Tatra Mt. Math. Publ. **42** (2009), 27–37 DOI: 10.2478/v10127-009-0003-z

DENJOY AND *P*-PATH INTEGRALS ON COMPACT GROUPS IN AN INVERSION FORMULA FOR MULTIPLICATIVE TRANSFORMS

FRANCESCO TULONE

ABSTRACT. Denjoy and \mathcal{P} -path Kurzweil-Henstock type integrals are defined on compact subsets of some locally compact zero-dimensional abelian groups. Those integrals are applied to obtain an inversion formula for the multiplicative integral transform.

1. Introduction

In [8], an inversion formula for the multiplicative integral transform was obtained for the case of any locally compact zero-dimensional abelian periodic group. This result does not cover the case of transforms convergent to Denjoy-Khintchine integrable functions because this integral is incompatible with \mathcal{P} -adic integral used in the above result (see [2]).

To overcome this difficulty, we consider here a little bit less general class of zero-dimensional groups and another Kurzweil-Henstock type integral on them. This gives us an opportunity to get an inversion formula for the multiplicative integral transform convergent to a Denjoy-Khintchine integrable function in the case of a class of groups considered here.

This problem is a generalization of that of recovering the coefficients of a convergent series with respect to characters of a compact zero dimensional abelian group which was considered in [7]. A similar problem related to some special groups was considered in [6].

²⁰⁰⁰ Mathematics Subject Classification: 43A70, 43A25, 26A39, 42C10.

Keywords: locally compact zero-dimensional abelian group, characters of a group, Denjoy integral, Kurzweil-Henstock \mathcal{P} -path integral, multiplicative integral transform, inversion formula.

2. Preliminaries

Let G be a zero-dimensional locally compact abelian periodic group which satisfies the second countability axiom. We can introduce (see [1]) a topology in such a group using a chain of subgroups

$$\ldots \supset G_{-n} \supset \ldots \supset G_{-2} \supset G_{-1} \supset G_0 \supset G_1 \supset G_2 \supset \ldots \supset G_n \supset \ldots$$

with $G = \bigcup_{n=-\infty}^{+\infty} G_n$ and $\{0\} = \bigcap_{n=-\infty}^{+\infty} G_n$. The subgroups G_n are clopen sets with respect to this topology. As G is periodic, the factor group G_n/G_{n+1} is finite for each n and this implies that G_n is compact. Let p_{n+1} be an order of G_n/G_{n+1} if $n \ge 0$ and p_{-n} an order of G_{-n}/G_{-n+1} if $n \ge 1$. We can suppose that all p_n are prime numbers. So, the group G defines a sequence

$$\mathcal{P} = \{p_j\}_{j=-\infty, \qquad j \neq 0}^{+\infty} \,. \tag{1}$$

We also consider the reverse sequence

$$\mathcal{P}' = \{p'_j\}_{j=-\infty}^{+\infty}, \qquad j \neq 0,$$
(2)

where $p'_j = p_{-j}$ for $j \in \mathbb{Z} \setminus \{0\}$. Moreover, we set $m_0 = 1$, $m_j = \prod_{s=1}^j p_s$, $m_{-j} = \prod_{s=-1}^{-j} p_s$.

We remind that a complex function χ on a locally compact abelian group G is called a *character* of G if $|\chi(g)| = 1$ for all $x \in G$ and if a functional equation

$$\chi(g_1 + g_2) = \chi(g_1) + \chi(g_2)$$

is satisfied for all $g_1, g_2 \in G$. The set of all continuous characters of G forms a group X, the dual group of G, if the addition is defined by

$$(\chi_1 + \chi_2)(g) = \chi_1(g) \cdot \chi_2(g),$$

where $x \in G$ and $\chi_1, \chi_2 \in X$. In view of the duality between G and X, see ([10]), it is customary to write (g, χ) in place of $\chi(g)$.

In what follows, X will denote the dual group of the group G described above. It is known (see [1]) that under the assumption imposed on G the group X is also a periodic locally compact zero-dimensional abelian group and we can represent it to be a sum of increasing sequence of subgroups:

$$\ldots \supset X_n \supset \ldots \supset X_2 \supset X_1 \supset X_0 \supset X_{-1} \supset X_{-2} \supset \ldots \supset X_{-n} \supset \ldots$$
(3)

introducing a topology in X. Then, $X = \bigcup_{i=-\infty}^{+\infty} X_i$ and $\bigcap_{i=-\infty}^{+\infty} X_i = \{\chi^{(0)}\}$ where $(g, \chi^{(0)}) = 1$ for all $g \in G$. For each $n \in \mathbb{Z}$, the group X_n is the annihilator of G_n , i.e.,

$$X_n = G_n^{\perp} = \{ \chi \in X : (g, \chi) = 1 \quad \text{for all} \quad g \in G_n \}.$$

The factor groups $X_{n+1}/X_n = G_{n+1}^{\perp}/G_n^{\perp}$ and G_n/G_{n+1} are isomorphic (see [1]). So, the order of X_{n+1}/X_n is p_{n+1} if $n \ge 0$ and p_n if $n \le -1$.

DENJOY AND \mathcal{P} -PATH INTEGRALS ON COMPACT GROUPS

It can be shown (see [8]) that any element $g \in G$ can be represented in the form

$$g = [g] + \{g\}$$
(4)

and any element $\chi \in X$ in the form

$$\chi = [\chi] \cdot \{\chi\} \tag{5}$$

in such a way that the following properties hold:

- 1) $\{g\} \in G_0 \text{ and } \{\chi\} \in X_0 = G_0^{\perp}.$ So, $(\{g\}, \{\chi\}) = 1$, and $(g, \chi) = (\{g\}, [\chi]) \cdot ([g], [\chi]) \cdot ([g], \{\chi\}).$ (6)
- 2) $[\chi] \in G_m^{\perp}$ for some $m = m(\chi) \in \mathbb{N}$ and $[\chi] \setminus_{G_0}$ is a character of the subgroup G_0 .
- 3) $([g], [\chi])$ is constant if g belongs to a fixed coset of G_0 and χ belongs to a fixed coset of X_0 .

Using the duality between G and X, we can state that g represents a character of X and similarly to property 2), $[g]_{X_0}$ is a character of X_0 . So, $([g], \{\chi\})$ is a value of this character at the point $\{\chi\}$.

Therefore, according to 6), if g belongs to a fixed coset of G_0 and χ belongs to a fixed coset of X_0 , we can represent (g, χ) , up to a constant $([g], [\chi])$, as a product of $(\{g\}, [\chi])$ considered as a value of the character $[\chi]$ at $\{g\}$, and $([g], \{\chi\})$ considered as a value of the character [g] at $\{\chi\}$.

It is also shown (see [8]) that we can map the groups G and X to the interval $[0, +\infty)$ by mappings

$$\varphi(g) = x = \{x\} + [x] \tag{7}$$

and

$$\psi(\chi) = x' = \{x'\} + [x'],\tag{8}$$

where $\{a\}$ is the fractional part of a and [a] the integer part of a. Moreover, the preimage of [x], under the mapping φ , is [g] and the one of $\{x\}$ is $\{g\}$. This explains the notation in (4). In the same way, $\psi([\chi]) = [x']$ and $\psi(\{\chi\}) = \{x'\}$.

In this way, the subgroup $G_n, n \ge 0$, is mapped onto the interval $\left[0, \frac{1}{m_n}\right]$ and the respective cosets are mapped onto intervals $I_n^k = \left[\frac{k}{m_n}, \frac{k+1}{m_n}\right]$ with $k = 0, 1, \ldots$ We denote these cosets by G_n^k with $G_n^0 = G_n$. In particular, for n = 0 we map G_0 onto [0, 1] and respective cosets onto intervals [k, k + 1]. In case n < 0, the group G_n is mapped onto interval $[0, m_n]$ and respective cosets G_n^k are mapped onto intervals $[km_n, (k+1)m_n]$. We call all the above mentioned images of cosets the \mathcal{P} -adic intervals. If n is fixed, we refer to I_n^k as to intervals of a rank n. The set of all \mathcal{P} -adic intervals is denoted by $\mathcal{I}_{\mathcal{P}}$.

In a similar way, we can define \mathcal{P}' -adic intervals associated with the group X and the sequence \mathcal{P}' (see (2)). They are images, under mapping (8), of the respective cosets of the subgroup X_n denoted by X_n^s .

Note that the mappings (7) and (8) are one-one correspondences between the interval $[0, +\infty)$ and the groups G and X, respectively, up to a countable number of \mathcal{P} -adic (\mathcal{P}' -adic) rational points, i.e., points $\frac{t}{m_k}$ (or $\frac{t}{m_{-k}}$) with $t, k = 0, 1, 2, \ldots$ Such a point x has two preimages corresponding to the finite and to the infinite expansion of x, respectively. We denote by $Q_{\mathcal{P}}$ the set of all \mathcal{P} -adic rational points and by $Q_{\mathcal{P}'}$ the set of all \mathcal{P}' -adic rational points. We agree to use only finite expansions for \mathcal{P} -adic (and \mathcal{P}' -adic) rational points so that the inverse mappings φ^{-1} and ψ^{-1} make sense on $[0, \infty)$.

We consider the Haar measure μ_G on the group G and we normalize it so that $\mu_G(G_0) = 1$. Then the measure of any coset G_n^k of G_n coincides with the length of the \mathcal{P} -adic interval which is the image of G_n^k , i.e.,

$$\mu_G(G_n^k) = \frac{1}{m_n} \quad \text{if} \quad n \ge 0 \quad \text{and} \quad \mu_G(G_n^k) = m_n \quad \text{if} \quad n < 0.$$

In the same way, we introduce the measure μ_X on X so that $\mu_X(X_0) = 1$ and

$$\mu_X(X_n^s) = \frac{1}{m_n}$$
 if $n \le 0$ and $\mu_X(X_n^s) = m_n$ if $n > 0$.

Note that, under the above mentioned mappings φ and ψ , the image of each set of Haar measure zero on the group is a set of Lebesgue measure zero on $[0, +\infty)$.

We denote by \mathcal{R}_G the ring generated by the family of all cosets G_n^k , $n \in \mathbb{Z}$, $k = 0, 1, 2, \ldots$, and by $\mathcal{R}_{\mathcal{P}}$ the ring generated by $\mathcal{I}_{\mathcal{P}}$. Note that for each $g \in G$ there exists a decreasing sequence $\{G_n^{k(n)}\}_n$ of cosets such that $g \in \bigcap_n G_n^{k(n)}$.

3. *P*-path Kurzweil-Henstock integral and Denjoy-Khintchine integral on the group G

Now, we introduce a Henstock-Kurzweil type integral with respect to the system of \mathcal{P} -paths and also Denjoy-Khintchine integral on compact subgroups of the considered group G and X.

With each \mathcal{P} -adic irrational point $x \in [0, \infty)$, i.e., a point $x \in [0, \infty) \setminus Q_{\mathcal{P}}$, we associate a unique nested sequence

$$\left\{\varphi\left(G_n^{k(n)}\right)\right\}_n = \left\{I_n^{k(n)}\right\} = \left\{\left[a_n(x), b_n(x)\right]\right\}_{n=0}^{\infty}$$
(9)

of \mathcal{P} -adic intervals converging to x so that

$$\{x\} = \bigcap_{n=0}^{\infty} \left[a_n(x), b_n(x)\right].$$

DENJOY AND \mathcal{P} -PATH INTEGRALS ON COMPACT GROUPS

If x is a \mathcal{P} -adic rational point, then there exist two nested sequences (9) — the *left* one and the *right* one — for which x, starting with some n, is the common end-point.

Using the notation given by (9), we define for a \mathcal{P} -adic irrational point x, the sequences $\mathcal{P}_x^- = \{a_n(x)\}$ and $\mathcal{P}_x^+ = \{b_n(x)\}$. If x is a \mathcal{P} -adic rational point, we use the same notation \mathcal{P}_x^+ and \mathcal{P}_x^- for sequences with $a_n(x)$ being the left end-point of interval of rank n of the above mentioned left nested sequence associated with x, and $b_n(x)$ being the right end-point of interval of rank n of the right nested sequence.

DEFINITION 3.1. The set $\mathcal{P}_x = \mathcal{P}_x^+ \bigcup \mathcal{P}_x^- \bigcup \{x\}$ is called the \mathcal{P} -path leading to x. If $E \in \mathcal{R}_{\mathcal{P}}$, the collection $\{\mathcal{P}_x : x \in E\}$ is called the system of \mathcal{P} -paths on E.

The continuity and the derivative at a point x with respect to the set \mathcal{P}_x are called \mathcal{P} -path continuity and \mathcal{P} -path derivative. In the same way, we define \mathcal{P} -path upper and lower derivatives.

DEFINITION 3.2. Let δ be a positive function defined on $E \in \mathcal{R}_{\mathcal{P}}$. A collection of interval-point pairs $\{([u_j, v_j], x_j)\}_{j=1}^k$ is called δ -fine \mathcal{P} -partition of E if the intervals $[u_j, v_j]$ are non-overlapping, $E = \bigcup_{j=1}^k [u_j, v_j]$ and for each j we have $u_j, v_j \in \mathcal{P}_x, u_j \leq x_j \leq v_j$ and $\max\{v_j - x_j, x_j - u_j\} < \delta(x_j)$.

It is not difficult to check that for any $E \in \mathcal{R}_{\mathcal{P}}$, any system of \mathcal{P} -paths on E, and for any positive function δ defined on E there exists a δ -fine \mathcal{P} -partition of E.

DEFINITION 3.3. A complex valued function f on $E \in \mathcal{R}_{\mathcal{P}}$ is said to be *Kurzweil-Henstock integrable with respect to the system of* \mathcal{P} *-paths* or, in brief, $H_{\mathcal{P}}$ *-integrable* on E, with integral value A, if for every $\varepsilon > 0$, there exists a positive function δ on E such that for any δ -fine \mathcal{P} -partition of E we have

$$\left|\sum_{j=1}^{k} f(x_j)(v_j - u_j) - A\right| < \varepsilon.$$

Then we write $(H_{\mathcal{P}}) \int_E f = A$.

It is easy to check that a function which is equal to zero almost everywhere on $E \in \mathcal{R}_{\mathcal{P}}$, is $H_{\mathcal{P}}$ -integrable to zero on E. This justifies the following extension of Definition 3.3 to the case of functions defined only almost everywhere on E(for short, a.e.).

DEFINITION 3.4. A complex valued function f defined a.e. on $E \in \mathcal{R}_{\mathcal{P}}$ is said to be $H_{\mathcal{P}}$ -integrable on E with integral value A if the function

$$f_1(x) = \begin{cases} f(x), & \text{where } f \text{ is defined,} \\ 0, & \text{otherwise,} \end{cases}$$

is $H_{\mathcal{P}}$ -integrable on E to A in the sense of Definition 3.3.

We can use this definition to introduce the respective H_G -integral on certain subsets of the considered group G.

DEFINITION 3.5. Let $E \in \mathcal{R}_{\mathcal{P}}$ be the image of $T \in \mathcal{R}_G$ under the mapping φ (see (7)). Then a complex-valued function f defined almost everywhere on T is H_G -integrable on T, with the value A, if the function $F(x) = f(\varphi^{-1}(x))$ is $H_{\mathcal{P}}$ -integrable on E with the value A in the sense of Definition 3.4, and we write $(H_G) \int_T f d\mu_G = A$.

Remark 3.1. We note that the above definition depends on the sequence \mathcal{P} defined by the group G. So, if we consider a similar definition of the H_X -integral on a subset of the group X, then we should use a sequence \mathcal{P}' defined by X and the respective $H_{\mathcal{P}'}$ -integral.

Now, we shall give a definition of *Denjoy-Khintchine integral* on compact subgroups of a locally compact group.

DEFINITION 3.6. A real function Φ defined on [a, b] is an ACG-function if $[a, b] = \bigcup_{i=1}^{\infty} B_i$ and Φ is absolutely continuous on each B_i .

DEFINITION 3.7. A real function f defined almost everywhere on [a, b] is *Denjoy--Khintchine integrable on* [a, b], briefly, *D-integrable*, if there exists an *ACG* function Φ such that $\Phi'_{ap} = f$ almost everywhere, where Φ'_{ap} denotes the approximate derivative (see [4]). The value of this integral is defined as $(D) \int_a^b f = \Phi(b) - \Phi(a)$.

DEFINITION 3.8. A real function f defined almost everywhere on $E = \bigcup_{i=1}^{n} [\alpha_i, \beta_i]$ is *D*-integrable on E if f is *D*-integrable on each $[\alpha_i, \beta_i]$ and the value of integral is $(D) \int_E f = \sum_{i=1}^{n} (D) \int_{\alpha_i}^{\beta_i} f$. In the case of a complex-valued function f, it is *D*-integrable on E if both Ref and Imf are *D*-integrable with integrals A and B, respectively, and the *D*-integral of f is A + iB.

DEFINITION 3.9. Let $E \in \mathcal{R}_{\mathcal{P}}$ be the image of $T \in \mathcal{R}_G$ under the mapping φ (see (7)). Then a complex-valued function f defined almost everywhere on T is *D*-integrable on T, with the value A, if the function $F(x) = f(\varphi^{-1}(x))$ is *D*-integrable on E with the value A in the sense of Definition 3.8, and we write $(D) \int_T f d\mu_G = A$.

Remark 3.2. It is easy to check out that the *D*-integral (in the sense of the above definition) is invariant under translation given by some "integer part" [g] of some element $g \in G$.

We need the following theorem (see [9]).

THEOREM 3.1. Suppose that the sequence (1) is bounded and a function f defined on [a, b] is both $H_{\mathcal{P}}$ -integrable and D-integrable on [a, b]. If Φ is the indefinite $H_{\mathcal{P}}$ -integral of f and the upper and lower \mathcal{P} -path derivatives of $\operatorname{Re}\Phi$ and $\operatorname{Im}\Phi$ are bounded at each point of [a, b], except a countable set, then the values of $H_{\mathcal{P}}$ and D-integrals of f on [a, b] coincide.

The next result is of great importance for our further consideration. It is a direct consequence of the above theorem, related to the real line setting, and of Definitions 3.5 and 3.9.

THEOREM 3.2. Suppose that the sequence (1) is bounded and $E \in \mathcal{R}_{\mathcal{P}}$ is the image of $T \in \mathcal{R}_G$ under the mapping φ (see(7)). If a H_G -integrable on $T \in R_G$ function f and its indefinite H_G -integral Φ are such that $f(\varphi^{-1}(x))$ and $\Phi(\varphi^{-1}(x))$ satisfy the conditions of the previous theorem, then the values of H_G - and D-integrals of f on T coincide.

4. An inversion formula for integral transforms convergent to a *D*-integrable function

Using the notations for the cosets of X_0 and G_0 introduced in Section 2, we denote $[\chi] \setminus_{G_0}$ by h_s if $[\chi] \in X_0^s$. In the same way, if $[g] \in G_0^k$, we denote $[g] \setminus_{X_0}$ by h'_k . It can be easily checked that the sequence $\{h_s\}_{s=0}^{\infty}$ includes all the characters of G_0 and $\{h'_k\}_{k=0}^{\infty}$ includes all the characters of X_0 . This sequence $\{h_s\}$ having been translated on [0, 1] using the mapping (7), forms an orthonormal system $\{\xi_s\}$ on [0, 1], where $\xi_s(x) = h_s(\varphi^{-1}(x))$ (see [1]).

The following theorem is proved in [7].

THEOREM 4.1. Suppose that the sequence (1) is bounded, the series $\sum a_s \xi_s$ with respect to the above system $\{\xi_s\}$ converges a.e. on [0,1] to a function f and everywhere on $[0,1] \setminus Q_P$, we have

$$\limsup_{n \to \infty} |S_n(x)| < +\infty, \tag{10}$$

where $S_n = \sum_{s=0}^{n-1} a_s \xi_s$. Then f is $H_{\mathcal{P}}$ -integrable on [0,1] (in the sense of Definition 3.4 and $\sum a_s \xi_s$ is $H_{\mathcal{P}}$ -Fourier series of f.

We can reformulate this result in terms of the system $\{h_s\}$ defined on a group.

THEOREM 4.2. Let G_0 be a compact abelian zero-dimensional group such that the sequence (1) is bounded and let $\{h_s\}_s$ be a system defined as above. If the series $\sum_{s=0}^{\infty} a_s h_s$ converges a.e. on G_0 to a function f and everywhere on $G_0 \setminus \varphi^{-1}(Q_P)$ we have

$$\limsup_{n \to \infty} |\sigma_n(g)| < +\infty, \tag{11}$$

where $\sigma_n = \sum_{s=0}^{n-1} a_s h_s$, then f is H_{G_0} -integrable on G_0 and $\sum a_s h_s$ is the Fourier series of f in the sense of integral defined in Definition 3.5.

It is known (see [7, Lemma 3.2]) that the condition (10) implies the boundedness of upper and lower derivatives of Re Φ and Im Φ , where Φ is an indefinite $H_{\mathcal{P}}$ -integral of f.

Combining this with the last two theorems and with Theorem 3.2, we get.

THEOREM 4.3. Let G_0 and the system $\{h_s\}_s$ be as in Theorem 4.2 If the series $\sum_{s=0}^{\infty} a_s h_s$ converges a.e. on G_0 to a D-integrable function f and everywhere on $G_0 \setminus \varphi^{-1}(Q_{\mathcal{P}})$ the inequality (11) holds, then $\sum a_s h_s$ is the Denjoy-Fourier series of f (in the sense of the integral defined in Definition 3.9.

This theorem is a generalization of a similar result related to some special case of zero-dimensional group (see [5, Theorem 2]).

We also need the following theorem, which can be established using the same arguments as in [8, Theorem 8]:

THEOREM 4.4. The partial sums $\sigma_{m_n}(f,g)$ of the H_G -Fourier series (with respect to the system of characters of G_0) of a H_G -integrable on G_0 function f are convergent to f almost everywhere on G_0 .

A continuum analog of the series $\sum_{s=0}^{\infty} a_s h_s$ is the integral transform

$$\int_X a(\chi)(g,\chi) \,\mathrm{d}\mu_X$$

with appropriately defined improper integral on X. So, the next theorem, which gives an inversion formula for this transform, can be considered as a generalization of Theorem 4.3.

THEOREM 4.5. Assume that G is a group described in Section 2 such that the sequence (1) is bounded, X is its dual group. Let $a(\chi)$ be a locally H_X -integrable function and

$$\lim_{s \to \infty} (H_X) \int_{\bigcup_{i=0}^s X_0^i} a(\chi)(g,\chi) \,\mathrm{d}\mu_X = f(g)$$
(12)

I

a.e. on G, where f is a D-integrable function on each $T \in \mathcal{R}_G$. Moreover, let us have everywhere on $G \setminus \varphi^{-1}(Q_{\mathcal{P}})$

$$\lim_{s \to \infty} \sup_{\substack{(H_X) \\ \cup_{i=0}^s X_0^i}} A(\chi)(g,\chi) \, \mathrm{d}\mu_X \bigg| < +\infty.$$
(13)

Then, the function a(x) can be recovered from f by the following inversion formula:

$$a(\chi) = \lim_{n \to \infty} (D) \int_{G_{-n}} f(g) \overline{(g, \chi)} \, \mathrm{d}\mu_G$$
 a.e. on X

34

Proof. Suppose that $g \in G_0^k$. Then, for each $s = 1, 2, \ldots$, we have, according to (6),

$$(H_X) \int_{\bigcup_{i=0}^{s} X_0^i} a(\chi)(g,\chi) \, \mathrm{d}\mu_X$$

= $(H_X) \int_{\bigcup_{i=0}^{s} X_0^i} a(\chi)(\{g\}, [\chi]) \cdot ([g], [\chi]) \cdot ([g], \{\chi\}) \, \mathrm{d}\mu_X$
= $\sum_{i=0}^{s} (H_X) \int_{X_0^i} a(\chi)(\{g\}, [\chi]) \cdot ([g], [\chi]) \cdot ([g], \{\chi\}) \, \mathrm{d}\mu_X$ (14)
= $\sum_{i=0}^{s} h_i(\{g\})(H_X) \int_{X_0^i} a(\chi)([g], [\chi]) h'_k(\{\chi\}) \, \mathrm{d}\mu_X.$

Now, for any $g \in G_0^k$ for which the limit (12) exists, we get:

$$f(g) = \lim_{s \to \infty} \sum_{i=0}^{s} h_i(\{g\})(H_X) \int_{X_0^i} a(\chi)([g], [\chi]) h'_k(\{\chi\}) \,\mathrm{d}\mu_X.$$
(15)

So, for such $g \in G_0^k$, the function f(g) is the sum of series with respect to the system $\{h_i\}$ with coefficients

$$b_i = (H_X) \int_{X_0^i} a(\chi) \left([g], [\chi] \right) h'_k \left(\{\chi\} \right) \mathrm{d}\mu_X$$

and this series is convergent almost everywhere on G_0^k .

In the same way, (13) and (15) imply, for any $g \in G_0^k \setminus \varphi^{-1}(Q_{\mathcal{P}})$

$$\lim_{s \to \infty} \sup \left| \sum_{i=0}^{s} h_i \big(\{g\} \big) (H_X) \int_{X_0^i} a(\chi) \big([g], [\chi] \big) h'_k \big(\{\chi\} \big) \, \mathrm{d}\mu_X \right| < \infty.$$
(16)

Then, by Theorem 4.3, the coefficients b_i are the Denjoy-Fourier coefficients of the *D*-integrable function p(t) = f([g] + t) on G_0 , i.e.,

$$b_{i} = (H_{X}) \int_{X_{0}^{i}} a(\chi) \left([g], [\chi] \right) h_{k}' \left(\{\chi\} \right) d\mu_{X} = (D) \int_{G_{0}} p(t) \overline{h_{i}(t)} d\mu_{G}$$

$$= (D) \int_{G_{0}^{k}} f(g) \overline{h_{i}(\{g\})} d\mu_{G}$$
(17)

35

(the last equality is justified by Remark 3.2). By property 3) of Section 2, $([g], [\chi])$ is constant when $g \in G_0^k$ and $\chi \in X_0^i$. Hence, (17) implies

$$(H_X) \int_{X_0^i} a(\chi) h'_k(\lbrace \chi \rbrace) \, \mathrm{d}\mu_X = (D) \int_{G_0^k} f(g) \overline{([g], [\chi])} h_i(\lbrace g \rbrace) \, \mathrm{d}\mu_G.$$
(18)

The rest of the proof follows the lines of the proof of Theorem 9 of [8].

For a fixed i, the value

$$(H_X) \int_{X_0^i} a(\chi) h'_k(\{\chi\}) \,\mathrm{d}\mu_X$$

is the Fourier coefficient in the system $\{\overline{h'_k}\}$ of the H_X -integrable function $a(\chi) = a([\chi] + \{\chi\})$ considered as a function of $\{\chi\} \in X_0$. Therefore, Theorem 4.4 being applied to the above system and the appropriate partial sums, implies

$$\sum_{k=0}^{m_{-n}} (H_X) \int_{X_0^i} a(\chi) h'_k(\{\chi\}) \,\mathrm{d}\mu_X \cdot \overline{h'_k(\{\chi\})} \to a(\chi) \qquad \text{a. e. on} \quad X_0^i$$

Then, using (18) and (6), we get

$$\lim_{n \to \infty} \sum_{k=0}^{m_{-n}} (H_X) \int_{X_0^i} a(\chi) h'_k(\{\chi\}) \, \mathrm{d}\mu_X \cdot \overline{h'_k(\{\chi\})}$$

$$= \lim_{n \to \infty} \sum_{k=0}^{m_{-n}} (D) \int_{G_0^k} f(g) \overline{([g], [\chi])} h_i(\{g\})} \, \mathrm{d}\mu_G \cdot \overline{h'_k(\{\chi\})}$$

$$= \lim_{n \to \infty} \sum_{k=0}^{m_{-n}} (D) \int_{G_0^k} f(g) \overline{h_i(\{g\})} h'_k(\{\chi\}) ([g], [\chi])} \, \mathrm{d}\mu_G$$

$$= \lim_{n \to \infty} (D) \int_{\bigcup_{k=0}^{m_{-n}} G_0^k} f(g) \overline{(\{g\}, [\chi])} ([g], \{\chi\}) ([g], [\chi])} \, \mathrm{d}\mu_G$$

$$= \lim_{n \to \infty} (D) \int_{G_{-n}} f(g) \overline{(g, \chi)} \, \mathrm{d}\mu_G = a(\chi) \quad \text{a. e. on} \quad X_0^i$$

The last equality is true for any i. Therefore, we can write

$$\lim_{n \to \infty} (D) \int_{G_{-n}} f(g) \overline{(g, \chi)} \, \mathrm{d}\mu_G = a(\chi) \qquad \text{a. e. on} \quad X$$

This completes the proof.

DENJOY AND $\mathcal{P}\text{-}PATH$ INTEGRALS ON COMPACT GROUPS

Remark 4.1. As both *D*-integral and H_X -integral obviously include the Lebesgue integral, the last theorem can be formulated, in particular, for functions *a* and *f* being locally Lebesgue integrable on the groups *X* and *G*, respectively.

REFERENCES

- AGAEV, G. N.—VILENKIN, N. YA.—DZHAFARLI, G. M.—RUBISTEIN, A. I.: Multiplicative System of Functions and Harmonic Analysis on Zero-Dimensional Groups. "Ehlm", Baku, 1981. (In Russian)
- [2] BONGIORNO, B.—DI PIAZZA, L.—SKVORTSOV, V. A.: The Ward property for a *P*-adic basis and the *P*-adic integral, J. Math. Anal. Appl. 285 (2003) 578–592.
- [3] GOLUBOV, B.—EFIMOV, A.—SKVORTSOV, V.: Walsh Series and Transforms. Theory and Applications. Math. Appl. (Soviet Ser.), Vol. 64, Kluwer Academic Publishers, Dordrecht, 1991.
- [4] GORDON, R. A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock Theory, Grad. Stud. Math., Vol. 4, Amer. Math. Soc., Providence, RI, 1994.
- [5] SKVORTSOV, V. A.—KOROLEVA, M. P.: Series in multiplicative systems convergent to Denjoy-integrable functions, Sb. Math. 186 (1995), No. 12, 1821–1842; translation from Mat. Sb. 186 (1995), No. 12, 129–150.
- [6] SKVORTSOV, V. A.—TULONE, F.: The *P*-adic Henstock integral in the problem of function representations by multiplicative transforms, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2005 (2005), No. 3, 41–44, translation in Moscow Univ. Math. Bull. 60 (2005), No. 3, 19–22.
- [7] SKVORTSOV, V. A.—TULONE, F.: On the problem of recovering the coefficients of series with respect to characters of zero-dimensional groups, Tatra Mt. Math. Publ. 34 (2006), 307–320.
- [8] SKVORTSOV, V. A.—TULONE, F.: Henstock type integral in harmonic analysis on zero-dimensional groups, J. Math. Anal. Appl. 322 (2006), 621–628.
- [9] SKVORTSOV, V. A.—TULONE, F.: Integration of both the derivatives with respect to *P*-paths and approximative derivatives, Mat. Zametki 85 (2009), No. 2, 283–291, translation in Math. Notes 85 (2009), 260–266.
- [10] RUDIN, W.: Fourier Analysis on Groups. John Wiley & Sons, New York, 1967.

Received September 4, 2007

Department of Mathematics University of Palermo via Archirafi 34 I–90123 Palermo ITALY E-mail: tulone@math.unipa.it