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Abstract
Finding exact circuit size is notoriously hard. Whereas modern computers and algorithmic techniques
allow to find a circuit of size seven in the blink of an eye, it may take more than a week to search for
a circuit of size thirteen. One of the reasons of this behavior is that the search space is enormous:
the number of circuits of size s is sΘ(s), the number of Boolean functions on n variables is 22n

.
In this paper, we explore the following natural heuristic idea for decreasing the size of a given

circuit: go through all its subcircuits of moderate size and check whether any of them can be improved
by reducing to SAT. This may be viewed as a local search approach: we search for a smaller circuit
in a ball around a given circuit. Through this approach, we prove new upper bounds on the circuit
size of various symmetric functions. We also demonstrate that some upper bounds that were proved
by hand decades ago, can nowadays be found automatically in a few seconds.
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1 Boolean Circuits

A Boolean straight line program of size r for input variables (x1, . . . , xn) is a sequence
of r instructions where each instruction g ← h ◦ k applies a binary Boolean operation ◦ to
two operands h, k each of which is either an input bit or the result of a previous instruction.
If m instructions are designated as outputs, the straight line program computes a function
{0, 1}n → {0, 1}m in a natural way. We denote the set of all such functions by Bn,m and
we let Bn = Bn,1. For a Boolean function f : {0, 1}n → {0, 1}m, by size(f) we denote the
minimum size of a straight line program computing f . A Boolean circuit shows a graph of
a program: for every instruction g ← h ◦ k, there is a node g with two directed incoming
edges from nodes h and k.

Figure 1 gives an example for the SUMn : {0, 1}n → {0, 1}l function that computes the
binary representation of the sum of n bits:

SUMn(x1, . . . , xn) = (w0, w1, . . . , wl−1) :
n∑

i=1
xi =

l−1∑
i=0

2iwi, where l = ⌈log2(n + 1)⌉ .

This function transforms n bits of weight 0 into l bits of weights (0, 1, . . . , l − 1).
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def sum2(x1, x2):
w0 = x1 ^ x2
w1 = x1 * x2
return w0, w1

x1 x2

∧w1 ⊕ w0

def sum3(x1, x2, x3):
a = x1 ^ x2
b = x2 ^ x3
c = a | b
w0 = a ^ x3
w1 = c ^ w0
return w0, w1

x1 x2 x3

⊕a ⊕b

∨c ⊕ w0

⊕ w1

Figure 1 Optimal size straight line programs and circuits for SUM2 and SUM3. These two
circuits are known as half adder and full adder.

The straight line programs are given in Python so that it is particularly easy to verify their
correctness. For example, the program for SUM3 can be verified with just three lines of code:

from itertools import product

for x1, x2, x3 in product(range(2), repeat=3):
w0, w1 = sum3(x1, x2, x3)
assert x1 + x2 + x3 == w0 + 2 * w1

Determining size(f) requires proving lower bounds: to show that size(f) > α, one needs
to prove that every circuit of size at most α does not compute f . Known lower bounds are
far from being satisfactory: the strongest known lower bound for a function family in NP
is (3 + 1/86)n−o(n) [7]. Here, by a function family we mean an infinite sequence of functions
{fn}∞

n=1 where fn ∈ Bn. Even proving lower bounds for specific functions (rather than
function families) is difficult. Brute force approaches become impractical quickly: |Bn| = 22n ,
hence already for n = 6, one cannot just enumerate all functions from Bn; also, the number
of circuits of size s is sΘ(s), hence checking all circuits of size s takes reasonable time for small
values of s only. Knuth [11] found the exact circuit size of all functions from B4 and B5.

Finding the exact value of size(f) for f ∈ B6 is already a difficult computational task for
modern computers and techniques. One approach is to translate a statement “there exists
a circuit of size s computing f” to a Boolean formula and to pass it to a SAT solver. Then,
if the formula is satisfiable, one decodes a circuit from its satisfying assignment; otherwise,
one gets a (computer generated) proof of a lower bound size(f) > s. This circuit synthesis
approach was proposed by Kojevnikov et al. [13] and, since then, has been used in various
circuit synthesis programs (abc [1], mockturtle [24], sat-chains [10]).

State-of-the-art SAT solvers are surprisingly efficient and allow to handle various practi-
cally important problems (with millions of variables) and even help to resolve open problems
in mathematics [2]. Still, already for small values of n and s the problem of finding a circuit
of size s for a function from Bn is difficult for SAT solvers. We demonstrate the limits of this
approach on counting functions: MODm,r

n (x1, . . . , xn) = [x1 + · · ·+ xn ≡ r mod m] (here, [·]
is the Iverson bracket: [S] is equal to 1 if S is true and is equal to 0 otherwise). Using SAT
solvers, Knuth [12, solution to exercise 480] found size(MOD3,r

n ) for all 3 ≤ n ≤ 5 and all
0 ≤ r ≤ 2. Generalizing the found values, he made the following conjecture:

size(MOD3,r
n ) = 3n− 5− [(n + r) ≡ 0 mod 3] for all n ≥ 3 and r. (1)

He was also able to prove (using SAT solvers) that size(MOD3,0
6 ) = 12 and wrote: “The

case n = 6 and r ̸= 0, which lies tantalizingly close to the limits of today’s solvers, is still
unknown.”
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Knuth also describes various symmetry breaking heuristics and shows which of them give
a significant speedup. Haaswijk et al. [8] show another way of speeding up the SAT-based
approach for circuit synthesis: first, generate all possible circuit topologies, then, for each
topology check using SAT solvers whether one can assign Boolean operation to the gates
so that the resulting circuit computes a given function.

To summarize, our current abilities for checking whether there exists a Boolean circuit
of size s are roughly the following: for s ≤ 6, this can be done in a few seconds; for 7 ≤ s ≤ 12,
this can (sometimes) be done in a few days; for s ≥ 13, this is out of reach.

1.1 New Results
In this paper, we explore the limits of the following natural idea: given a circuit, try to improve
its size by improving (using SAT solvers, for example) the size of its subcircuit of size seven.
This is a kind of a local search approach: we have no possibility to go through the whole
space of all circuits, but we can at least search in a neighborhood of a given circuit. This
allows us to work with circuits consisting of many gates.

As the results of experiments, we show several circuits for which the approach described
above leads to improved upper bounds.

We support Knuth’s conjecture (1) for MOD3,r
n by proving the matching upper bound:

size(MOD3,r
n ) ≤ 3n− 5− [(n + r) ≡ 0 mod 3] for all n ≥ 3 and r.

This improves slightly the previously known upper bound size(MOD3,r
n ) ≤ 3n − 4

by Demenkov et al. [4]. To prove Knuth’s conjecture, one also needs to prove a lower
bound on size(MOD3,r

n ). The currently strongest known lower bound for size(MOD3,r
n )

is 2.5n−O(1) due to Stockmeyer [25].
We present improvements for size(SUMn) for various small n and show that some of these
circuits and their parts can be used as building blocks to design efficient circuits for other
functions in semiautomatic fashion. In particular, we show that a part of an optimal
circuit for SUM5 can be used to build optimal circuits of size 2.5n for MOD4,r

n [25] and
best known circuits of size 4.5n+o(n) for SUMn [4]. In turn, an efficient circuit for SUM5
can be found in a few seconds if one starts from a standard circuit for SUM5 composed
out of two full adders and one half adder.
We design new circuits for the threshold function defined as follows:

THRk
n(x1, . . . , xn) = [x1 + · · ·+ xn ≥ k] .

The best known upper bounds for THR are the following:

size(THRk
n) ≤ kn + o(n) for 2 ≤ k ≤ 4 [5] (see also [26, 6.2, Theorem 2.3]),

size(THRk
n) ≤ 4.5n + o(n) for 5 ≤ k [4].

We get the following improvement: size(THRk
n) ≤ (4.5 − 22−⌈log2 k⌉)n + o(n) for 4 ≤

k = O(1). In particular, size(THR4
n) ≤ 3.5n + o(n) and size(THRk

n) ≤ 4n + o(n) for
5 ≤ k ≤ 8.

The improved upper bounds are obtained in a semiautomatic fashion: first, we automatically
improve a given small circuit with a fixed number of inputs using SAT solvers; then,
we generalize it to every input size. For some function families, the second step is already
known (for example, given a small circuit for SUM5, it is not difficult to use it as a building
block to design an efficient circuit for SUMn for every n; see Section 3.1), though in general
this still needs to be done manually.

MFCS 2022
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1.2 Related work
The approach we use in this paper follows the SAT-based local improvement method (SLIM):
to improve an existing discrete structure one goes through all its substructures of size
accessible to a SAT solver. SLIM has been applied successfully to the following structures:
branchwidth [16], treewidth [6], treedepth [20], Bayesian network structure learning [21],
decision tree learning [22].

2 Program: Feature Overview and Evaluation

The program is implemented in Python. We give a high-level overview of its main features
below. All the code shown below can be found in the file tutorial.py at [3]. One may run it
after installing a few Python modules. Alternatively, one may run the Jupyter notebook
tutorial.ipynb in the cloud (without installing anything) by pressing the badge “Colab”
at the repository page [3].

2.1 Manipulating Circuits
This is done through the Circuit class. One can load and save circuits as well as print and
draw them. A nicely looking layout of a circuit is produced by the pygraphviz module [19].
The program also contains some built-in circuits that can be used as building blocks. The
following sample code constructs a circuit for SUM5 out of two full adders and one half
adder. This construction is shown in Figure 2(a). Then, the circuit is verified via the
check_sum_circuit method. Finally, the circuit is drawn. As a result, one gets a picture

similar to the one in Figure 2(b).

circuit = Circuit(input_labels=['x1', 'x2', 'x3', 'x4', 'x5'])
x1, x2, x3, x4, x5 = circuit.input_labels
a0, a1 = add_sum3(circuit, [x1, x2, x3])
b0, b1 = add_sum3(circuit, [a0, x4, x5])
w1, w2 = add_sum2(circuit, [a1, b1])
circuit.outputs = [b0, w1, w2]
check_sum_circuit(circuit)
circuit.draw('sum5')

2.2 Finding Efficient Circuits
The class CircuitFinder allows to check whether there exists a circuit of the required size
for a given Boolean function. For example, one may discover the full adder as follows. (The
function sum_n returns the list of ⌈log2(n + 1)⌉ bits of the binary representation of the sum
of n bits.)

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

circuit_finder = CircuitFinder(dimension=3, number_of_gates=5,
function=sum_n)

circuit = circuit_finder.solve_cnf_formula()
circuit.draw('sum3')
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x1 x2 x3 x4 x5

SUM3

SUM3

0

SUM2

1

1

w2 w1 w0

1 0

0

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5

⊕g6 ⊕ g7

∨ g8 ⊕ w0

⊕ g9

⊕ w1∧w2

x1 x2 x3

x4 x5

⊕g1 ⊕g2

∨g3 ⊕g4

⊕g5 ⊕g6 ⊕ g7

> g8 ⊕ w0

⊕ w1

> w2

(a) (b) (c)

Figure 2 (a) A schematic circuit for SUM5 composed out of two full adders and one half adder.
(b) The corresponding circuit of size 12. (c) An improved circuit of size 11.

This is done by encoding the task as a CNF formula and invoking a SAT solver (via
the pysat module [9]). The reduction to SAT is described in [13]. Basically, one translates
a statement “there exists a circuit of size s comuting a given function f : {0, 1}n → {0, 1}m”
to CNF-SAT. To do this, one introduces many auxiliary variables: for example, for every
x ∈ {0, 1}n and every 1 ≤ i ≤ r, one uses a variable that is responsible for the value of the
i-th gate on the input x.

As mentioned in the introduction, the limits of applicability of this approach (for finding
a circuit of size s) are roughly the following: for s ≤ 6, it usually works in less than a minute;
for 7 ≤ s ≤ 12, it may already take up to several hours or days; for s ≥ 13, it becomes almost
impractical. The running time may vary a lot for inputs of the same length. In particular,
it usually takes much longer to prove that the required circuit does not exist (by proving
that the corresponding formula is unsatisfiable). Table 1 reports the running time of this
approach on several datasets.

2.3 Improving Circuits

The method improve_circuit goes through all subcircuits of a given size of a given circuit
and checks whether any of them can be replaced by a smaller subcircuit (computing the
same function) via find_circuit . For example, applying this method to the circuit from
Figure 2(b) gives the circuit from Figure 2(c) in a few seconds.

circuit = Circuit(input_labels=[f'x{i}' for i in range(1, 6)], gates={})
circuit.outputs = add_sum5_suboptimal(circuit, circuit.input_labels)
improved_circuit = improve_circuit(circuit, subcircuit_size=5,

connected=True)
print(improved_circuit)
improved_circuit.draw('sum5')

MFCS 2022
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Table 1 The running time of CircuitFinder on various Boolean functions.

function circuit size status time (sec.)

SUM5 12 SAT 141.4
SUM5 11 SAT 337.8
MOD3,0

4 7 SAT 0.2
MOD3,0

4 6 UNSAT 1178.8
MOD3,1

4 7 SAT 0.2
MOD3,1

4 6 UNSAT 1756.5
MOD3,2

4 6 SAT 0.2
MOD3,2

4 5 UNSAT 12.6
MOD3,0

5 10 SAT 90.1
MOD3,1

5 9 SAT 50.1
MOD3,2

5 10 SAT 74.3

Table 2 shows the time taken by improve_circuit to improve some of the known circuits
for SUM, MOD3, and THR4. For SUM, we start from known circuits of size about 5n

(composed out of full adders and half adders). For MOD3, we start from circuits of size
3n− 4 presented by Demenkov et al. [4]. For THR4, we start from circuits of size about 5n

(we start by computing SUMn and then compare the resulting log n-bit integer to 4).

Table 2 The running time of improve_circuit on various Boolean functions.

function circuit size time (sec.)

SUM5 12 → 11 6.7
SUM7 20 → 19 5.8

MOD3,0
6 15 → 14 17.0

MOD3,1
6 15 → 14 17.2

MOD3,2
6 14 → 13 16.7

MOD3,0
7 17 → 16 31.3

MOD3,1
7 17 → 16 33.6

MOD3,2
7 16 → 15 30.5

THR4
5 23 → 10 38.6

THR4
6 28 → 14 42.1

THR4
7 31 → 17 43.8

THR4
8 40 → 22 55.1

3 New Circuits

In this section, we present new circuits for symmetric functions found with the help of the
program. A function f(x1, . . . , xn) is called symmetric if its value depends on

∑n
i=1 xi only.

They are among the most basic Boolean functions:
to specify an arbitrary Boolean function from Bn, one needs to write down its truth table
of length 2n; symmetric functions allow for more compact representation: it is enough to
specify n + 1 bits (for each of n + 1 values of

∑n
i=1 xi);
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circuit complexity of almost all functions of n variables is exponential (Θ(2n/n)), whereas
any symmetric function can be computed by a linear size circuit (O(n)).

Despite simplicity of symmetric functions, we still do not know how optimal circuits look
like for most of them. Below, we present new circuits for some of these functions.

3.1 Sum Function

The SUM function is a fundamental symmetric function: for any symmetric f ∈ Bn, size(f) ≤
size(SUMn) + o(n). The reason for this is that any function from Bn can be computed
by a circuit of size O(2n/n) by the results of Muller [18] and Lupanov [17]. This allows
to compute any symmetric f(x1, . . . , xn) ∈ Bn as follows: first, compute SUMn(x1, . . . , xn)
using size(SUMn) gates; then, compute the resulting bit using at most O(2log n/ log n) = o(n)
gates. For the same reason, any lower bound size(f) ≥ α for a symmetric function f ∈ Bn

implies a lower bound size(SUMn) ≥ α− o(n). Currently, we know the following bounds for
SUMn: 2.5n−O(1) ≤ size(SUMn) ≤ 4.5n+o(n). The lower bound is due to Stockmeyer [25],
the upper bound is due to Demenkov et al. [4].

A circuit for SUMn can be constructed from circuits for SUMk for some small k. For
example, using full and half adders as building blocks, one can compute SUMn (for any n)
by a circuit of size 5n as follows. Start from n bits (x1, . . . , xn) of weight 0. While there are
three bits of the same weight k, replace them by two bits of weights k and k + 1 using a full
adder. This way, one gets at most two bits of each weight 0, 1, . . . , l − 1 (l = ⌈log2(n + 1)⌉)
in at most 5(n− l) gates (as each full adder reduces the number of bits). To leave exactly
one bit of each weight, it suffices to use at most l half or full adders (o(n) gates). Let us
denote the size of the resulting circuit by s(n). The first row of Table 3 shows the values
of s(n) for some n ≤ 15 (see (28) in [11]).

Table 3 The first row gives the size s(n) of a circuit for SUMn composed out of half and full
adders, the second row shows known upper bounds for size(SUMn) (all of them were known before
our work, see (28) in [11]).

n 2 3 4 5 6 7 8 9 10 15

s(n) 2 5 9 12 17 20 26 29 34 55
size(SUMn) 2 5 9 11 ≤ 16 ≤ 19 ≤ 25 ≤ 27 ≤ 32 ≤ 53

In a similar fashion, one can get an upper bound (see Theorem 1 in [14])

size(SUMn) ≤ size(SUMk)
k − ⌈log2(k + 1)⌉ · n + o(n) . (2)

This motivates the search for efficient circuits for SUMk for small values of k. The bottom
row of Table 3 gives upper bounds that we were able to find using the program. The table
shows that the first value where s(n) is not optimal is n = 5. The best upper bound for
SUMn given by (2) is 4.75n + o(n) for k = 7. The upper bound for k = 15 is 53n/11 + o(n)
which is worse than the previous upper bound. But if it turned out that size(SUM15) ≤ 52,
it would give a better upper bound.

The found circuits for SUMn for n ≤ 15 do not allow to improve the strongest known
upper bound size(SUMn) ≤ 4.5n+o(n) due to Demenkov et al. [4]. Below, we present several
interesting observations on the found circuits.

MFCS 2022
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SUM3 SUM3x3

x2 x1 x4 x5

a1 b1

b0(a)

MDFAx3

x2 x1 x4 x5

⊕ ⊕

a1 a1 ⊕ b1

b0(b)

x1 x2 x3

x4 x5

⊕ ⊕

∨ ⊕

⊕a1 ⊕ ⊕

> ⊕ b0

⊕ a1 ⊕ b1

>

(c)

Figure 3 (a) Two consecutive SUM3 blocks. (b) The MDFA block. (c) The highlighted part of
the optimal circuit for SUM5 computes MDFA.

3.1.1 Best Known Upper Bound for the SUM Function
The optimal circuit of size 11 for SUM5 shown in Figure 2(c) can be used to get an up-
per bound 4.5n + o(n) for size(SUMn) (though not through (2) directly). To do this,
consider two consecutive SUM3 circuits shown in Figure 3(a). They compute a func-
tion DFA(x1, x2, x3, x4, x5) = (b0, b1, a1) (for double full adder) such that, for every
x1, . . . , x5 ∈ {0, 1}, x1 + · · ·+ x5 = b0 + 2(b1 + a1). Figure 3(a) shows that size(DFA) ≤ 10.
One can construct a similar block, called MDFA (for modified double full adder), such that

MDFA(x1 ⊕ x2, x2, x3, x4, x4 ⊕ x5) = (b0, a1, a1 ⊕ b1) ,

see Figure 3(b).
The fact that MDFA uses the encoding (p, p⊕ q) for pairs of bits (p, q), allows to use it

recursively to compute SUMn. As the original construction is presented in [4], below we give
a sketch only.
1. Compute x2 ⊕ x3, x4 ⊕ x5, . . . , xn−1 ⊕ xn (n/2 gates).
2. Apply at most n/2 MDFA blocks (no more than 4n gates).
3. The last MDFA block outputs two bits: a and a ⊕ b. Instead of them, one needs

to compute a⊕ b and a∧ b. To achieve this, it suffices to apply x > y = (x∧ y) operation:
a ∧ b = a > (a⊕ b).

Figure 4 shows an example for n = 17.
The MDFA block was constructed by Demenkov et al. [4] in a semiautomatic manner.

And it turns out that MDFA is just a subcircuit of the optimal circuit for SUM5! See
Figure 3(c).

3.1.2 Best Known Circuits for SUM with New Structure
For many upper bounds from the bottom row of Table 3, we found circuits with the following
interesting structure: the first thing the circuit computes is x1 ⊕ x2 ⊕ · · · ⊕ xn; moreover
the variables x2, . . . , xn are used for this only. This is best illustrated by an example, see
Figure 5.
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x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17

⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

MDFA MDFA MDFA MDFA

MDFA MDFA

MDFA

x1 w0

0 w1

0 w2

w3

>

w4

Figure 4 A circuit computing SUM17 composed out of MDFA blocks.

x1 x2 x3

⊕ ⊕ w0

⊕
∨

⊕ w1

x1 x2 x3 x4

⊕ ⊕ ⊕ w0

⊕ >

∨
⊕

⊕ w1
>w2

x1 x2 x3 x4 x5

⊕ ⊕ ⊕ ⊕ w0

⊕ ⊕

∨ >

⊕ ⊕ w1

> w2

Figure 5 Optimal circuits computing SUMn for n = 3, 4, 5 with a specific structure: every input,
except for x1, has out-degree one.

These circuits can be found using the following code. It demonstrates two new useful
features: fixing gates and forbidding wires between some pairs of gates.

def sum_n(x):
return [(sum(x) >> i) & 1 for i in range(ceil(log2(len(x) + 1)))]

for n, size in ((3, 5), (4, 9), (5, 11)):
circuit_finder = CircuitFinder(dimension=n, number_of_gates=size,

function=sum_n)
circuit_finder.fix_gate(n, 0, 1, '0110')
for k in range(n - 2):

circuit_finder.fix_gate(n + k + 1, k + 2, n + k, '0110')
for i in range(1, n):

for j in range(n, n + size):
if i + n - 1 != j:

circuit_finder.forbid_wire(i, j)
circuit = circuit_finder.solve_cnf_formula(verbose=0)
circuit.draw(f'sum{n}')

MFCS 2022
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3.1.3 Optimal Circuits for Counting Modulo 4
The optimal circuit for SUM5 can be used to construct an optimal circuit of size 2.5n+O(1) for
MOD4,r

n due to Stockmeyer [25] (recall that MOD4,r
n (x1, . . . , xn) = [x1 + · · ·+xn ≡ r mod 4]).

To do this, note that there is a subcircuit (of the circuit in Figure 2(c)) of size 9 that
computes the two least significant bits (w0, w1) of x1 + · · ·+x5 (one removes the gates g5, w2).
To compute x1 + · · · + xn mod 4, one first applies n

4 such blocks and then computes the
parity of the resulting bits of weight 1 (every block takes four fresh inputs as well as one
bit of weight 0 from the previous block). The total size is 9 · n

4 + n
4 = 2.5n. Thus, block

that Stockmeyer constructed by hand in 1977 to compute MOD4
n nowadays can be found

automatically in a few seconds.

3.2 Modulo-3 Function
In [13], Kojevnikov et al. presented circuits of size 3n + O(1) for MOD3,r

n (for any r). Later,
Knuth [12, solution to exercise 480] analyzed their construction and proved an upper bound
3n−4. Also, by finding the exact values for size(MOD3,r

n ) for all 3 ≤ n ≤ 5 and all 0 ≤ r ≤ 2,
he made the conjecture (1). Using our program, we proved the conjectured upper bound for
all n.

▶ Theorem 1. For all n ≥ 3 and all r ∈ {0, 1, 2},

size(MOD3,r
n ) ≤ 3n− 5− [(n + r) ≡ 0 mod 3] .

Proof. As in [13], we construct the required circuit out of constant size blocks. Schematically,
the circuit looks as follows.

x1 xk xk+1 xk+2 xk+3 xn−l+1 xn

· · · · · ·

· · ·INk MID3 MID3 OUTr
l

Here, the n input bits are passed from above. What is passed from block to block (from left
to right) is the pair of bits (r0, r1) encoding the current remainder r modulo 3 as follows: if
r = 0, then (r0, r1) = (0, 0); if r = 1, then (r0, r1) = (0, 1); if r = 2, then r0 = 1. The first
block INk takes the first k input bits and computes the remainder of their sum modulo 3. It is
followed by a number of MID3 blocks each of which takes the current remainder and three new
input bits and computes the new remainder. Finally, the block OUTr

l takes the remainder
and the last l input bits and outputs MOD3,r

n . The integers k, l take values in {2, 3, 4} and
{1, 2, 3}, respectively. Their exact values depend on r and n mod 3 as described below.

The theorem follows from the following upper bounds on the circuit size of the just
introduced functions: size(IN2) ≤ 2, size(IN3) ≤ 5, size(IN4) ≤ 7, size(MID3) ≤ 9,
size(OUT0

2) ≤ 5, size(OUT1
1) ≤ 2, size(OUT2

3) ≤ 8. The corresponding circuits are presented
in [15] by a straightforward Python code that verifies their correctness. (The presented code
proves the mentioned upper bounds by providing explicit circuits. We have also verified that
no smaller circuits exist meaning that the inequalities above are in fact equalities.) Table 4
shows how to combine the blocks to get a circuit computing MOD3,r

n of the required size.
◀
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Table 4 Choosing parameters k, m, l depending on n mod 3 and r. The circuit is composed out
of blocks as follows: INk +m × MID3 + OUTl

r. For each pair (n mod 3, r) we show three things:
the triple (k, m, l); the sizes of two blocks: size(INk) and size(OUTl

r); the size of the resulting
circuit computed as s = size(INk) + 9m + size(OUTl

r). For example, the top left cell is read as
follows: when r = 0 and n = 3t, we set k = 4, m = t − 2, l = 2; the resulting circuit is then
IN4 +(t − 2) × MID3 + OUT2

0; since size(IN4) = 7 and size(OUT2
0) = 5, the size of the circuit is

7 + 9(t − 2) + 5 = 9t − 6 = 3n − 6. There are three corner cases that are not well-defined as they
require the number of MID blocks to be negative (k = t − 2): (n = 3, r = 0), (n = 3, r = 2), and
(n = 4, r = 2).

n = 3t n = 3t + 1 n = 3t + 2

r = 0 (4, t − 2, 2), (7, 5), 3n − 6 (2, t − 1, 2), (2, 5), 3n − 5 (3, t − 1, 2), (5, 5), 3n − 5
r = 1 (2, t − 1, 1), (2, 2), 3n − 5 (3, t − 1, 1), (5, 2), 3n − 5 (4, t − 1, 1), (7, 2), 3n − 6
r = 2 (3, t − 2, 3), (5, 8), 3n − 5 (4, t − 2, 3), (7, 8), 3n − 6 (2, t − 1, 3), (2, 8), 3n − 5

3.3 Threshold Function
Recall that THR2

n(x1, . . . , xn) = [x1 + · · ·+ xn ≥ 2].

▶ Theorem 2. For any k ≥ 4,

size(THRk
n) ≤ (4.5− 22−⌈log2 k⌉)(n + 2⌈log2 k⌉ − k) + o(n) .

Proof. For a sequence of 2m formal variables y1, z1, . . . , ym, zm, consider a function
g ∈ B2m that takes y1, y1 ⊕ z1, y2, y2 ⊕ z2, . . . , ym, ym ⊕ zm as input and outputs
THR2

2m(y1, z1, . . . , ym, zm). Note that THR2
2m(y1, z1, . . . , ym, zm) = 1 iff there is

a pair containing two 1’s or there are two pairs each containing at least one 1:
THR2

2m(y1, z1, . . . , ym, zm) = 1 iff there exists 1 ≤ i ≤ m such that yi = zi = 1 or
THR2

m(y1 ⊕ z1, . . . , ym ⊕ zm) = 1. The condition yi = zi = 1 can be computed through yi

and yi ⊕ zi using a single binary gate: (yi ∧ zi) = (yi ∧ (yi ⊕ zi)) . Thus,

g(y1, y1 ⊕ z1, . . . , ym, ym ⊕ zm) = THR2
m(y1 ⊕ z1, . . . , ym ⊕ zm) ∨

m∨
i=1

(yi ∧ (yi ⊕ zi)) .

Now, size(THR2
m) ≤ 2m + o(m) as shown by Dunne [5]. Also, clearly,

size
(

m∨
i=1

(yi ∧ (yi ⊕ zi))
)
≤ 2m− 1 .

Thus,

size(g) ≤ 4m + o(m) . (3)

To construct a circuit for THRk
n, first, consider the case k = 2t where t ≥ 2 is an integer.

Apply t− 1 layers of MDFA’s (as in Figure 4). It takes

n

2 + n

t−1∑
i=1

22−i = (4.5− 23−t)n

gates. As a result, we get bits w0, . . . , wt−2, a1, a1 ⊕ b1, . . . , am, am ⊕ bm , where m = n/2t,
such that

x1 + · · ·+ xn = w0 + 2w1 + · · ·+ 2t−2wt−2 + 2t−1(a1 + b1 + · · ·+ am + bm) .

MFCS 2022
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Note that w0 + 2w1 + · · ·+ 2t−2wt−2 < 2t−1. Hence,

[x1 + · · ·+ xn ≥ 2t] = [a1 + b1 + · · ·+ am + bm ≥ 2] .

Thus, it remains to compute the function g given 2m bits a1, a1⊕b1, . . . , am, am⊕bm. By (3),
it takes 4m + o(m) = 22−tn + o(n) gates. The total size of the constructed circuit is

(4.5− 23−t + 22−t)n + o(n) = (4.5− 22−t)n + o(n) .

Now, assume that 2t−1 < k < 2t (hence ⌈log2 k⌉ = t). Clearly,

[x1 + · · ·+ xn ≥ k] = [(2t − k) + x1 + · · ·+ xn ≥ 2t] .

By the previous argument, there exists a circuit C computing THR2t

n+(2t−k) of size

(4.5− 22−t)(n + (2t − k)) + o(n) = (4.5− 22−⌈log2 k⌉)(n + 2⌈log2 k⌉ − k) + o(n) .

By replacing arbitrary (2t − k) inputs of C by 1’s, one gets a circuit computing THRk
n. ◀

▶ Corollary 3. For 4 ≤ k = O(1), size(THRk
n) ≤ (4.5− 22−⌈log2 k⌉)n + o(n). In particular,

size(THR4
n) ≤ 3.5n + o(n) and size(THRk

n) ≤ 4n + o(n) for 5 ≤ k ≤ 8.

We conclude by presenting an example of a reasonably small circuit that our program
fails to improve though a better circuit is known. The reason is that these two circuits are
quite different. Figures 6 and 7 show circuits of size 31 and 29 for THR2

12. They are quite
different and our program is not able to find out that the circuit of size 31 is suboptimal.
The code below shows how one can construct the two circuits in the program.

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_naive_thr2_circuit(c, c.input_labels)
c.draw('thr2naive')

c = Circuit(input_labels=[f'x{i}' for i in range(1, 13)], gates={})
c.outputs = add_efficient_thr2_circuit(c, c.input_labels, 3, 4)
c.draw('thr2efficient')

x1

x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧

∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨ ∨

∧

∨ output
x1

x2 x3 x4 x11 x12

· · ·so
rt

so
rt

so
rt

so
rt ∧

∨

Figure 6 A circuit of size 31 for THR2
12: (a) block structure and (b) gate structure. The SORT(u, v)

block sorts two input bits as follows: SORT(u, v) = (min{u, v}, max{u, v}) = (u ∧ v, u ∨ v). The
circuit performs one and a half iterations of the bubble sort algorithm: one first finds the maximum
bit among n input bits; then, it remains to compute the disjunction of the remaining n − 1 bits
to check whether there is at least one 1 among them. In general, this leads to a circuit of size 3n − 5.
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x5 x1 x6 x2

∨ x9 x10 ∨ ∨ x7 x3 ∨
∨c1 ∨ ∨

c2
x11 ∨ ∨ x8 x4 ∨

∧ ∨ ∨ ∨
c3

x12 ∨ r2 ∨ ∨ r1

∧ ∨ ∨r3 ∨
c4 ∨ ∧

∨ ∧ ∧
∨ ∨
∨ output

x1 x2 x3 x4

x5 x6 x7 x8

x9 x10 x11 x12

∨
r1

∨
r2

∨
r3

∨
c1 ∨

c2 ∨
c3 ∨

c4

THR4
2

T
H

R
3 2

∨

Figure 7 A circuit of size 29 for THR2
12: (a) block structure and (b) gate structure. It implements

a clever trick by Dunne [5]. Organize 12 input bits into a 3 × 4 table. Compute disjunctions r1, r2, r3

of the rows and disjunctions c1, c2, c3, c4 of the columns. Then, there are at least two 1’s among
x1, . . . , x12 if and only if there are at least two 1’s among either r1, r2, r3 or c1, c2, c3, c4. This allows
to proceed recursively. In general, it leads to a circuit of size 2n + o(n). (Sergeev [23] showed recently
that the monotone circuit size of THR2

n is 2n + Θ(
√

n).)

4 Further Directions

We focus mainly on proving asymptotic upper bounds for symmetric function families (that is,
upper bounds that hold for every input size). A natural further step is to apply the program
to specific circuits that are used in practice. It would also be interesting to extend the
program so that it is able to discover the circuit from Figure 7. Finally, it would be interesting
to generalize circuits for SUMn presented in Section 3.1.2.
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