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Induction of a disintegrin and metalloprotease 33 during
embryonic lung development and the influence of IL-13
or maternal allergy
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Background: Asthma pathogenesis involves gene and
environmental interactions. A disintegrin and metalloprotease
33 (ADAM33)/Adam33 is a susceptibility gene for asthma and
bronchial hyperresponsiveness in human beings and mice.
ADAM33 is almost exclusively expressed in mesenchymal
cells, including mesenchymal progenitors in developing lungs.
Objective: Because maternal allergy is a risk factor for asthma,
we hypothesized that an allergic environment affects ADAM33/
Adam33 expression during human and mouse lung
development.
Methods: Human embryonic/fetal lung (HEL) tissues were
collected from first-trimester terminations of pregnancy. These
were processed immediately or used for explant culture 6 IL-
13. MF1 mice or ovalbumin-sensitized A/J mice (Bronchial
hyperresponsivness (Bhr)1/Adam33 locus–positive) were time-
mated and challenged with ovalbumin (A/J mice only) during
pregnancy. Lungs were harvested at different times during
gestation and post partum. ADAM33/Adam33 expression was
analyzed by using reverse transcriptase quantitative polymerase
chain reaction and Western blotting.
Results: ADAM33 mRNA was detectable in HELs in the
pseudoglandular stage of development and showed a significant
increase from 7 to 9 weeks postconception. IL-13 significantly
suppressed ADAM33 mRNA in HEL explants. In developing
murine lungs, Adam33 mRNA and protein expression increased
significantly in the early pseudoglandular stage and showed
another large increase post partum. In A/J mice, maternal
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allergy significantly suppressed Adam33 mRNA in lungs of
newborn pups, whereas processed Adam33 protein increased
and several smaller isoforms were detected.
Conclusion: Adam33/Adam33 shows 2 significant increments in
expression during lung morphogenesis, suggesting important
developmental regulation. The ability of maternal allergy or
exogenous IL-13 to suppress Adam33/ADAM33 mRNA but
enhance Adam33 processing suggests a gene-environment
interaction that may be relevant for asthma pathogenesis.
(J Allergy Clin Immunol 2009;124:590-7.)

Key words: ADAM33, embryonic/fetal, lung development, maternal
allergy, environment gene interaction, geNorm analysis

A disintegrin and metalloprotease (ADAM)33 is an asthma and
chronic obstructive pulmonary disease susceptibility gene with
single nucleotide polymorphisms strongly associated with
asthma, bronchial hyperresponsiveness (BHR),1 and decline in
lung function over time.2,3 Furthermore, ADAM33 single nucleo-
tide polymorphisms predict low lung function in children ages 3
and 5 years,4 suggesting that the influences of ADAM33 com-
mence early in life. The mouse ortholog of ADAM33 (Adam33)
shares 70% similarity in the amino acid sequence,5 and Adam33
is close to the trait locus for bronchial hyperresponsiveness
(Bhr1).6 Adam33 is highly expressed in adult lung, heart, and
brain.7 Unlike other members of the ADAM family, ADAM33
shows almost exclusive expression in smooth muscle–containing
organs and no expression in organs or cells derived from epithe-
lium.1,8,9 However, a soluble form of ADAM33 (sADAM33) has
been identified in bronchoalveolar lavage (BAL) fluid from sub-
jects with asthma, where its levels are inversely correlated with
lung function.10

ADAM33/Adam33 is a member of the multifunctional ADAM
family of Zn21-dependent metalloproteases. The protein is com-
posed of the signal sequence, pro-, metalloprotease-, disintegrin-,
cysteine-rich–, epidermal growth factor–like—, transmembrane-,
and cytoplasmic domains, to which specific functions have been
attributed.5 Full-length ADAM33/Adam33 is synthesized as a
proenzyme that is inactivated by a cysteine switch mechanism.11

Cleavage of the pro-domain by a furin-type protease results in ac-
tivation of the enzymatically active metalloprotease enzyme,11,12

which is proangiogenic12 and can catalyze the shedding of a
mutant form of CD23.13 The ADAM33 disintegrin domain can
also interact with the lymphocyte a9b1 integrin and can mediate
cell adhesion.14 Ectodomain shedding of ADAM33 to yield
sADAM33 is enhanced by TGF-b.12

The role of ADAM33/Adam33 in embryonic lung develop-
ment has not been elucidated. In human fetal lung, ADAM33
expression has been shown in the mesenchymal progenitor
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Abbreviations used

ADAM: A disintegrin and metalloprotease

aSMA: a-Smooth muscle actin

Atp5b: ATP synthase beta subunit

BAL: Bronchoalveolar lavage

BHR: Bronchial hyperresponsiveness

Cyc1: Cytochrome c-1

E: Embryonic day

Gapdh: Glyceraldehyde-3-phosphate dehydrogenase

HEL: Human embryonic/fetal lung

HKG: Housekeeping gene

rRNA: Ribosomal RNA

RT-qPCR: Reverse transcriptase quantitative polymerase

chain reaction

sADAM33: Soluble a disintegrin and metalloprotease 33

UK: United Kingdom

cells at both mRNA and protein levels,15 as well as in embryonic
lung MRC-5 fibroblasts.8,16 Using a cDNA panel of whole mouse
embryos at day 8.5, day 9.5, day 12.5, and day 19, semiquantita-
tive PCR revealed the highest expression of Adam33 mRNA at
embryonic day 19.7 Analysis of offspring (Adam332/2 or
Adam331/2) from heterozygous breeding pairs did not reveal
gross morphologic differences from the wild-type mice, and his-
tologic examination did not show apparent differences in the ma-
jor organs.17 However, in this study, the function of Adam33
might have been compensated by other Adam or matrix metallo-
proteinases. Furthermore, it is not known whether there were any
differences in morphology and histology during the embryonic
and fetal stages of organ development, because this was not
evaluated.17

Although asthma is a complex disease involving a number of
susceptibility genes, disease expression is influenced by a range
of environmental factors, including some that appear to act very
early in life via maternal influences. For example, maternal atopy/
allergy is a strong risk factor for development of BHR and asthma
early in life,18 suggesting that a maternal allergic environment has
an effect on lung development in utero. Therefore, our objective
was to study the expression of ADAM33 in developing human
lungs and to model the effect of maternal allergy with IL-13 or
to study the effect of a maternal allergic environment in vivo by
using a genetically susceptible A/J (Bhr1/Adam33 locus–positive)
mouse model.

METHODS
Additional details of all Methods can be found in this article’s Online

Repository at www.jacionline.org.

Human and murine embryonic/fetal lungs
Human embryonic/fetal lung (HEL) tissues (7 to 9 weeks postconcep-

tion) were from first-trimester terminations after obtaining informed ethical

approval and written consent. HEL tissue was either freshly homogenized

or used for explant culture. MF1 mice (age 6 weeks; Harlan UK Ltd,

Bicester, United Kingdom [UK]) were time-mated by detection of a

vaginal plug. Gravid uteri were removed under sterile conditions and

embryos (see this article’s Fig E1 in the Online Repository at www.jacion-

line.org) killed according to the schedule 1 method. Maternal adult, embry-

onic, and post partum lungs, hearts, and brains were processed for RNA

analysis.
Mouse sensitization, mating, and exposure

experiments
Female A/J mice were sensitized by intraperitoneal injection with 0.2 mL

0.9% sterile isotonic saline containing 10 mg ovalbumin and 2 mg aluminum

hydroxide at day 21 and at day 7 before mating. After mating, the mice were

exposed to either saline (control) or ovalbumin (1% wt/vol in sterile isotonic

saline) aerosols in a nose-only exposure system for a period of 1 hour per day, 3

days per week, for 3 weekly cycles. Lung inflammation was confirmed by using

BAL (see this article’s Fig E2 in the Online Repository at www.jacionline.org).

Pregnant mice were anesthetized for the removal of the embryos and harvest-

ing of lung tissue into RNAlater (Ambion, Inc; Sigma Chemical Co, St Louis,

Mo). Tissue was homogenized in TRIzol Reagent (Invitrogen Ltd, Paisley,

UK) for RNA/protein extraction and reverse transcriptase quantitative poly-

merase chain reaction (RT-qPCR)/Western blotting.

RNA extraction and analysis
Tissues were homogenized (ribolysed) by using a Hybaid RiboLyser Cell

Disrupter (Thermo Life Sciences, Hybaid, UK). The homogenate was processed

for RNA extraction by using the TRIzol Reagent protocol and any genomic

DNA removed by treatment with deoxyribonuclease (DNase) (Ambion, Inc,

Warrington, UK). RNA was reverse transcribed and analyzed for expression

of ADAM33/Adam33 and a-smooth muscle actin (aSMA/aSma) mRNA

by quantitative PCR (see this article’s Table E1 in the Online Repository at

www.jacionline.org). Relative gene expression was analyzed by using the

DDCT method relative to ACTIN-b (ACTB) in the human tissue and relative

to the geometric mean of 3 housekeeping genes (based on geNorm analysis;

see this article’s Table E2 and Fig E3, A and B, in the Online Repository at

www.jacionline.org): glyceraldehyde-3-phosphate dehydrogenase (Gapdh),

ATP synthase beta subunit (Atp5b), and cytochrome c-1 (Cyc1) in the mouse.

Protein extraction and analysis
Total protein was isolated from corresponding samples used for RNA

extraction with the TRIzol Reagent protocol. The protein was dissolved in 1x

SDS sample buffer and Western blotting was performed by using antibodies

against the ectodomain of Adam33 (AF2434; R&D Systems Europe Ltd,

Abingdon, UK), and Actin-b (ab8229; Abcam plc, Cambridge, UK), as

previously described.15

HEL explant culture
Human embryonic/fetal lungs were cut into pieces of tissue 1 to 2 mm and

embedded in 50 to 60 mL Growth Factor Reduced Matrigel Matrix (BD

Biosciences, Oxford, UK) in serum-free medium in transwells. The explants

were incubated for as long as 18 days in the absence or presence of IL-13

(1 ng/mL; R&D Systems Europe Ltd, Abingdon, UK). The tissue was

harvested into TRIzol Reagent for RNA extraction. Phase contrast images

were taken by using a LEICA DM IRB inverted microscope (Leica Micro-

systems GmbH, Wetzlar, Germany).

Statistics
Data analyses were performed by using SigmaStat and SigmaPlot (Systat

Software Inc, Hounslow, UK). Where data were normally distributed, they

were compared by using the Student t test or, for multiple groups, a 1-way

ANOVA and multiple comparison Bonferroni t test. Where the test failed nor-

mality criteria, nonparametric tests were performed. Significance was reached

when P �.05.

RESULTS

ADAM33 mRNA expression in HELs in vivo
To study the expression of ADAM33 mRNA in HELs, RNA was

extracted from fresh HELs obtained 7 to 9 weeks postconception.
Comparisons during the early pseudoglandular stage of lung devel-
opment suggested that ADAM33 mRNA expression increased sig-
nificantly from 7 to 9 weeks postconception (Fig 1, A). When HEL

http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org
http://www.jacionline.org


FIG 1. ADAM33 mRNA expression relative to ACTIN-b (ACTB) mRNA (A) in vivo in 7 to 9 weeks postconcep-

tion (wpc) HELs (n 5 2-9) and (B) in HELs (n 5 5) dissected into tubular airway (tubes) and mesenchymal

(mesenchyme) structures (1-way ANOVA and multiple comparison Bonferroni t test [A], Kruskal-Wallis

1-way ANOVA on ranks and multiple comparison Student-Newman-Keuls method [B], *P < .05).
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tissues were dissected into the tubular structure and the mesen-
chyme surrounding these structures, ADAM33 mRNA expression
was significantly higher in the mesenchyme (Fig 1, B), confirming
our previous data, in which we could show almost exclusive expres-
sion of ADAM33 in the mesenchymal progenitor cells.15

ADAM33 expression in HEL explant cultures in the

presence of IL-13
To model the effect of the maternal environment on ADAM33

mRNA expression in HEL development, an explant culture model
was developed. Pieces of HELs were cultured in Matrigel in trans-
well culture inserts, where they increased in size and exhibited
branching morphogenesis over a period of 18 days (Fig 2, A and
B). When the HEL explants were cultured in serum-free medium,
ADAM33 and aSMA mRNA increased significantly after 12 and
18 days in culture compared with day 0 (Fig 3, A and B). An increase
in ADAM33 and aSMA mRNA was also detected in HEL explants
cultured in the presence of IL-13 (1 ng/mL), which was used to
mimic a maternal allergic environment; however, after 18 days,
there was a significant depression in ADAM33 mRNA compared
with the lungs cultured in serum-free medium alone (Fig 4, A). In

FIG 2. Phase contrast microscopy of HEL explants cultured (A) for 6 to 18

days (D) and (B) time-lapse microscopy of HEL explants cultured for 8

days, showing a snap shot at day 0 (D0) and day 6 (D6). Lines show primi-

tive airway branches and buds at day 0 with 2 generations of branching at

day 6 (black bar 5 10 mm).
contrast, aSMA mRNA levels, which were used as a measure of
smooth muscle content, showed no significant difference (Fig 4, B).

Adam33 mRNA and Adam33 protein expression in

mouse embryonic, fetal, juvenile, and adult mouse

tissues
Because it was not possible to study the expression of

ADAM33 and the effect of IL-13 on human embryonic/fetal
lungs at later stages of gestation, we studied the expression of
Adam33 mRNA during mouse development. Initially, outbred
MF1 mice were chosen for ease of mating and high number of off-
spring per litter. Lungs, hearts, and brains were dissected from
mouse embryos/fetuses from embryonic day (E) 11 to 19, post
partum (P) juvenile mice, and adult mice (AM), and then RNA
was extracted. Initially Adam33 mRNA expression was analyzed
relative to either 18S ribosomal RNA (rRNA) or Gapdh mRNA,
both of which are commonly used as housekeeping genes
(HKGs) for normalization. However, although the expression pro-
files were similar, there were inconsistencies in the fold increase
and expression profile (see this article’s Fig E4, A and B, in the
Online Repository at www.jacionline.org). Because significant
changes in gene expression occur during embryonic develop-
ment, we were concerned that these inconsistencies were a result
of changes in expression of the HKGs. Therefore, we used geN-
orm analysis to identify the most stably expressed genes during
mouse lung development to enable accurate gene quantification.

When the 3 most stably expressed HKGs (Gapdh, Atp5b, and
Cyc1; Fig E3, A and B) were used for normalization of Adam33
mRNA, it could be seen that Adam33 expression increased in sig-
nificant steps during mouse lung development (Fig 5, A). These
changes corresponded to the stages of normal lung development
(Fig 5, D; Fig E1), with the greatest increases in Adam33
mRNA expression from the early embryonic stage and lung bud
formation (E11) to the pseudoglandular stage (E12-16) and again
from saccular (E18, 19) to the alveolar (P5-30) and adult stage
(AM; P < .001). aSma mRNA expression showed a similar

http://www.jacionline.org


FIG 3. (A) ADAM33 and (B) aSMA mRNA relative expression in vivo at day (D) 0 compared with ex vivo in

HEL explants cultured for 6, 12, and 18 days in serum-free medium (SFM) (Kruskal-Wallis 1-way ANOVA on

ranks and multiple comparison Dunn method, **P < .001).

FIG 4. (A) ADAM33 and (B) aSMA mRNA relative expression in vivo at day (D) 0 compared with HEL ex-

plants cultured ex vivo for 18 days in serum-free medium (SFM) plus IL-13 at 1 ng/mL (Mann-Whitney

rank-sum test, *P � .05; **P < .001 vs day 0, unless otherwise indicated).
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pattern with a significant increase in the early stage of embryonic
lung development and post partum (Fig 5, B). This contrasts with
the transcription factor forkhead box A1 (Foxa1), another impor-
tant gene in lung development,19 which showed a much lower ex-
pression relative to Adam33 and no incremental changes during
lung development.20 In comparison with developing lungs,
Adam33 and aSma mRNA were much lower and had a different
and much flatter pattern of expression in tissue from developing
heart and brain, suggesting differential regulation in these 2
organs (see this article’s Fig E5, A-D, in the Online Repository
at www.jacionline.org).

Consistent with the mRNA data, Adam33 protein, normalized
to Actin-b expression, was also significantly increased in the
pseudoglandular stage and again after birth (Fig 5, A, insert, and
C). However, most notably, the full-length (pro-) Adam33 pro-
tein, which has a molecular weight of approximately 110 kDa,
was substantially processed at E19 and P9, resulting in a smaller
protein of between 90 and 100 kDa, which probably represents
enzymatically active full-length Adam33.

Influence of an allergic maternal environment on

Adam33 mRNA and Adam33 protein expression in

the lungs of offspring
Maternal atopy is a strong risk factor for developing BHR and

asthma18,21,22 early in life. To investigate the impact of maternal
allergy on Adam33 expression, we used A/J mice (Bhr1 locus–
positive).6 For allergen exposures, mice were sensitized to
ovalbumin by intraperitoneal injection 21 days and 7 days before
mating (Fig 6, A). The pregnant mothers were then exposed to
saline (control) or ovalbumin aerosols in nose-only exposure sys-
tems. Exposures were conducted for a period of 1 hour per day,
3 days per week, for 3 weeks.23 Fetuses and newborn offspring
were killed at 15 or 17 to 19 days postconception and 3 to 5
days post partum (Fig 6, A) and lungs harvested for RNA analysis.
As found in MF1 mice, Adam33 and aSma mRNA expression
increased significantly in A/J mice post partum (Fig 6, B and
C). However, in lungs of newborn offspring from mothers with
ovalbumin allergy, Adam33 mRNA expression was significantly
suppressed (P 5 .03; Fig 6, B), whereas aSma mRNA was not
affected (Fig 6, C).

When we studied Adam33 protein expression, at 4 days post
partum we found more processing of the full-length (pro-)
Adam33 protein in offspring of mothers with ovalbumin allergy
and an accumulation of smaller bands suggesting further process-
ing (eg, ectodomain shedding) or degradation of Adam33 (Fig 6,
D); contrary to expectations based on mRNA levels, there was an
increase of total Adam33 protein relative to Actin-b in offspring
of mothers with ovalbumin allergy (Fig 6, D and E). At 15 days
and 19 days postconception, no difference in the amount or pro-
cessing of Adam33 could be detected (data not shown).

http://www.jacionline.org


FIG 5. (A) Adam33 and (B) aSma mRNA expression (log scale) in vivo relative to the geometric mean of 3

HKGs (Kruskal-Wallis 1-way ANOVA on ranks and multiple comparison Dunn method, *P < .001). Lungs

were harvested from embryonic/fetal (E) days 11 to 19, post partum (P) days 1 to 59, and adult MF1 mice

(AM) for RNA analysis. C, Western blot for Adam33 and Actin-b (loading control) from lungs harvested at

E11, 12, 13, 19, and P9. Adam33 protein relative intensity is shown as an insert in A. D, Schematic represen-

tation of histologic stages of lung development in the mouse.37,38
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DISCUSSION
In this study, we show for the first time that ADAM33/Adam33

expression is developmentally regulated in human and murine
lungs. Furthermore, although mRNA expression is suppressed
by maternal allergy or exogenous IL-13, in vivo Adam33 protein
is increased in lungs from 4-day-old offspring of mothers with
ovalbumin allergy, suggesting important gene-environment inter-
actions that may contribute to asthma pathogenesis. We have
previously shown that ADAM33 can be found almost exclusively
in the mesenchymal progenitor cells that surround the primitive
tubular airway structures in human fetal lungs.15 RT-qPCR of
HELs dissected into the mesenchymal cell mesh and tubular
epithelial structures confirmed the predominant expression of
ADAM33 mRNA in the mesenchymal progenitor cells. This con-
trasts with adult human airways, in which ADAM33 protein is
localized to the smooth muscle bundles,15 suggesting a different
function in embryonic/fetal lungs compared with adult airways.
Although no major effect on lung development was observed in
a mouse deficient of Adam33,17 this may have been compensated
by other Adams or metalloproteases. In view of the expression of
ADAM33 in mesenchymal progenitor cells, we suggest that it is
involved in controlling their differentiation into smooth muscle,
as well as influencing development of other bronchial structures
such as the vascular12 and neural networks of the airways and
the submucosal fibroblasts/myofibroblasts and matrix that make
up the airway wall.

The initial analysis of the data of Adam33 mRNA expression in
the developing murine lungs using common HKGs (18S rRNA and
Gapdh) showed inconsistency in its expression pattern and the
fold increase. However, use of 12 different HKGs and geNorm
analysis enabled discovery of the 3 most stably expressed HKGs
that could be used for mRNA quantitation. This allowed us to
demonstrate that Adam33 expression is several hundred-fold
higher and shows a different expression pattern in the developing
lungs compared with the developing hearts and brains, suggesting
a specific role for Adam33 in lung development. Most importantly,
however, we were able to show significant stepwise increments in
Adam33 and aSma mRNA expression over the whole period of
mouse lung development, especially on entry into the pseudo-
glandular stage of lung development and again after birth (Fig 5,
A). Similar increases were found for Adam33 protein (Fig 5, C),
and our Western blot data further indicated that the full-length pro-
tein underwent a marked increase in processing from ED19. This
suggests that the Adam33 metalloprotease may become function-
ally active in response to changes occurring in the perinatal period.
Further studies are required to ascertain the factors that regulate its
activation and the exact function of Adam33 in this context.

Consistent with this mouse expression data, we also found that
ADAM33 mRNA increased during the pseudoglandular stage of
normal human lung development in vivo (Fig 1, A). Although it
would have been desirable to cover a wider gestational range in hu-
man beings, this was not possible for ethical reasons. However, our
newly developed HEL explant culture system showed that HEL tis-
sue can be cultured for several weeks, during which period branch-
ing morphogenesis is maintained (Fig 2, A and B), making it a useful
tool for studying mechanisms of lung development in human tissue.
We also showed by using this HEL explant model that ADAM33
mRNA expression increased significantly over a period of 18
days in culture ex vivo (Fig 3, A), consistent with the data showing
increased expression during lung development in vivo (Fig 1, A).



FIG 6. A, A/J mouse exposure experiments: female mice were sensitized (S)

with ovalbumin (OVA)beforemating andchallengedduringpregnancy.Lungs

from offspring were harvested at embryonic/fetal day (E) 15, 17 to 19, and 3 to

5 days post partum (P). B and C, Adam33 and aSma mRNA expression in vivo

in lungs from offspring from saline or OVA-challenged mothers. D and E,

Western blot and densitometric analysis of Adam33 and Actin-b (loading con-

trol) in vivo in 4 day post partum lungs from offspring of saline (P4-Sal) or OVA

(P4-Ova)–challenged mothers. The arrowheads indicate pro-Adam33,

processed Adam33, and smaller molecular weight species of Adam33

(Mann-Whitney rank-sum test, **P < .001 vs day 15 and 17-19; t test, *P < .05).
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One possible explanation for the significant increase in the
early stages of lung development (embryonic to pseudoglandular
stage) might be an association with the spontaneous airway
contractions (about 1/min) that are known to occur in the early
pseudoglandular stage24 and can be observed during branching
morphogenesis in mouse and human embryonic/fetal lung
explant cultures in vitro (see this article’s Fig E6, A and B, in
the Online Repository at www.jacionline.org). These peristaltic
movements are thought to promote the growth of the lung buds
and developing airways into the surrounding mesenchyme.25

Such an association with mechanical stretch may also be the
explanation for the increase in Adam33 seen in murine lungs after
birth when mechanical stretch from air breathing commences.
Breathing movements at and after birth are dramatic changes for
the newborn lungs, resulting in significant mechanical forces on
the airways, which might also provide the trigger for Adam33
processing.

Maternal allergy is one of many environmental factors,
including cigarette smoke, alcohol, toxins or drugs, and diet,
that can have an influence on embryonic and fetal lung develop-
ment and can result in early-life wheezing, which might continue
as childhood or adult asthma.18,26-28 Because children 3 and 5
years old from a prospective birth cohort study showed an associ-
ation of impaired lung function with the ADAM33 polymor-
phism,4 we hypothesized that maternal allergy interacted with
ADAM33 during lung development. To test our hypothesis in hu-
man embryonic/fetal lung, we used an in vitro model with IL-13, a
TH2 immunoregulatory cytokine that plays an important role in
the pathogenesis of allergic asthma and atopy.29 IL-13 is centrally
involved in the induction of TH2 cells and promotion of IgE pro-
duction; it has also been implicated in airway remodeling in mu-
rine lung IL-13 overexpression models, where it causes collagen
deposition, mucus cell metaplasia, and emphysema.30 Previous
studies have suggested that IL-13 production by CD41 cord blood
mononuclear cells might be used to identify newborns from
atopic mothers who are at high risk of developing asthma.31 Dur-
ing gestation, IL-13 has been localized in trophoblasts of the pla-
centa in the first trimester of pregnancy using in situ hybridization
or immunohistochemistry and can be produced by fetal mononu-
clear cells.32 It is also possible that maternal IL-13 protein can
cross the placental-fetal barrier, because there is a significant pos-
itive correlation between maternal and fetal cord plasma IL-13
concentrations in paired maternal-fetal cord plasma at 32 weeks
of gestation.33 We therefore decided to model the effect of mater-
nal allergy by adding IL-13 to HELs cultures. This caused a sig-
nificant suppression of ADAM33 mRNA (Fig 4, A) but not aSMA.
These results contrast with a previous in vitro study using adult
human airway smooth muscle cells in which IL-13 was reported
to have no effect on ADAM33 mRNA expression.34

To explore further the influence of maternal allergy in vivo, we
used a murine model with A/J mice in which the quantitative trait
locus for bronchial hyperresponsiveness (bhr1) on chromosome 2
is syntenic to human ADAM33 on chromosome 20p13.6 Ovalbu-
min-sensitized and challenged pregnant female A/J mice showed
a marked eosinophilic and lymphocytic pulmonary inflammation
compared with control mice (Fig E2). When the expression of
Adam33 mRNA was studied in the offspring of saline-challenged
mice, a significant increase in Adam33 was detected in the lungs
from the newborns, confirming the findings in the MF1 mice.
Although there was significant suppression of Adam33 mRNA
in the lungs of the newborn mice (3-5 days post partum) from
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mothers with allergy compared with saline-challenged control
mice (Fig 6, B), we found an increase in the amount and process-
ing of full-length Adam33 protein in the same lungs and an accu-
mulation of smaller molecular Adam33 species. These may
represent further processing of the membrane anchored protein
or products of alternative splicing. Because the antibody used rec-
ognized the Adam33 ectodomain, the species of 30 to 50 kDa may
be similar to sADAM33 found in BAL fluid of subjects with
asthma.10 The possibility that maternal allergy may lead to gener-
ation of sAdam33 in postnatal lungs of genetically susceptible A/J
mice merits further investigation at the functional level. Ideally,
this would involve assessment of lung function and airway
reactivity, although this is not possible in such young mice.

The finding that Adam33 mRNA is depressed whereas Adam33
protein is increased in the lungs of newborns from mothers with
allergy suggests that maternal allergy may independently control
Adam33 gene transcription and Adam33 protein translation and/
or stability. Although seemingly paradoxical, it is not unusual to
find that mRNA and protein levels are not directly correlated.35

After transcription, many factors influence protein levels, including
alternative mRNA splicing, mRNA stability, mRNA association
with translationally active polyribosomes or inactive monoribo-
somes, posttranslational protein processing, and stability. In view
of the increase in low-molecular-weight species of Adam33 that
were detected, it is possible that increased processing and turnover
of Adam33 protein in offspring of mouse mothers with allergy
drives an increase in translation, even though mRNA levels have
been suppressed.

It is known that IL-13 induces TGF-b from epithelial cells,36

and we have recently found that TGF-b suppresses ADAM33
mRNA expression in primary bronchial fibroblasts (unpublished
data). However, TGF-b also enhances ectodomain shedding
of ADAM33, causing the release of sADAM33.12 Together, these
TGF-b–mediated mechanisms might explain how ADAM33/
Adam33 mRNA is suppressed by IL-13 or maternal allergy in
the human and murine lung models and why there is an increase
in processing/degradation of Adam33 protein in lungs of off-
spring of mice with allergy in vivo. If these effects translate into
human asthma, the presence of sADAM33 in amniotic fluid or
BAL fluid of genetically susceptible young children might reflect
the early-life influences of the maternal allergic environment on
ADAM33 and may be a predictor for persistent wheezing in young
children.

Conclusion
The expression of ADAM33/Adam33 during lung development

would be consistent with a role in airway wall modeling. Our re-
sults suggest that the maternal TH2 environment and maternally
derived IL-13 suppress ADAM33/Adam33 mRNA expression
levels but induce an increase in shorter forms of Adam33 protein
that may be similar to sADAM33 found in BAL fluid of subjects
with asthma. This might affect the structure and/or functional be-
havior of the developing airway walls in utero and post partum,
predisposing to the development of BHR early in life and asthma
and chronic obstructive pulmonary disease later in life. Morpho-
logic and physiological studies are now needed to elucidate
further this gene-environment interaction and to study the poten-
tial effect of shorter (soluble) forms of Adam33 on airway
structure and function in early life.
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Key messages

d ADAM33/Adam33 expression is developmentally regu-
lated in human and murine lungs.

d ADAM33/Adam33 is influenced by maternal allergy or
exogenous IL-13.

d This suggests an important interaction that may contrib-
ute to asthma pathogenesis.
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METHODS

Collection of HELs
The collection and use of HEL tissues (7-9 weeks postconception) was

carried out from women undergoing first trimester termination of pregnancy

with informed written consent and ethical approval from the Southampton and

South West Hampshire Joint Local Research Ethics Committee . Human

embryonic/fetal tissue was collected, staged, and processed as described

previously.E1 HEL tissue was either freshly homogenized or used for explant

culture (see below in sections �Homogenization of tissue and RNA extraction�
& �HEL explant culture�); fresh samples were homogenized directly or dissected

into tubular and mesenchymal structures before RNA extraction using TRIzol

Reagent according to the manufacturer’s instructions.

Harvesting of mouse tissue
Pathogen-free outbred MF1 mice (age 6 weeks; Harlan UK Limited,

Bicester, UK) were time-mated by detection of a vaginal plug. This day was

taken as E0. Pregnant mice between E10 and 20, newborn mice, and juvenile

mice were killed by using a schedule 1 method (cervical dislocation). Gravid

uteri were removed under sterile conditions and embryos killed according to a

schedule 1 method (neural tube dissection, cervical dislocation). Maternal

adult, embryonic, and postpartum lungs (Fig E1), hearts, and brains were dis-

sected under a dissecting microscope (LEICA WILD M3Z, Wetzlar, Ger-

many) in a laminar flow hood. The dissected lungs, hearts, and brains were

then directly homogenized in TRIzol Reagent (Invitrogen, Paisley, UK) and

RNA extracted from 3 to 9 organ samples per time point according to the TRI-

zol Reagent protocol.

Mouse sensitization, mating, and exposure

experiments
The effect of a maternal environment on the offspring from mouse mothers

with and without allergy was studied in A/J mice that had the asthma

susceptibility locus (Bhr1), which is syntenic to human ADAM33. In vivo

exposure studies were performed at the Ford Motor Co Fund Exposure Facil-

ity, Eugene Applebaum College of Pharmacy and Health Sciences, at Wayne

State University, Detroit, Mich, after approval by the Institutional Animal In-

vestigation Committee. Specific pathogen-free 5-week-old male and female

inbred A/J mice (Harlan-Sprague Dawley, Inc, Indianapolis, Ind) were main-

tained throughout the experiment on low-dust corn cob bedding in high-

efficiency particulate-filtered air with free access to filtered water and a

standard rodent diet.

Female mice were sensitized by intraperitoneal injection with 0.2 mL 0.9%

sterile isotonic saline containing 10 mg ovalbumin and 2 mg aluminum

hydroxide at day 21 and again at day 7 before the time of mating. Pregnancy

was confirmed by increased maternal weight. Days postconception were

confirmed by using standardized charts of maternal weight change and of fetal

length and appearance.E2

After mating, the female mice were exposed to either saline (control) or

ovalbumin (1% wt/vol in sterile isotonic saline) aerosols in a nose-only

exposure system (CH Technologies, Inc, Westwood, NJ). Aerosols were

generated by using collision nebulizers that provide a relatively monodis-

persed aerosol of 0.25 mm mean aerodynamic diameter and diluent air,

adjusted to provide an aerosol concentration of 25 mg ovalbumin/m3. The aer-

osol was monitored by using a DUSTTRAK Aerosol Monitor (TSI Inc, Shore-

view, Minn). Diluent air was chemical and high-efficiency particulate–filtered

with relative humidity controlled to 45% to 55%. Exposures were conducted

for a period of 1 hour per day, 3 days per week, for 3 weekly cycles.

Pregnant mice were anaesthetized with sodium pentobarbital (50-60 mg/kg

body weight, intraperitoneally) for the removal of the embryos and harvesting

of maternal lung tissue. Embryo and newborn tissues were harvested after

killing by a schedule 1 method. The lungs from day 15, days 17 to 19

postconception, and 3 to 5 days post partum were removed under a dissecting

microscope and collected in RNAlater (catalogue no. R0901; Ambion, Inc;

Sigma Chemical Co, St Louis, Mo), stored and shipped at 48C, and then stored

at –208C until RNA extraction. Tissue preserved in RNAlater was homoge-

nized in TRIzol Reagent for RNA extraction and RT-qPCR according to the

protocol described.
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To confirm inflammation of the lung in ovalbumin-exposed female mice,

animals that failed to become pregnant were used to assess lung inflammation

by BAL fluid recoveries of inflammatory cells 24 hours after the second and

third weekly 3-daily cycles of saline and ovalbumin exposure (Fig E2).

Ventilated lungs of anaesthetized mice were first perfused with warm isotonic

saline (378C) via the pulmonary artery to remove blood components, followed

by 5 serial BALs with 0.8-mL aliquots of PBS (378C; pH 7.4) containing 3

mmol/L EDTA. The resulting cell populations were subjected to differential

analyses by staining with modified Wright stain for identification of macro-

phages, lymphocytes, neutrophils, and eosinophils. Results were reported as

total BAL-recovered cells.

Homogenization of tissue and RNA extraction
Immediately after harvesting, mouse organs were homogenized (ribolysed)

in Lysing Matrix D impact-resistant 2.0-mL tubes containing 1.4-mm ceramic

spheres (Qbiogene, Cambridge, UK) and 1 mL TRIzol Reagent (Invitrogen,

Paisley, UK) using a Hybaid RiboLyser Cell Disrupter (Thermo Life Sciences,

Hybaid, UK) at speed setting 6.0 for 40 seconds. Tubes were cooled on ice for 2

minutes and incubated at room temperature for 5 minutes. HELs were dis-

sected under a dissecting microscope in a laminar flow cell culture cabinet.

One to 3 small pieces of HEL lung tissue were placed into 250 mL TRIzol Re-

agent in 0.5mL RNase-free and DNAse-free Eppendorf microtubes (Sigma-

Aldrich, Gillingham, UK; or STAR LAB, Milton Keynes, UK) containing 3

to 5 ceramic spheres from the Lysing Matrix D tubes. Tissue was ribolysed

in the Hybaid RiboLyser at speed setting 6.0 for 10 seconds, then cooled on

ice for 2 minutes and incubated at room temperature for 5 minutes. The homog-

enate was processed for RNA extraction by using the TRIzol Reagent protocol.

To remove trace contamination by genomic DNA, all samples were treated

with DNase by using DNA-free (Ambion, Warrington, UK). RNAwas assessed

for quality and quantity by using a spectrophotometer (Nanodrop Technolo-

gies, Wilmington, De) and then stored at –808C until reverse transcription.

Reverse transcriptase assay and RT-qPCR
RNAwas reverse transcribed to cDNA as template for the quantitative PCR

by using the Precision Reverse Transcription kit protocol (PrimerDesign Ltd,

Southampton, UK). RT-qPCR was performed according to the Precision qPCR

Mastermix protocol (PrimerDesign Ltd). Forward and reverse primers

(MWG-BIOTECH, Ebersberg, Germany) and the probes (Oswell, South-

ampton, UK) and complete RT-qPCR assays (PrimerDesign Ltd) were used

for Adam33, aSma, ADAM33, and aSMA as previously describedE3 or were

newly designed (Table E1). Relative gene expression was analyzed by using

the DDCT method relative to the geometric mean of 3 HKGs (based on geNorm

analysis, see below in �geNorm analysis�): Gapdh, Atp5b, and Cyc1 in the

mouse, and ACTIN-b (ACTB) in the human tissue.

geNorm analysis
To establish the ideal reference genes during mouse embryonic develop-

ment, geNorm analysis was performed by using the geNorm HKG Selection

Kit (PrimerDesign Ltd, Southampton, UK) for 12 different candidate refer-

ence genes (Table E2). geNorm Analysis SoftwareE4 is a Microsoft Excel ap-

plet that is freely available and can be downloaded from the geNorm webpage

(http://medgen.ugent.be/;jvdesomp/genorm/). It was designed to identify op-

timum HKGs, and hence to generate a measure of stability for each gene. This

measure relies on the principle that, regardless of the conditions, the expres-

sion ratio of 2 normalizing genes will remain constant in all samples. Hence,

any variation in expression ratio between the 2 is indicative of 1 or both genes

being variably expressed. On the basis of the stability of each HKG, geNorm

software also predicts the number of measured HKGs that are required to

achieve optimum normalization.

Twelve of the most commonly used HKGs (Table E2) were measured, and

geNorm analysisE4 was performed to reveal the stability expression of each

gene during all stages of mouse lung development to be able to study

Adam33 mRNA expression with the best normalizing genes. geNorm analysis

compares the ratio of the ratio of control genes in different samples to find

those that are most stable, as previously described.E4 Total mRNA 1 mg

from 44 mouse lung samples, 2 from each developmental time point
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(E11-19, post partum day [P] 1-59, and adult mouse [AM]) were reverse-tran-

scribed. RT-qPCR was performed by using 12 different HKG PerfectProbe

gene detection kits (PrimerDesign Ltd, Southampton, UK). All plates (in total,

twelve 96-well PCR plates) were prepared at the same time, with each plate

containing 1 different reference gene. All data points were run in duplicate ac-

cording to the appropriate amplification protocol as described. The Ct values

(number of PCR cycles [C] that elapse before the threshold [t] is reached) were

transferred into a Microsoft Excel sheet and transformed into relative quanti-

fication data by using the DCT method by subtracting the highest Ct value from

all other Ct values for each gene measured. The resulting DCT values, with the

highest becoming 0 and all the others becoming less than 0, were then expo-

nentially transformed by using the equation.

2ð2DCTÞ

This results in the expression of the data relative to the expression of the

least expressed gene. An input file for geNorm analysis was prepared in

Microsoft Excel with the first column containing the sample names and the

first row containing the 12 different reference gene names. The file was saved

in the InputData directory of geNorm. After closing all running Microsoft

Excel files, the geNorm applet was started by clicking on the geNorm.xls file

and enabling the prompted macro in Excel. The data input file was loaded, and

automated analysis was performed. The first geNorm chart was generated,

showing the average expression stability values of remaining control genes

and the most stable expressed genes (Fig E3, A). After clicking the automated

analysis icon for a second time, a second geNorm chart was generated, show-

ing the determination of the optimal number of control genes for normaliza-

tion (Fig E3, B). The 12 HKGs were rated for the average expression

stability (M), with the most stable producing the lowest M value (Fig E3,

A). The top 2 HKGs cannot be ranked in order because a gene ratio is required

to calculate gene stability. The pairwise variation analysis (V) in normalizing

signal (NFn) was also calculated for the data set by using geNorm (Fig E3, B).

This measures the degree of variation in normalization signal that is achieved

by using n control genes compared with n 1 1, with genes added stepwise into

the analysis in the order of their gene stability rankings. The stability of the

normalization signal improves up to the addition of the sixth gene and then

deteriorates as the 6 least stable genes are added to the analysis.

The 4 mouse HKGs Gapdh, Atp5b, Cyc1, and succinate dehydrogenase

complex subunit A (Sdha) were most stably expressed (lowest average stabil-

ity M) in the developing lungs (Fig E3, A) but also in the hearts and brains (data

not shown). The combination of 6 to 7 HKGs was the optimal number of con-

trol genes for normalization, reaching a pairwise variation Vof less than 0.15;

however, the combination of 3 to 4 HKGs also showed an acceptable low var-

iability of less than 0.25 (Fig E3, B). The 3 most stably expressed HKGs were

found to be Gapdh, Atp5b, and Cyc1, and these were used for normalization of

Adam33 and aSma mRNA in the murine lungs.

Protein extraction and analysis
Protein from mouse lung tissue was isolated from the organic phase left

over after RNA extraction by using the TRIzol Reagent method, following the

manufacturer’s protocol. First the DNA was precipitated by adding 0.3 mL

100% ethanol per 1 mL TRIzol Reagent used for the initial homogenization.

The resulting protein pellet was processed by drying the pellet in a hot block

(DRI-BLOCK DB-2P; TECHNE; Barloworld Scientific Ltd, Stone, UK) at

508C for 5 minutes and dissolving in 200 mL 1x SDS sample buffer by

pipetting up and down. Complete dissolution of the protein pellet required

incubating the sample at 508C for about 20 minutes and sonication in a MSE

Soniprep 150 (MSE Limited, London, UK) for about 30 seconds. After this,

the samples were centrifuged at 3000 rpm for 2 minutes.

Protein samples were separated by SDS-PAGE using 12.5% polyacryla-

mide gels and Western blotted as previously described.E5 The membranes

were stained with Ponceau S solution (Sigma-Aldrich Ltd, Dorset, UK) and

assessed for total protein loading followed by immunostaining. The primary

goat antibody against Adam33 protein (AF2434; R&D Systems Europe Ltd,

Abingdon, UK) was diluted 1 to 1000 in 10 mL blocking buffer, and the mem-

brane was incubated at room temperature for 90 minutes. Secondary rabbit

antigoat antibody—horseradish peroxidase–linked (1 to 2000; P0449; Dako
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Ltd, Ely, UK) was made up 1 to 2000 in 10 mL blocking buffer added to

the membrane, which was incubated for 60 minutes. After appropriate wash-

ings, antibody binding was visualized by using Amersham Enhanced Chemi-

luminescence Plus Western Blotting Detection System (GE Healthcare, UK

Limited, Little Chalfont, UK) according to the manufacturer’s instructions.

Luminescence was detected by using Amersham Hyperfilm Enhanced Chem-

iluminescence (GE Healthcare, UK Limited). Once probed with an Adam33

antibody, the membranes were stripped of all bound antibodies by using West-

ern blot stripping buffer to blot for Actin-b as a loading control. The blot was

blocked and reprobed with the primary goat anti–Actin-b antibody (1 to 1000;

ab8229; Abcam plc, Cambridge, UK) and secondary rabbit antigoat antibo-

dy—horseradish peroxidase–linked (1 to 2000; (P0449; Dako UK Ltd, Ely,

UK), as described. The films were scanned, and relative Adam33 protein in-

tensity was analyzed by using ImageJ (US National Institutes of Health, Be-

thesda, Md).

HEL explant culture
Human embryonic/fetal lungs with a developmental age between 7 and 9

weeks postconception were cut into pieces of tissue 1 to 2 mm and placed onto

a polyester membrane of clear transwells that were inserted into 24 Well

Clusters/Case (Costar Transwell 3470-Clear; Corning Inc, Corning, NY).

HEL tissue pieces were embedded in 50 to 60 mL Growth Factor Reduced Ma-

trigel Matrix (BD Biosciences, Oxford, UK) with 340 mL serum-free medium

in the wells. The explants were incubated at 378C and 5% CO2 for 6 to 18 days.

Medium in the wells was collected and replaced every third day. Time-lapse

microscopy was performed for 8 days to demonstrate branching

morphogenesis.

Using this newly developed explant culture system, HELs were cultured in

the presence of the TH2 cytokine recombinant human IL-13 at 1 ng/mL (R&D

Systems, Inc, Abingdon, UK). The tissue was harvested into TRIzol reagent

for RNA extraction and RT-qPCR at 6, 12, and 18 days. Phase contrast images

were taken at days 0, 6, 12, and 18 by using a LEICA DM IRB inverted micro-

scope (Leica Microsystems GmbH, Wetzlar, Germany).

Statistics
Data analyses were performed by using SigmaStat and SigmaPlot (Systat

Software Inc, Hounslow, UK). All data comparing 2 groups were analyzed by

using a parametric Student t test. Where the test failed normality criteria, non-

parametric tests (Mann-Whitney rank-sum test or Wilcoxon rank-sum test) of

statistical significance were performed. Data of more than 2 groups that were

normally distributed were compared by using 1-way ANOVA and a multiple

comparison Bonferroni t test. Where the test for normality failed, Kruskal-

Wallis 1-way ANOVA on ranks and multiple comparisons were performed

by using either the Student-Newman-Keuls or the Dunnett method. Signifi-

cance was reached when P �.05.

RESULTS

Adam33 mRNA expression in mouse embryonic,

fetal, juvenile, and adult tissues
Outbred MF1 mice were chosen for ease of mating and the high

number of offspring per litter. Lungs, hearts, and brains were
dissected from mouse embryos/fetuses on E11 to 19 and juvenile
mice from P1 (Fig E1), 2, 9, 16, 23, 30, 37, 44, 52, and 59, and
adult mice. RNA was extracted for gene analysis with RT-
qPCR. Initially Adam33 mRNA expression in the lungs was ana-
lyzed relative to either 18S rRNA (Fig E4, A) or Gapdh (Fig E4, B)
mRNA, both of which are commonly used genes for normaliza-
tion. Data analysis revealed that normalization with either gene
produced a similar expression profile, with Adam33 mRNA
increasing during gestation; however, there were inconsistencies
in the fold increase and expression profile, especially around
the time of birth and the neonatal period. Because embryonic de-
velopment is a complex process during which significant changes
in gene expression occur, we were concerned that these
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inconsistencies were a result of changes in expression of the
HKGs. For this reason, we established which HKGs were most
stably expressed during all stages of mouse lung development
by using geNorm analysis to enable accurate gene quantification.

Twelve of the most commonly used HKGs (Table E2) were
measured, and geNorm analysisE4 was performed to reveal the
expression stability of each gene during different stages of mouse
lung development. The 4 most stably expressed genes (lowest av-
erage stability M) in developing mouse lungs were found to be
Gapdh, Atp5b, Cyc1, and Sdha (Fig E3, A); similar results were
obtained for hearts and brains. The analysis revealed that combi-
nations of 6 to 7 HKGs was the optimal number of control genes
for normalization, reaching a pairwise variation (V) of less than
0.15; however, a combination of 3 to 4 HKGs also showed an
acceptable low variability of less than 0.25 (Fig E3, B).

When the 3 most stably expressed HKGs (Gapdh, Atp5b,
Cyc1) were used for normalization of Adam33 mRNA in the
murine lungs, it could be seen that Adam33 expression in-
creased in significant steps during mouse lung development
(Fig 5, A). These changes corresponded to the stages of normal
lung development (Fig 5, D; Fig E1), with the greatest increases
in Adam33 mRNA expression from the early embryonic stage
and lung bud formation (ED11) to the pseudoglandular stage
(ED12-16) and again from saccular (ED18, 19) to the alveolar
(P5-30) and adult stage (AM; P < .001). aSma mRNA expres-
sion showed a similar pattern, with a significant increase in the
early stage of embryonic lung development and post partum
(Fig 5, B). In contrast, the transcription factor, forkhead box
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A1 (Foxa1), another important gene in lung development,E6

showed a much lower expression relative to Adam33 and no in-
cremental changes during lung development.E7 In comparison
with developing lungs, Adam33 and aSma mRNA were much
lower and had a different and much flatter pattern of expression
in tissue from developing heart and brain, suggesting differen-
tial regulation in these 2 organs (Fig E5, A-D).
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FIG E1. Images of whole mouse embryos and fetuses (E) from day 11 to 19

and newborn mouse post partum (P) day 1 with dissected lungs (white bar

5 1 mm) showing different histologic stages of lung development in the

mouse.E8,E9
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FIG E2. Recovery of inflammatory cells from bronchoalveolar lavage fluid

from female adult A/J mice 24 hours after completion of 2 and 3 cycles of

ovalbumin (OVA) exposure compared to saline exposures (control). Results

represent means 6 SEMs (n 5 3-6).
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FIG E3. geNorm analysisE4 from 24 mouse lung samples (in duplicate) from

all stages of embryonic lung development using 12 different commonly

used HKGs (See Table E2). A, Determination of the most stably expressed

genes with the lowest average expression stability (M) value. B, Determina-

tion of the optimal number of control genes derived by pairwise variation

(V) analysis between the normalization factors of n and n 1 1 genes.
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FIG E4. Adam33 mRNA expression (log scale) (A) relative to 18S rRNA and

(B) relative to Gapdh mRNA in vivo in lungs harvested from embryonic/fetal

(E) days 11 to 19, post partum (P) days 1 and 8, and adult MF1 mice. The

shaded area highlights the region of difference.
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FIG E5. Adam33 and aSma mRNA relative to HKGs expression (log scale) in vivo in mouse (A and C)

hearts and (B&D) brains harvested from embryonic/fetal (E) days 11 to 19, post partum (P) days 1 to 59,

and adult (AM) MF1 mice.
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FIG E6. Real -time snap shots of mouse embryonic day 11/12 lungs cultured

for 48 hours showing spontaneous (A) contraction and (B) relaxation of the

primitive airways (black arrows). Contractions occurred every 40 seconds.
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TABLE E1. RT-qPCR primer and probes

Target (accession no.) Primers and probe Dye

Human

ADAM33 Forward primer (F): 59-GGCCTCTGCAAACAAACATAATT-39 Fam

(NM_025220) Reverse primer (R): 59-GGGCTCAGGAACCACCTAGG-39

Probe (P): 59-CTTCCTGTTTCTTCCCACCCTGTCTTCTCT-39

Alpha smooth muscle actin (aSMA) F: 59-GACAGCTACGTGGGTGACGAA-39 Fam

(NM_001613) R: 59-TTTTCCATGTCGTCCCAGTTG-39

P: 59-TGACCCTGAAGTACCCGATAGAACATGGCT39

ACTIN-b (ACTB) F: PrimerDesign Fam

R: PrimerDesign

P: PerfectProbe�, PrimerDesign

Mouse (Mus musculus)

Adam33 F: 59-GCAGGATCTCAGTCGCATCA-39 Fam

(NM_033615.1) R: 59-GGCGCCACTGTAGGAAAGC-39

P: 59-TCAGGACGCAAACGAAACGCTCTGT-39

Alpha smooth muscle actin (aSma) F: 59-TGAAGAGGAAGACAGCACAGC-39 Fam

(NM_007392) R: 59-GGAGCATCATCACCAGCGAA-39

P: 59-CAGAGCCCAGAGCCATTGTCGCAC-39

Glyceraldehyde 3-phosphate dehydrogenase (Gapdh) F: PrimerDesign Fam

R: PrimerDesign

P: PerfectProbe, PrimerDesign

Mitochondrial ATP synthase beta subunit (Atp5b) F: PrimerDesign Fam

R: PrimerDesign

P: PerfectProbe, PrimerDesign

Cytochrome C1 (Cyc1) F: PrimerDesign Fam

R: PrimerDesign

P: PerfectProbe, PrimerDesign

12 Different candidate reference genes from geNorm

Housekeeping Gene Selection Kit

F: PrimerDesign Fam

R: PrimerDesign

P: PerfectProbe, PrimerDesign
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TABLE E2. HKGs used for geNorm analysis

Accession no. Mus musculus; sequence definition

NM_007393 Actin, b, cytoplasmic (Actb), mRNA

NM_001001303 Glyceraldehyde 3-phosphate dehydrogenase

(Gapdh), mRNA

NM_019639 Ubiquitin C (Ubc), mRNA

NM_009735 b-2 Microglobulin (B2m), mRNA

NM_011740 Phospholipase A2 (Ywhaz), mRNA

NM_009438 Ribosomal protein L13a (Rpl13a), mRNA

NM_007597 Calnexin (Canx), mRNA

NM_025567 Cytochrome C1 (Cyc1), mRNA

NM_023281 Succinate dehydrogenase complex subunit A (Sdha),

mRNA

X00686 18s rRNA gene

NM_013506 Eukaryotic translation initiation factor

4A2 (Eif4a2), mRNA

NM_016774 Mitochondrial ATP synthase beta subunit (Atp5b),

mRNA
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