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DENJOY AND P-PATH INTEGRALS ON COMPACT
GROUPS IN AN INVERSION FORMULA FOR
MULTIPLICATIVE TRANSFORMS

FRANCESCO TULONE

ABSTRACT. Denjoy and P-path Kurzweil-Henstock type integrals are defined
on compact subsets of some locally compact zero-dimensional abelian groups.
Those integrals are applied to obtain an inversion formula for the multiplicative
integral transform.

1. Introduction

In [§], an inversion formula for the multiplicative integral transform was
obtained for the case of any locally compact zero-dimensional abelian peri-
odic group. This result does not cover the case of transforms convergent to
Denjoy-Khintchine integrable functions because this integral is incompatible
with P-adic integral used in the above result (see [2]).

To overcome this difficulty, we consider here a little bit less general class of
zero-dimensional groups and another Kurzweil-Henstock type integral on them.
This gives us an opportunity to get an inversion formula for the multiplicative
integral transform convergent to a Denjoy-Khintchine integrable function in the
case of a class of groups considered here.

This problem is a generalization of that of recovering the coefficients of a con-
vergent series with respect to characters of a compact zero dimensional abelian
group which was considered in [7]. A similar problem related to some special
groups was considered in [6].
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2. Preliminaries

Let G be a zero-dimensional locally compact abelian periodic group which
satisfies the second countability axiom. We can introduce (see [I]) a topology in
such a group using a chain of subgroups

.D0G_;,D...0G9D2G_ 100G >G1DGD...0G,D...

with G = U™ G, and {0} = Nt __G,. The subgroups G,, are clopen sets
with respect to this topology. As G is periodic, the factor group G, /Gp41 is
finite for each n and this implies that G,, is compact. Let p,41 be an order of
Gn/Gpnt1 if n > 0 and p_,, an order of G_,,/G_, 41 if n > 1. We can suppose

that all p,, are prime numbers. So, the group G defines a sequence

P ={pi};- ]*—oo, 30 * (1)

We also consider the reverse sequence
=P}, r0 (2)
where p}; = p_; for j € Z\{0}. Moreover, we set mo = 1, m; = gzlps,

m_] = Hsf_]_ pS
We remind that a complex function y on a locally compact abelian group G
is called a character of G if |x(g)| =1 for all z € G and if a functional equation

x(g1 + g2) = x(g1) + x(92)

is satisfied for all g1,g2 € G. The set of all continuous characters of G forms
a group X, the dual group of G, if the addition is defined by

(x1 +x2)(9) = x1(9) - x2(9),

where z € G and x1, x2 € X. In view of the duality between G and X, see ([10]),
it is customary to write (g, x) in place of x(g).

In what follows, X will denote the dual group of the group G described above.
It is known (see [I]) that under the assumption imposed on G the group X is also
a periodic locally compact zero-dimensional abelian group and we can represent
it to be a sum of increasing sequence of subgroups:

DX, D ... XD X1 DX DX 10X 9D...DX ,D... (3)
introducing a topology in X. Then, X = Uf>_X; and Ny >®°_X; = {x©}

where (g, X(O)) = 1forall g € G. For each n € Z, the group X, is the annihilator
of G, i.e.,

X, =Gy = {(xeX:(g,x)=1 forall g€ G,}.
The factor groups X, 4+1/X, = Gy, 1/G; and G,,/G,,+1 are isomorphic (see [1]).
So, the order of X,,+1/X,, i8 pp41 if n > 0 and p, if n < —1.
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It can be shown (see [§]) that any element g € G can be represented in the

form

g9=1lgl+{g} (4)
and any element y € X in the form

x=N-{x} (5)

in such a way that the following properties hold:
1) {9} € Go and {x} € Xo = Gp. So, ({¢9}.{x}) =1, and

(9:x) = ({g}, X)) - (I, D) - (Ig], {x})- (6)

2) [x] € Gy for some m = m(x) € IN and [x]\g, is a character of the
subgroup Gy.

3) ([g],[x]) is constant if g belongs to a fixed coset of G and x belongs to
a fixed coset of Xj.

Using the duality between G and X, we can state that g represents a character
of X and similarly to property 2), [g]\x, is a character of Xo. So, ([g], {x}) is
a value of this character at the point {x}.

Therefore, according to [B]), if g belongs to a fixed coset of Gy and x belongs
to a fixed coset of Xy, we can represent (g, x), up to a constant ([g], [x]), as
a product of ({g},[x]) considered as a value of the character [x] at {g}, and
([g], {x}) considered as a value of the character [g] at {x}.

It is also shown (see [8]) that we can map the groups G and X to the interval
[0, 4+00) by mappings

plg) = v = {z} +[z] (7)

and
U(x) = o'= {a'}+ [2'], (8)
where {a} is the fractional part of a and [a] the integer part of a. Moreover,
the preimage of [z], under the mapping ¢, is [g] and the one of {x} is {g}. This
explains the notation in (). In the same way, ¢ ([x]) = [2/] and ¥ ({x}) = {='}.

In this way, the subgroup G,,n > 0, is mapped onto the interval [0, min] and
the respective cosets are mapped onto intervals I,’f = [mi, %] with k =0,1,...
We denote these cosets by G¥ with G = G,,. In particular, for n = 0 we map
Go onto [0, 1] and respective cosets onto intervals [k, k + 1]. In case n < 0, the
group G, is mapped onto interval [0, m,,] and respective cosets Gfl are mapped
onto intervals [km,,, (k+1)m,]. We call all the above mentioned images of cosets
the P-adic intervals. If n is fixed, we refer to I* as to intervals of a rank n. The
set of all P-adic intervals is denoted by Zp.

In a similar way, we can define P’-adic intervals associated with the group X
and the sequence P’ (see (2))). They are images, under mapping (&), of the
respective cosets of the subgroup X,, denoted by X;.
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Note that the mappings (7)) and (8) are one-one correspondences between the
interval [0, +00) and the groups G and X, respectively, up to a countable number
of P-adic (P’-adic) rational points, i.e., points mik (or mik) witht,k=0,1,2,...
Such a point x has two preimages corresponding to the finite and to the infinite
expansion of x, respectively. We denote by Qp the set of all P-adic rational
points and by Qp: the set of all P’-adic rational points. We agree to use only
finite expansions for P-adic (and P’-adic) rational points so that the inverse
mappings ¢~ and ¢! make sense on [0, 00).

We consider the Haar measure g on the group G and we normalize it so
that pg(Go) = 1. Then the measure of any coset Gfi of GG,, coincides with the
length of the P-adic interval which is the image of G¥ i.e.,

1

pa(GEY = — it n>0 and pa(GEY=m, if n<o.

In the same way, we introduce the measure px on X so that pux(Xp) = 1 and
1
pux(X;)=— if n<0 and ux (X)) =m, if n>0.
mMn

Note that, under the above mentioned mappings ¢ and ¥, the image of each
set of Haar measure zero on the group is a set of Lebesgue measure zero on
[0, +00).

We denote by R¢ the ring generated by the family of all cosets G¥, n € Z,

k=0,1,2,..., and by Rp the ring generated by Zp. Note that for each g € G

there exists a decreasing sequence {Gﬁ(") }n of cosets such that g € ﬂnGﬁ(n).

3. P-path Kurzweil-Henstock integral and
Denjoy-Khintchine integral on the group G

Now, we introduce a Henstock-Kurzweil type integral with respect to the
system of P-paths and also Denjoy-Khintchine integral on compact subgroups
of the considered group G and X.

With each P-adic irrational point z € [0, 00), i.e., a point = € [0,00) \ Qp, we
associate a unique nested sequence

{e(ct)} = () ={lan@nn@l) )

of P-adic intervals converging to x so that

(o]

{z} = () [an(2), ba(2)].

n=0
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If = is a P-adic rational point, then there exist two nested sequences (@) — the
left one and the right one — for which z, starting with some 7, is the common
end-point.

Using the notation given by (), we define for a P-adic irrational point z, the
sequences P, = {an(z)} and P = {b,(z)}. If z is a P-adic rational point,
we use the same notation P; and P, for sequences with a,(z) being the left
end-point of interval of rank n of the above mentioned left nested sequence
associated with z, and b, (x) being the right end-point of interval of rank n of
the right nested sequence.

DEFINITION 3.1. The set P, = P;f |UP, U{x} is called the P-path leading to x.
If E € Rp, the collection {P,, : x € E} is called the system of P-paths on E.

The continuity and the derivative at a point x with respect to the set P,
are called P-path continuity and P-path derivative. In the same way, we define
P-path upper and lower derivatives.

DEFINITION 3.2. Let ¢ be a positive function defined on F € Rp. A collection
of interval-point pairs {([uj, v;], xj)}le is called J-fine P-partition of E if the
intervals [u;,v;] are non-overlapping, E = U%_, [u;,v;] and for each j we have
uj,vj € Py, uj < x; <wvj and max{v; — xj,x; —u;} < 0(z;).

It is not difficult to check that for any E € Rp, any system of P-paths on F,

and for any positive function § defined on E there exists a d-fine P-partition
of E.

DEFINITION 3.3. A complex valued function f on E € Rp is said to be
Kurzweil-Henstock integrable with respect to the system of P-paths or, in brief,
Hp-integrable on E, with integral value A, if for every € > 0, there exists a pos-
itive function é on E such that for any d-fine P-partition of E we have

k
S fa) vy —uy) — A <.
j=1

Then we write (Hp) [, f = A.

It is easy to check that a function which is equal to zero almost everywhere
on F € Rp, is Hp-integrable to zero on E. This justifies the following extension
of Definition B3] to the case of functions defined only almost everywhere on E
(for short, a.e.).

DEFINITION 3.4. A complex valued function f defined a.e. on E € Rp is said
to be Hp-integrable on E with integral value A if the function

fula) = {f(x), where f is defined,

0, otherwise,
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is Hp-integrable on E to A in the sense of Definition 3.3l

We can use this definition to introduce the respective Hg-integral on certain
subsets of the considered group G.

DEFINITION 3.5. Let E € Rp be the image of T' € R under the mapping ¢
(see (). Then a complex-valued function f defined almost everywhere on T
is Hg-integrable on T, with the value A, if the function F(z) = f(¢~'(z)) is
Hp-integrable on E with the value A in the sense of Definition B.4] and we write
(HG) fT fdue = A.

Remark 3.1. We note that the above definition depends on the sequence P
defined by the group G. So, if we consider a similar definition of the H x-integral
on a subset of the group X, then we should use a sequence P’ defined by X and
the respective Hp-integral.

Now, we shall give a definition of Denjoy-Khintchine integral on compact
subgroups of a locally compact group.

DEFINITION 3.6. A real function ® defined on [a,b] is an ACG-function if
[a,b] = U2, B; and @ is absolutely continuous on each B;.

DEFINITION 3.7. A real function f defined almost everywhere on [a, b] is Denjoy-
-Khintchine integrable on [a, b], briefly, D-integrable, if there exists an ACG func-
tion @ such that @;p = f almost everywhere, where (I):zp denotes the approximate

derivative (see [4]). The value of this integral is defined as (D) f: f=(b)—2(a).

DEFINITION 3.8. A real function f defined almost everywhere on E =U}"_4[c;, ;]
is D-integrable on E if f is D-integrable on each [«;, ;] and the value of integral
is (D) [pf =>i1(D) ff: f. In the case of a complex-valued function f, it is
D-integrable on E if both Ref and Im f are D-integrable with integrals A and B,
respectively, and the D-integral of f is A +iB.

DEFINITION 3.9. Let E € Rp be the image of T' € R under the mapping ¢
(see (M)). Then a complex-valued function f defined almost everywhere on T
is D-integrable on T, with the value A, if the function F(z) = f(¢ !(z)) is
D-integrable on E with the value A in the sense of Definition [3.8, and we write
(D) Jp fdua = A.

Remark 3.2. Tt is easy to check out that the D-integral (in the sense of the
above definition) is invariant under translation given by some “integer part” [g]
of some element g € G.

We need the following theorem (see [9]).
THEOREM 3.1. Suppose that the sequence (Il) is bounded and a function f defined
on [a,b] is both Hp-integrable and D-integrable on [a,b] . If ® is the indefinite
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Hp-integral of f and the upper and lower P-path derivatives of Re® and Im®
are bounded at each point of [a,b], except a countable set, then the values of Hp-
and D-integrals of f on [a,b] coincide.

The next result is of great importance for our further consideration. It is

a direct consequence of the above theorem, related to the real line setting, and
of Definitions and 39

THEOREM 3.2. Suppose that the sequence ([{l) is bounded and E € Rp is
the image of T € Rg under the mapping ¢ (see(d)). If a Hg-integrable on
T € Rg function f and its indefinite Hg-integral ® are such that f(gp_l(x))
and <I>(<p’1(x)) satisfy the conditions of the previous theorem, then the values of
Hg- and D-integrals of f on T coincide.

4. An inversion formula for integral transforms convergent
to a D-integrable function

Using the notations for the cosets of Xy and G introduced in Section 2, we
denote [x]\s, by hs if [x] € X§. In the same way, if [¢] € G, we denote [g]\ , by
R/ It can be easily checked that the sequence {h}22, includes all the characters
of G and {h},}72, includes all the characters of X(. This sequence {hs} having
been translated on [0, 1] using the mapping (), forms an orthonormal system
{2} on [0, 1, where €. (@) = hu (¢ (z) (sce [).

The following theorem is proved in [7].

THEOREM 4.1. Suppose that the sequence () is bounded, the series > as&s
with respect to the above system {&s} converges a.e. on [0,1] to a function f and
everywhere on [0,1] \ Qp, we have
lim sup |.S,, (z)] < 400, (10)
n—oo
where S,, = 22;01 as&s. Then f is Hp-integrable on [0,1] (in the sense of Defi-
nition B4 and Y, as&s is Hp-Fourier series of f.

We can reformulate this result in terms of the system {hs} defined on a group.

THEOREM 4.2. Let Gy be a compact abelian zero-dimensional group such that the
sequence (Il is bounded and let {hs}s be a system defined as above. If the series
o2 g ashs converges a.e. on Gy to a function f and everywhere on Go\¢ ™ (Qp)

we have
limsup |0y, (g)] < +o0, (11)

n—oo

where o, = ZZ;& ashs, then f is Hg,-integrable on Go and ) ashs is the
Fourier series of f in the sense of integral defined in Definition 3.0l
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It is known (see [7, Lemma 3.2]) that the condition (I0) implies the bound-
edness of upper and lower derivatives of Re® and Im®, where ® is an indefinite
Hp-integral of f.

Combining this with the last two theorems and with Theorem B.2], we get.

THEOREM 4.3. Let Gy and the system {hs}s be as in Theorem[L2] If the series
Z;’io ashs converges a.e. on Gy to a D-integrable function f and everywhere
on Go \ ¢~ 1(Qp) the inequality (II) holds, then > ashs is the Denjoy-Fourier
series of f (in the sense of the integral defined in Definition [3.9.

This theorem is a generalization of a similar result related to some special
case of zero-dimensional group (see [, Theorem 2]).

We also need the following theorem, which can be established using the same
arguments as in [8, Theorem 8]:

THEOREM 4.4. The partial sums o, (f,g) of the Hg-Fourier series (with re-
spect to the system of characters of Gy) of a Hg-integrable on Gy function f are
convergent to f almost everywhere on Gj.

A continuum analog of the series Z?:o ashs is the integral transform

/ a(x) (g X) dpix
X

with appropriately defined improper integral on X. So, the next theorem, which
gives an inversion formula for this transform, can be considered as a generaliza-
tion of Theorem

THEOREM 4.5. Assume that G is a group described in Section 2 such that the
sequence () is bounded, X is its dual group. Let a(x) be a locally Hx-integrable
function and

lim (Hy) / a(x)(g: ) dax = £(g) (12)

§—00
Ui—o X5
a.e. on G, where f is a D-integrable function on each T € R¢g. Moreover, let us
have everywhere on G\ ¢~ (Qp)

timsup |(Hx) [ (0o dux| < +oc (13)
S§— 00
Us_o X4

Then, the function a(x) can be recovered from f by the following inversion for-
mula:

n—o00

a(x) = lim (D) /f(g)mdug a.e.on X.
G_

n
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Proof. Suppose that g € G’g. Then, for each s = 1,2,..., we have, according

to (@),
(Hx) / a(x)(g,x) dux

- (Hy) / () ({9 1) - (fg) ) - (1), D)) e
_Z (Hx) / ) ({9}, X)) - (9], [xD) - ([9), {x}) dux (14)

S

= Y ha(taN) () [ a0 (ol W) () dus.

Now, for any g € G& for which the limit ([[2) exists, we get:

flg) = lim Zh ({9}) (Hx) / 00 (lg), [x)) i (1) . (15)

So, for such g € GE, the function f(g) is the sum of series with respect to the
system {h;} with coefficients

b = (Hx)/a(x)([gL X)) by ({x}) dpx

X6

and this series is convergent almost everywhere on GE.
In the same way, ([3) and (I5) imply, for any g € GE\ ¢~ 1(Qp)

lim sup Zhi({g})(HX)/a(X)([QL D) () dpx | < oo, (16)

S§—00

X6

Then, by Theorem 3] the coefficients b; are the Denjoy-Fourier coefficients
of the D-integrable function p(t) = f([g] +¢) on Gy, i.e.,

b = (Hx) / a(x) (9], D) B ({x}) dax = (D) / POOLTE

X6

(17)
/f {9} dug

35



FRANCESCO TULONE

(the last equality is justified by Remark B.2]). By property 3) of Section 2,
([g], [x]) is constant when g € G§ and x € X{. Hence, (I7) implies

(Hy) / (0, ({x}) dux = (D /f Wi () due. (18)

Xz

The rest of the proof follows the lines of the proof of Theorem 9 of [g].
For a fixed i, the value

(Hx)/a(x)h%({x}) dux
X

is the Fourier coeflicient in the system {h_j,g} of the H x-integrable function a(y) =
a([x]+{x}) considered as a function of {x} € X,. Therefore, Theorem L4 being
applied to the above system and the appropriate partial sums, implies

Zn / X)hi, ({x}) dpx - by, ({x}) — alx) a.e.on X_.

Then, using (I8) and (@), we get

Tim i,(Hx)/a(x)h%({X}) dux - 1 ({x})
k=0 Xi
= lim Zﬂ/(D)/f(g)([gL X)) hi({g}) de - b ({x3)
k=0 Gk
= lim Zﬂ/(D)/f( Vhi({g}) i, ({x}) ([9), [X]) dpe
k=0

— lim ( /f Y({oh ) (19], 0 (19 ) do

= hm /f (9, %) dua = a(x) a.e.on X{.

The last equality is true for any 7. Therefore, we can write

lim ( / f(9)(g,x)duc = a(x) a.e.on X.
TL*)OO
This completes the proof. O
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Remark 4.1. As both D-integral and H x-integral obviously include the Le-
besgue integral, the last theorem can be formulated, in particular, for functions
a and f being locally Lebesgue integrable on the groups X and G, respectively.
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