEM produces fully populated matrices whose 

storage and direct solution are of order 
2O n  and 

3O n  respectively, if n is the order of the problem. 

Such considerations limit the size of the problems that can be effectively tackled on common computers 

using the standard BEM. This circumstance hindered for many years the industrial development of the 

method and has limited its use to the analysis of small or medium size problems. 

However, in the recent years, a considerable effort has been devoted to the development of strategies 

aimed at reducing the computational complexities of the BEM, reducing both memory requirements and 

time consumption.  

Many investigations have been carried out to overcome such limitations and different techniques have 

been developed such as the fast multipole method (FMM) [10,11], the panel clustering method [12], the 

mosaic-skeleton approximation [13] and the methods based on the use of hierarchical matrices [14]. The 

general aim of such techniques is to reduce the computational complexity of the matrix-vector 

multiplication which is the core operation in iterative solvers for linear systems. However while FMMs and 
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panel clustering tackle the problem from an analytical point of view and require the knowledge of some 

kernel expansion in advance to carry out the integration, mosaic-skeleton approximations and hierarchical 

matrices provide purely algebraic tools for the approximation of the boundary element matrices, thus 

proving particularly suitable for problems where analytic closed form expressions of the kernels are not 

available or difficult to expand. 

The analysis of elastodynamic problems through FMM BEM has been addressed both in the time[15] 

and frequency domain [16-18], with a special attention to seismology and soil-structure interaction 

problems. Although the reported results show a noticeable reduction in both memory and time 

requirements, the implementation of FM strategies requires heavy and ad hoc recoding of available 

packages. On the other hand, fewer works have been devoted to the use of hierarchical matrices for the 

analysis of elastodynamic problems. In particular, the authors are aware of only one application of the 

Adaptive Cross Approximation (ACA) to a symmetric elastodynamic Galerkin boundary element 

formulation [19]. 

In this work the use of hierarchical matrices for the rapid solution of 3D BEM elastodynamic problems 

in the Laplace transform domain is presented and investigated for the first time, extending the work 

previously developed by the authors for the fast solution of 3D static Dual BEM problems [20,21]. To 

obtain an accurate solution through any inverse transform technique, the solution in the transform domain 

for a sufficient number of Laplace parameters has to be computed. The hierarchical format is used for 

representing and storing the collocation matrix for each value of the Laplace parameter. The coefficient 

matrices are built by Adaptive Cross Approximation (ACA) and the final system for each parameter is 

solved through a preconditioned GMRES iterative solver, in which the matrix-vector product is sped up by 

the hierarchical representation itself. Also the preconditioner is built taking advantage of the hierarchical 

format and an original strategy to further speed up the overall analysis is presented an tested. 

Elastodynamic BEM in the Laplace transform domain 

The boundary integral equation governing the dynamic behavior of an elastic body in the Laplace 

transform domain can be written 

 0 0  0  0, , , ,i j j i j j i j jc u T s u d U s t dx x x x x x x x  (1)

where the tilde indicates transformed quantities and s is the Laplace parameter. The boundary integral 

representation of the elastodynamic problem in the Laplace domain has the same form as that of the 

elastostatic problem. Eq.(1) is to be used in conjunction with the transformed boundary conditions to solve 

any specific problem. 

The form of the elastodynamic fundamental solutions in the Laplace domain allows to write each of them as 

the sum of two contributions: the first term does not depend on s and contains the same singularities as 

those present in the elastostatic 3D fundamental solutions; the second term depends on s, but contain only 

weak singularities. This circumstance leads, after the classical boundary elements discretization procedure, 

to a linear system of the form 

s s sA A x y  (2) 

where A is the matrix stemming from the integration of the terms containing the singularities and needs to 

be computed only once in advance, while sA  stems from the integration of the terms depending on s and 

has to be computed for each value of the Laplace parameter. 

To analyze a general elastodynamic problem by using the Laplace transform technique, one has generally to 

compute the solution of the system (2) for a set of Laplace parameters ks , with 1,...,k L , in order to 

calculate the time-dependent values of any relevant variable by means of some Laplace inverse 

transformation technique. Wen et al. [6] obtained for example accurate results for long durations in the time 

domain by using 

2
               0,..., 25k

ki
s k

T
 (3) 

20 Eds: E.J. Sapountzakis, M.H. Aliabadi



with 5T  and 0 20T t , where 0t  is the unit time. In this work, the solution for the previous set of 

Laplace points will be computed for some elastodynamic problems and the performance of the hierarchical 

BEM in terms of memory and time requirements will be compared to that of the standard BEM. 

Hierarchical matrices for elastodynamic BEM in the Laplace domain 

To improve both storage memory and time required by the elastodynamic BEM analysis in the Laplace 

domain, system (2) is represented in hierarchical format for each value of the Laplace parameter. 

The hierarchical or low rank representation of a BEM matrix is built by generating the matrix itself as a 

collection of sub blocks, some of which admit a special approximated and compressed format. Such blocks, 

referred to as low rank blocks, can be stored in the form 

1

k
T T

k i i

i

B B u v U V  (4) 

The block B of order m n  is approximately generated through the product of U, of order m k , and 
T

V ,

of order k n . If k, i.e. the rank of the block, is low then the representation (4) allows to reduce both 

memory storage and the computational cost of the matrix-vector multiplication, which is the bottleneck of 

any iterative solver. 

The approximation of the low rank blocks (4) is built by computing only some of the entries of the 

original blocks through adaptive algorithms known as Adaptive Cross Approximation (ACA) [22,23], that 

allow to reach an initially selected accuracy . Low rank blocks represent the numerical interaction, through 

asymptotic smooth kernels, between sets of collocation points and clusters of integration elements which are 

sufficiently far apart from each other. The distance between clusters of elements enters a certain 

admissibility condition of the form 

, ( , ) coll  int  coll  intmin diam diam  dist  (5)

where  coll  int and  are clusters of elements and 0  is a parameter influencing the number of 

admissible blocks on one hand and the convergence speed of the adaptive approximation of the low rank 

blocks on the other hand [24]. The blocks that do not satisfy such condition are called full rank blocks and 

they need to be computed and stored entirely, without approximation. Once low and full rank blocks have 

been generated, some recompression techniques can be used to further reduce the storage memory and 

computational complexity of the single blocks and of the overall hierarchical matrix (reduced SVD [25] and 

coarsening [26]). 

As an almost optimal representation is obtained, the solution of the system can be tackled either directly, 

through hierarchical matrix inversion [27], or indirectly, through iterative methods [28]. In both cases, the 

efficiency of the solution relies on the use of a special arithmetic, i.e. a set of algorithms that implement the 

operations on matrices represented in hierarchical format, such as addition, matrix-vector multiplication, 

matrix-matrix multiplication, inversion and hierarchical LU decomposition. A collection of algorithms that 

implement many of such operations is given in [24] while the hierarchical LU decomposition is discussed in 

[28]. 

The use of iterative methods takes full advantages of the hierarchical representation, exploiting the 

efficiency of the low-rank matrix-vector multiplication. The convergence of iterative solvers can be 

improved by using suitable preconditioners. In this work a hierarchical LU preconditioner is built starting 

from a coarse approximation of accuracy p  of the collocation matrix. An iterative GMRES algorithm is 

eventually used in conjunction with such preconditioner for solving the system for each value of the 

Laplace parameter of interest. 

Selecting the accuracy c  for the collocation matrix, the hierarchical counterpart of system (2) is written 

,c k c k ks s sx yA A  (6) 
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The LU preconditioner ksP  is generated in hierarchical format as well, selecting a reduced accuracy p .

The preconditioned final system has the form 

, , ,k p c k c k k p ks s s s sx yP A A P  (7) 

Even using the hierarchical format, the setup of a preconditioner is an expensive procedure. In the previous 

scheme a new preconditioner should be built for each value ks  of the Laplace parameter. To further speed 

up the overall dynamic analysis, an idea is put forward here and it is validated through numerical 

investigation. The preconditioner set up by using the hierarchical format can be thought of as a coarse 

approximation of the inverse of the system matrix for a given value ks . If two subsequent values ks  and 

k js  of the Laplace parameter are close to each other, the preconditioner set up for ks  could constitute an 

approximation of the inverse of the system matrix set for k js . This idea configures the use of local

preconditioners, in the sense introduced above, and will be investigated in the next section. 

Numerical experiments 

Let us consider the bar depicted in Fig. 1, subjected to impact traction load 10t t  on the (grey) 

superior base and constrained in correspondence of the thick points of the inferior base. The bar has square 

cross section a a , with 1a  and height 4h . A representative 

material with 1000E  and 0.3  has been considered (all the 

quantities are non-dimensionalized). To test the performance of the 

hierarchical solver at varying mesh sizes, three different meshes have 

been considered, as shown in Table 1. 

The parameters for the hierarchical analysis have been set to the 

following values: cardinality of the leaf 36leafC , admissibility 

parameter 3 , collocation matrix accuracy 
510c ,

preconditioner accuracy 
110p , GMRES tolerance 

610GMRES .

The preset required accuracy has been obtained for all the preformed 

computations, confirming the effectiveness of ACA in the 

approximation of the low rank block stemming form elastodynamic 

kernels.

The memory storage required by the hierarchical collocation matrix 

and by the hierarchical preconditioner for each Laplace parameter 

and for various mesh sizes is then analyzed and results are reported 

in Fig.2. Also the memory requirement for the elastostatic 

counterpart of the analyzed problem is reported in the same figure, 

for the sake of comparison, as the first value of the plotted curves 

( 1k ). As it can be noted, the amount of required memory 

increases when the imaginary part of the Laplace parameter 

increases, due to the behavior of ACA with oscillatory kernels. It is 

to be noted that the strategy of the local preconditioners has been 

used and this explains the memory trends for the preconditioner. 

Moreover, for a given Laplace parameter, analogously to what 

happens in the static case, the storage memory, expressed as 

percentage of the full rank storage, decreases when the mesh size increases. 

Figure 3 reports the assembly speed up ratio for various Laplace parameters and various mesh sizes. Also in 

this case the value corresponding to the static case is reported as the first value of the curves. The speed up 

ratio is defined as the ratio between the time necessary to perform an operation in hierarchical format and 

the corresponding classical time. It is to be noted that the classical assembly of the matrix contributions 

Figure 1  Analyzed configuration. 

Elements Nodes 

Mesh 1 288 866 

Mesh 2 450 1352 

Mesh 3 648 1946 
Table 1  Analyzed meshes. 
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ksA  requires less time in comparison to the classical assembly of the contribution A, that stems from the 

integration of the singular integrals. On the other hand, ACA converges with an average rank which is 

greater or equal than the average rank in the static case. This consideration explains the jump with respect to 

the static case in the assembly speed up ratios depicted in Fig.3. It can be noted how the assembly speed up 

ratios grow with the Laplace parameter. This growth is considerable and can lead to assembly times greater 

than the full rank assembly time. This behavior is a direct consequence of the performance of ACA with the 

considered elastodynamic kernels and it is related to the growth of the average rank of the approximated 

blocks.
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Figure 2  Memory requirements for various Laplace parameters and mesh sizes. 
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Figure 3  Assembly speed up ratio for various Laplace parameters and mesh sizes. 
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However, even when the hierarchical assembly times are higher than the full rank assembly times, the 

advantages in terms of solution time can be considerable and allow actual savings in terms of total

(assembly plus solution) analysis time, as shown in Figs. 4 and 5. These figures demonstrate the 

effectiveness of the strategy of the local preconditioners introduced in the previous section, as well as the 

noticeable speed up ratios obtained for the three different meshes for various Laplace parameters. 

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Laplace parameter

S
o

lu
ti

o
n

 s
p

e
e
d

 u
p

 r
a
ti

o

Mesh 1

Mesh 2

Mesh 3

Figure 4  Solution speed up ratios for various Laplace parameters and mesh sizes. 
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Figure 5  Total speed up ratios for various Laplace parameters and mesh sizes. 

The idea of local preconditioners is further clarified by the number of GMRES iterations to convergence 

reported in Fig. 6 for the various Laplace parameters and different mesh sizes. When the preconditioner is 

computed for a certain value ks , the number of iterations to convergence is relatively low. A given 
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computed preconditioner is then used for the following values of the Laplace parameter and demonstrates to 

be able to precondition the system effectively. The number of GMRES iterations grows when the 

preconditioner is used far from the parameter for which it was computed. When the number of iterations 

overcomes a prefixed threshold, 140 in the figure, a new preconditioner is computed. The trends in terms of 

GMRES iterations confirm the effectiveness of the idea. 
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Figure 6  Number of GMRES iterations for various Laplace parameters and mesh sizes. 

Summary

In this work a fast solution strategy for 3D elastodynamic BEM problems in the Laplace transform domain 

has been presented, implemented and tested. The strategy is based on the use of hierarchical matrices for the 

representation of the collocation matrix in the Laplace domain and uses a GMRES iterative solver for the 

solution of the final system. The hierarchical format allows to reduce the storage memory necessary for the 

representation of the system and speeds up the performance of the solver enhancing the speed of the matrix-

vector product, which is the core and the bottleneck of any iterative solver for large systems. A coarse 

hierarchical LU preconditioner is used to improve the convergence of the iterative solution. Moreover, to 

further speed up the overall analysis in the Laplace domain, the idea of local preconditioners is presented 

and successfully assessed. 
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