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AUTONOMOUS RESPONSE OF A THIRD-ORDER DIGITAL

FILTER WITH TWO’S COMPLEMENT ARITHMETIC REALIZED

IN PARALLEL FORM∗

BINGO WING-KUEN LING† , ALBERT YICK-PO CHAN†, THOMAS PAK-LIN WONG†,

AND PETER KWONG-SHUN TAM†

Abstract. This paper investigates the output and state trajectories of a third-order digital

filter with two’s complement arithmetic realized in parallel form. Although the output of the third-

order digital filter seems to behave randomly, some regular patterns can be displayed on the plot

of y (k − 1) versus y (k), where those regular patterns are similar to the second-order case. When

the first-order subsystem is operated at the marginally stable points, the output of the third-order

system is still mainly dependent on the behaviors of the corresponding second-order digital filter,

even though overflow occurs. Explicit equations relating the trajectories of the system to the filter

parameters and the initial conditions provide further insights into the behaviors of the system.

1. Introduction. It is well known that the autonomous response of a marginally
stable second-order digital filter with two’s complement arithmetic may exhibit chaotic
behaviors, dependent on the initial conditions [1, 4, 6, 7, 10]. Similar behaviors are
reported for the stable and unstable cases [8, 9, 12]. Investigations on the chaotic be-
haviors of filters with saturation-type nonlinearity and quantization-type nonlinearity
are discussed in [2] and [5, 11], respectively.

The step response and sinusoidal response of a marginally stable second-order
digital filter with two’s complement arithmetic are studied in [13, 14], respectively.
It is found that the trajectory of the step response case is similar to the autonomous
response case, while that of the sinusoidal response case is more complicated.

In [3], a marginally stable third-order digital filter with two’s complement arith-
metic implemented in direct form is analyzed. It is found that the trajectory is on
some planes of the phase portrait.

In general, a third-order linear digital filter can be realized by a first-order digital
filter connected in parallel with a second-order digital filter. However, due to the non-
linearity introduced, one may wonder how would the behaviors of the state variables
and the output of the overall system be related to the subsystems. In this paper, we
address the following question: How do the state trajectory and the output of the
third-order digital filter behave and depend on the filter parameters and the initial
conditions of the corresponding first-order and second-order digital filters?
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We will review the notations used in the existing literature in section 2 [1-14]. In
section 3, some of our results on the autonomous response of a second-order digital
filter with two’s complement arithmetic [13] are presented. These results are useful
for understanding the behavior of a third-order digital filter with two’s complement
arithmetic realized in parallel form discussed in section 4. Some of other relevant
results are presented and discussed in section 5. Finally, a conclusion is summarized
in section 6.

2. Notations. The notations used in [1-14] are adopted as follows:
Assume that a third-order digital filter can be represented by a state space model

which realizes parallel connection of a first-order digital filter and a second-order one
with two’s complement arithmetic in direct form as shown in figure 1. The system
can be represented as follows:

[
x1 (k + 1)
x2 (k + 1)

]
=

[
x2 (k)

f(b · x1 (k) + b · x2(k) + u(k))

]
,(2.1)

y1 (k) = x1 (k) ,

x3 (k + 1) = f(c · x3 (k) + u(k)),(2.2)

(2.3) y2 (k) = x3 (k) ,

(2.4) y (k) = f (y1 (k) + y2 (k)) ,

where x1 (k), x2 (k) and x3 (k) are the state variables; u (k) is the input signal; y1 (k)
and y2 (k) are the output of the subsystems; y (k) is the output of overall system;
a, b and c are the filter parameters; f is the nonlinearity introduced by the two’s
complement arithmetic.

The nonlinear function f can be modeled as:

f (ν) = ν − 2 · n such that 2 · n− 1 ≤ ν < 2 · n + 1 for n ∈ Z.(2.5)

Hence,  x1 (k)
x2 (k)
x3 (k)

 ∈ I3 ≡


 x1 (k)

x2 (k)
x3 (k)

 : −1 ≤ x1 (k) < 1,(2.6)

− 1 ≤ x2 (k) < 1 and − 1 ≤ x3 (k) < 1

}
.
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In our analysis, we consider the autonomous response, that is:

u (k) = 0 for k ≥ 0.(2.7)

Similar to [3], we assume that the corresponding first-order digital filter is stable
or marginally stable, and the second-order digital filter is marginally stable, that is:

(2.8) |c| ≤ 1,

(2.9) b = −1

and

(2.10) |a| ≤ 2.

Fig. 1. Parallel realization of a third-order digital filter with two’s complement arithmetic.

3. Review of Some Results on the Autonomous Response of a Second-

order Digital Filter with Two’s Complement Arithmetic. If the step size
defined in [13] is zero, then the step response of a second-order digital filter with
two’s complement arithmetic becomes an autonomous response. Hence, our results in
[13] apply and we have the following lemmas:

Lemma 1. (L1) Define:

(3.1) A ≡

[
0 1
b a

]
,
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(3.2) B ≡

[
0
1

]
,

and s1 (k) such that:

(3.3)

[
x1 (k + 1)
x2 (k + 1)

]
≡ A ·

[
x1 (k)
x2 (k)

]
+ B · u (k) +

[
0
2

]
· s1 (k) .

Define

(3.4) s∗1 ≡ s1 (0) ,

(3.5) θ ≡ cos−1
(a

2

)
,

(3.6) Â ≡

[
cos θ sin θ

− sin θ cos θ

]
,

(3.7) T ≡

[
1 0
cos θ sin θ

]
,

(3.8) x∗ ≡ 2 · s∗1
2− a

·

[
1
1

]
,

(3.9)

[
x̂1 (k)
x̂2 (k)

]
≡ T−1 ·

([
x1 (k)
x2 (k)

]
− x∗

)
for k ≥ 0.

The following three statements for the type I trajectory are equivalent:

(L1.1)

[
x̂1 (k + 1)
x̂2 (k + 1)

]
= Â ·

[
x̂1 (k)
x̂2 (k)

]
for k ≥ 0,(3.10)

(L1.2) s1 (k) = s∗1 for k ≥ 0(3.11)

and

(L1.3)

[
x1 (0)
x2 (0)

]
∈ Ξ0(3.12)

≡

{[
x1 (0)
x2 (0)

]
:

∥∥∥∥∥T−1 ·

([
x1 (0)
x2 (0)

]
− x∗

)∥∥∥∥∥ ≤ 1−
∣∣∣∣ 2 · s∗12− a

∣∣∣∣
}

.

Lemma 2. (L2): Suppose θ is not an integral multiple of π. Define:

(3.13) x∗0 ≡
(
I−AM

)−1 ·
M−1∑
j=0

AM−1−j ·

[
0
2

]
· s1 (j),
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(3.14) x∗i+1 ≡ A · x∗i +

[
0
2

]
· s1 (i) for i = 0, 1, · · · ,M − 2

and

(3.15) x̂i (k) ≡ T−1 ·

([
x1 (k ·M + i)
x2 (k ·M + i)

]
− x∗i

)
for k ≥ 0 and i = 0, 1, · · · ,M − 1.

The following three statements for the type II trajectory are equivalent:

(3.16) (L2.1) x̂i (k + 1) = ÂM · x̂i (k) for k ≥ 0 and i = 0, 1, · · · ,M − 1,

(3.17) (L2.2) s1 (k ·M + i) = s1 (i) for k ≥ 0 and i = 0, 1, · · · ,M − 1

and

(L2.3)

[
x1 (0)
x2 (0)

]
∈ Ξ1 ≡

{[
x1 (0)
x2 (0)

]
:

∥∥∥∥∥T−1 ·

([
x1 (i)
x2 (i)

]
− x∗i

)∥∥∥∥∥(3.18)

≤ 1− ‖x∗i ‖∞

}
for i = 0, 1, · · · ,M − 1.

Lemma 3. (L3) Define:

(3.19) Ξ2 ≡ I2\ (Ξ0 ∪ Ξ1)

where I2 ≡

{[
x1(k)
x2(k)

]
: −1 ≤ x1(k) < 1 and − 1 ≤ x2(k) < 1

}
. The following

three statements for the type III trajectory are equivalent:

(3.20) (L3.1) The trajectory of

[
x1 (k)
x2 (k)

]
exhibits an elliptical fractal pattern,

(3.21) (L3.2) s1 (k) is aperiodic for k ≥ 0

and

(3.22) (L3.3)

[
x1 (0)
x2 (0)

]
∈ Ξ2.

The proofs can be found in [13]. It can be seen that some initial conditions which
are very close in numerical values may give rise to quite different system trajectories
[1, 13]. Figures 2a, 2b, and 2c show some typical state trajectories corresponding to
the type I, type II, and type III trajectories, respectively. Lemmas L1.1, L2.1 and
L3.1 give analytical expressions for the different types of trajectories, while Lemmas
L1.3, L2.3 and L3.3 give analytical expressions for the corresponding sets of initial
conditions.
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Fig. 2a. Type I trajectory with a = 0.5 and x (0) =

[
0.612

−0.612

]
.

Fig. 2b. Type II trajectory with a = 0.5 and x (0) =

[
0.616

−0.616

]
.

4. Analytical and Simulation Results. In this section, we will analyze the
state trajectories and the output of the system described in section 2 by considering
the following three cases: |c| < 1, c = 1 and c = −1, respectively.

4.1. |c| < 1.
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Fig. 2c. Type III trajectory with a = 0.5 and x (0) =

[
0.6135

−0.6135

]
.

We note that if |c| < 1, the state trajectory converges to the plane x3 = 0 for
all initial conditions x3(0) ∈ [−1, 1). Hence, the trajectories are attracting. The
plot of the output y (k − 1) versus y (k) exhibits three types of trajectories, depended
on the initial condition of the corresponding second-order subsystem. If the system
exhibits type I or type II trajectories, the trajectories on the elliptical orbits of the
plane are dense if θ is not a rational multiple of π. For the type III trajectory, the
trajectory on the fractal region of the plane is also dense. To illustrate the results,
we have performed some computer simulations using the software MATLAB in PC.
All calculations are carried out with a 64-bit format. Although we assume that the
state variables can be taken any values between −1 and 1, and infinite word length
should be used for the representation of the state variables, some researchers reported
that 16 bits are enough for the representation [5, 11]. Hence, our simulations give
the reasonable predications of the system behaviors. In the simulation, c = 0.99 and
a = 0.5. The initial condition x3 (0) is generated randomly in [−1, 1). Figures 3a, 3b,
and 3c show the state trajectories corresponding to the type I, type II, and type III
trajectories, respectively. And figures 4a, 4b, and 4c show the corresponding plot of
the output y (k − 1) versus y (k).

4.2. c = 1.

For c = 1, the first-order subsystem is operating at the margin of stability and
its output does not converge to zero. Hence, overflow may occur when the output
of the corresponding first-order digital filter is added to that of the corresponding
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Fig. 3a. Type I trajectory with c = 0.99, a = 0.5 and x (0) =

 0.612

−0.612

0.3

 .

second-order digital filter.

The state trajectories stay on a plane with x3 = x3 (0). In this case, there are
no attracting or repelling regions for the trajectories. There are again three types
of trajectories, depending on the initial conditions of the corresponding second-order
subsystem, as shown in figures 5a, 5b and 5c, respectively. If the system exhibits type
I or type II trajectories, the trajectories on the elliptical orbits of the plane are dense
if θ is not a rational multiple of π. For the type III trajectory, the trajectory on the
fractal region of the plane is also dense.

As y1 (k) = x1 (k) for k ≥ 0 and y2 (k) = x3 (0), for k ≥ 0, we have y (k) =
f (y1 (k) + x3 (0)). In order to understand the plot of y (k − 1) versus y (k), let’s con-
sider the plot of y1 (k − 1) + x3 (0) versus y1 (k) + x3 (0). As the plot of y1 (k − 1)
versus y1 (k) is the trajectory of the corresponding second-order digital filter, the plot
of y1 (k − 1)+x3 (0) versus y1 (k)+x3 (0) is to shift the trajectory of the correspond-
ing second-order digital filter both horizontally and vertically by x3 (0), as shown in
figure 6. Hence, the plot of y (k − 1) versus y (k) is obtained by applying the two’s
complement operation on the shifted trajectory of the corresponding second-order
digital filter, both horizontally and vertically. For example, consider the case when
x3 (0) > 0, if y1 (k − 1) + x3 (0) ≥ 1 and −1 ≤ y1 (k) + x3 (0) < 1, that is, the
point is in the black region in figure 6, then y (k − 1) = y1 (k − 1) + x3 (0) − 2 and
y (k) = y1 (k) + x3 (0), which is moved to the region in figure 6 filled by spare dots.
Similar results are obtained for y1 (k) + x3 (0) ≥ 1 and −1 ≤ y1 (k − 1) + x3 (0) < 1,
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Fig. 3b. Type II trajectory with c = 0.99, a = 0.5 and x (0) =

 0.616

−0.616

0.3

 .

Fig. 3c. Type III trajectory with c = 0.99, a = 0.5 and x (0) =

 0.6135

−0.6135

0.3

 .
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Fig. 4a. The plot of y(k − 1) versus y(k) for type I trajectory

with c = 0.99, a = 0.5 and x (0) =

 0.612

−0.612

0.3

 .

Fig. 4b. The plot of y(k − 1) versus y(k) for type II trajectory

with c = 0.99, a = 0.5 and x (0) =

 0.616

−0.616

0.3

 .
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Fig. 4c. The plot of y(k − 1) versus y(k) for type III trajectory

with c = 0.99, a = 0.5 and x (0) =

 0.6135

−0.6135

0.3

 .

Fig. 5a. Type I trajectory with c = 1, a = 0.5 and x (0) =

 0.612

−0.612

0.3

 .
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Fig. 5b. Type II trajectory with c = 1, a = 0.5 and x (0) =

 0.616

−0.616

0.3

 .

or y1 (k) + x3 (0) ≥ 1 and y1 (k − 1) + x3 (0) ≥ 1.
As there are three types of trajectories for the corresponding second-order sub-

system, there are also three types of trajectories for the plot of y (k − 1) versus y (k),
as shown in figures 7a, 7b and 7c, respectively.

4.3. c = −1.
For c = −1, the output of the first-order subsystem gives oscillatory output, while

that of the corresponding second-order digital filter may exhibit oscillating, limit cycle
or chaotic behaviors. Hence, the output of the third-order digital filter may be more
complicated.

When c = −1, since u (k) = 0 for k ≥ 0, if x3 (0) 6= −1, we have:

(4.1) and x3 (k) = (−1)k · x3 (0) for k ≥ 0.

If x3 (0) = −1, we have:

(4.2) x3 (k) = −1 for k ≥ 0.

Since

(4.3) y2 (k) = x3 (k) for k ≥ 0,

if x3 (0) 6= −1, the state trajectories are on two phase planes with x3 = x3 (0) or
x3 = −x3 (0), as shown in figure 8. In this case, there are no attractive or repelling
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Fig. 5c. Type III trajectory with c = 1, a = 0.5 and x (0) =

 0.6135

−0.6135

0.3

 .

Fig. 6. Diagram showing how adding a constant value with two’s complement to a signal.

regions for the trajectories. Similarly, there are three types of trajectories for the
third-order digital filter, depending on the initial conditions of the corresponding
second-order digital filter, as shown in figures 8a, 8b and 8c, respectively. If the
system exhibits type I or type II trajectories, the trajectories on the elliptical orbits
of the planes are dense if θ is not a rational multiple of π. For the type III trajectory,
the trajectory on the fractal region of the planes is also dense. If x3 (0) = −1, the
state trajectory is on a phase plane with x3 = −1, and the result is similar to that
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Fig. 7a. The plot of y(k − 1) versus y(k) for type I trajectory

with c = 1, a = 0.5 and x (0) =

 0.612

−0.612

0.3

 .

Fig. 7b. The plot of y(k − 1) versus y(k) for type II trajectory

with c = 1, a = 0.5 and x (0) =

 0.616

−0.616

0.3

 .
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Fig. 7c. The plot of y(k − 1) versus y(k) for type III trajectory

with c = 1, a = 0.5 and x (0) =

 0.6135

−0.6135

0.3

 .

discussed in section 4.2.
As y1 (k) = x1 (k) for k ≥ 0, if x3 (0) 6= −1, then y2 (k) = x3 (0) and y (k) =

f (y1 (k) + x3 (0)) for k is even, and y2 (k) = −x3 (0) and y (k) = f (y1 (k)− x3 (0))
for k is odd. Since the plot of y (k − 1) versus y (k) can be obtained by applying the
two’s complement arithmetic operation on the shifted trajectory of the correspond-
ing second-order digital filter both horizontally and vertically, the diagram involves
shifting both x3 (0) and −x3 (0) in both horizontal and vertical directions. Hence, the
corresponding modified trajectories are overlapped, as shown in figure 9. As there
are three types of trajectories for the corresponding second-order subsystem, there
are also three types of trajectories for the plot of y (k − 1) versus y (k), as shown in
figures 9a, 9b and 9c, respectively.

5. Discussion. As explained in section 4, there is a one-to-one correspondence
mapping of the types of behavior of the third-order and the corresponding second-
order digital filter. Therefore many of our results in [11] and other interesting results
in [15] apply.

5.1. When the corresponding first-order subsystem is stable or marginally stable
and the corresponding second-order subsystem is marginally stable, the finite state
machine implementation of the digital filter may behave in a near-chaotic way even
when its corresponding infinite-state machine implementation does not exhibit chaotic
behaviors [11].
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Fig. 8a. Type I trajectory with c = −1, a = 0.5 and x (0) =

 0.612

−0.612

0.3

 .

5.2. If the corresponding first-order and second-order subsystem is implemented
in a normal form, then the nonlinear behaviors, such as limit cycles and chaotic
behavior, will not occur [15]. However, more calculations may be performed by the
filter. This is because there is only one addition, one multiplication and two delays
for the direct form realization if b = −1, but two additions, two multiplications and
two delays for the normal form realization.

5.3. In order to measure the similarity of the trajectories of the second-order
subsystem and the plot of the output of the third-order system y (k − 1) versus y (k),
we can treat these two plots as two images, X and Y, respectively, where X is
the image corresponding to the phase portrait of the second-order subsystem and
Y is the image corresponding to the plot of the output of the third-order system
y (k − 1) versus y (k). When c = 1, Y = f1 (X + X0), where X0 corresponds to
the shift due to the initial condition of the first-order subsystem and f1 corresponds
to the two-dimensional two’s complement operation defined in section 4.2. Since
these operations are just row operations and column operations, there exists a matrix

TX0 =

[
0(M−n)xn I(M−n)x(M−n)

Inxn 0nx(M−n)

]
such that Y = TX0 ·X ·TX0 . Hence, we can

investigate the feasibility of using this index n, where 0 ≤ n < M
2 , as a measure for

the similarity between these trajectories. A similar approach can be adopted to study
the case when c = −1.
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Fig. 8b. Type II trajectory with c = −1, a = 0.5 and x (0) =

 0.616

−0.616

0.3

 .

6. Conclusion. When a third-order digital filter with two’s complement arith-
metic is realized in a parallel form, the output of the third-order digital filter may
exhibit random like chaotic or limit cycle behaviors. However, the plot of y (k − 1)
versus y (k) shows some regular patterns, which is similar to trajectories of the au-
tonomous response of a second-order digital filter, as shown in figures 2, 4, 7 and
9. If the corresponding second-order digital filter exhibits type I trajectory, then the
diagram also shows a type I trajectory, similarly for the type II and type III tra-
jectories, even though overflow may occur when the output of the first-order digital
filter is added to that of the corresponding second-order digital filter. When the pole
of the first-order subsystem equals to one, the plot of y (k − 1) versus y (k) exhibits
the state trajectory of the corresponding second-order digital filter shifted by the
two’s complement operation. The shift only depends on the initial condition of the
corresponding first-order digital filter. Similarly, when the pole of the corresponding
first-order digital filter equals to minus one, the plot of y (k − 1) versus y (k) shows
the overlap of two state shifted trajectories of the corresponding second-order digital
filter modifed by the two’s complement operation. Again, the shift only depends on
the initial condition of the corresponding first-order digital filter.

Acknowledgement. The work described in this paper was substantially sup-
ported by The Hong Kong Polytechnic University.
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Fig. 8c. Type III trajectory with c = −1, a = 0.5 and x (0) =

 0.6135

−0.6135

0.3

 .

Fig. 9a. The plot of y(k − 1) versus y(k) for type I trajectory

with c = −1, a = 0.5 and x (0) =

 0.612
−0.612

0.3

 .
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Fig. 9b. The plot of y(k − 1) versus y(k) for type II trajectory

with c = −1, a = 0.5 and x (0) =

 0.616
−0.616

0.3

 .

Fig. 9c. The plot of y(k − 1) versus y(k) for type III trajectory

with c = −1, a = 0.5 and x (0) =

 0.6135
−0.6135

0.3

 .
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