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DENJOY AND P-PATH INTEGRALS ON COMPACT

GROUPS IN AN INVERSION FORMULA FOR

MULTIPLICATIVE TRANSFORMS

Francesco Tulone

ABSTRACT. Denjoy and P-path Kurzweil-Henstock type integrals are defined
on compact subsets of some locally compact zero-dimensional abelian groups.
Those integrals are applied to obtain an inversion formula for the multiplicative
integral transform.

1. Introduction

In [8], an inversion formula for the multiplicative integral transform was
obtained for the case of any locally compact zero-dimensional abelian peri-
odic group. This result does not cover the case of transforms convergent to
Denjoy-Khintchine integrable functions because this integral is incompatible
with P-adic integral used in the above result (see [2]).

To overcome this difficulty, we consider here a little bit less general class of
zero-dimensional groups and another Kurzweil-Henstock type integral on them.
This gives us an opportunity to get an inversion formula for the multiplicative
integral transform convergent to a Denjoy-Khintchine integrable function in the
case of a class of groups considered here.

This problem is a generalization of that of recovering the coefficients of a con-
vergent series with respect to characters of a compact zero dimensional abelian
group which was considered in [7]. A similar problem related to some special
groups was considered in [6].
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2. Preliminaries

Let G be a zero-dimensional locally compact abelian periodic group which
satisfies the second countability axiom. We can introduce (see [1]) a topology in
such a group using a chain of subgroups

. . . ⊃ G−n ⊃ . . . ⊃ G−2 ⊃ G−1 ⊃ G0 ⊃ G1 ⊃ G2 ⊃ . . . ⊃ Gn ⊃ . . .

with G = ∪+∞
n=−∞Gn and {0} = ∩+∞

n=−∞Gn. The subgroups Gn are clopen sets
with respect to this topology. As G is periodic, the factor group Gn/Gn+1 is
finite for each n and this implies that Gn is compact. Let pn+1 be an order of
Gn/Gn+1 if n ≥ 0 and p−n an order of G−n/G−n+1 if n ≥ 1. We can suppose
that all pn are prime numbers. So, the group G defines a sequence

P = {pj}+∞
j=−∞ , j �=0 . (1)

We also consider the reverse sequence

P ′ = {p′j}+∞
j=−∞ , j �=0 , (2)

where p′j = p−j for j ∈ Z\{0}. Moreover, we set m0 = 1, mj =
∏j

s=1 ps,

m−j =
∏−j

s=−1 ps.

We remind that a complex function χ on a locally compact abelian group G
is called a character of G if |χ(g)| = 1 for all x ∈ G and if a functional equation

χ(g1 + g2) = χ(g1) + χ(g2)

is satisfied for all g1, g2 ∈ G. The set of all continuous characters of G forms
a group X, the dual group of G, if the addition is defined by

(χ1 + χ2)(g) = χ1(g) · χ2(g),

where x ∈ G and χ1, χ2 ∈ X. In view of the duality between G and X, see ([10]),
it is customary to write (g, χ) in place of χ(g).

In what follows, X will denote the dual group of the group G described above.
It is known (see [1]) that under the assumption imposed on G the groupX is also
a periodic locally compact zero-dimensional abelian group and we can represent
it to be a sum of increasing sequence of subgroups:

. . . ⊃ Xn ⊃ . . . ⊃ X2 ⊃ X1 ⊃ X0 ⊃ X−1 ⊃ X−2 ⊃ . . . ⊃ X−n ⊃ . . . (3)

introducing a topology in X. Then, X = ∪+∞
i=−∞Xi and ∩+∞

i=−∞Xi = {χ(0)}
where

(
g, χ(0)

)
= 1 for all g ∈ G. For each n ∈ Z, the group Xn is the annihilator

of Gn, i.e.,

Xn = G⊥
n =

{
χ ∈ X : (g, χ) = 1 for all g ∈ Gn

}
.

The factor groups Xn+1/Xn = G⊥
n+1/G

⊥
n and Gn/Gn+1 are isomorphic (see [1]).

So, the order of Xn+1/Xn is pn+1 if n ≥ 0 and pn if n ≤ −1.
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It can be shown (see [8]) that any element g ∈ G can be represented in the
form

g = [g] + {g} (4)

and any element χ ∈ X in the form

χ = [χ] · {χ} (5)

in such a way that the following properties hold:

1) {g} ∈ G0 and {χ} ∈ X0 = G⊥
0 . So,

({g}, {χ}) = 1, and

(g, χ) =
({g}, [χ]) · ([g], [χ]) · ([g], {χ}). (6)

2) [χ] ∈ G⊥
m for some m = m(χ) ∈ IN and [χ]\G0

is a character of the
subgroup G0.

3)
(
[g], [χ]

)
is constant if g belongs to a fixed coset of G0 and χ belongs to

a fixed coset of X0.

Using the duality between G and X, we can state that g represents a character
of X and similarly to property 2), [g]\X0

is a character of X0. So,
(
[g], {χ}) is

a value of this character at the point {χ}.
Therefore, according to 6), if g belongs to a fixed coset of G0 and χ belongs

to a fixed coset of X0, we can represent (g, χ), up to a constant
(
[g], [χ]

)
, as

a product of
({g}, [χ]) considered as a value of the character [χ] at {g}, and(

[g], {χ}) considered as a value of the character [g] at {χ}.
It is also shown (see [8]) that we can map the groups G and X to the interval

[0,+∞) by mappings

ϕ(g) = x = {x} + [x] (7)

and

ψ(χ) = x′= {x′}+ [x′], (8)

where {a} is the fractional part of a and [a] the integer part of a. Moreover,
the preimage of [x], under the mapping ϕ, is [g] and the one of {x} is {g}. This
explains the notation in (4). In the same way, ψ

(
[χ]

)
= [x′] and ψ

({χ}) = {x′}.
In this way, the subgroup Gn, n ≥ 0, is mapped onto the interval

[
0, 1

mn

]
and

the respective cosets are mapped onto intervals Ikn =
[

k
mn

, k+1
mn

]
with k = 0, 1, . . .

We denote these cosets by Gk
n with G0

n = Gn. In particular, for n = 0 we map
G0 onto [0, 1] and respective cosets onto intervals [k, k + 1]. In case n < 0, the
group Gn is mapped onto interval [0,mn] and respective cosets Gk

n are mapped
onto intervals [kmn, (k+1)mn]. We call all the above mentioned images of cosets
the P-adic intervals. If n is fixed, we refer to Ikn as to intervals of a rank n. The
set of all P-adic intervals is denoted by IP .

In a similar way, we can define P ′-adic intervals associated with the group X
and the sequence P ′ (see (2)). They are images, under mapping (8), of the
respective cosets of the subgroup Xn denoted by Xs

n.
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Note that the mappings (7) and (8) are one-one correspondences between the
interval [0,+∞) and the groups G andX, respectively, up to a countable number
of P-adic (P ′-adic) rational points, i.e., points t

mk
(or t

m−k
) with t, k = 0, 1, 2, . . .

Such a point x has two preimages corresponding to the finite and to the infinite
expansion of x, respectively. We denote by QP the set of all P-adic rational
points and by QP′ the set of all P ′-adic rational points. We agree to use only
finite expansions for P-adic (and P ′-adic) rational points so that the inverse
mappings ϕ−1 and ψ−1 make sense on [0,∞).

We consider the Haar measure μG on the group G and we normalize it so
that μG(G0) = 1. Then the measure of any coset Gk

n of Gn coincides with the
length of the P-adic interval which is the image of Gk

n, i.e.,

μG(G
k
n) =

1

mn
if n ≥ 0 and μG(G

k
n) = mn if n < 0.

In the same way, we introduce the measure μX on X so that μX(X0) = 1 and

μX(Xs
n) =

1

mn
if n ≤ 0 and μX(Xs

n) = mn if n > 0.

Note that, under the above mentioned mappings ϕ and ψ, the image of each
set of Haar measure zero on the group is a set of Lebesgue measure zero on
[0,+∞).

We denote by RG the ring generated by the family of all cosets Gk
n, n ∈ Z,

k = 0, 1, 2, . . . , and by RP the ring generated by IP . Note that for each g ∈ G

there exists a decreasing sequence
{
G

k(n)
n

}
n
of cosets such that g ∈ ∩nG

k(n)
n .

3. P-path Kurzweil-Henstock integral and
Denjoy-Khintchine integral on the group G

Now, we introduce a Henstock-Kurzweil type integral with respect to the
system of P-paths and also Denjoy-Khintchine integral on compact subgroups
of the considered group G and X.

With each P-adic irrational point x ∈ [0,∞), i.e., a point x ∈ [0,∞) \QP , we
associate a unique nested sequence{

ϕ
(
Gk(n)

n

)}
n

=
{
Ik(n)n

}
=

{[
an(x), bn(x)

]}∞
n=0

(9)

of P-adic intervals converging to x so that

{x} =

∞⋂
n=0

[
an(x), bn(x)

]
.
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If x is a P-adic rational point, then there exist two nested sequences (9) — the
left one and the right one — for which x, starting with some n, is the common
end-point.

Using the notation given by (9), we define for a P-adic irrational point x, the
sequences P−

x =
{
an(x)

}
and P+

x =
{
bn(x)

}
. If x is a P-adic rational point,

we use the same notation P+
x and P−

x for sequences with an(x) being the left
end-point of interval of rank n of the above mentioned left nested sequence
associated with x, and bn(x) being the right end-point of interval of rank n of
the right nested sequence.

���������� 3.1� The set Px = P+
x

⋃P−
x

⋃{x} is called the P-path leading to x.
If E ∈ RP , the collection {Px : x ∈ E} is called the system of P-paths on E.

The continuity and the derivative at a point x with respect to the set Px

are called P-path continuity and P-path derivative. In the same way, we define
P-path upper and lower derivatives.

���������� 3.2� Let δ be a positive function defined on E ∈ RP . A collection

of interval-point pairs
{
([uj, vj ], xj)

}k

j=1
is called δ-fine P-partition of E if the

intervals [uj , vj ] are non-overlapping, E = ∪k
j=1[uj , vj] and for each j we have

uj , vj ∈ Px, uj ≤ xj ≤ vj and max{vj − xj , xj − uj} < δ(xj).

It is not difficult to check that for any E ∈ RP , any system of P-paths on E,
and for any positive function δ defined on E there exists a δ-fine P-partition
of E.

���������� 3.3� A complex valued function f on E ∈ RP is said to be
Kurzweil-Henstock integrable with respect to the system of P-paths or, in brief,
HP -integrable on E, with integral value A, if for every ε > 0, there exists a pos-
itive function δ on E such that for any δ-fine P-partition of E we have∣∣∣∣∣∣

k∑
j=1

f(xj)(vj − uj)−A

∣∣∣∣∣∣ < ε.

Then we write (HP)
∫
E
f = A.

It is easy to check that a function which is equal to zero almost everywhere
on E ∈ RP , is HP -integrable to zero on E. This justifies the following extension
of Definition 3.3 to the case of functions defined only almost everywhere on E
(for short, a.e.).

���������� 3.4� A complex valued function f defined a.e. on E ∈ RP is said
to be HP -integrable on E with integral value A if the function

f1(x) =

{
f(x), where f is defined,

0, otherwise,
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is HP -integrable on E to A in the sense of Definition 3.3.

We can use this definition to introduce the respective HG-integral on certain
subsets of the considered group G.

���������� 3.5� Let E ∈ RP be the image of T ∈ RG under the mapping ϕ
(see (7)). Then a complex-valued function f defined almost everywhere on T
is HG-integrable on T , with the value A, if the function F (x) = f

(
ϕ−1(x)

)
is

HP -integrable on E with the value A in the sense of Definition 3.4, and we write
(HG)

∫
T
fdμG = A.

Remark 3.1� We note that the above definition depends on the sequence P
defined by the group G. So, if we consider a similar definition of the HX -integral
on a subset of the group X, then we should use a sequence P ′ defined by X and
the respective HP′ -integral.

Now, we shall give a definition of Denjoy-Khintchine integral on compact
subgroups of a locally compact group.

���������� 3.6� A real function Φ defined on [a, b] is an ACG-function if
[a, b] = ∪∞

i=1Bi and Φ is absolutely continuous on each Bi.

���������� 3.7� A real function f defined almost everywhere on [a, b] is Denjoy-
-Khintchine integrable on [a, b], briefly, D-integrable, if there exists an ACG func-
tion Φ such that Φ′

ap = f almost everywhere, where Φ′
ap denotes the approximate

derivative (see [4]). The value of this integral is defined as (D)
∫ b

a
f = Φ(b)−Φ(a).

���������� 3.8� A real function f defined almost everywhere on E =∪n
i=1[αi, βi]

is D-integrable on E if f is D-integrable on each [αi, βi] and the value of integral

is (D)
∫
E
f =

∑n
i=1(D)

∫ βi

αi
f . In the case of a complex-valued function f , it is

D-integrable on E if both Ref and Imf are D-integrable with integrals A and B,
respectively, and the D-integral of f is A+ iB.

���������� 3.9� Let E ∈ RP be the image of T ∈ RG under the mapping ϕ
(see (7)). Then a complex-valued function f defined almost everywhere on T
is D-integrable on T , with the value A, if the function F (x) = f

(
ϕ−1(x)

)
is

D-integrable on E with the value A in the sense of Definition 3.8, and we write
(D)

∫
T
fdμG = A.

Remark 3.2� It is easy to check out that the D-integral (in the sense of the
above definition) is invariant under translation given by some “integer part” [g]
of some element g ∈ G.

We need the following theorem (see [9]).

	
����� 3.1� Suppose that the sequence (1) is bounded and a function f defined
on [a, b] is both HP -integrable and D-integrable on [a, b] . If Φ is the indefinite
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HP -integral of f and the upper and lower P-path derivatives of ReΦ and ImΦ
are bounded at each point of [a, b], except a countable set, then the values of HP -
and D-integrals of f on [a, b] coincide.

The next result is of great importance for our further consideration. It is
a direct consequence of the above theorem, related to the real line setting, and
of Definitions 3.5 and 3.9.

	
����� 3.2� Suppose that the sequence (1) is bounded and E ∈ RP is
the image of T ∈ RG under the mapping ϕ (see(7)). If a HG-integrable on
T ∈ RG function f and its indefinite HG-integral Φ are such that f

(
ϕ−1(x)

)
and Φ

(
ϕ−1(x)

)
satisfy the conditions of the previous theorem, then the values of

HG- and D-integrals of f on T coincide.

4. An inversion formula for integral transforms convergent
to a D-integrable function

Using the notations for the cosets of X0 and G0 introduced in Section 2, we
denote [χ]\

G0
by hs if [χ] ∈ Xs

0 . In the same way, if [g] ∈ Gk
0 , we denote [g]\X0

by

h′k. It can be easily checked that the sequence {hs}∞s=0 includes all the characters
of G0 and {h′k}∞k=0 includes all the characters of X0. This sequence {hs} having
been translated on [0, 1] using the mapping (7), forms an orthonormal system
{ξs} on [0, 1], where ξs(x) = hs

(
ϕ−1(x)

)
(see [1]).

The following theorem is proved in [7].

	
����� 4.1� Suppose that the sequence (1) is bounded, the series
∑
asξs

with respect to the above system {ξs} converges a.e. on [0, 1] to a function f and
everywhere on [0, 1] \QP , we have

lim sup
n→∞

|Sn(x)| < +∞, (10)

where Sn =
∑n−1

s=0 asξs. Then f is HP -integrable on [0, 1] (in the sense of Defi-

nition 3.4 and
∑
asξs is HP -Fourier series of f .

We can reformulate this result in terms of the system {hs} defined on a group.

	
����� 4.2� Let G0 be a compact abelian zero-dimensional group such that the
sequence (1) is bounded and let {hs}s be a system defined as above. If the series∑∞

s=0 ashs converges a.e. on G0 to a function f and everywhere on G0\ϕ−1(QP)
we have

lim sup
n→∞

|σn(g)| < +∞, (11)

where σn =
∑n−1

s=0 ashs, then f is HG0
-integrable on G0 and

∑
ashs is the

Fourier series of f in the sense of integral defined in Definition 3.5.
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It is known (see [7, Lemma 3.2]) that the condition (10) implies the bound-
edness of upper and lower derivatives of ReΦ and ImΦ, where Φ is an indefinite
HP -integral of f .

Combining this with the last two theorems and with Theorem 3.2, we get.

	
����� 4.3� Let G0 and the system {hs}s be as in Theorem 4.2 If the series∑∞
s=0 ashs converges a.e. on G0 to a D-integrable function f and everywhere

on G0 \ ϕ−1(QP) the inequality (11) holds, then
∑
ashs is the Denjoy-Fourier

series of f (in the sense of the integral defined in Definition 3.9.

This theorem is a generalization of a similar result related to some special
case of zero-dimensional group (see [5, Theorem 2]).

We also need the following theorem, which can be established using the same
arguments as in [8, Theorem 8]:

	
����� 4.4� The partial sums σmn
(f, g) of the HG-Fourier series (with re-

spect to the system of characters of G0) of a HG-integrable on G0 function f are
convergent to f almost everywhere on G0.

A continuum analog of the series
∑∞

s=0 ashs is the integral transform∫
X

a(χ)(g, χ) dμX

with appropriately defined improper integral on X. So, the next theorem, which
gives an inversion formula for this transform, can be considered as a generaliza-
tion of Theorem 4.3.

	
����� 4.5� Assume that G is a group described in Section 2 such that the
sequence (1) is bounded, X is its dual group. Let a(χ) be a locally HX-integrable
function and

lim
s→∞(HX)

∫
∪s

i=0X
i
0

a(χ)(g, χ) dμX = f(g) (12)

a.e. on G, where f is a D-integrable function on each T ∈ RG. Moreover, let us
have everywhere on G \ ϕ−1(QP)

lim sup
s→∞

∣∣∣∣∣∣∣(HX)

∫
∪s

i=0X
i
0

a(χ)(g, χ) dμX

∣∣∣∣∣∣∣ < +∞. (13)

Then, the function a(x) can be recovered from f by the following inversion for-
mula:

a(χ) = lim
n→∞

(D)

∫
G−n

f(g)(g, χ) dμG a.e. on X.
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P r o o f. Suppose that g ∈ Gk
0 . Then, for each s = 1, 2, . . . , we have, according

to (6),

(HX)

∫
∪s

i=0X
i
0

a(χ)(g, χ) dμX

= (HX)

∫
∪s

i=0X
i
0

a(χ)
({g}, [χ]) · ([g], [χ]) · ([g], {χ})dμX

=

s∑
i=0

(HX)

∫
Xi

0

a(χ)
({g}, [χ]) · ([g], [χ]) · ([g], {χ})dμX (14)

=

s∑
i=0

hi
({g})(HX)

∫
Xi

0

a(χ)
(
[g], [χ]

)
h′k

({χ})dμX .

Now, for any g ∈ Gk
0 for which the limit (12) exists, we get:

f(g) = lim
s→∞

s∑
i=0

hi
({g})(HX)

∫
Xi

0

a(χ)
(
[g], [χ]

)
h′k

({χ})dμX . (15)

So, for such g ∈ Gk
0 , the function f(g) is the sum of series with respect to the

system {hi} with coefficients

bi = (HX)

∫
Xi

0

a(χ)
(
[g], [χ]

)
h′k

({χ})dμX

and this series is convergent almost everywhere on Gk
0 .

In the same way, (13) and (15) imply, for any g ∈ Gk
0 \ ϕ−1(QP)

lim sup
s→∞

∣∣∣∣∣∣∣
s∑

i=0

hi
({g})(HX)

∫
Xi

0

a(χ)
(
[g], [χ]

)
h′k

({χ})dμX

∣∣∣∣∣∣∣ <∞. (16)

Then, by Theorem 4.3, the coefficients bi are the Denjoy-Fourier coefficients
of the D-integrable function p(t) = f

(
[g] + t

)
on G0, i.e.,

bi = (HX)

∫
Xi

0

a(χ)
(
[g], [χ]

)
h′k

({χ})dμX = (D)

∫
G0

p(t)hi(t) dμG

(17)

= (D)

∫
Gk

0

f(g)hi
({g})dμG
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(the last equality is justified by Remark 3.2). By property 3) of Section 2,(
[g], [χ]

)
is constant when g ∈ Gk

0 and χ ∈ Xi
0. Hence, (17) implies

(HX)

∫
Xi

0

a(χ)h′k
({χ})dμX = (D)

∫
Gk

0

f(g)
(
[g], [χ]

)
hi
({g})dμG. (18)

The rest of the proof follows the lines of the proof of Theorem 9 of [8].

For a fixed i, the value

(HX)

∫
Xi

0

a(χ)h′k
({χ})dμX

is the Fourier coefficient in the system {h′k} of theHX -integrable function a(χ) =

a
(
[χ]+{χ}) considered as a function of {χ} ∈ X0. Therefore, Theorem 4.4 being

applied to the above system and the appropriate partial sums, implies
m−n∑
k=0

(HX)

∫
Xi

0

a(χ)h′k
({χ})dμX · h′k

({χ}) → a(χ) a. e. on Xi
0.

Then, using (18) and (6), we get

lim
n→∞

m−n∑
k=0

(HX)

∫
Xi

0

a(χ)h′k
({χ})dμX · h′k

({χ})

= lim
n→∞

m−n∑
k=0

(D)

∫
Gk

0

f(g)
(
[g], [χ]

)
hi
({g})dμG · h′k

({χ})

= lim
n→∞

m−n∑
k=0

(D)

∫
Gk

0

f(g)hi
({g})h′k({χ})([g], [χ])dμG

= lim
n→∞

(D)

∫
∪m−n

k=0 Gk
0

f(g)
({g}, [χ])([g], {χ})([g], [χ]) dμG

= lim
n→∞

(D)

∫
G−n

f(g)(g, χ) dμG = a(χ) a. e. on Xi
0.

The last equality is true for any i. Therefore, we can write

lim
n→∞

(D)

∫
G−n

f(g)(g, χ) dμG = a(χ) a. e. on X.

This completes the proof. �
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Remark 4.1� As both D-integral and HX -integral obviously include the Le-
besgue integral, the last theorem can be formulated, in particular, for functions
a and f being locally Lebesgue integrable on the groups X and G, respectively.
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