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ABSTRACT

The ontogeny of dopamine-mediated motor systems has 

not been thoroughly investigated in young animals. It has 

generally been shown that preweanling and adult rats 

respond similarly to dopaminergic compounds; however, some 

behaviors vary across ontogeny due to maturational changes 

in dopamine systems. N-ethoxycarbonyl-2-ethoxy-l, 

2-dihydroquinoline (EEDQ) , an irreversible receptor 

antagonist, has been used to study the ontogeny of 

dopamine receptor functioning. Systemic administration of. 

EEDQ attenuates dopamine agonist-induced behaviors of 

adult rats, while leaving the behaviors of young rats 

■unaffected. The purpose of this thesis was to:

a) investigate' the effects of intrastriatally administered 

EEDQ on NPA-induced locomotor activity in preweanling and 

adults rats; b) determine which dopamine receptor subtype 

' (Dl- or D2-like) is responsible for modulating EEDQ's 

paradoxical behavioral effects in preweanling rats; and 

c) examine the magnitude of EEDQ-induced Dl- and D2-like 

receptor inactivation in both adult and preweanling rats. 

In Experiment 1, EEDQ or DMSO were bilaterally infused 

into the dorsal striatum on PD 84. After 24 hr, rats were 

given bilateral microinjections of the full dopamine 

agonist R (--■)-propylnorapomorphine (NPA) or distilled water 



and locomotor activity was assessed for 40 min. In 

Experiments 2 and 3, preweanling rats (PD 17) were treated 

in the same manner as adults, with the exception that Dl- 

and D2-like receptors (either alone or in combination) 

were protected from EEDQ-induced alkylation by pretreating 

rats with a Dl- and/or D2-like receptor antagonist. As 

expected, infusing EEDQ into the dorsal striatum 

attenuated the NPA-induced locomotor activity of adult 

rats. Conversely, preweanling rats given bilateral EEDQ 

infusions on PD 17 exhibited a potentiated locomotor 

response when treated with NPA. Experiments 2 and 3 showed 

that dopamine receptor inactivation was responsible for 

the exaggerated locomotor response to NPA. Specifically, 

NPA-induced locomotor potentiation was not evident if both 

DI- and D2-like receptors were protected from EEDQ-induced 

receptor alkylation. In Experiments 4 and 5, homogenate 

ligand binging and autoradiography assays showed that EEDQ 

significantly reduced DI- and D2-like receptor levels in 

both preweanling and adult rats. A plausible explanation 

for these results is that a receptor reserve, or the lack 

thereof, may account for the qualitatively different 

patterns of NPA-induced locomotor activity exhibited by 

EEDQ-treated preweanling and adult rats. Alternatively, 

the potentiated locomotor response exhibited by

iv



preweanling rats may be caused by receptor 

supersensitivity resulting from EEDQ treatment. It is 

possible that adult rats do not show potentiated locomotor 

activity because EEDQ does not produce a similar change in 

receptor dynamics.
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CHAPTER ONE

BASAL GANGLIA 

Introduction

The basal ganglia is important for the initiation of 

motor movements and responses, although it is also 

implicated in drug-seeking behavior as well as cognition, 

emotion, and memory (Alcaro, Huber, & Panksepp, 2007; 

Brown, Schneider, & Lidsky, 1997; Cardinal, Parkinson, 

Hall, & Everitt, 2002; Nicola, Surmeier & Malenka, 2000; 

Phillips & Carr, 1987; Schultz, 1994; White, 1997; White & 

Salinas, 2003). The basal ganglia is involved in various 

aspects of motor control including the initiation and 

execution of movements (Denny-Brown & Yanagisawa, 1976; 

Evarts, Teravainen, & Caine, 1981; Flowers, 1976), 

sequencing of movements (Schwab, Chafetz, & Walker, 1954), 

automatic execution of routine movements (Marsden & Obeso, 

1994), and inhibition of competing motor programs (Mink, 

1996). In terms of motor control, the basal ganglia is 

composed of several interconnected nuclei located in the 

telencephalon, diencephalon, and midbrain (Hauber, 1998). 

Structures that comprise the basal ganglia include the 

striatum, globus pallidus, subthalamic nucleus, 

entopeduncular nucleus, and substantia nigra (Figure 1).
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Basal Ganglia

GAGAFigure 1. The Circuitry of the Basal Ganglia. GABAergic Fibers Descend from the Dorsal Striatum and Project to the Substantia.Nigra pars Reticulata and Entopeduncular Nucleus via the Direct (striatonigral) Pathway and to the Globus Pallidus and, Subsequently, to the Substantia Nigra pars Reticulata and Entopeduncular Nucleus by way of the Subthalamic Nucleus via the Indirect (striatopallidal and striatoentopeduncular) Pathway. GP, globuspallidus; SU, subthalamic nucleus; EN, entopeduncular nucleus; SNPR, substantianigra pars reticulata, SNPC, substantianigra pars compacta; DA, dopamine; GLU, glutamate; SP, substance P; Ach, acetylcholine. Adapted and modified from Charntikov (2009).
Charntikov, S. (2009) Role of dorsostriatal DI and 02 

receptors in in modulating the kappa opiood-mediated 
locomotor activity of preweanling rats:, importance of 
synergistic activation (Unpublished master's thesis). Available from California State Universty, San Bernaridino.
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Two notable neurodegenerative diseases that arise from 

'basal ganglia _dysfunction are Parkinson's disease and 

Huntington's chorea (Albin, Young, & Penney, 1989).

Overview of Basal Ganglia Circuitry

The striatum is the major input structure of the 

basal ganglia. It receives afferents from the entire 

cerebral cortex and relays these signals to the 

entopeduncular nucleus and substantia nigra pars 

reticulata (i.e., the two major output nuclei of the basal 

ganglia) via the direct and indirect pathways (Hauber, 

1998). The globus pallidus and subthalamic nucleus 

(integral parts of the indirect pathway) process and 

transfer signals from input structures to output 

structures (Carter & Fibiger, 1978; DeVito & Anderson, 

1982). Efferents from output structures project to motor 

nuclei of the brainstem and to motor association cortex 

via the thalamus (Hauber^ 1998).

Striatum

The caudate and putamen are collectively referred to 

as the dorsal striatum. The nucleus.accumbens (also called 

the ventral striatum), located rostro-ventrally to the 

dorsal striatum, is the other major component of the 

striatum. The major input to the striatum is via 

3



excitatory glutamatergic projections from the cerebral 

cortex. GABAergic medium spiny neurons, which constitute 

approximately 90-95% of all striatal neurons in rodents, 

are segregated in different compartments within the 

striatum (Gerfen, 1985; Herkenham, Edley, & Stuart, 1984; 

Izzo, Graybiel, & Bolam 1987; Penny, Afsharpour, & Kitai, 

1984) and contain both Dl- and D2-like receptors (Chang &

Kitai, 1985; Chang, Wilson, & Kitai, 1982; Chevalier, 

Vacher, Deniau, & Desban, 1985; Kawaguchi, Wilson, &

Emson, 1990; Kita & Kitai, 1988). Descending GABAergic 

fibers project to the substantia nigra pars reticulata and 

entopeduncular nucleus via the direct pathway; whereas, 

GABAergic neurons projecting to the globus pallidus (i.e., 

striatopallidal pathway) comprise the first segment of the 

indirect pathway.

Dopaminergic neurons provide the most important 

modulatory input to the striatum. Striatonigral and 

striatoentopeduncular neurons of the direct pathway

prominently express Dl-like receptors (Gerfen, 1992;

Gerfen, Keefe, & Gauda, 1995; Hersch, Ciliax, Gutekunst,

Rees, Heilman, Yung, Bolam, Ince, Yi, & Levey, 1995; Le

Moine & Bloch, 1995; Le Moine, Normand, Guitteny, Teoule,

& Bloch, 1990) and co-release GABA, substance P, and

dynorphin (Beckstead, 1985; Kanazawa, Emson, & Emson,

4



199.7; ' Vincent, Hdkfe.lt, Christensson, & Terenius, 1982) .

•In contrast, striatopallidal neurons, which are the 

initial neurons of the indirect pathway, prominently 

express D2-like receptors (Gerfen, 1992; Gerfen et al., 

1995; Hersh et al., 1995; Le Moine & Bloch, 1995; Le Moine 

et al., 1990) and co-release GABA and enkephalin 

(Beckstead, 1985; Kanazawa et al., 1997; Vincent et al., 

1982). Even though Dl-like receptor stimulation activates 

the direct pathway and D2-like receptor stimulation 

inhibits the indirect pathway, there appears to be a small 

degree of receptor co-lbcalization on these descending 

neurons (Aizman, Brismar, Uhlen, Settergren, Levey, 

Forssberg,. Greengard, & Aperia, 2000; Hersch et al., 1995; 

Surmeier, Eberwine, Wilson, Cao, Stefani, & Kitai, 1992; 

Surmeier, Reiner, Levine, & Ariano, 1993; Surmeier, Song, 

& Yan, 1996).

Striatal neurons are primarily modulated by 

dopaminergic input; however, these dopaminergic effects 

can be further modulated by other neurotransmitters. For 

example, adenosine regulates the functional properties of 

dopamine receptors by interacting with G protein-coupled 

adenosine receptors. Adenosine Ai receptors are 

co-localized on neurons of the direct pathway containing 

Dl-like receptors (Ferre, O'Connor, Svenningsson,

5
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Bjorklund, Lindberg, Tinner, Stromberg, Goldstein, Ogren, Ungerstedt, Fredholm, & Fuxe, 1996) , while adenosine A2a' receptors are co-localized on neurons of the indirect pathway containing D2-like receptors (Schiffmann, Jacobs, & Vanderhaeghen, 1991). The functional significance of this co-localization suggests an antagonistic interaction between striatal adenosine receptors and dopamine receptors (Ferre et al., 1996; Ferre, O'Connor, Fuxe, & Ungerstedt, 1993).The serotonergic, noradrenergic, and cholinergic neurotransmitter systems also modulate striatal neurotransmission. Serotonergic inputs from the dorsal nucleus of the raphe and caudal linear nucleus project densely to the striatum, substantia nigra, and globus pallidus (Imai, Steindler, & Kitai, 1986; Van der Kooy & Hattori, 1980; Vertes, 1991; for a review, see Halliday, Harding, & Paxinos, 1995). Several serotonin receptor subtypes are co-localized with striatal enkephalin, substance P, and dynorphin receptors (Ward & Dorsa, 1996). Noradrenergic fibers originating in the locus coeruleus project to the striatum and alter signal processing (Marien, Letagan, & Colpaert, 1994), while cholinergic interneurons within the striatum modulate the activity of 
6



the direct and indirect pathways (Di Chiara, Morelli, & 

Console*, 1994) .

Globus Pallidus

The globus pallidus receives substantial input from 

the dorsal striatum via striatopallidal neurons of the 

indirect pathway. These striatopallidal projections 

co-release GABA and enkephalin (Fonnum, Gottesfeld, & 

Grofova, 1978). The globus pallidus also receives 

glutamatergic input from the subthalamic nucleus. Axonal 

collaterals from the. substantia nigra pars compacta 

provide dopaminergic innervation to the globus pallidus 

(Lindvall & Bjorklund, 1979). The globus pallidus 

expresses DI- and D2-like receptors (Richfield, Young, & 

Penny, 1987; Yung et al., 1995), as well as NMDA, AMPA, 

kainate, and metabotropic glutamate receptors (Albin, 

Mzrcowiec, Hollingsworth, Dure, Penny, & Young, 1992) .

Pallidal projections send inhibitory GABAergic 

signals to the dorsal striatum, subthalamic nucleus, 

substantia nigra, pedunculopontine nucleus, and the 

reticular thalamic nucleus (Carter & Pycock, 1978; DeVito 

& Anderson, 1982; Fonnum et al., 1978; Grofova, 1975; 

Kincaid, Penney, Young, & Newman, 1991; Kita & Kitai, 

1991; Parent & Hazrati, 1995; Staines & Fibiger, 1984; Van 

der Kooy & Carter, 1981), as well as sending cholinergic 

7



and noncholinergic signals to the cortex (Heimer, Zahm, & 

Alheid, 1995). The globus pallidus controls basal ganglia 

output via multiple direct and indirect connections to 

various basal ganglia nuclei. Therefore, the globus 

pallidus is more than just a relay station transferring 

signals between the striatum (input structure) and the 

entopeduncular nucleus and substantia nigra pars 

reticulata (output structures) (Chesselet & Delfs, 1996).

Subthalamic Nucleus

The subthalamic nucleus receives prominent 

glutamatergic excitatory input from the frontal cortex 

(Canteras, Shammah-Lagnado, Silva, & Ricardo, 1990; 

Fujimoto & Kita, 1993) and GABAergic input from the globus 

pallidus (Feger, 1981; Vincent et al., 1982). Certain 

thalamic nuclei (centromedian and parafascicular) and 

brainstem nuclei (pedunculopontine tegmental and dorsal 

raphe) innervate the subthalamic nucleus (Feger, Bevan, •& 

Crossman, 1994; Sugimoto, Hattori, Mizuno, Itoh, & Sato, 

1983). Some evidence suggests the existence of 

dopaminergic inputs from the substantia nigra pars 

compacta (Fremeau, Duncan, Fornaretto, Dearry, Gingrich, 

Breese, & Caron, 1991; Hassani, Francois, Yelnik, & Feger, 

1997) .

8



The subthalamic nucleus sends excitatory 

(glutamatergic) signals to the globus pallidus, 

entopeduncular nucleus, and substantia nigra pars 

reticulata (Hammond, Deniau, Rizk, & Feger, 1978; 

Nakanishi, Kita, & Kitai, 1987). Subthalamic efferents 

also project to the dorsal striatum and the 

pedunculopontine tegmental nucleus (Moriizumi & Hattori, 

1992; Takada, Nishihama, Nishihama, & Hattori, 1988; Van 

der Kooy & Hattori, 1980).

Substantia Nigra Pars Reticulata

The substantia nigra consists of two nuclei (pars 

compacts'and pars reticulata) and is located in the 

tegmentum of the midbrain. Along with the entopeduncular 

nucleus, the substantia nigra pars reticulata (i.e., the 

two major output structures of the basal ganglia) 

integrates and conveys incoming signals to thalamic and 

midbrain nuclei. The substantia’ nigra pars reticulata 

receives inhibitory GABAergic input from the dorsal 

striatum, via the direct pathway (Chevalier & Deniau, 

1990; Deniau, Hammond, Riszk, & Feger, 1978), and from the 

nucleus accumbens (Deniau, Menetrey, & Thierry, 1994). The 

substantia nigra pars reticulata receives excitatory 

glutamatergic input from the subthalamic nucleus via the

9



indirect pathway (Hammond et. al., 1978; Nakanishi et al.,

198'7).

As just described, an important convergence occurs in 

the substantia nigra pars reticulata. Efferents projecting 

‘from the dorsal striatum (i.e., the direct pathway) and 

globus pallidus/subthalamic nucleus (i.e., the indirect 

pathway) converge onto single neurons of the substantia 

nigra pars reticulata and allow for an integration of 

neural processing (Bolam, Smith, Ingham, Von Krosigk, & 

Smith, 1993). The substantia nigra pars reticulata sends 

GABAergic output from the basal ganglia to the thalamus, 

superior colliculus, and pedunculopontine nuclei 

(Beckstead, Domesick, & Nauta, 1979; Deniau & Chevalier, 

1992; Gerfen, Staines, Arbuthnott, & Fibiger, 1982; Kita & 

Kitai, 1987; Nakanishi et al., 1987). The thalamus then 

provides Input to the frontal cortex and the dorsal 

striatum (Hauber, 1998).

Entopeduncular Nucleus

The entopeduncular nucleus Is the smallest basal 

ganglia structure and, along with the substantia nigra 

pars reticulata, is a major output structure of the basal 

ganglia. Like the substantia nigra pars reticulata, the 

entopeduncular nucleus receives GABAergic inhibitory 

innervation from the striatum (Fonnum et al., 1978; Nagy, 

10



Carter, & Fibiger, 1978; Smith & Parent, 1988) and 

excitatory innervation from the subthalamic nucleus (Kita 

& Kitai, 1987; Parent & Smith, 1987; Nakanishi et al., 

1987; Smith & Parent, 1988). The substantia nigra pars 

compacta sends dopaminergic input to the entopeduncular 

nucleus (Lindvall & Bjorklund, 1979). GABAergic efferents 

project from the entopedundcular nucleus (Joel & Weiner, 

1994) to the thalamus (Carter & Fibiger, 1978; Van der 

Kooy & Carter, 1981), pedunculopontine nucleus (Nauta, 

1979), and superior colliculus (Takada, Tokuno, Ikai, & 

Mizuno, 1994)..

Substantia Nigra Pars Compacta

The substantia nigra pars compacta is a dopamine-rich 

nucleus that sends projections to the dorsal striatum 

(nigrostriatal pathway), subthalamic nucleus 

(nigrosubthalamic pathway), and globus pallidus 

(nigropallidal pathway), and receives input from multiple 

brain areas. Dopamine cell bodies in an associated 

midbrain structure, the ventral tegmental area, project to 

the ventral striatum (also called the nucleus accumbens). 

Interestingly, dopaminergic neurons in the substantia 

nigra pars compacta have a distinguishing feature in that 

they are able to synthesize, store, and release dopamine 

at the somatodendritic level (Bustos, Abarca, Campusano, 

11



Bustos, Noriega, & Aliaga, 2004). This feature endows 

dopamine neurons with exceptional communicating abilities, 

which might contribute to information processing within 

the substantia nigra pars compacts (Geffen, Jessell, 

Cuello, & Iversen, 1976; Jaffe, Marty, Schulte, & Chow, 

1998; Ko-rf, Z.ieleman, & Westerink, 1976; Nieoullon, 

Cheramy, & Glowinski, 1976).

Dopamine neurons projecting from the substantia nigra 

pars compacta synapse on GABAergic neurons of the dorsal 

striatum (Clarke, Dunnett, Isacson, Sirinathsinghji, & 

Bjorklund, 1988). Stimulation of striatal D2-like 

receptors inhibits the indirect pathway; whereas, 

stimulation of Dl-like receptors activates the direct 

pathway (Gerfen, 1992). As mentioned previously, there is 

some degree of receptor co-localization on GABAergic 

neurons, because striatonigral neurons express some 

D2-like receptors, while striatopallidal and 

striatoentopeduncular neurons express some Dl-like 

receptors (Aizman et al., 2000; Hersch et al., 1995;

Surmeier et al., 1992, 1993, 1996).

Functioning of the Basal Ganglia

Overview

The basal ganglia is implicated in the initiation of 

motor movement as well as other behaviors. The striatum is 
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the major input structure, which conveys information to 

the substantia nigra pars reticulata and entopeduncular 

nucleus via the direct and indirect pathways. The striatum 

receives glutamatergic innervation from the cortex, and 

dopaminergic innervation from the substantia nigra pars 

compacts and ventral tegmental area. This dopaminergic 

innervation modulates the direct and indirect pathways and 

is necessary for intact motor initiation and execution. 

Basic Basal Ganglia Functioning

The direct (striatonigral) pathway provides direct 

inhibitory input to the substantia nigra pars reticulata 

and entopeduncular nucleus, thereby inhibiting GABAergic 

neurons projecting to motor nuclei in the thalamus, 

superior colliculus, and pedunculopontine nucleus. Thus, 

the direct pathway, by disinhibiting motor nuclei, permits 

motor movement (Gerfen, Engber, Mahan, Susel, Chase, 

'Monsma, & Sibley, 1990). Activation of the indirect 

pathway via glutamatergic input from the cortex stimulates 

striatopallidal neurons and disinhibits subthalamic input 

to the substantia nigra pars reticulata. In this way, the 

firing rate of GABAergic nigral output neurons is 

intensified and motor nuclei in the thalamus, superior 

colliculus, and pedunculopontine nucleus are further 

inhibited. In the absence of signal, the substantia nigra 
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pars reticulata is tonically active and provides 

inhibitory input to these motor nuclei, thus not allowing 

movement.

Impact of Dopamine on Basal Ganglia Functioning

Striatal- Dl- and D2-like receptor stimulation alters 

the firing rate of GABAergic neurons and indirectly 

modulates motor movement. Specifically, activation of the 

direct pathway, via Dl-like receptor stimulation, 

decreases the firing rate of tonically active substantia 

nigra pars reticulata neurons (Chevalier et al., 1985) and 

further intensifies on-going motor movements. Inhibition 

of the indirect pathway, via D2-like receptor stimulation, 

softens (reduces) the inhibition of the globus pallidus. 

The globus pallidus, becomes progressively more active and 

inhibits the subthalamic nucleus. This inhibition reduces 

excitatory output from the subthalamic nucleus and, in 

turn, reduces the firing -rate of GABAergic nigral output 

neurons. Therefore, through very different mechanisms, Dl- 

and D2-like receptor stimulation inhibits GABAergic 

neurons of the substantia nigra pars reticulata and 

permits motor movement.

Behavioral Impact of Basal Ganglia Degeneration

Two very common motor disorders result from the 

degeneration of basal ganglia cells: Parkinson's disease 
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and Huntington's chorea. Parkinson's disease is 

characterized by difficulty in initiating desired motor 

movements. Damage to the substantia nigra pars compacta 

leads to the degeneration of the nigrostriatal dopamine 

pathway"and, ultimately, a loss of striatal GABAergic 

neurotransmission (Albin et al., 1989; Barbeau, 1986). 

This causes striatal projections to the substantia nigra 

pars reticulata to become less active (i.e., due to the 

loss of Dl-like receptor stimulation), while projections 

to the globus pallidus become more active (i.e., due to 

the loss of D2-like receptor stimulation). The end result 

is increased excitatory input from the subthalamic nucleus 

to the substantia nigra pars reticulata and an inhibition 

of motor movement.

Huntington's chorea is a disease characterized by an 

excess of motor movements and behavior (Albin et al., 

1989; Martin & Gusella, 1986). Striatal projections to the 

globus pallidus and substantia nigra pars reticulata 

degenerate (Arregui, Iversen, Spokes, & Emson, 1979; 

Strittmatter, Lo, Javitch, & Snyder, 1984). This 

degeneration results in a disinhibition of the globus 

pallidus, which causes diminished activity in the 

subthalamic nucleus. The lack of excitatory input to the 
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substantia nigra pars reticulata allows an excess of motor movement to occur.
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CHAPTER TWO
DOPAMINE PHARMACOLOGY

Introduction
Dopamine is a catecholamine neurotransmitter that 

controls a variety of functions in the mammalian brain and 
periphery (Missale, Nash, Robinson, Jaber, & Caron, 1998). 
Dopamine was first synthesized in 1910 by George Barger 
and James Ewens. In 1952, Arvid Carlsson and Nils-Ake 

Hillarp established that dopamine acts as a 
neurotransmitter in brain. Some of the functions mediated 
by dopamine include motor movement, reward, emotion, 
cognition, hormone secretion, and renal control 
(Dziedzicka-Wasylewska 1994; Gingrich & Caron, 1993). 
Dysregulation of the dopaminergic system has been 
extensively studied due to its impact on pathological 

disorders such as Parkinson's disease, schizophrenia, 
Tourette's syndrome, attention deficit hyperactivity 
disorder, dopamine dysregulation syndrome, bipolar 
disorder, and manic depression (Missale et al., 1998). 
Dopamine is also extensively investigated because of its 

involvement in the reward mechanisms associated with 

cocaine, amphetamine, and methamphetamine addiction (Le 

Foil, Gallo, Le Strat, Lu, & Gorwood, 2009; Missale et 
al., 1998).
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Dopamine Synthesis

The enzyme tyrosine hydroxylase converts the amino 

acid tyrosine to dihydroxyphenylalanine (DOPA), which is 

then converted into dopamine by the enzyme DOPA 

decarboxylase (Roth, 1979; Smidt, Smits, & Burbach, 2003; 

Sourkes, 1979). Dopamine is also an intermediary step in 

the synthesis of norepinephrine and epinephrine. Tyrosine 

hydroxylase is the rate-limiting enzyme in dopamine 

synthesis. Dopamine is synthesized in the presynaptic 

terminals of dopaminergic neurons, packaged into synaptic 

vesicles, and released via calcium-dependent exocytosis 

(Binder, Kinkead, Owens, & Nemeroff, 2001).

Dopamine Receptor Structure and Subtypes

The dopamine receptor belongs to a class of receptors 

known as seven transmembrane G protein-coupled receptors 

(GPCRs) (Missale et al., 1998; Sealfon & Olanow, 2000). 

Dopamine receptor subtypes are categorized as being 

Dl-like or D2-like (Civelli, Bunzow, & Grandy, 1993; 

Gingrich & Caron, 1993; Jackson & Westlind-Danielsson, 

1994; O'Dowd, 1993). These two families of receptors 

differ structurally, pharmacologically, and biochemically. 

Included in the Dl-like family are the Di and D5 

receptors, while the D2-like family contains the D2, D3, 

and D4 receptors.
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The DI- and D2-like receptor families differ based on 

their ability to stimulate or inhibit adenylyl cyclase 

(Dearry, Gingrich, Falardeau, Fremeau, Bates, & Caron, 

1990; Kebabian, Petzgold, & Greengard, 1972; Monsma, 

Mahan, McVittie, Gerfen, Sibley, 1990; Nicola et al., 

2000; Onali, Olianas, & Gessa, 1985; Spano, Govoni, & 

Trabucchi, 1978; Stoof & Kebabian, 1984; Zhou, Grandy, 

Thambi, Kushner, Van Tol, Cone, Pribnow, Salon, Bunzow, & 

Civelli, 1990). Dopamine receptors are typically coupled 

to G proteins (e.g., Gs, Goif, Gi, Go, Gq and possibly 

others)(Binder et al., 2001). When Dl-like receptors are 

activated, the bound G protein (Gs or Goif) detaches from 

the receptor and stimulates adenylyl cyclase. Adenylyl 

cyclase increases cyclic adenosine monophosphate (cAMP) 

levels and, in turn, activates protein kinase A (PKA). 

When D2-like receptors are stimulated, an inhibitory G 

protein -(Gi) is activated, which increases 

phosphodiesterase levels. Phosphodiesterase breaks down 

cAMP, thus inhibiting PKA and causing an attenuation of 

.cellular events and responsiveness (Missale et al., 1998).

Distribution of Dopamine Receptors

Dopamine cell bodies are primarily located in the 

olfactory bulb, ventral tegmental area, hypothalamus, and 

substantia nigra pars compacta (Snyder, Roberts, &
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SealfOn, 1991) and these cells give rise to four major 

pathways: the nigrostriatal, mesolimbic, mesocortical, and 

tuberoinfundibular pathways. Not surprisingly, DI- and 

D2--like receptor -mRNA is highly concentrated in the dorsal 

striatum., nucleus accumbens, and olfactory tubercle 

(Sealfon &■ Olanow, 2000). The majority of dopamine 

.receptors are located postsynaptically, at the terminal 

regions of GABAergic, glutamatergic, serotonergic, 

cholinergic, and peptidergic neurons (Baldessarini & 

Tarazi, 1996;'Jaber, Robinson, Missale, & Caron, 1996; 

Tarazi & Baldessarini, 19-99; Tarazi, Campbell, Yeghiayan, 

& Baldessarini, ;1998). Presynaptic autoreceptors are found 

at the terminal regions of dopamine neurons.

Dopamine receptor subtypes differ according to their 

anatomical distribution and relative abundance. The most 

abundant dopamine receptor subtype in the central nervous 

system is the Di receptor (Dearry et al., 1990; Weiner, 

Levey, Sunahara, Niznik, O'Dowd, Seeman, & Brann, 1991). 

There is no Di mRNA in the entopeduncular nucleus and 

substantia nigra pars reticulata (Dearry et al., 1990; 

Fremeau et al., 1991; Weiner et- al. , 1991) even though Di 

receptors are expressed (Gerfen et al., 1990; Le Moine, 

Normand,. & Bloch, 1'991) . These receptors are mainly 

present .in projections localized on striatal GABAergic 
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neurons co-expressing substance P (Gerfen et al., 1990; Le 

Moine et al., 1991). The GABAergic fibers projecting from 

the striatum to the substantia nigra pars reticulata 

represent the direct pathway.

The D5 receptor subtype is far less abundant than the 

Di receptor, with Ds receptor mRNA detectable in the 

cerebral cortex, lateral thalamus, diagonal band, dorsal 

striatum, substantia nigra, medial thalamus, and 

hippocampus (Choi, Machida, & Ronnekleiv, 1995; Huntley, 

Morrison, Prikhozhan, & Selfon, 1992; Jackson & 

Westlind-Danielsson, 1994).

The D2 receptor subtype is present on medium spiny 

GABAergic neurons co-expressing enkephalin (Gerfen, 1992; 

Gerfen et al., 1995; Hersh et al., 1995; Le Moine & Bloch, 

1995; Le Moine et al., 1990) and is found mainly in the 

dorsal striatum, olfactory tubercle, and nucleus accumbens 

core (Bouthenet, Souil, Martres, Sokoloff, Giros, & ' ■ 

Schwartz, 1991). The medium spiny neurons that extend to 

the globus pallidus (striatopallidal neurons) make up the 

indirect pathway. D2 receptors are also co-expressed on 

neurotensin-containing neurons in the nucleus accumbens 

shell (Diaz, Levesque, Griffon, Lammers, Martres, 

Sokoloff, & Schwartz, 1994). To a slightly lesser degree, 

D2 receptors have been found in the prefrontal, cingulate, 
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temporal, and entorhinal cortices, as well as the granule 

cells of the hippocampal formation (Bouthenet et al., 

1’991) . Interestingly, D2 receptors are expressed by 

dopaminergic neurons located in the substantia nigra pars 

compacta and ventral tegmental area (Bouthenet et al., 

1991; Meador-Woodruff, Mansour, Bunzom, Van Tol, Watson, & 

Civelli, 1989; Weiner et al., 1991). These dopaminergic 

neurons synthesize, store, and release dopamine at the 

somatodendritic level (Bjorklund & Lindvall, 1975; Bustos 

et al., 2004).

D3 receptors are expressed by substance P and 

neurotensin-containing neurons that project to the ventral 

pallidum, olfactory tubercle, and islands of Calleja 

(Bouthenet et al., 1991; Diaz et al., 1994; Levesque et 

al., 1992). Few D3 receptors are present in the dorsal 

striatum (Bouthenet et al., 1991; Levesque, Diaz, Pilon, 

Martres, Giros, Souil, Schott, Morgat, Schwartz, & 

Sokoloff, 1992; Sokoloff, Giros, Martres, Barthenet, & 

Schwartz, 1990), while low levels of D3 receptor mRNA are 

expressed in dopaminergic neurons located in the 

substantia nigra pars compacta and ventral tegmental area 

(Diaz et al., 1994).

In the basal ganglia, only low numbers of D4 

receptors are present in GABAergic neurons of the globus 
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pallidus and substantia nigra pars reticulata (Mrzl-jak, Bergson, Pappy, Huff, Levenson, & Goldman-Rakic, 19'96) . The D4 receptor, however, is found in abundant quantities in the frontal cortex, amygdala, hippocampus, hypothalamus, mesencephalon, and retina (Cohen, Todd, Harmon, & O'Malley, 1992; O'Malley, Harsmon, Tang, & Todd, 1992; Tarazi, Kula, & Baldessarini, 1997; Van Tol, Bunzow, Guan, Sunahara, Seeman, Niznik, & Civelli, 1991). In the hippocampus and cerebral cortex, D4 receptors are located on both pyramidal and nonpyramidal GABA interneurons and act to modulate GABAergic transmission (Mrzljak et al., 1996).
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CHAPTER THREE

DOPAMINE PHARMACOLOGY: ONTOGENY

Overview

Research on the prenatal and postnatal development of 

dopamine receptors has mainly focused oh the dorsal 

striatum and nucleus accumbens and has been investigated 

using multiple techniques (i.e., autoradiography, receptor 

binding, in situ hybridization, 6-hydroxy-dopamine 

[6-OHDA] lesions, irreversible receptor antagonism, etc.). 

Receptor binding and autoradiography use labeled 

radioactive ligands to determine the tissue distribution 

of dopamine receptors. Because the data are precise and 

quantifiable, receptor binding is preferred when a 

specific brain area is of interest. Autoradiography is the 

preferred technique when, the goal is to visualize the 

distribution of dopamine receptors across brain.

Prenatal Development of the Dopamine System

Dopaminergic cell bodies are first detectable on 

embryonic day (E) 12 (Smidt & Burbach, 2007). On E 13, the 

axons-begin to extend and by E 14 they are present in the 

striatum (Van den Heuvel & Pasterkamp, 2008; Voorn, 

Kalsbeek, Jorritsma-Byham, & Groenewegen, 1988). Also on E 

14, dopamine and tyrosine hydroxylase activity can be 
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detected .in the striatum (Olson & Seiger, 1972; Specht, Picket, Joh, & Reis, 1981). Segregation of ascending axons is not fully mature until birth (E 21), at which time projections from the midbrain to the dorsal striatum can he differentiated from projections to the ventral striatum (H.u, Cooper, Crockett, & Zhou, 2004) . During the late .stages of embryonic development (after E 15), dopaminergic axons innervate other forebrain structures such as the prefrontal cortex, hypothalamus, hippocampus, and amygdala (van den Heuvel & Pasterkamp, 2008).Dopamine projections from the substantia nigra pars cpmpacta to the striatum are evident as early as E 14 .(’Olson & Seiger, 1972; Specht et al., 1981). Striatal Dl-like binding sites are present in low numbers on E 14, E 15, and E 16 (Jung & Bennett, 1996). On E 18, as the striatum is becoming more differentiated, there is a significant increase in Dl-like binding sites followed by a decline until birth (Jung & Bennett, 1996; Schambra, Duncan, Breese, Fornaretto, Caron, & Fremeau, 1994). Striatal D2-like binding sites appear on E 14 (Jung & Bennett, 19'96; Sales-, Martes, Bouthenet, & Schwartz, 1989), increase dramatically until E 18, and then decline from E 18 to E 20 (Jung & Bennett, 1996).
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Postnatal Development of the Dopamine System

The dopamine system is not mature at birth and 

continues to develop across ontogeny. Findings regarding 

the postnatal development of Dl-like receptors have been 

inconsistent. A linear increase in Dl-like receptors has 

been reported from birth (postnatal day 0; PD 0) into 

adulthood (Leslie, Robertson, Cutler, & Bennett, 1991;

Rao, Molinoff, & Joyce, 1991; Schambra et al., 1994; Zeng, 

Hyttel, & Murrin, 1988). Alternately, there are reports of 

a gradual increase in striatal Dl-like receptors until 

approximately PD 35-40, followed by a decline in receptor 

numbers (pruning) to a level that is sustained into 

adulthood (Gelbard, Teicher, Faedda, & Baldessarini, 1989; 

Giorgi, DeMontis, Porceddu, Mele, Calderini, Toffano, & 

Biggio, 1987). Regardless, researchers agree that receptor 

stimulation during a critical postnatal period is 

necessary for the normal development of Dl-like receptors 

(Kostrzewa & Saleh, 1989; Neal-Beliveau & Joyce, 1992; 

Saleh & Kostrzewa, 1988; Thomas, Neal-Beliveau, & Joyce, 

1998). Not surprisingly, the normal development of Dl-like 

receptors is dependent on the presence of endogenous 

dopamine (Gelbard, Teicher, Baldessarini, Gallitano, 

Marsh, Zorc, & Faedda, 1990; Neal & Joyce, 1992).
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Research on the postnatal development of D2-like 

receptors has also yielded inconsistent findings. Some 

studies describe a progressive increase in D2-like binding 

sites that reach adult-like levels approximately two weeks 

after birth (Hartley & Seeman, 1983; Murrin & Zeng, 1986; 

Pardo, Creese, Burt, & Snyder, 1977; Rao et al., 1991; 

Schambra et al., 1994). D2-like binding sites have also 

been reported to increase linearly from birth until PD 40, 

followed by a decline (pruning) into adulthood (Gelbard et 

al., 1989; Teicher, Anderson, & Hostetter, 1995). Similar 

to Dl-like receptors, normal development of D2-like 

receptors is dependent on receptor stimulation (Kostrzewa 

& Saleh, 1989; Neal-Beliveau & Joyce, 1992); however, the 

availability of endogenous dopamine is not important for 

D2-like receptor development (Breese, Duncan, Napier, 

Bondy, Iorio, & Mueller, 1987; Neal-Beliveau & Joyce, 

1992).

At birth, Dl-like receptor mRNA levels are 75% of 

adult levels (Schambra et al., 1994). Regardless of these 

high mRNA levels, [3H]SCH23390 binding is very low 

(Schambra et al., 1994). The density of Dl-like binding 

sites increases until PD 14 to PD 21, where it remains 

relatively stable throughout adulthood (Schambra et al., 

1994). At birth, D2-like receptor mRNA levels are also 
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high, but as observed for Dl-like receptors, D2-like 

receptor binding sites are low. Maximum levels of D2-like 

binding sites are not observed until PD 30 (Schambra et 

al., 1994) .

Ontogeny of Dopamine Systems

Across ontogeny, dopamine systems undergo numerous 

functional changes. For example, there are age-dependent 

alterations in dopamine levels and the functioning of 

release-modulating autoreceptors, there are changes in 

receptor-mediated adenylyl cyclase activity, and both 

quantitative and qualitative alterations in drug-induced 

behaviors. In the first case, striatal dopamine levels 

increase linearly from birth until approximately PD 35, 

when adult levels are reached (Walters, Chapman, & Howard, 

1990). In terms of release-modulating autoreceptors, 

SKF38393 (a selective Dl-like agonist) evokes 

significantly less dopamine release in the striatum of 

preweanling rats than adults, with adult-like functioning 

not occurring until approximately PD 35 (Walters & Howard, 

1990). Indirect dopamine agonists also differentially 

affect release depending on age, because a low dose of' 

amphetamine increases dopamine release in adult rats, 

while preweanling rats show an initial increase in 

dopamine release followed by a persistent decline
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(Gazzara, Fisher, & Howard, 1986). Also, methamphetamine 

causes less dopamine release on PD 14 than PD 21 

(Tsuchida, Akiyama, Sakai, Ujike, Li, & Kuroda, 1996). 

Research shows that synthesis-modulating dopamine 

autoreceptors are functional during the preweanling period 

(Andersen, Dumont, & Teicher, 1997; Der-Ghazarian, 

Charntikov, Varela, Crawford, & McDougall, 2010), with 

adult-like functioning being achieved by approximately PD 

40 (Anderson, 2003; Booth, Baldessarini, Marsh, & Owens, 

1994).

Dopamine receptors, as mentioned earlier, belong to a 

class of G protein coupled receptors that either activate 

or inhibit adenylyl cyclase. Specifically, Dl-like 

receptor stimulation increases adenylyl cyclase activity, 

while D2-like receptor stimulation inhibits adenylyl 

cyclase. When considering striatal structures, Dl-like 

receptors are functional and coupled to adenylyl cyclase 

by E 17 (De Vries, Mulder, & Schoffelmeer, 1992). Dl 

mediated adenylyl cyclase activity increases from E 20 to 

PD 21, at which time activity declines until adult levels 

are reached at PD 35 (Sakagami, Sawamura, & Kondo, 1995). 

The functional development of D2-like receptors is much 

slower, as evidenced by the inability of D2-like receptors 

to inhibit adenylyl cyclase activity until PD 14 (De Vries 
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et al,, 1992). D2-like mediated adenylyl cyclase activity does not reach adult levels until PD 21 (De Vries et al., 1992).Dopamine system functioning at the pre- and post-synaptic levels can also be assessed by examining drug-induced changes in behavior. Interestingly, stimulating postsynaptic dopamine receptors can induce different behavioral effects in preweanling and adult rats. For example, the D3 agonist (+)-PD128,907 increases locomotor activity in 14-day-old rat pups, while attenuating locomotion in adult rats (Heijtz, Ogren, & Fuxe, 2000), (4-)-PD128,907 does not induce adult-likebehaviors until PD 21, thus indicating that the D3 receptor is. not functionally mature until the second to third postnatal week (Heijtz et al., 2000). Also, administering the nonselective dopamine agonist R-propylnorapomorphine (NPA) into the dorsal striatum of adult animals causes minimal locomotion (Bordi, Carr, & Meller, 198.9; Bordi & Meller, 1989) ; whereas, NPA produces robust locomotor activity in preweanling rats (Charntikov, Halladay, Herbert, Marquez, & McDougall, 2008). This finding suggests that adult-like responsiveness to NPA is not observed until after the preweanling period.Similarly, the Dl-like agonist SKF38393 induces grooming 
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and sniffing throughout the preweanling period (McDougall, 

Arnold, & Nonneman, 1990; Moody & Spear, 1992), even 

though SKF38393 does not produce adult-like stereotyped 

responding until approximately PD 21 (Moody & Spear, 

1992).

The ontogeny of presynaptic dopamine receptors has 

also been investigated by assessing drug-induced behavior. 

Administering a low dose of a direct dopamine agonist 

(e.g., quinpirole) decreases the locomotor activity of 

adult rats (Eilam & Szechtman, 1989; Montanaro, Vaccheri, 

Dall'Olio, & Gandolfi, 1983), presumably by stimulating 

release- and synthesis-modulating autoreceptors (for a 

review, see Starke, Gothert, & Kilbinger, 1989). In 

contrast, low doses of quinpirole (a selective D2/D3 

dopamine agonist), apomorphine (a non-selective dopamine 

agonist), and (+) 3-PPP ([3-(3-hydroxyphenyl)- 

N-n-propylpiperidine}; a dopamine partial agonist) 

increase the locomotor activity of preweanling rats (Arnt, 

1983; Camp & Rudy, 1987; Kellogg & Lundborg, 1972; Lal & 

Sourkes, 1973; McDougall et al., 1990; McDougall & 

Nonneman, 1989; Moody & Spear, 1992; Shalaby & Spear, 

1980; Sobrian, Jones, Varghese, & Holson, 2003). In young 

animals, the ability of apomorphine, (+) 3-PPP, and 

quinpirole to suppress locomotion is not apparent until 
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approximately PD 28 or PD 30 (Arnt, 1983; Hedner & Lundborg, 1985; Shalaby & Spear, 1980; Van Hartesveldt, Meyer, & Potter, 1994). The latter finding suggests that dopamine autoreceptors are not functionally mature until after the preweanling period.
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CHAPTER FOUR

ADULT DOPAMINE-MEDIATED BEHAVIOR

Introduction

Dopamine agonists and antagonists have been used to 

elucidate the role played by certain basal ganglia 

structures (e.g., the dorsal striatum and nucleus 

accumbens) in mediating the locomotor activity and 

stereotyped behaviors of animals. Administration of such 

compounds is achieved by systemic injections or precisely 

targeted intracranial infusions. Techniques such as brain 

lesioning and irreversible dopamine receptor antagonism 

have also been employed to determine the involvement of 

basal ganglia structures in motoric function. Early 

behavioral and anatomical studies indicated that the 

dorsal striatum was important for the expression of 

stereotyped behaviors, while the nucleus accumbens was 

important for mediating locomotion (Bordi et al., 1989; 

Carr & White, 1984; Delfs, Schreiber, & Kelley, 1990; 

Kelley, Lang, & Gauthier, 1988; Plaznik, Stefanski, & 

Kostowski, 1989). Further research has shown that there is 

less behavioral specificity to these structures than 

originally reported (Canales & Iversen, 1998; Carrera, 

Brunhara, Schwarting, & Tomaz, 1998; Dias, Carey, & 

Carrera, 2006; Dickson, Lang, Hinton, & Kelley, 1994;
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Koene, Prinssen, & Cools, 1993; Neisewander, Fuchs, 

O'Dell, & Khroyan, 1998).

Systemic Administration of Dopamine 
Receptor Agonists

Selective Dl- and D2-like receptor agonists 

differentially affect the unlearned behaviors of adult 

rats. Selective D2-like agonists, such as quinpirole and 

RU24213, cause an increase in locomotor activity, 

sniffing, yawning, and rearing (Arnt, 1987; Clark & White, 

1987). In contrast, systemically administering the Dl-like 

partial agonist SKF38393 or the Dl-like full agonist 

LU24-040 does not'cause locomotion but preferentially 

increases grooming behavior; although low levels of 

locomotion are sometimes observed after SKF38393 (Arnt, 

1985, 1987; Dall'Olio, Gandolfi, Vaccheri, Roncada, & 

Montanaro, 1988; Molloy & Waddington, 1984; Murray & 

Waddington, 1989; Neisewander, Lucki, & McGonigle, 1991; 

Serra, Collu, & Gessa, 1987; Starr & Starr, 1987) . 

Interestingly, monoamine depleted and 6-OHDA-treated rats 

show increased locomotor activity when challenged with 

SKF38393 (Arnt, 1985; Breese, Baumeister, Napier, Frye, & 

Mueller, 1985; Breese et al., 1987; Neisewander et al.., 

1991).
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Systemic administration of selective D2-like receptor 

agonists (i.e., quinpirole Or pergolide) affects the 

locomotor activity of adult rats in a biphasic manner 

(Bradbury, Cannon, Costall, & Naylor, 1984; Costall, Lim, 

& Naylor, 1981; Eilam & Szechtman, 1989; Frantz & Van 

Hartesveldt, 1995; Koller & Herbster, 1988). Specifically, 

low doses of quinpirole attenuate locomotor activity, 

while high doses augment locomotion (Eilam & Szechtman, 

1989; Frantz & Van Hartesveldt, 1995; Van Hartesveldt et 

al., 1994). The biphasic behavioral effects of quinpirole 

are explained by its relative affinity for pre- and 

postsynaptic D2-like receptors. Specifically, quinpirole 

has a higher affinity for presynaptic D2-like receptors 

than for postsynaptic receptors (Eilam & Szechtman, 1989; 

Van Hartesveldt, Cottrell, Potter, & Meyer, 1992). 

Therefore, when administered at high doses, quinpirole 

stimulates postsynaptic receptors and locomotion is 

increased. When administered at low doses, quinpirole 

preferentially stimulates presynaptic receptors thereby 

decreasing dopamine levels and locomotion. High doses of 

quinpirole induce mild stereotypies, such as sniffing and 

rearing, even though selective D2-like agonists typically 

do not produce intense stereotyped behaviors (Arnt,
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Hyttel, & Perregaard, 1987; Christensen, Arnt, & Svendsen, 

1985; Meller, Bordi, & Bohmaker, 1988).

A full range of stereotyped behaviors are also 

observed when selective Dl- and D2-like agonists are 

coradministered (Arnt, 1987; Braun & Chase, 1986). When 

given in combination, the selective Dl- and D2-like 

agonists SKF38393 and quinpirole elicit a dose-dependent 

increase in locomotor activity, contralateral circling 

after a unilateral lesion, as well as stereotypies like 

repetitive grooming and sniffing (Braun & Chase, 1986; 

Clark & White, 1987; Kashihara, Akiyama, Ishihara, Shiro, 

& Shohmori, 1996). Co-administration of quinpirole with 

either the Dl-like agonist SKF75670 or LU24-040 causes a 

dose-dependent increase in licking and occasional biting 

behavior (Arnt et al., 1987).

Systemic Administration of Nonselective
• • Dopamine Agonists

Nonselective dopamine agonists stimulate both Dl- and 

D2-like receptors. Not surprisingly, co-stimulation of Dl- 

and D2-like receptors induces a pattern of behavior that 

is similar to, but more intense than, what is observed 

after D2-like agonist administration (Bradbury et al., 

1984; Ljungberg, 1986). At low doses, apomorphine or (+) 

3-PPP, like quinpirole, increases the locomotor activity 
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of adult animals (Bradbury et al., 1984; Costall et al., 

1981). At high doses, nonselective dopamine receptor 

agonists induce more intense behavioral responses. For 

example, adult rats receiving a high dose of apomorphine 

exhibit intense stereotyped behaviors, such as sniffing, 

rearing, gnawing, biting, and licking (Costall & Naylor, 

1973; Lepekhina & Tsitsurina, 2007; Ljungberg, 1986; 

Schi0rring, 1971; Szechtman, Ornstein, Teitelbaum, & 

Golani, 1985). Systemic treatment with either a selective 

DI- or D2-like receptor antagonist attenuates these 

stereotyped behaviors (Arnt, 1987; Braun & Chase, 1986).

Intracranial Microinjection of Dopamine 
Agonists in the Dorsal Striatum

Early studies investigating the neural substrates of 

unlearned motor behavior indicated that the dorsal 

striatum is necessary for the expression of stereotyped 

behaviors (Allen & Winn, 1995; Bordi et al., 1989; 

Canales, Gilmour, & Iversen, 2000; Carr & White 1984; 

Kelley et al., 1988; Waszczak, Martin, Finlay, Zahr, & 

Stellar, 2002). Infusing quinpirole into the dorsal 

striatum results in moderate stereotyped behaviors, such 

as head-down sniffing and licking (Canales & Iversen, 

1988; Delfs & Kelley, 1990). Intense oral stereotypies, 

such as biting or gnawing, are not observed when 
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quinpirole is administered alone. Conversely, infusing 

SKF38393 (a partial Dl-like agonist) into the dorsal 

striatum does not elicit stereotyped behaviors; whereas 

SKF82958 (a full. Dl-like agonist) infusions produce mild 

stereotypy (Gower & Marriott, 1982; Kreipke & Walker, 

2004; Krolewski, Bishop, & Walker, 2005).

Co-stimulation of Dl- and D2-like receptors in the 

dorsal striatum causes more intense behaviors to be 

expressed. At low doses, the nonselective agonists 

apomorphine and NPA cause both locomotion and rearing 

(Bordi et al. 1989; Dickson et al., 1994; Carrera et al., 

1998; Dias et al., 2006); whereas, infusing higher doses 

of apomorphine or a "cocktail" of SKF38393 and quinpirole 

produces robust stereotypy (Bordi & Meller, 1989; Delfs & 

Kelley, 1990; Gower & Marriott, 1982; Waszczak et al., 

2002). Similarly, microinjecting dopamine or NPA into the 

dorsal striatum causes minimal locomotor activity,-but 

moderately intense oral and sniffing stereotypies as well 

as chewing and gnawing (Bordi et al., 1989; Costall, 

Marsden, Naylor, & Pycock, 1976; Jackson,.Anden, & 

Dahlstrom, 1975; Pijnenburg, Honig, Van der Heyden, & Van 

Rossum, 1976). This robust stereotypy is similar to what 

is observed when indirect dopamine agonists, such as 

amphetamine or cocaine, are infused into the dorsal 
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striatum (Staton & Solomon, 1984; Waszczak et al., 2002). 

Therefore, concurrent DI- and D2-like receptor stimulation 

is necessary for the expression of intense stereotyped 

behaviors in adult rats (Waszczak et al., 2002).

Intracranial Microinjection of Dopamine
Agonists in the Nucleus Accumbens

Research has shown that the nucleus accumbens is at 

least partially responsible for mediating the locomotor 

activity of adult rats (Canales & Iversen, 2000; Delfs et 

al., 1990; Hauber & Miinkle, 1997; Neisewander, O'Dell, & 

Redmond, 1995; Plaznik, et al., 1989; Schildein, Agmo, 

Huston, & Schwarting, 1998). Specifically, microinjecting 

the Dl-like agonists SKF38393 or SKF82598 into the nucleus 

accumbens induces moderate locomotor activity in adult 

rats (Meyer, 1993; Meyer, Van Hartesveldt, & Potter, 1993; 

Swanson, Heath, Stratford, & Kelley, 1997). Also, 

intraaccumbal infusions of the D2/D3 receptor agonist 

quinpirole causes a modest increase in locomotion (Dreher 

& Jackson, 1989; Gong, Neill, Lynn, & Justice, 1999; Van 

Hartesveldt et al., 1992; but see Canales & Iversen, 2000; 

Mogenson & Wu, 1991). Bilateral co-administration of Dl- 

and D2-like receptor agonists into the nucleus accumbens 

also produces a dose-dependent increase in locomotor 

activity (Canales & Iversen, 1998; Colle & Wise, 1991;
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Dreher & Jackson, 1989; Fog, 1972; Ikemoto, 2002; Kelly, 

Seyiour, & Iversen, 1975; Mrabet, Messier, & Destrade, 

1989; Staton & Solomon, 1984).

Dopamine agonists, when given in combination or 

alone, cause other classes of behavior to be expressed as 

well. For example, selective Dl-like agonists (i.e., 

SKF38393 and CY208243) increase wall climbing in addition 

to locomotor activity (Dreher & Jackson, 1989). More 

importantly, orofacial stereotypies and head-down sniffing 

are evident when cocaine or quinpirole is microinjected 

into the nucleus accumbens of adult rats (Canales & 

Iversen, 1998; Koene et al., 1993; Neisewander et al., 

1998). Thus, targeted injections into the nucleus 

accumbens that .stimulate Dl-like receptors, D2-like 

receptors, or both receptor types increases locomotor 

activity as well as some stereotypies.

Synergistic Interaction between Dl- 
and D2-Like Receptors

Overall, Dl-like receptor stimulation in the dorsal 

striatum causes mild stereotypies, whereas D2-like 

receptor stimulation causes moderately intense 

stereotypied behaviors. High intensity stereotyped 

behaviors are only evident when both DI- and D2-like 

receptors are co-stimulated (Arnt, 1987; Braun & Chase, 
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1986). When considered together, these results suggest 

that both the Dl- and D2-like receptor systems must be 

functional for the full expression of certain 

dopamine-mediated behaviors (i.e., high-intensity 

stereotypies). Consistent with this idea, SCH23390 (a 

selective DI antagonist) attenuates D2-like 

agonist-induced behaviors (Arnt, 1985; Breese & Mueller, 

1985; Pugh, 0'Boyle, Molloy, & Waddington, 1985).

Moreover, the behavioral effects produced by 

co-administering DI- and D2-like agonists can be 

attenuated by either a DI- or D2-like receptor antagonist 

(Arnt, 1987; Dreher & Jackson, 1989). Taken together, this 

evidence is consistent with the hypothesis that the DI 

receptor system provides the necessary tonic background 

activation required for the full manifestation of D2-like 

receptor-mediated behaviors (Murray & Waddington, 1989).

• Summary

In adult rats and mice, the dorsal striatum is 

largely responsible for mediating the stereotypy-inducing 

effects of dopamine agonists, while the nucleus accumbens 

is important for modulating locomotor activity. This 

dichotomy is not absolute, however, because infusing Di

or D2-like agonists into the nucleus accumbens produces 

some stereotypy. Conversely, infusing apomorphine, NPA, or 
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amphetamine into the dorsal striatum induces locomotor 

activity as well as stereotypy. In sum, the function of 

the dorsal striatum and nucleus accumbens is not mutually 

exclusive; multiple neural networks in the basal ganglia 

are responsible for the behavioral responses induced by 

dopamine receptor agonists.
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CHAPTER FIVE

ONTOGENY OF DOPAMINE-MEDIATED BEHAVIOR 

Introduction

The ontogeny of basal ganglia motor systems has not 

been thoroughly investigated, although dopamine-mediated 

behaviors often show maturational changes across 

development (Broaddus & Bennett, 1990; Hedner & Lundborg, 

1985; Lin & Walters, 1994). As eveidence of this fact, the 

behavioral responses elicited by dopaminergic compounds 

can vary both qualitatively and quantitatively across 

ontogeny.

Systemic Administration of Selective and 
Nonselective Dopamine Agonists

From an early age, dopamine systems are responsive to 

direct and indirect dopamine agonists (for a review, see 

Spear, 1979). In some cases, dopamine agonists affect the 

behaviors of young and‘adult rats in a similar manner. For 

example, a high dose of apomorphine induces forward 

crawling and stereotyped tongue protrusions as early as PD 

2 (Kellogg & Lundborg, 1972) and causes adult-typical 

increases in locomotor activity by PD 7 (Shalaby & Spear, 

1980). Similarly, administering the indirect dopamine 

agonist amphetamine on PD 2 causes an initial period of 

locomotion (lasting 1-2 hr), followed by a phase of tongue 
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protrusions (Lal & Sourkes, 1973). Amphetamine-induced 

sniffing, locomotion, grooming, and licking is clearly 

observable from PD 12 to PD 16, and becomes more 

continuous and adult-like from PD 18 to PD 30 (Lal & 

Sourkes, 1973). By PD 35, these behaviors are 

indistinguishable from those of adults. Consistent with 

the latter studies, McDougall and colleagues have shown 

that systemically administered NPA, cocaine, and 

amphetamine increases both locomotor activity and 

head-down sniffing on PD 17 (McDougall & Bolanos, 1995; 

McDougall, Crawford, Nonneman, 1993; McDougall, 

Rodarte-Freeman, & Nazarian 1999; Nazarian, 

Rodarte-Freeman, & McDougall 1999).

Consistent with these results using nonselective 

dopamine agonists, young and adult rats show similar 

behavioral responses when treated with selective DI- and 

D2-like agonists. Specifically, high doses of the Dl-like 

partial agonist SKF38393 elicits adult-typical grooming on 

PD 10 (McDougall, Arnold, & Nonneman, 1990; Moody & Spear, 

1992), as well as head-down sniffing throughout the 

preweanling period (Byrnes & Bruno, 1994'; Moody & Spear, ■ 

1992; Sobrian et al.-, 2003). The D2-like agonist 

quinpirole produces forward locomotion and stereotyped 

behaviors, such as licking, sniffing, and mouthing, from 
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at least PD 3 through PD 22 (Brynes & Bruno, 1994; 

McDougall et al., 1990, Moody & Spear, 1992; Sobrian et 

al., 2003; Van Hartesveldt et al., 1994). There are, 

however, some minor discrepancies in the literature 

because Moody and Spear (1992) reported that quinpirole 

decreases the incidence of grooming and licking on PD 21, 

although they did observe increased vertical movements. 

Quinpirole causes a biphasic locomotor response in both 

young and adult rats, with high doses attenuating 

locomotion and low doses augmenting locomotion (Moody & 

Spear, 1992; Van Hartesveldt et al., 1994).

Co-administration of DI- and D2-like agonists on PD 10 

causes an increase in forward locomotion, circling, 

sniffing, and vertical movements (Moody & Spear, 1992). 

Interestingly, co-stimulation of DI- and D2-like receptors 

does not induce adult-typical stereotyped licking and 

biting until PD 21 (Moody & Spear, 1992).

Although dopaminergic drugs typically produce similar 

effects in young and adult rats, some qualitative and 

quantitative age-dependent differences have occasionally 

been observed (for reviews, see Andersen, 2003; Shalaby & 

Spear, 1980; Spear, 1979; Spear & Brake, 1983). For 

example, apomorphine-induced stereotyped sniffing is not 

evident in-animals younger than PD 21 (Shalaby & Spear, 
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1980) and a low dose of apomorphine is unable to suppress 

locomotor activity until after PD 35 (Shalaby & Spear, 

1980). In a similar vein, greater doses of SKF38393 are 

needed to evoke a grooming response on PD 10 than at older 

ages (McDougall et al., 1990; Moody & Spear, 1992). 

Conversely, SKF38393 elicits a more pronounced locomotor 

response in preweanling rats than adults (Byrnes & Bruno, 

1994; McDevitt & Setler, 1981; McDougall et al., 1990; 

Moody & Spear, 1992; Shieh & Walters, 1996).

Intracranial Microinjection of Selective and 
Nonselective Dopamine Agonists

Only a few microinjection experiments have been 

conducted during early ontogeny. Nonetheless, available 

research shows that dopamine agonists differentially 

affect the behavior of preweanling and adult rats. On PD 

18, microinjecting NPA into the dorsal striatum causes a 

biphasic increase in locomotor activity (Charntikov et 

al., 2008). Specifically, a low dose of NPA (5 ug) 

dramatically increases forward locomotion, whereas higher 

doses (10 or 20 ug) have a lesser effect. Although not 

assessed, it is likely that 10 and 20 ug NPA 

preferentially induced stereotypy, rather than locomotor 

activity. Consistent with this interpretation, infusing 

moderate doses of NPA or a "cocktail" of SKF82958 and 
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quinpirole into the dorsal striatum, enhances both 

locomotor activity and stereotypy in young rats 

(Charntikov, Der-Ghazarian, Herbert, Horn, Widarma, 

Gutierrez, Varela, & McDougall, 2011). In contrast, 

infusing NPA into the same brain region of adult rats 

causes minimal locomotor activity and intense oral and 

sniffing stereotypies (Bordi, Carr, & Meller, 1989).

Ontogenetic behavioral differences are also observed 

after selective stimulation of DI- and D2-like receptors 

in the dorsal striatum. In terms of preweanling rats, 

bilaterally infusing a low dose of SKF82958 (3 ug) into 

the dorsal striatum preferentially increases locomotor 

activity, while a high dose of SKF82958 (10 ug) increases 

stereotypies, such as repetitive motor movements, 

head-down sniffing, and behavioral intensity scores 

(Charntikov et al., 2011). Infusing quinpirole into the 

dorsal striatum also induces both locomotor activity and 

stereotypy on PD 18 (Charntikov et al., 2011). More 

specifically, a low dose of quinpirole (10 ug) stimulates 

greater locomotion than higher doses (20 or 30 ug), 

whereas high doses of quinpirole induces more stereotypy 

than lower doses (Charntikov et al., 2011). In comparison, 

adult rats only exhibit mild stereotypies when a Dl 

agonist is infused into the dorsal striatum (Kreipke &
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Walker, 2004; Krolewski et al., 2005), whereas a more 

intense stereotypic response results from D2 receptor 

stimulation (Delfs & Kelley, 1990).

Ontogeny of Dl- and D2-Like Receptor Synergism

Ontogenetic studies have consistently shown that 

coupling between Dl- and D2-like receptors is evident from 

a young age. For example, co-administration of Dl- and 

D2-like agonists elicits synergistic increases in vertical 

movements, rolling, and curling at PD 3; enhanced forward 

locomotion by PD 10; and adult-like stereotyped licking at 

PD 21 (Moody & Spear, 1992).

Consistent with a D1/D2 synergism hypothesis, the 

Dl-like antagonist SCH23390 attenuates quinpirole-induced 

locomotor activity in both adult and preweanling (PD 11 

and PD 17) rats (Arnt et al., 1987; Dall'Olio et al., 

1988; McDougall et al., 1990). In terms of microinjection 

studies, infusing SCH23390 into the dorsal striatum • 

partially attenuates quinpirole-induced locomotor activity 

on PD 18, thus indicating that tonic Dl-like receptor 

activation is necessary for the full expression of 

D2-mediated behaviors (Charntikov et al., 2011). 

Conversely, infusing the D2-like antagonist raclopride 

into the dorsal striatum completely attenuates 

SKF82958-induced locomotor activity on PD 18. Taken 
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together, these data indicate that the DI- and D2-like 

receptors systems are functionally coupled in an 

adult-like manner during the neonatal and preweanling 

periods.
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CHAPTER SIX

IRREVERSIBLE DOPAMINE RECEPTOR ALKYLATION

Overview

N-ethoxycarbonyl-2-ethoxy-l,2-dihydroquinoline (EEDQ) 

is an alkylating agent that non-competitively binds to and 

inactivates various receptors, including DI- and D2-like 

dopamine receptors, as well as a-adrenergic, serotonin, 

and GABA receptors (Adler, Meller, & Goldstein, 1985; Arnt 

& Hyttel, 1988; Hamblin & Creese, 1983; Meller, Bohmaker, 

Goldstein, & Friedhoff, 1985; Miller, Lumpkin, Galpern, 

Greenblatt, & Shader, 1991; Nowak, Arnt, & Hyttel, 1988; 

Sailer, Kreamer, Adamovage, & Salama, 1989) . Importantly, 

EEDQ inactivates only receptors, without damaging the 

neuron as a whole (Hamblin & Creese, 1983; Crawford, 

McDougall, & Bardo, 1994a, 1994b; Giorgi & Biggio, 1990a). 

To increase receptor specificity, antagonist pretreatment 

can be used to selectively protect the receptor of 

interest. Because of these properties, EEDQ is a useful 

tool for investigating neural pathways and age-dependent 

differences in dopamine receptor turnover and recovery 

(Battaglia et al., 1988; Crawford et al, 1994a, 1994b; 

Fuxe, Agnati, Merlo Pich, Meller, & Goldstein, 1987; Leff, 

Gariano, & Creese, 1984; McDougall et al., 1993; Nowak et 

al., 1988). Irreversible dopamine receptor antagonism has 
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also been used to study behavior. EEDQ is useful because 

it allows the effects of dopamine receptor blockade to be 

assessed without using acute treatment with reversible 

antagonists (Arnt, Hyttel, & Meier, 1988; McDougall, 

Crawford, & Nonneman, 1992; McDougall et al., 1993).

Behavioral Effects of EEDQ in Adult Animals

In adult rats, EEDQ has been administered both 

systemically and intracranially. When EEDQ is administered 

systemically, it causes catalepsy and attenuates 

amphetamine-induced stereotypy and locomotor activity 

(Belleau, Martel, Lacasse, Menard, Weinberg, & Perron, 

1986; Hamblin & Creese, 1983; Henry, Joseph, Kochman, & 

Roth, 1987). EEDQ treatment also disrupts the ability of 

direct dopamine agonists to increase locomotor activity 

and decrease grooming (McDougall et al., 1992). For 

example, adult animals treated with EEDQ show decreased 

levels of apomorphine-, quinpirole- and NPA-induced 

sniffing and oral stereotypies, presumably because of 

reductions in DI- and D2-like receptors (Arnt et al., 

1988; Arnt & Hyttel, 1989; Bordi et al., 1989; Cameron & 

Crocker, 1989; Hamblin & Creese, 1983; Keller & Molina, 

1993; Meller, Hizami, & Kreuter, 1989). This attenuated 

behavioral response persists for 4-8 days, after which 

normal responsiveness to NPA and other agonists resumes.
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The functional properties of dopamine receptors have 

also been studied after intracranial EEDQ administration. 

Bilateral infusions of EEDQ (0.5-1.5 ug/side) into the 

dorsal striatum causes a significant decrease in 

SKF38393-induced grooming and oral movements (Neisewander, 

Ong, & McGonigle, 1995). Attenuation of these 

SKF38393-induced stereotypies does not occur if the 

Dl-like antagonist SCH23390 is administered (IP) prior to 

EEDQ infusions. In other words, pretreating rats with 

SCH23390 selectively protects Dl-like receptors from the 

alkylating effects of EEDQ. This pattern of results 

suggests that SKF38393-induced grooming and oral behaviors 

are partially mediated by the Dl-like receptor 

(Neisewander et al., 1995).

Consistent with the previous results, infusing EEDQ 

unilaterally into the dorsal striatum diminishes 

NPA-induced behaviors such as sniffing, licking, and 

biting (Bordi et al., 1989). Apomorphine-induced head-down 

sniffing was also attenuated after bilateral infusions of 

EEDQ into the anterior/dorsal portion of the dorsal 

striatum, but not the dorsal/posterior portion (Cameron & 

Crocker, 1989). In terms of selective D2-like agonists, 

systemic administration of quinpirole produces ipsilateral 

circling in adult rats given unilateral EEDQ infusions 
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into the dorsal striatum (Giorgi & Biggio, 1990b). The 

latter effect is mediated exclusively by D2-like 

receptors, because quinpirole-induced circling was only 

evident when D2-like receptors, but not Dl-like receptors, 

were inactivated on a given side (Giorgi & Biggio, 1990a). 

More specifically, quinpirole-induced circling was not 

apparent if D2-like receptors were protected from EEDQ; 

whereas, protecting Dl-like receptors did not impact 

circling (Giorgi & Biggio, 1990a).

Behavioral Effects of EEDQ in 
Preweanling Animals

EEDQ produces dramatically different behavioral 

effects during the preweanling period. Unlike what is 

observed in adult rats, NPA-induced locomotor activity is 

not blocked by EEDQ administration on PD 11 or PD 17 

(McDougall et al., 1992). Likewise, EEDQ does not 

attenuate NPA-induced reductions in grooming behavior 

(McDougall et al., 1992). These paradoxical effects are 

not unique to NPA, because the SKF38393- and 

quinpirole-induced behaviors of preweanling rats are also 

not attenuated by EEDQ (McDougall et al., 1992, 1993; 

Mestlin & McDougall, 1993). Specifically, preweanling rats 

continue to exhibit normal NPA- and quinpirole-induced 
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locomotor activity and SKF38393-induced grooming after 

EEDQ pretreatment.

Interestingly, EEDQ does block amphetamine-induced 

locomotor activity in both preweanling and adult rats 

(Crawford et al., 1994b). In preweanling rats, this 

amphetamine-induced effect is not dopamine mediated, 

because behavior was not preserved if Dl- and D2-like 

receptors were protected with SCH23390 and sulpiride. In 

contrast, amphetamine-induced increases in locomotion were 

still evident in EEDQ-treated adult rats that had been 

pretreated with SCH23390 and sulpiride (Crawford et al., 

1994b). Thus, EEDQ depresses amphetamine-induced behaviors 

in both age groups, but only in adult rats is this effect 

mediated by dopamine receptors. When these results are 

considered together, it appears that EEDQ produces 

qualitatively different behavioral effects in preweanling 

and adult rats. In preweanling animals, EEDQ does not 

attenuate behaviors stimulated by direct Dl- and D2-like 

agonists, whereas EEDQ blocks SKF38393- and 

quinpirole-induced behaviors in adult rats.

As just mentioned, various studies have examined the 

effects of systemically administering EEDQ during the 

preweanling period, however only a single experiment has 

assessed the behavioral impact of microinjecting EEDQ into 
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specific brain regions of the preweanling rat. In that 

study, Charntikov et al. (2011) bilaterally infused EEDQ 

(100 pg) into the dorsal striatum of PD 17 rats and then 

measured NPA-induced behaviors 24 hr later (i.e., on PD 

18). Unexpectedly, EEDQ-pretreated rats showed a 

potentiated locomotor response when 5, 10, .or 20 pg NPA 

was infused.into the dorsal striatum. This result differs 

importantly from earlier ontogenetic work, because 

systemically administered EEDQ was reported to leave the 

dopamine-mediated behaviors of preweanling rats unaffected 

(Crawford et al., 1994b; McDougall et al., 1992, 1993; 

Mestlin & McDougall, 1993). In contrast, microinjecting 

EEDQ into the dorsal striatum produced receptor changes 

that permitted an exaggerated behavioral response after 

NPA treatment (Charntikov et al., 2011). It is unknown 

whether NPA's behavioral effects are caused by 

EEDQ-induced changes in dopamine receptors 'or- some other 

receptor type.

Neurochemical Effects of EEDQ in Adult and 
Preweanling Animals

In adult animals, systemic administration studies 

have shown that EEDQ inactivates a substantial proportion 

of dopamine receptors. On PD 90, systemic treatment with 

7.5, 15, or 25 mg/kg EEDQ reduced dorsal striatal Dl-like 
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binding sites by 86%, 86%, and 93%, while D2-like binding 

sites were reduced'by 80%, 82%, and 92%, respectively 

(Crawford, McDougall, Rowlett, & Bardo, 1992). Similarly, 

6 mg/kg EEDQ (IP) reduced Dl- and D2-like binding sites in 

the dorsal striatum of adult rats by 70%-82% (Meller et 

al., 1985)In the latter study, pretreatment with 

sulpiride and SCH23390 preferentially protected Dl- and 

D2-like binding sites from EEDQ-induced receptor 

inactivation (Meller et al., 1985). More recent studies 

have also shown that peripheral administration of EEDQ 

causes substantial reductions of both Dl- and D2-like 

receptors on the order of 70-80% and 53-75%, respectively 

(Kula, George, & Baldessarini, 1992; Riddall, 1992; 

Rosengarten, Schweitzer, & Friedhoff, 1993; Undie, Berki, 

& Beardsley, 2000; Zou, Cai, & Jin, 1996). In terms of 

receptor recovery, Dl-like receptor binding sites in the 

dorsal striatum were reduced by more than 90% when 

measured 6 hr after EEDQ treatment, however Dl-like 

receptors returned to basal levels after 8 days (Giorgi, 

Pibiri, & Biggio, 1991; Giorgi, Pibiri, Dal Toso, & 

Ragatzu, 1992).

Microinjecting EEDQ into the dorsal striatum causes a 

less robust reduction of Dl- and D2-like receptors than 

when EEDQ is systemically administered. For example, 
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bilateral administration of EEDQ into the -dorsal striatum 

of adult rats reduces Dl-like receptors by as much as 44% 

at the injection site and up to 32% when measured 1 mm 

away (Neisewander et al., 1995). In a similar vein, 

unilateral EEDQ treatment decreases Dl- and D2-like 

receptors by 48% and 51%, respectively, with receptors 

returning to basal levels after 7 days (Giorgi & Biggio, 

1990a). Autoradiographic studies have also shown that both 

peripheral and central administration of EEDQ causes a 

significant loss of striatal Dl- and D2-like receptors 

(Cameron & Crocker, 1989; Cox & Waszczak, 1993; Zhang, 

Tarazi, Kula, Baldessarini, & Neumeyer, 1996; Zhang, 

Weiss, Tarazi, Kula, & Baldessarini, 1999).

In young animals, systemic administration of EEDQ 

causes a potent inactivation of dorsal striatal dopamine 

receptors. Specifically, when measured on PD 17 (24 hr 

after EEDQ treatment), Dl-like binding sites in the dorsal 

striatum were reduced by 69-79% depending on EEDQ dose 

(7.5-25 mg/kg) (Crawford et al., 1992). Likewise, 7.5, 15, 

and 25 mg/kg EEDQ caused a 61%, 64%, and 65%, 

respectively, reduction in dorsal striatal D2-like binding 

sites (Crawford et al., 1992). Similarly, administering 10 

mg/kg EEDQ to PD 24 rats reduced the number of Dl- and 

D2-like receptors by approximately 74% (Kula et al., 
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1992). To date, no microinjection studies have assessed EEDQ-induced dopamine receptor inactivation in preweanling rats.
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CHAPTER SEVEN

THESIS STATEMENT

Conclusion

The ontogeny of dopamine-mediated motor systems has 

not been thoroughly investigated in young animals. 

Generally, research has shown that young and adult animals 

respond similarly to Dl- and D2-like agonists. However, 

some behaviors vary across ontogeny due to maturational 

changes in dopamine systems (Broaddus & Bennett, 1990; 

Hedner & Lundborg, 1985; Lin & Walters, 1994). Although 

much is known about the effects of irreversible dopamine 

receptor inactivation in adult animals, the effects of 

EEDQ on dopamine-mediated locomotor activity during early 

ontogeny is not fully understood.

Systemic administration of EEDQ attenuates dopamine 

agonist-induced behaviors of adult rats, while leaving the 

behaviors of young rats unaffected. Research from our 

laboratory has shown that dorsal striatal infusions of NPA 

(5, 10, or 20 pg) cause a robust increase in the locomotor 

activity of EEDQ-treated preweanling rats (Charntikov et 

al., 2011). This effect is opposite to what is observed in 

adult rats and suggests that the receptors mediating this 

paradoxical behavioral effect are differentially affected 

by EEDQ.
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The overall goals of this thesis were three-fold.

First, to investigate the effects of intrastriatally 

administered EEDQ on NPA-mediated behaviors in both adult 

and preweanling rats. Second, to use receptor protection 

experiments to determine which receptor type is 

responsible for EEDQ's paradoxical behavioral effects in 

preweanliiig animals. Third, to assess the magnitude of 

EEDQ-induced Dl- and D2-like receptor inactivation in both 

adult and preweanling rats through autoradiography and 

receptor binding experiments.

Proposed Hypotheses

In Experiment 1, I tested whether infusing EEDQ into 

the dorsal striatum of adult rats blocks NPA-induced 

locomotor activity. Since previous research has shown that 

systemic EEDQ treatment blocks NPA-induced locomotion in 

adult rats, it was hypothesized that microinjecting EEDQ 

into the dorsal striatum would block NPA-induced locomotor 

activity (Bordi et al., 1989; Hamblin & Creese, 1983; 

Meller et al., 1989). Experiment 2 tested whether EEDQ 

paradoxically increases the NPA-induced locomotor activity 

of preweanling rats. In addition, I examined whether 

dopamine receptors were responsible for EEDQ-induced 

changes in the NPA-induced locomotor activity of 

preweanling rats. It was hypothesized that Dl- and D2-like 
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receptors in the dorsal striatum are responsible for 

mediating NPA-induced locomotor activity. Because dopamine 

receptors were responsible for mediating EEDQ's effects in 

preweanling rats I conducted a third experiment. In 

Experiment 3, I tested whether alterations in Dl-like, 

D2-like, or both Dl- and D2-like receptors underlie the 

EEDQ-induced potentiated locomotor response to NPA. It was 

hypothesized-that both Dl- and D2-like receptors are 

responsible for the EEDQ-induced locomotor activity of 

NPA-treated rats.

In Experiments 4 and 5, receptor binding and 

autoradiography assays were used to quantify Dl- and 

D2-like receptor loss after EEDQ infusions in preweanling 

and adult animals. It was hypothesized that intrastriatal 

infusions of EEDQ would cause a substantial reduction of 

Dl- and D2-like receptor binding sites in preweanling and 

adult animals. It has already been established that- 

systemic injections of EEDQ cause robust declines in both 

Dl- and D2-like receptors in preweanling and adult rats 

(Crawford et al., 1992; Giorgi et al., 1991, 1992; Meller 

et al., 1985).
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CHAPTER EIGHT

GENERAL METHODS

Subjects

Subjects were 252 male and female rat pups of 

Sprague-Dawley descent (Charles River Laboratories, 

Hollister, CA, USA), born and raised at California State, 

San Bernardino (CSUSB). Litters were culled to 10 rat pups 

by postnatal day (PD) 3 (day of parturition is PD 0). Rats 

tested on PD 18 were kept with the dam. Adult male rats 

(n=92) were obtained from Charles River Laboratories and 

arrived on PD 59. All rats were group housed until time of 

surgery. After surgery, adult rats were housed singly, 

whereas preweanling rats were returned to the dam and 

littermates. An approximately equal number of male and 

female preweanling rats were randomly assigned to each 

group. Only male rats were used for experiments conducted 

during adulthood.

The colony room was maintained at 22-24 °C and kept 

under a 12 hr dark/light cycle, with behavioral testing 

occurring during the light phase of the cycle. Food and 

water was freely available. Subjects were treated 

according to the "Guide for the Care and Use of Mammals in 

Neuroscience and Behavioral Research" (National Research 
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Council, 2003) under a research protocol approved by the 

Institutional Animal Care and Use Committee of CSUSB.

Apparatus

Behavioral testing was performed in commercially 

available activity monitoring chambers (Coulbourn 

Instruments, Allentown, PA, USA) housed in a testing room 

separate from the animal colony. The activity chambers 

have acrylic walls, a gray plastic floor, and an open top. 

Each chamber included an X-Y photobeam array, with 16 

photocells and detectors, that was used to measure 

horizontal locomotor activity (distance traveled). 

Photobeam resolution was 0.76 cm. The position of each rat 

was determined every 100 ms (i.e., the sampling interval). 

To somewhat control for differences in body size, 

preweanling rats were placed in smaller chambers (25 x 25 

x 41 cm) than adult rats (41 * 41 x 41 cm). In all other 

regards, the different sized chambers were identical.

Drugs

Sulpiride‘and SCH23390 were dissolved in saline and 

administered intraperitonealy (IP) to preweanling rats at 

a volume of 5 ml/kg. R(-)-propylnorapomorphine 

hydrochloride (NPA) was dissolved in distilled water 

containing 0.1% metabisulfite (an antioxidant) and 
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administered intracranially at a volume of 0.5 pl per side. N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) was dissolved in DMSO and injected intracranially at a volume of 0.75 pl.per side (Giorgi & Biggio, 1990b). All drugs were purchased from Sigma-Aldrich (St. Louis, MO, USA).
Statistical AnalysisAnalysis of variance (ANOVA) were used for the statistical analysis of locomotor activity data and to quantify receptor loss. Statistically significant higher order interactions were further analyzed by one- or two-way ANOVAs and followed, when necessary, by Tukey tests (P<.05). The Huynh-Feldt epsilon statistic was used to adjust the degrees of freedom (Huynh and Feldt, 1976) when the assumption of sphericity was violated (determined by Mauchly's test of sphericity). Corrected degrees of freedom are represented by a superscripted "a" and rounded to the nearest whole number.Litter effects were minimized by assigning precisely one subject from each litter to a particular group (for a discussion of litter effects, see Zorrilla, 1997). Unlike adults, prepubescent rats do not typically exhibit sex differences after treatment with dopamine agonists (see also Bowman et al., 1997; McDougall, Garmsen, Meier, &
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Crawford, 2007; Scalzo & Holson, 1992; Snyder et al., 

1998). Therefore, both males and females were tested at PD 

18 and statistically significant sex effects were not 

evident. Male .rats will be exclusively used at PD 85.
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CHAPTER NINE

BEHAVIORAL PROCEDURES

Intracranial Cannulation Surgery

Cannulae implantation surgeries were performed on PD 

16 and PD 83 (two days prior to behavioral testing). At 

both ages, anesthesia was induced by administering 

isoflurane (5%/5min in 100% oxygen during the induction 

phase, 2-3% in 100% oxygen during the maintenance phase) 

via a nose mask. Prior to surgeries, all rats were given a 

topical lidocaine solution (1%) and ketoprofen (2 mg/kg, 

IP) for pain management. A Kopf stereotaxic apparatus was 

u’sed, with preweanling rats requiring a Cunningham 

Neonatal Rat Adapter for proper positioning. Stereotaxic 

coordinates for the dorsal striatum have been obtained 

from the developing rat brain atlas of Sherwood and 

Timiras (1970) for preweanling animals and from the rat 

brain atlas of Paxinos and Watson (1998) for adult rats.

Two craniotomies were performed and either a 

stainless steel double guide cannula (preweanling rats) or 

two single guide cannulae (adult rats) were implanted in 

the dorsal striatum of preweanling rats (A +6.5, L ±2.4, V 

-5.6 from interaural line) and adult rats (A +0.20, L 

+3.1, V -5.7 from bregma). Both sets of guide cannulae 

(22-gauge; Plastics One, Roanoke, VA) were implanted 1 mm 
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above the target location. In preweanling rats, bilateral 

guide cannulae were anchored to the scull using 

cyanoacrylate gel followed by dental cement (Lang Dental, 

Wheeling, IL, USA). For adult rats, individual guide 

cannulae were fixed in place using two stainless steel 

anchor screws and cyanoacrylate gel followed by dental 

cement. In both age groups, stainless steel stylets 

(Plastics One) were used to seal the guide cannula until 

time of testing. Following cranioplasty, all rats were 

sutured and placed in a heated incubation chamber for 2-4 

hr. Post-operative monitoring was performed in order to 

assess subject responsiveness. All rats underwent 

behavioral assessment 48 hr after surgery.

Microinjection Procedure

Stainless steel stylets were replaced by infusion 

cannulae (28-gauge; Plastics One), which extend 1 mm below 

the tip of the guide cannula. Infusion cannulae were 

attached via polyethylene tubing (28 mm; Becton Dickinson, 

Sparks, MD, USA) to Hamilton microsyringes (10 pl) 

controlled by dual infusion pumps (World Precision 

Instruments, Sarasota, FL, USA). Cannulae were left in 

place for 1-2 min and then the drug was delivered at a 

constant rate over a 60 s period. Following 

microinjection, cannulae were left in place for an 
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additional 1-2 min after which rats were returned to the 

activity monitoring chambers. Distance traveled (a measure 

of horizontal locomotor activity) was assessed 

continuously across the 80-min session (i.e., 40 min of 

habituation and 40 min of drug testing).

Procedures

Experiment 1. Effects of EEDQ on NPA-Mediated
Behaviors of Adult Rats

Overview. The first experiment was conducted to 

determine whether intrastriatal infusions of EEDQ are 

capable of blocking NPA-induced locomotor activity in 

adult rats. This was a between-subject design with two 

independent variables: condition (EEDQ' or DMSO) and 

post-drug (0 or 20 pg NPA). The dependent variable was 

distance traveled scores, which was assessed in automated 

activity chambers. A total of 33 rats (n = 8-9 per group) 

were used in Experiment 1 (Figure 2, Top Panel).

Methodology. On PD 84 (24 hr after surgery), rats

received bilateral infusions of DMSO or EEDQ (100 pg; 0.75 

pl per side). After an additional 24 hr (i.e., on PD 85), 

EEDQ- and DMSO-treated rats were placed in the automated 

locomotor activity chambers for 40 min. Immediately
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following this 40 min baseline period, rats were micro.injected with either distilled water or NPA (20 pg; 0.50 pl per side) into the dorsal striatum. Rats were then returned to the activity chambers for another 40 min, where .locomotdr activity was recorded. After behavioral testing, all subjects underwent histological examination..-Experiment 2., Role of DI- and D2-Like Striatal"Receptors in EEDQrMediated Behaviors ofPreweanling RatsOverview. The second experiment was conducted to determine whether intrastriatal infusions of EEDQ block NPA-induced locomotor activity in preweanling rats. This experiment was also done to determine whether dopamine receptors located in the dorsal striatum mediate EEDQ-induced alterations in locomotor activity. This was a between-subject design with three independent variables: pretreatment group (combination of SCH23390/sulpiride or saline), condition (EEDQ or DMSO), and post-drug (e.g., 0, 10, or 20.pg NPA). The dependent variable was distance traveled scores. A total of 96 rats (n = 8 per group) were used in Experiment 2 (Figure 2, Middle Panel).Methodology. On PD 17 (24 hr after cannulae implantation), different groups of rats were systemically treated (IP) with saline or a combination of SCH23390 (1 mg/kg) and sulpiride (100 ntg/kg) 30 and 60 min, 
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respectively, before receiving intracranial drug infusions 

(Cameron & Crocker, 1989; Crawford et al., 1992; Giorgi & 

Biggio, 1990b). Groups were further subdivided with 

saline- or SCH23390/sulpiride-protected rats receiving 

bilateral infusions of EEDQ (100 pg; 0.75 pl per side) or 

DMSO into the dorsal striatum.

On PD 18 (i.e., 24 hr after EEDQ or DMSO treatment), 

preweanling rats were habituated to the automated testing 

chambers for 40 min. Rats then received dorsal striatal 

infusions of either distilled water or NPA (10 or 20 pg; 

0.50 pl per side) and locomotor activity was assessed for 

an additional 40 min. All rats underwent histological 

examination upon completion of behavioral testing. 

Experiment 3. Effects of Dl- or D2-Like Striatal 
Receptor Inactivation on EEDQ-induced Behaviors of 
Preweanling Rats

Overview. Experiment 2 showed that EEDQ's actions are 

mediated by dopamine receptors and therefore a third 

experiment was conducted. Experiment 3 was done to 

determine whether Dl-like, D2-like, or both Dl- and 

D2-like receptors located in the dorsal striatum mediate 

the EEDQ-induced behavioral effects of preweanling rats. 

This was a between-subject design with three independent 

variables: pretreatment group (SCH23390, sulpiride, or 

saline), condition (EEDQ or DMSO), and post-drug
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(distilled water or NPA). The dependent variable was 

distance traveled scores. A total of 104 rats (n = 8 per 

group) were used in Experiment 3 (Figure 2, Bottom Panel).

Methodology. On PD 17, all rats received a systemic 

injection of SCH23390 (1 mg/kg), sulpiride (100 mg/kg) or 

saline. SCH23390 was administered 30 min prior to EEDQ 

(100-pg; 0.75 pl per side) or DMSO infusions, whereas 

sulpiride was injected 60 min before (Cameron & Crocker, 

1989; Crawford et al., 1992; Giorgi & Biggio, 1990b). On 

PD 18 (i.e., 24 hr after EEDQ or DMSO treatment), 

preweanling rats were habituated to the automated testing 

chambers for 40 min. Rats then received dorsal striatal 

infusions of either distilled water or NPA (.10 pg; 0.50 pl 

per side) and locomotor activity was assessed for an 

additional 40 min. All rats underwent histological 

examination upon completion of behavioral testing.

Histology

After behavioral testing, rats were given an overdose 

of sodium pentobarbital and brains were fixed in'a 4% 

paraformaldehyde solution for 48-72 hr. Brains were then 

cryoprotected in a 20% sucrose solution (24-48 hr), 

sectioned coronally (70 pm) using a cryostat, and stained 

with thionin. Histological assessment of cannulae 

placement was performed by an observer blind to 
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experimental conditions. Cannulae placement was 

graphically mapped on coronal sections taken from Paxinos 

and Watson's The rat brain: in stereotaxic coordinates 

(1998). Only subjects with accurate cannulae placements 

were included in the statistical analysis. Cannula 

placements of rats included in the statistical analyses 

are shown in Appendix A.

Statistical Analysis

For Experiment 1, there were two independent 

variables: a) condition (EEDQ or DMSO) and b) post-drug 

(distilled water or 20 pg NPA) (Figure 2). Because of 

ongoing experimental manipulations, separate ANOVAs were 

used to analyze time blocks 1-8 (habituation) and time 

blocks 9-16 (agonist testing). Specifically, the first 

eight tiriie blocks (0-40 min) were analyzed using a 2 * 8 

(condition x time block) repeated measures ANOVA; whereas, 

time blocks 9-16 (40-80 min) were analyzed using a 2 x 2 x 

8 (condition x post-drug x time block) repeated measures 

ANOVA.

For Experiments 2 and 3, there were three independent 

variables: a) receptor protection (pretreatment groups), 

b) condition (EEDQ and DMSO), and c) post-drug (distilled 

water and NPA). Time blocks 1-8 were analyzed using a 2 x 

2x8 (Experiment 2) and 3x2x8 (Experiment 3)
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(pretreatment x condition * time block) repeated measures 

ANOVA. Time blocks 9-16 were analyzed using a 2 * 2 * 3 * 

8 (Experiment 2) and 3 * 2 * 2 * 8 (Experiment 3)

(pretreatment x condition x post-drug x time block) 

repeated measures ANOVA.
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CHAPTER TEN

NEUROCHEMICAL PROCEDURES

Intracranial Infusion Surgery

'The procedures for this surgery were similar to those 

of the intracranial cannulation surgeries, but with the 

following exceptions., Bilateral burr holes were made above 

the dorsal striatum on PD 17 or PD 84 using the following 

coordinates: A +6.5, L +2.4, V -6.6 from the interaural 

line (preweanling rats) and A +0.20, L ±3.1, V -6.7 from 

bregma (adult rats). Needles were slowly lowered into the 

dorsal striatum and bilateral injections of EEDQ.or DMSO 

,(0/75 ul) were made over 2 min. The syringe was left in 

place for 2 min prior to and after the infusions. The burr 

holes were sealed using Gelfoam (Upjohn, Kalamazoo, MI, 

USA). All rats were sutured, given ketoprofen (2 mg/kg 

IP), and placed in incubators for 2-4 hr prior to being 

returned to their home cages.

Experiment 4. Quantitative Autoradiography

A total of 20 adult and 20 preweanling rats (n = 5 

per group) were used. Rats of both age groups received 

bilateral infusions of EEDQ (100 pg; 0.75 pl) or DMSO 

(Figure 3). Animals were decapitated and brains were 

rapidly removed 24 hr after surgery (i.e., on PD 18 and
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PD 85). Once extracted, brains were immediately immersed 

in isopentane at -30°C for 2 min to promote uniform 

freezing, and then stored at -80°C until time of assay.

■Brains were sectioned in the coronal plane at a 

thickness of 20 pm at -18 °C. Sections were thaw-mounted 

onto electrostatically coated slides (Superfrost Plus; 

Fisher Scientific, Pittsburgh, PA), air-dried under 

vacuum, and stored at -80°C until assayed for radioligand 

binding. At time of assay, sections were thawed at room 

temperature for 5 min and preincubated in 50 mM Tris HC1 

(pH 7.4) for 30 min. Slides were incubated in 50 mM Tris 

buffer -containing either 2 nM [3H]SCH23390 (to label 

Dl-like receptors) or 0.15 nM [3H]spiperone (to label 

D2-like receptors) for 30 min at room temperature. 

Nonspecific binding was determined in the presence of

10 pM (+)butaclamol (for the Dl assay) or 10 pM

(-)-sulpiride (for the' D2 assay). After labeling, sections 

were washed in ice cold Tris buffer (3 washes for 20 s) 

and then dried under a stream of cold air. The sections 

were apposed to. ,[3H] -sensitive along with calibrated 

standards ( [3H]microscales; GE Healthcare, Piscataway, New 

Jersey, USA) for 10 weeks at -20°C. Following the exposure 

period, autoradiograms were analyzed using a 

computer-assisted image analyzer (MCID, InterFocus 

77



Imaging, Cambridge, England). Optical density was 

converted into nCi/mg of radioligand bound using a 

standard curve as a reference. Cannula placements were 

determined during tissue sectioning by drawing the cannula 

tracts at each plate of the atlas of Paxinos and Watson 

(1986) for adult rats and Sherwood and Timiras (1970) for 

preweanling rats. The lowest point of the tract was 

estimated as the site of infusion.

Experiment 5. Dl- and D2-Like Homogenate Ligand 
Binding Conditions

All rats received bilateral infusions of either EEDQ 

or DMSO on PD 17 or PD 84 (Figure 3). On PD 18 or PD 85 

(24 hr after surgery), 71 rats (n = 5-6 per group; 23 

adult and 48 preweanling rats) were killed by rapid 

decapitation and dorsal striatal sections were dissected 

bilaterally and-stored at -80°C until time of assay. 

Homogenates from two PD 18 rats were combined to serve as 

a .single subject for both the Dl. and D2 assay. On assay 

day, tissue was thawed on ice and crude membrane 

homogenates were made using the following protocol. 

Striatal sections from each rat were homogenized in 100
i ■-

volumes of 50 mM Tris-HCl buffer (pH ,7.4) for 

approximately 20 s using a Brinkmann Polytron. The 

homogenates were centrifuged at 20,000 x g for 20 min. The 
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pellet was resuspended in 100 volumes of the same buffer and centrifuged again at 20,000 x g for 20 min.The final pellet was suspended in approximately 30 volumes of buffer (pH 7.4). Protein concentrations for the final pellet were determined using the Bio-Rad Protein Assay, with BSA as the standard. For both DI- and D2-like receptor binding, tissue suspension's (15-30 pg/protein) were added to duplicate tubes containing 50 mM Tris, 2 mM NaCl2, 5 mM KC1, 1 mM MgSO4, and 2 mM CaCl2 (pH 7.4) at a final volume of 1 ml. Concentrations ranging from0.1-5.0 nM of [3H]SCH23390 (for the DI assay) or 0.05-0.9 nM [?H]spiperone (for the D2 assay) were added to the tubes. For the DI assay, 100 nM of mianserin was alsoI added to the tubes to prevent binding of [3H]SCH23390 to serotonin receptors. Due to the specificity of sulpiride, mianserin was not used in the D2 assay (Boyson, McGonigle,I& Molinoff, 1986). The incubation time was 30 min at 37°C. Incubation was terminated by vacuum filtration over glass fiber filters (Whatman GF/B, pretreated with 0.1% polyethylenimine). Filters were washed twice with ice-cold Tris-HCl buffer and radioactivity was measured by liquidiscintillation spectrometry. Non-specific binding was determined in the presence of 10 pM (+)-butaclamol (for DI assay) or 10 pM (-)-sulpiride (for D2 assay). Specific 
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binding was defined as the difference in [3H]SCH23390 

bound in the presence and absence of 10 pM (’+) -butaclamol 

or as the difference in [3H] spiperone bound in the 

presence and absence of 10 pM (-)-sulpiride.

Statistical Analysis

■ For Experiment 4, autoradiograms were analyzed using 

t'-tests (condition: EEDQ and DMSO) at each age to assess 

Dl- and.D2-like receptor densities. Additionally, separate 

2-2 (condition x age) ANOVAs were conducted to analyze 

receptor densities across ontogeny. For the homogenate 

binding .experiments (Experiment 5), Dl- and D2-like 

receptor binding sites (E^ax) and affinity (KD) data from 

the homogenate ligand binding assays was determined using 

non!inear regression with Prism (GraphPad Software, San 

Diego, CA, USA) . Bmax and values were analyzed using 

t-tests (condition: EEDQ and DMSO) at each age. 

Additionally, separate 2*2 (drug * age) ANOVAs were used 

to analyze Dl- and D2-like receptor Bmax and KD across 

ontogeny.
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CHAPTER ELEVEN

RESULTS

Experiment 1

Effects of EEDQt on the NPA-induced Behaviors of 
Adult Rats

Habituation Phase. During the chamber habituation 

phases (i.e., time blocks 1-4 and 5-8), EEDQ-treated adult 

rats had significantly lower distance traveled scores than 

controls (Figure 4, left panel) [Condition main effects, 

F(l,31) = 20.02, P< 0.001; F(l,31) = 19.90, P< 0.001, 

respectively]. Distance traveled scores were elevated 

immediately after rats were placed in the activity 

chambers, but scores then declined to a stable baseline on 

time block 7 [aTime Block main effects, F(3,79) = 116.41 

P < 0.001; F(3,93) = 38.68, P < 0.001, respectively, and 

Tukey tests].

Testing Phase. During the testing phase (i.e., time 

blocks 9-16), bilateral infusions of NPA (20 pg) caused a 

significant increase in distance traveled scores for only 

the DMSO-treated rats (Figure 4, right panel and see 

inset) [Condition x Post-Drug interaction, F(l,29)=5.73, 

P<0.05]. In contrast, microinjecting NPA (20 pg) into the 

dorsal striatum of EEDQ-treated rats had minimal effect on 

locomotor activity because distance traveled scores
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5-Min Time Blocks

A Significantly different than DMSO/DW group on time blocks 5-8.
* Significantly different from all other groups, 
t Significantly different from DW controls.
Figure 4. Mean Distance Traveled (±SEM) During the 80-min

Behavioral Testing Session on PD 85 (n - 8-9 per Group) of 

Experiment 1. At the Conclusion of Time Block 8 (Indicated 

by the Dashed Line), Rats Previously given Bilateral 

Infusions of DMSO or EEDQ (100 pg) into the Dorsal 

Striatum Received Bilateral Infusions of Distilled Water 

or NPA (20 pg). Inset Represents Mean Distance Traveled

Scores Collapsed Across Time Blocks 9-16. (o) DMSO/DW; (•)

EEDQ/DW; (□) DMSO/NPA; (■) EEDQ/NPA.
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remained at a low, stable rate that was similar to 

controls. Individual time block analysis showed that 

microinjecting NPA (20 pg) into the dorsal striatum caused 

an increase in locomotor activity on time blocks 14-16 

[aPost-Drug x Time Block interaction F(5,152)=10.91, 

P<0.001, and Tukey tests]. These results indicate that 

EEDQ fully attenuates NPA's locomotor enhancing effects in 

adult rats.
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Experiment 2

Role of Dl- and D2-Like Striatal Receptors for the 
EEDQ-induced Behaviors of Preweanling Rats

Habituation Phase. During the chamber habituation 

phases (i.-e., time blocks 1-4 and 5-8), distance traveled 

scores were significantly affected by the pretreatment and 

condition variables (i.e., SCH23390/sulpiride vs. saline; 

EEDQ vs. DMSO)(Figure 5, panels to the left of dashed 

vertical lines)[Pretreatment x Condition interactions, 

F(1,92)=5.51, P<0.05; F(l, 92)=8.95, P<0.01, respectively]. 

Specifically, rats treated with either EEDQ or 

SCH23390/sulpiride had significantly greater distance 

traveled scores than the control group (i.e., the DMSO/No 

Protection group)[Tukey tests]. Therefore, blocking Dl and 

D2 receptors, either reversibly or irreversibly, increased 

basal distance traveled scores. Although the Pretreatment 

x Condition x Time Block interaction did not reach ■ .

significance, EEDQ-treated rats did have significantly 

greater distance traveled scores than DMSO controls on 

time blocks 6-8 [Condition x Time Block interaction,

F(2,178)=20.98, P<0.001, and Tukey tests].

Testing Phase. During the testing phase (i.e., time 

blocks 9-16), EEDQ-treated rats had significantly greater 

distance traveled scores than DMSO-treated rats (Figure 5,
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* Significantly different from DMSO-treated rats.
A Significantly different from the DMSO/No Protection condition (collapsed across time 

blocks 1-4 and 5-8).
t Significantly different from rats in the other treatment conditions infused with 10 or

20 pg NPA (collapsed across time blocks 9-16).
+ Significantly different from rats in the same treatment condition infused with 0 pg

NPA (collapsed across time blocks 9-16).

Figure 5. Mean Distance Traveled (+SEM) During the 80-min

Behavioral Testing Session on PD 18 (n = 8 per group) of

Experiment 2. Rats were Previously (i.e., PD 17) Injected 

with Saline or SCH23390/sulpiride and given Bilateral 

Infusions of either DMSO or EEDQ (100 pg) into the Dorsal 

Striatum. At the Conclusion of Time Block 8 (PD 18; 

indicated by the dashed line), Rats Received Bilateral 

Infusions of Distilled Water or NPA (10 or 20 pg). 
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panels to the right of dashed vertical lines) [Condition 

main effect, F(l,84)=28.68, P<0.001]. However, the' 

locomotor enhancing properties of EEDQ were only evident 

in the EEDQ-No Protection group [Pretreatment x Condition 

interaction, F(l,84)=25.39, P<0.001, and Tukey tests]. 

Specifically, the EEDQ-treated group that received no 

receptor protection (i.e., Dl- and D2-like receptors were 

inactivated by EEDQ), exhibited greater distance traveled 

scores than both DMSO-treated groups (Figure 5, upper and 

lower left graphs) as well as the EEDQ-Protected group 

(Figure 5, lower right graph).

Infusing NPA (10 or 20 pg) into the dorsal striatum 

caused a significant increase in locomotor activity 

[Post-Drug main effect, F( 2,84)=32.09, P<0.001, and Tukey 

tests]. The effects of the agonist varied according to 

protection condition [Pretreatment x Post-Drug 

interaction, F(2, 84)=5.07, P<0.01]. Specifically, 

NPA-treated rats in the receptor protection groups (i.e., 

the SCH23390/sulpiride groups) had smaller distance 

traveled scores than NPA-treated rats in the No Protection 

groups.

Even though the Pretreatment x Condition x Post-Drug

x Time Block four-way interaction was not significant, two 
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three-way interactions involving time block were 

statistically significant [aPretreatment x Post-Drug x

Time Block interaction F( 14,288)=2.05, P<0.05; aCondition 

x Post-Drug x Time Block interaction, F( 14,288)=1.88, 

P<0.05]. Most importantly, EEDQ treatment caused an 

increase in locomotor activity scores across time blocks 

[Condition x Time Block interaction, F(3,288)=8.51, 

P<0.001]. This potentiated locomotor effect was completely 

eliminated when EEDQ-treated rats received receptor 

protection (i.e., SCH23390/sulpiride), because distance 

traveled scores of the EEDQ-Protection group were similar 

to rats pretreated with distilled water and infused with 

DMSO (Figure 5, top left and bottom right panel). Thus, 

NPA potentiated the locomotion of preweanling rats only if 

DI- and D2-like receptors were simultaneously inactivated 

by EEDQ.
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Experiment 3

Effects of DI- or D2-Like Striatal Receptor 
Inactivation on the EEDQ-Induced Behaviors of 
Preweanling Rats

Habituation. During the chamber habituation phases 

(i.e., time blocks 1-4 and 5-8), distance traveled scores 

were significantly affected by condition (EEDQ or 

DMSO)(Figure 6, panels to the left of dashed vertical 

lines)[Condition main effects, F(l,90)=14.88, P<0.001; 

F(l, 90)=68.78, P<0.001, respectively]. Specifically, 

EEDQ-treated rats had greater distance traveled scores 

when compared to DMSO-treated rats. Individual time block 

analysis showed that EEDQ-treated rats had significantly 

greater distance traveled scores than all DMSO-treated 

rats on time blocks 5 and 7 [Condition x Time Block 

interaction, F(5,406)=34.29, P<0.001, and Tukey tests].

Testing Phase. During the testing phase (i.e., time 

blocks 9-16), EEDQ-treated rats had significantly greater 

distance traveled scores than rats receiving DMSO (Figure 

6, compare panels to the right of the dashed vertical 

line) [Condition main effect F(l,84)=35.65, P<0.001]. 

Regardless of pretreatment (i.e., saline, SCH23390, or 

sulpiride) and receptor inactivation conditions (i.e., 

EEDQ or DMSO), microinjecting NPA (10 pg NPA) into the 

dorsal striatum caused a significant increase in distance
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Figure 6, Mean Distance Traveled (+SEM) During the 80-min 

- Behavioral'Testing Session on PD 18 (n = 8 per group) of

Experiment 3. Rats were Previously (i.e., PD 17) Injected 

with Saline,, SCH23390, or Sulpiride and given Bilateral

Infusions of either DMSO or EEDQ (100 pg) into the Dorsal

Striatum. At the Conclusion of Time Block 8 (PD 18;

indicated by the dashed line), Rats Received Bilateral

Infusions of Distilled Water or NPA (10 pg).
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traveled scores when compared to rats receiving 0 pg NPA 

[Post-Drug main effect, F(l,84)=101.87, P<0.001].

More importantly, there was a significant four-way 

interaction (Figure 6) [aPretreatment x Condition x 

Post-Drug x Time Block interaction, F(7,307)=3.61, 

P<0.001]. Due to this higher-order interaction, three 

two-way ANOVAs were conducted. Each Condition x Time Block 

ANOVA compared NPA-treated rats given either DMSO or EEDQ. 

A separate ANOVA was conducted for each protection 

condition (i.e., No Protection, SCH23390 Protection, and 

sulpiride Protection). An individual time block analysis 

of the No Protection groups (upper graphs, Figure 6) 

showed that NPA caused a potentiated locomotor response in 

EEDQ-treated rats on time blocks 9-11 (i.e., when compared 

to DMSO-treated rats receiving NPA) [Condition x Time 

Block interaction, F(3,45)=3.80, P<0.05, and Tukey tests]. 

Likewise, when comparing the SCH23390 Protection groups 

(middle graphs, Figure 6), NPA caused a potentiated 

response in EEDQ-treated rats on time blocks 9-11 and 

13-16) [aCondition x Time Block interaction, F(4,50)=3.80, 

P<0.05, and Tukey tests]. And, when comparing the 

sulpiride Protection groups (lower graphs, Figure 6), NPA 

caused a potentiated response in EEDQ-treated rats on time
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pg) into the Dorsal Striatum (the SCH23390 alone and 

sulpiride alone rats are from Figure 6). At the Conclusion 

of Time Block 8 (PD 18; indicated by the dashed line), 

Rats Received Bilateral Infusions of NPA (10 pg).
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blocks 13-16) ^Condition x Time Block interaction,
i

F(3, 37)=6.05, P<0.01, and Tukey tests].

In this experiment an additional group of 8 rats were 

infused with NPA 24 hr after receiving combined 

SCH23390/sulpiride pretreatment and EEDQ (i.e., these rats 

were treated as in Experiment 2). A3 x 8 (Pretreatment x
1

Time Block) ANOVA was conducted to compare EEDQ-treated rats 

infused with NPA within the three protection groups (i.e., 

SCH23390, sulpiride, or combined SCH23390/sulpiride). 

EEDQ-treated rats in the combined SCH23390/sulpiride 

protection group had smaller distance traveled scores than 

EEDQ-treated rats in the SCH23390 protection group infused
i

with NPA (Figure 7)[Pretreatment main effect, F(2,21)=4.64, 

P<0.05, and Tukey tests]. Importantly, EEDQ-treated rats 

given SCH23390 Protection did not differ from rats given 

sulpiride Protection. Additionally, the effects of NPA on 

distance traveled scores varied across time blocks 

[aPretreatment x Time Block interaction, ' F(6,68)=7.01, 

P<0.001, and Tukey tests]. Specifically, the combined 

SCH23390/sulpiride protection group differed from both the 

SCH23390 alone and sulpiride alone protection groups on time
i

blocks 13-15, from the SCH23390 alone protection group on 

time blocks 10-12, and from the sulpiride alone protection 

group on time block 16.



Experiment 4

Quantitative Autoradiography

Representative Dl- and D2-like receptor 

autoradiograms of EEDQ- and DMSO-treated rats are shown in 

Appendix B (preweanling rats) and Appendix C (adult rats). 

Autoradiograms were analyzed using t-tests (condition: 

EEDQ and DMSO) at each age to assess Dl- and D2-like 

receptor densities. Additionally, separate 2*2 

(condition * age) ANOVAs were conducted to analyze 

receptor densities across ontogeny.

[3H]SCH23390 Autoradiography

Intrastriatal EEDQ injections significantly reduced 

Dl-like receptor densities in both preweanling and adult 

rats (see Table 1)[t(8)=7.70, PC0.001; t(8)=8.41, PC0.001, 

respectively].

[3H]Spiperone Autoradiography

Microinjecting EEDQ into the dorsal striatum caused a 

significant reduction in D2-like receptor binding sites in 

both 'prewean-ling and adult rats (see Table 1) [ t (7) = 3.92, 

P < 0.01; t(8) = 4.53, P < 0.01, respectively].

Ontogenetic Differences

A 2 x 2 (Age x Condition) ANOVA was used to assess 

Dl-like receptor densities. Microinjecting EEDQ into the 

dorsal striatum of both preweanling (30%) and adults (34%)
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Table.1.- Quantitative in Vitro Autoradiography Used to

Determine [3H]SCH23390 and [3H]spiperone Labeling

Intensities in Coronal Sections of the Dorsal Striatum 

after Intrastriatal Microinjections of DMSO and EEDQ in 

■.Preweanling and Adult Rats

- Treatment’ Kax (fmol/mg protein) Bmax (fmol/mg protein)
Dl-like receptors D2-like receptors

DMSO ox EEDQ (100 mg/kg) on PD 17 and PD 84, respectively. 
Tissue was harvested 24 hr after EEDQ or DMSO infusions. 
a Significantly different from DMSO-treated rats of the 
same age; b Significantly different from EEDQ-treated PD 
85 rats.

PD 18
DMSO 19.17 (±1.63) 8.12 (±0.29)b

EEDQ 5.71 (±0.95)a 4.85 (±0.56)ab

%DMSO 30% 60%

PD .85
DMSO 22.10 (±1.41) 15.28 (±2.58)

EEDQ 7.56 (±1.06)a 5.50 (±0.57)a

%DMSO 34% 36%

Preweanling and adult rats received bilateral infusions of
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rats significantly reduced [3H]SCH23390 binding, and this 

effect did not vary according to age (Figure 8)[Condition 

main effect, F(l,16) = 129.88 P < 0.001]. In contrast, 

adult rats had markedly more dorsal striatal D2-like 

receptors than preweanling rats (see Table 1)[Age main 

effect, F(l,5) = 10.02 P < 0.0'1]. EEDQ infusions 

significantly reduced [3H]spiperone binding in the dorsal 

striatum [Condition main effect, F(l,15) = 28.05

P < 0.001], and this effect varied between age groups [Age 

x Condition interaction, F(l,15) = 6.99 P < 0.05]. More 

specifically, D2-like receptor densities were reduced to 

60% in preweanling rats; while, in adult rats, EEDQ 

reduced D2-like receptor densities to 36% of control 

values.

Taken together, these data show that adult and 

preweanling rats have similar levels of Dl-like receptors 

in the dorsal striatum, while adults have approximately ■ 

twice the number of D2-like receptors. EEDQ caused similar 

reductions of Dl-like receptor densities in preweanling 

and adult rats. Interestingly, EEDQ depleted the D2-like ’ 

receptors of preweanling rats to a lesser extent than 

adults.
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t Significantly different from DMSO-treated rats of the same age. 
t Significantly different from EEDQ-treated PD 85 rats.

Figure 8. Effects of Intrastriatal Microinjections of EEDQ 

on [3H]SCH23390 and [3H]Spiperone (i.e., Dl- and D2-like

Receptors, Respectively) Densities in Dorsal Striatal

Coronal Sections of Preweanling and Adult Rats. Values

Represent Percent Change from DMSO-treated Control Rats(100%) .
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Experiment 5

Dl-Like Receptor Binding

When assessed on PD 18, Dl-like receptor binding site 

densities (Bmax) were significantly reduced 24 hr after 

EEDQ infusions (Table 2) [t(10) = 5.70, P < 0.001].

Dl-like receptor affinity (KD) was not altered by EEDQ, 

with the overall KD value being 0.840 (±0.138) nM.

Similarly, infusing EEDQ on PD 84 caused a 

significant decrease in Dl-like receptor binding site 

densities (Table 2) (t(9) = 6.11, P < 0.001]. In contrast

to the preweanling age group, EEDQ infusions significantly 

enhanced KD values in the dorsal striatum of adult rats 

[t(9) =2.40, P < 0.05].

D2-Like Receptor Binding

Infusing EEDQ into the dorsal striatum of PD 17 rats 

caused a significant decrease in D2-like receptor binding 

site densities when assessed 24 hr later (Table 3) 

[t(10) = 3.16, P < 0.05]. D2-like receptor affinity was 

not altered when EEDQ was infused into the dorsal stratum.

Although EEDQ infusions on PD 79 caused a substantial 

decrease in D2-like receptor binding like densities (i.e., 

35% reduction), this effect did not reach statistical 

significance (Table 3) [P = 0.12]. However, the mean KD
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Table 2. Effect of DMSO and EEDQ on Dl-like Receptor

Density (fmol/mg Protein, ±SEM) and Affinity (nM, ±SEM) 

for [3H]SCH23390 Binding in the Dorsal Striatum of 

Preweanling and Adult Rats

Treatment Bmax (fmol/mg protein) Fa (nM)

PD 18 (n=12)
DMSO 3631.44b (±483.63) 0.699 (±0.098)

EEDQ (100 mg/kg) 802.28a (±110.98) 0.981 (±0.258)

%DMSO 22%

PD 85 (n=ll)
DMSO 4771.8 (±459.01) 0.684 (±0.055)

EEDQ (100 mg/kg) 1413.4a (±234.78) 1.069'1 (±0.166)

%DMSO 30%

Preweanling and adult rats received bilateral infusions of 
DMSO or EEDQ (100 mg/kg) on PD 17 and PD 84, respectively. 
Tissue was harvested 24 hr after EEDQ or DMSO infusions. 
a Significantly different from DMSO-treated rats of the 
same age; b Significantly different from PD 85 rats.
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Table 3. Effect of DMSO and EEDQ on D2-like Receptor

Density (fmol/mg Protein, ±SEM) and Affinity (nM, ±SEM) 

for [3H]Spiperone Binding in the Dorsal Striatum of

Preweanling and Adult Rats

Treatment Bmax (fmol/mg protein) Kd (nM)

PD 18 (n~12)
DMSO 606.lb (±83.79) 0.140 (±0.013)

EEDQ (100 mg/kg) 276.0a (±63.49) 0.124 (±0.035)

%DMSO 46%

PD 85 (n=12)
DMSO' 800.8 (±147.67) 0.114 (±0.019)

EEDQ (100 mg/kg) 520.4 (±73.32) 0.289a (±0.067)

%DMSO 65%

Preweanling and adult rats received bilateral infusions of 
DMSO or EEDQ (100 mg/kg) on PD 17 and PD 84, respectively. 
Tissue was harvested 24 hr after EEDQ and DMSO infusions. 
a Significantly different from DMSO-treated rats of the 
same age; b Significantly different from PD 85 rats.
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value of D2-like receptors was significantly increased ■after EEDQ treatment (Table 3) [t(10) = 2.51, P < 0.05].Ontogenetic DifferencesWhen comparing adult and preweanling rats, adult rats had significantly more Dl- and D2-like receptor binding sites than preweanling rats [Age main effects,F(l,19) = 5.82 P < 0.05; F(l,20) = 5.06, P < 0.05, respectively]. At the two ages, EEDQ infusions caused approximately similar reductions in B^ax values for both Dl- (PD 18, 78%; PD 85, 70%) and D2-like (PD 18, 54%;PD 85, 35%) receptors. In both adult and preweanling rats, EEDQ seemed to produce a greater decline in Dl- than D2-like receptors, even though this trend did not reach statistical significance.Collectively, these data suggest that Binax values for both Dl- and D2-like receptors were significantly reduced after EEDQ infusions in preweanling rat-s, while KD values were unaltered. In adult rats, however, EEDQ caused a significant reduction in the B^ax values of Dl-like, and not D2-like, receptors. Interestingly, KD' values for both Dl- and D2-like receptors were significantly elevated in EEDQ-treated adult rats.
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CHAPTER TWELVEDISCUSSION
The purpose of this thesis was three-fold: a) to investigate the effects of intrastriatally administered EEDQ on NPA-mediated locomotor activity in preweanling and adults rats; b) to determine which dopamine receptor subtype (Dl- or D2-like) is responsible for modulating EEDQ's paradoxical behavioral effects in preweanling rats; and c) to examine the magnitude of EEDQ-induced Dl- and D2-like receptor inactivation in both adult and preweanling rats. It was predicted that: a) microinjecting EEDQ into the dorsal striatum of adult and preweanling rats would block NPA-induced locomotor activity; b) both Dl- and D2-like receptors in the dorsal striatum are responsible for mediating NPA-induced locomotor potentiation in preweanling rats; and c) intrastriatal infusions of EEDQ were predicted to cause a substantial reduction of Dl- and D2-like receptor binding sites in both preweanling and adult rats.

Effects of EEDQ on the NPA-Mediated Locomotor Activity of Adult RatsPrevious research has shown that systemic co-administration of the selective Dl- and D2-like agonists SKF38393 and quinpirole elicits a dose-dependent 
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increase in locomotor activity as well as stereotyped 

grooming and sniffing (Braun & Chase, 1986; Clark & White, 

1987; Kashihara et al., 1996) . Systemic injections of the 

non-selective agonists apomorphine or (+)3-PPP increases 

the locomotor activity of adult rats (Bradbury et al., 

1984; Costall et al., 1981). Similarly, low-dose infusions 

of apomorphine or NPA into the dorsal striatum causes both 

locomotion and rearing (Bordi et al., 1989; Carrera et 

al., 1998; Dias et al., 2006; Dickson et al., 1994).

In the current experiment, adult rats were 

microinjected with NPA (0 or 20 pg) 24 hr after EEDQ or 

DMSO infusions. As predicted, NPA caused a significant 

increase in the locomotor activity of DMSO-treated adult 

rats; however, EEDQ was able to fully attenuate 

NPA-induced increases in locomotor activity. These results 

are not surprising considering that systemic EEDQ 

treatment blocks NPA-induced locomotion in adults (Bordi 

et al., 1989; Hamblin & Creese, 1983; Meller et al., 

1989). Therefore, consistent with previous research, it 

appears that reductions in both Dl- and D2-like receptors 

due to irreversible inactivation by EEDQ was sufficient to 

block the locomotor activating properties of NPA in adult 

rats.
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Effects of Dorsal Striatal NPA Infusions on the 
Locomotor Activity of Preweanling Rats

In Experiments 2 and 3, locomotor activity was 

assessed after intrastriatal infusions of the 

non-selective dopamine agonist NPA. Treatment with either 

10 or 20 pg NPA increased locomotor activity in control 

rats. This result was not surprising because previous 

studies have reported that infusing NPA into the dorsal 

striatum stimulates locomotion (Charntikov et al., 2008, 

2011). Additionally, systemically administering NPA, as 

well as other non-selective dopamine agonists (i.e., 

cocaine and amphetamine), increases locomotor activity in 

preweanling rats (McDougall et al., 1995, 1993, 1999; 

Nazarian et al., 1999).

Effects of EEDQ on the NPA-Induced Locomotor 
Activity of Preweanling Rats

Contrary to our predictions, EEDQ did not attenuate 

the NPA-induced locomotor activity of preweanling rats, 

instead, EEDQ potentiated the locomotor activity of PD 18 

rats, while it attenuated the NPA-induced locomotor 

activity of adult rats. Due to these striking results, we 

investigated which dopamine receptor subtype, if any, was 

responsible for this effect. Using receptor protection 

techniques (i.e., combined SCH23390/sulpiride treatment), 

Experiment 2 showed that dopamine receptors are 
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responsible for EEDQ's paradoxical behavioral effects in 

preweanling animals. Specifically, there is a blunting of 

NPA-induced locomotion in EEDQ-treated rats pretreated 

with SCH23390/sulpiride, when compared to EEDQ-treated 

rats given saline protection (see Figure 5). In other 

wojrds, NPA-induced locomotor potentiation was only evident 

if EEDQ was allowed to alkylate DI- and D2-like receptors.

The purpose of Experiment 3 was to determine which 

dopamine receptor subtype (i.e., DI- or D2-like) is 

responsible for the potentiated locomotor response to NPA 

that is evident after irreversible antagonism with EEDQ. 

NPA (10 pg) caused a significant increase in the locomotor 

activity of EEDQ-treated rats regardless of individual 

receptor protection conditions (i.e., SCH23390 or 

sulpiride pretreatment)(see Figure 6). Therefore, these 

results show that inactivating either DI- or D2-like 

receptors -was sufficient to potentiate NPA-induced 

locomotor activity. Only when both DI- and D2-like 

receptors were protected from EEDQ (i.e., after combined 

SCH23390/sulpiride treatment) was NPA-induced locomotor 

potentiation blocked. Taken together, these data strongly 

suggest that the NPA-induced locomotor potentiation 

exhibited by EEDQ-treated preweanling rats is due to the 

alkylation of Dl- and D2-like receptors.
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[3H]SCH23390 and [3H] Spiperone Homogenate Ligand 
Receptor Binding and Autoradiography

I hypothesized that intrastriatal infusions of EEDQ 

would: (a) cause a substantial reduction of Dl- and 

D2-like receptor binding sites in preweanling and adult 

rats, and (b) the decline of Dl- and D2-like receptors 

would be greater in adult rats than preweanling rats. It 

has already been established that systemic injections of 

EEDQ cause robust declines in both Dl- and D2-like 

receptors in preweanling and adult rats (Crawford et al., 

1992; Giorgi et al., 1991, 1992; Meller et al., 1985). 

Data from the present homogenate receptor binding study 

'showed that EEDQ infusions caused reductions in the Bmax 

values of both Dl- (PD 18, 78%; PD 85, 70%) and D2-like 

(PD 18, 54%; PD 85, 35%) receptors, with the decline being 

greater for Dl- than D2-like receptors. In preweanling

rats, EEDQ caused a significant reduction in the 3max

values of Dl- and D2 -like receptors; whereas, in adult

rats, EEDQ caused a significant reduction in the ■^max

values of Dl-like, but not D2-like receptors. These data 

were contrary to my prediction because EEDQ caused a 

greater reduction of Dl- and D2-like receptors sites in 

preweanling rats than adults.
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The Dl-like receptor autoradiography data complements 

the receptor binding data. EEDQ reduced Dl-like receptors 

by 70% in preweanling rats and by 66% in adult rats. 

Analysis of the autoradiography data showed that the 

D2-like receptor binding sites of preweanling rats were 

reduced by 40%, which was similar to the results obtained 

using homogenate ligand binding techniques (a reduction of 

54%). In striking contrast, however, the autoradiography 

data showed that there was a far greater reduction of 

D2-like receptor binding sites in EEDQ-treated adult rats 

(64%) than what was observed in the homogenate binding 

assay (35%).

When considering D2-like receptors, the homogenate 

ligand binding and autoradiography results are 

contradictory to one another. In the homogenate ligand 

binding experiment, the proportion of D2-like receptor 

inactivation in the dorsal striatum is somewhat greater in 

preweanling rats than adults (PD 18, 54%; PD 85; 35%). In 

terms of the autoradiography data, EEDQ caused 

significantly greater receptor alkylation in adult rats 

than preweanling rats (PD 18, 40%; PD 85, 64%). Therefore, 

the binding "data show that adult rats have approximately 

25% more D2-like receptors than preweanling rats; whereas, 

the autoradiography data show that adult rats have 
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approximately 50% more D2-like receptors. Previous studies 

employing homogenate binding techniques support the notion 

of age-dependent differences in the number of binding 

sites. Specifically, adult rats have significantly more 

■DI- and D2-like receptor binding sites than preweanling 

rats (Crawford et al., 1992). In contrast, two studies 

using quantitative autoradiography showed that Dl- and 

D2-like receptor binding reached adult levels by 

approximately PD 14-21 (Rao et al., 1991; Schambra et al., 

1994). Therefore, it is not atypical for homogenate ligand 

binding and quantitative autoradiography to provide 

different patterns of results.

In the current homogenate ligand and autoradiography 

experiments, the same volume of EEDQ (0.75 pl per side) 

was injected into the dorsal striatum of both preweanling 

and adult rats. Across ontogeny, the size of the dorsal 

striatum varies, thus it is possible that more Dl- and 

D2-like receptors were inactivated in preweanling rats 

than adults due to the relative size of the structure. 

Moreover, it is uncertain whether intrastriatal dispersion 

(solubility) is similar in the two age groups. Therefore, 

it is very likely that more of the dorsal striatum was 

left intact in adult rats.
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Autoradiography is a technique in which the whole 

brain is imaged, but individual structures are of 

particular interest. In this case, a radiograph of the 

tissue is made on a photographic plate from the radiation 

emitted by tritium and the distribution of the radiation 

is visualized and quantified. A homogenate receptor 

binding assay involves gross dissection of a particular 

brain structure. These methodological differences can 

account for the discrepancies observed across the two 

techniques. It is likely that during gross dissection, 

unaffected areas of the striatum were included in the 

final tissue sample. Instead, autoradiography is 

target-area specific such that a discrete area of the 

structure is analyzed.

Paradoxical Actions of EEDQ in 
Preweanling Rats

The data from these experiments showed that 

intrastriatal EEDQ affects preweanling and adult rats in a 

qualitatively different manner. EEDQ treatment attenuated 

NPA-induced -locomotor activity in adult rats. In contrast, 

EEDQ treatment potentiated, rather than attenuated, 

NPA-induced locomotor activity in preweanling rats. This 

paradoxical behavioral pattern gives rise to some 

questions: a) Why did EEDQ affect the behavior of adult 
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and preweanling rats differently; and b) why was the 

locomotor activity of preweanling rats potentiated? 

Several possible explanations can be used to elucidate 

these findings. First, it is possible that some other type 

of receptor1 was'inactivated and accounted for the 

potentiated locomotor response in preweanling rats.

Second, the proportion of 01- and D2-like receptors 

inactivated was not sufficient to diminish the locomotor 

activating properties of NPA in preweanling rats. Third, a 

disproportionate inactivation of Dl- and D2-like receptors 

may change the relative excitatory/inhibitory effects of 

dopamine agonists on the direct and indirect pathways.

Fourth, a receptor reserve, or the lack thereof, may 

account tor the qualitatively different locomotor patterns 

observed across ontogeny. Lastly, the receptors that were 

regenerated or those that remained after alkylation may be 

more sensitive in preweanling rats.

Even though EEDQ binds to and inactivates Dl- and 

D2-like receptors, this non-competitive antagonist binds 

•to various other receptor types, including ot-adrenergic, 

muscarinic, serotonergic, and GABAergic (Adler et al., 

1985; Arnt & Hyttel, 1988; Hamblin & Creese, 1983; Meller 

et al., 1985; Miller et al., 1991; Nowak et al., 1988; 

Sailer et al., 198'9; Vinod, Subhash, & Srinivas, 2001).
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Regardless, the protection experiments clearly show that 

dopamine receptors were responsible for the potentiated 

locomotor activity exhibited by1 EEDQ-treated preweanling 

ratjs 'receiving NPA. This is evidenced by the fact that the 

potentiated locomotor response was attenuated when both 

DI- and D2-like receptors were selectively protected 

(i.e., SCH23390/sulpiride pretreatment) from the 

inactivating effects of EEDQ. Therefore, it is unlikely 

that our results can be explained by the alkylation of 

some other receptor subtype.

Secondly, it is doubtful whether the inability of 

EEDQ to attenuate NPA-induced locomotion can be attributed 

to insufficient receptor alkylation. First, insufficient 

receptor alkylation should not result in a potentiated 

locomotor response. Moreover, both the homogenate binding 

and autoradiography experiments indicate that there was a 

significant reduction in the Dl- and D2-like receptors of 

EEDQ-treated preweanling rats, and this reduction is 

comparable to what was observed in adults. Therefore, a 

significant proportion of Dl- and D2-like receptors were 

inactivated in the dorsal striatum of preweanling rats,
i

thus insufficient receptor alkylation cannot account for 

the potentiated behavior observed in young animals.
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A third possible explanation for the paradoxical 

behavioral effects observed in preweanling rats stems from 

the neural organization of Dl- and D2-like receptors. 

Stimulating Dl-like receptors activates the direct 

(striatonigral) pathway; whereas, stimulation of D2-like 

receptors disinhibits the indirect (striatopallidal) 

pathway (Gerfen, 1992). The downstream components of these 

pathways are glutamatergic (excitatory) and GABAergic 

(inhibitory) projections to major output structures of the 

basal ganglia (i.e., the substantia nigra pars reticulata 

and entopeduncular nucleus). If EEDQ caused a 

disproportional inactivation of Dl- and D2-like receptors, 

it is possible that an imbalance developed that affected 

the relative activity of the direct and indirect pathways. 

A change in the activation (or inhibition) of either of 

these pathways may cause the potentiated locomotor 

response observed in preweanling rats; •

The proposed imbalance of outputs might also affect 

feedback loops within the basal ganglia. The substantia 

nigra pars compacta contains dopamine cell bodies, which 

send projections to the dorsal striatum,(nigrostriatal 

pathway), subthalamic nucleus (nigrosubthalamic pathway), 

and globus pallidus (nigropallidal pathway)(Haber, 1994). 

In terms of the nigrostriatal pathway, dopamine neurons 
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synapse on intrinsic GABAergic neurons of the dorsal 

striatum (Clarke et al., 1988). A hypothetical imbalance 

of direct and indirect pathway activation would be 

expected to differentially affect the firing rate of 

compacta dopamine neurons, thereby indirectly altering the 

functioning of the direct and indirect pathways (i.e., 

cause differential firing of the feedback loop).

Fourth, the relative size of a "receptor reserve" may 

explain why EEDQ differentially affects the behaviors of 

preweanling and adult rats. Receptor reserve theory refers 

to the relationship between receptor occupation and 

response. According to this model, a receptor reserve 

exists when there are more receptors on the surface of the 

cell membrane than are needed for the maximal effect (E^x) 

of a drug. Theoretically, if spare receptors are present, 

the drug concentration that produces 50% occupancy should 

be greater than the concentration that produces 50% of 

maximum response.

Evidence suggests the presence of a large receptor 

reserve at striatal D2-like autoreceptors in adult rats, 

(Furchgott & Burstyn, 1967; Meller, Bohmaker, Namba, 

Friedhoff, & Goldstein, 1987; Meller, Helmer-Matyjek, 

Bohmaker, Adler, Friedhoff, & Goldstein, 1986; Roth, 

1979), and a much smaller reserve at D2-like postsynaptic 
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receptors (Meller et al., 1987; Ruffolo, 1982). A recent article by Gubernator and colleagues (2009) utilized fluorescent false neurotransmitters and multiphoton imaging to show a preferential synaptic vesicle reserve for presynaptic D2-like receptors. It has also been postulated that a receptor reserve exists for postsynaptic Dl-like receptors, because (a) Dl-like receptor agonist-induced behaviors persisted in EEDQ-treated rats (Arnt et al., 1988; Rosengarten et al., 1989) and (b) a reduction in Dl-like receptor biding sites in EEDQ-treated rats did not directly correlate with a decrease in adelylate cyclase activity (Hess et al., 1987).In contrast, because EEDQ-treated preweanling rats continue to exhibit NPA-induced locomotor activity, it is possible that young rats have a larger reserve of Dl- and D2-like postsynaptic receptors. Consistent with this idea, our data showed that Dl- and D2-like receptor-mediated locomotor activity was preserved in EEDQ-treated preweanling rats even after significant receptor alkylation. That being said, there is no corroborating evidence showing that a large D2-like receptor reserve exists in preweanling rats. Moreover, a receptor reserve explanation cannot account for the potentiated locomotor response exhibited by preweanling rats.
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Fifth, it is possible that EEDQileaves the remaining
i

receptors in a supersensitized state■or, alternatively, 

that the newly generated receptors are supersensitive. 

Dopamine receptor supersentivity refers to a phenomenon 

where there is a greater than normal physiological, 

behavioral, or biochemical response to a dopamine agonist 

(for review, see Kostrzewa, 1995). Evidence suggests that
I

dopamine depletion (e.g., after reserpine -or 6-OHDA
I

treatment) causes a decrease in Dl-like receptor 

expression and, conversely, an increase in D2-like 

receptor’expression (Gerfen et al., 1990; Gerfen, McGinty,
I

Young 1991; Young et al., 1986; see also Gerfen 2003).

Even though there is either a decrease or no change in
I

Dl--like receptor expression (Gerfen et al., .1990;
i

Marshall, Navarrete, & Joyce, 1989),,a supersensitive 

response is evident, after Dl-like receptor stimulation 

(Berke, Paletzki, Aronson, Hyman, & Gerfen, 1998; Gerfen 

et al., 1995; Robertson, Vincent, & Fibiger, 1990; Steiner 

& Gerfen, 1996). Dopamine depletion can also cause 

receptor supersensitivity in preweanling rats as evidenced 

by a potentiated behavioral response!to dopaminergic drugs 

(Farley et al., 2006).

Not surprisingly, EEDQ significantly reduces dopamine 

content in the dorsal striatum at PD 17 and PD 90

115



(Crawford et al., 1992, 1994a). Reduced dopamine levels 

can lead to receptor inactivation and, consequently, 

receptor supersensitivity (Berke et al., 1998; Gerfen et 

al., 1995; Robertson et al., 1990; Steiner & Gerfen, 

1996). Receptor turnover rates vary across ontogeny, with 

receptor repopulation occurring at a more rapid pace in 

preweanling rats than adults (Leff et al., 1984; Kula et 

al., 1992). It is likely that newly synthesized receptors 

are supersensitive (see Seeman, Weinshenker, Quirion, 

Srivastava, Bhardwaj, Grandy, Premont, Sotnikova, Boksa, 

El-Ghundi, O'Dowd, George, Perreault, Mannisuo, Robinson, 

Palmiter, & Tallerico, 2005); thus, with quicker receptor 

repopulation it is possible that EEDQ-treated preweanling 

rats have a larger complement of supersensitive receptors 

than adult rats. If so, preweanling rats may show a 

potentiated locomotor response because of an abundance of 

supersensitive Dl- and D2-like receptors.

Conclusion

In conclusion, data from this thesis adds to previous 

research showing that dopaminergic compounds can affect 

the behaviors of preweanling and adult rats differently. 

The present results inducate that NPA does not increase 

the locomotor activity of EEDQ-treated adults; whereas, 

EEDQ-treated preweanling rats show a potentiated locomotor 
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response after NPA treatment. Importantly, this 

potentiated locomotion is due to the alkylation of Dl- and 

D2-like receptors, and not some other receptor type.

Homogenate ligand binding and autoradiography experiments 

showed that EEDQ caused a significant reduction in the 

dorsal striatal Dl- and D2-like receptors of preweanling 

rats. I think that the most plausible explanation for the 

potentiated locomotor response observed in EEDQ-treated 

preweanling rats stems from age-dependent differences in 

Dl- and D2-like receptor' supersensitivity. Receptor 

turnover is greater in preweanling rats and it possible 

that NPA is stimulating an abundance of supersensitized 

receptors, thereby resulting in a potentiated locomotor 

response.
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CANNULA

APPENDIX A

PLACEMENT SCHEMATICS
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A B

0.70

0.48

0.20

-0.26

-0.30

Schematic representations of cannula placements in the dorsal striatum of 

(A) adult (Experiment 1) and (B) preweanling rats (Experiment 2 and 3). In all 

cases, numbers on the right indicate distance (mm) from Bregma using 

coordinates from the rat brain atlas of Paxinos and Watson (1998).
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APPENDIX B

AUTORADIOGRAMS: PREWEANLING RATS
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DMSO EEDQ

Representative autoradiograms of [3H]SCH23390 and [3H]spiperone binding 

after bilateral infusions of EEDQ and DMSO into the dorsal striatum on PD 

17.
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APPENDIX C

AUTORADIOGRAMS: ADULT RATS
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DMSO
D1

EEDQ

Representative autoradiograms of [3H]SCH23390 and [3H]spiperone binding 

after bilateral infusions of EEDQ and DMSO into the dorsal striatum on PD 

84.
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