
Finding 3-Swap-Optimal Independent Sets and
Dominating Sets Is Hard
Christian Komusiewicz !

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg, Germany

Nils Morawietz !

Philipps-Universität Marburg, Fachbereich Mathematik und Informatik, Marburg, Germany

Abstract
For PLS-complete local search problems, there is presumably no polynomial-time algorithm which
finds a locally optimal solution, even though determining whether a solution is locally optimal and
replacing it by a better one if this is not the case can be done in polynomial time.

We study local search for Weighted Independent Set and Weighted Dominating Set
with the 3-swap neighborhood. The 3-swap neighborhood of a vertex set S in G is the set of
vertex sets which can be obtained from S by exchanging at most three vertices. We prove the
following dichotomy: On the negative side, the problem of finding a 3-swap-optimal independent
set or dominating set is PLS-complete. On the positive side, locally optimal independent sets or
dominating sets can be found in polynomial time when allowing all 3-swaps except a) the swaps that
remove two vertices from the current solution and add one vertex to the solution or b) the swaps
that remove one vertex from the current solution and add two vertices to the solution.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Discrete optimization; Theory of computation → Graph algorithms
analysis

Keywords and phrases Local Search, Graph problems, 3-swap neighborhood, PLS-completeness

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.66

Funding Nils Morawietz: Supported by the Deutsche Forschungsgemeinschaft (DFG), project
OPERAH, KO 3669/5-1.

1 Introduction

Local search is one of the most successful paradigms for developing algorithms for NP-hard
optimization problems. In the most fundamental version of local search, the hill-climbing
algorithm, one starts by computing some feasible solution to the problem at hand. This
solution is then replaced by a better solution in its local neighborhood, as long as such a
better solution exists. The final output is a locally optimal solution. Even though such a
locally optimal solution might be arbitrarily bad in comparison to a globally optimal solution,
local search approaches turned out to find good solutions in practice [1, 3, 6]. A crucial aspect
in this approach is the definition of the local neighborhood of solutions. Intuitively, there
is the following trade-off: for more restricted neighborhoods, computing a local optimum
should be easier but the quality of the local optimum may be worse than for less restricted
neighborhoods. Note that the choice of the neighborhood may affect the computational
difficulty of each improvement step as well as the number of necessary improvement steps.
Naturally, in applications of hill-climbing, the neighborhoods are chosen in such a way that
each improvement step can be performed efficiently.

© Christian Komusiewicz and Nils Morawietz;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 66; pp. 66:1–66:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:komusiewicz@informatik.uni-marburg.de
https://orcid.org/0000-0003-0829-7032
mailto:morawietz@informatik.uni-marburg.de
https://doi.org/10.4230/LIPIcs.MFCS.2022.66
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

To study the difficulty of computing locally optimal solutions in such a setting, Johnson
et al. [5] introduced the complexity class PLS. This class contains all local search problems
for which one can compute some starting solution and search the local neighborhood of a
feasible solution S in polynomial time. Thus, the local search problems in PLS are exactly
those that have a hill-climbing algorithm where each step only takes polynomial time.

For many unweighted problems, membership in PLS directly implies a polynomial-time
algorithm for computing locally optimal solutions, since the maximum objective value is
bounded by a polynomial of the input size. The situation is different for weighted problems,
where we may need a superpolynomial number of improvement steps to reach a local optimum.
To give evidence that for some local search problems in PLS it may be hard to compute
locally optimal solutions, Johnson et al. [5] introduced PLS-reductions and showed that there
are PLS-complete problems. These problems are as hard as any problem in PLS and none of
them is known to be solvable in polynomial time.

We study two famous graph problems, Weighted Independent Set and Weighted
Dominating Set through the lens of PLS-completeness. The solutions in both problems
are vertex sets and we consider the most fundamental neighborhoods for such solutions:
k-swap-neighborhoods, where we may add or remove up to k vertices from a solution.

Previous Work. PLS-completeness has been shown for a number of problems [4, 5, 11, 13, 14].
The initial PLS-complete problem is called Flip, where the input is a Boolean circuit [5].
Another prominent PLS-complete problem is Max Cut with the flip neighborhood, where
the neighbors of a partition (A, B) are the partitions that can be obtained by moving one
vertex from A to B or vice versa [13]. Max Cut with the flip neighborhood is PLS-complete
on graphs with maximum degree 5 [4] and polynomial-time solvable on 3-regular graphs [12].

Johnson et al. [5] already considered the Weighted Independent Set problem and
argued that one can show PLS-completeness for a neighborhood that is inspired by the
Kernighan-Lin algorithm for Max Cut [7]. Moreover, Johnson et al. [5] specifically called
for the study of simpler neighborhoods for the Weighted Independent Set problem.
Schäffer and Yannakakis [13] argued that Weighted Independent Set is PLS-complete
for a 2-step neighborhood which consists of an addition of a vertex v to the independent
set S and a removal of all its neighbors from S in the first step and a (maximal) series of
improving vertex additions in the second step. Note that the first step is not necessarily
improving. Further studies have shown PLS-completeness for Weighted Independent
Dominating Set with a k-swap neighborhood with constant but unspecified k [8] and
for Weighted Max-Π-Subgraph with hereditary properties Π and the above-described
2-step-neighborhood [14]. We are not aware of any results for the k-swap neighborhoods
with small constant k considered in this work.

From a more applied point of view, local search has been shown to give very good results
for Independent Set [1, 2, 3, 6, 9] and weighted Weighted Independent Set [10]. In
particular, for Independent Set, Andrade et al. [1] presented fast algorithms for finding
improving 5-swaps and showed that the subroutine of finding 5-swap optimal solutions gives
very good results when used in an iterative local search framework. Later, it was shown
that k-swap-optimal solutions for Independent Set can be efficiently computed for k up
to 25 and that, on a set of large sparse real-world networks globally optimal solutions can be
found via a simple hill-climbing algorithm for k ≥ 9 [6].

C. Komusiewicz and N. Morawietz 66:3

Our Results. We provide a complexity analysis for Weighted Independent Set with
the k-swap neighborhood, denoted Weighted Independent Set/k-swap. Our main result
is the PLS-completeness of Weighted Independent Set/3-swap on graphs of constant1

maximum degree. We first show in Section 3 that Weighted Independent Set/7-swap
is PLS-complete on graphs of maximum degree at most 6. Then, in Section 4, we extend the
constructed instance of Weighted Independent Set/7-swap to obtain PLS-completeness
for Weighted Independent Set/3-swap. Next, we show that by a small modification
of the construction, the PLS-completeness for 3-swaps can be transferred to Weighted
Dominating Set. Finally, in Section 5, we show that if we allow all 3-swaps except either
a) the swaps that remove two vertices and add one or b) the swaps that remove one vertex
and add two, we can find locally optimal solutions for Weighted Independent Set
and Weighted Dominating Set in polynomial time. We extend this result to a slightly
more general neighborhood and a certain type of subset optimization problems. Proofs of
statements marked with a ”(*)” are deferred to the full version.

2 Preliminaries

For integers i and j with i ≤ j, we define [i, j] := {k ∈ N | i ≤ k ≤ j}. For two sets A and B,
we denote with A ⊕ B := (A \ B) ∪ (B \ A) the symmetric difference of A and B.

An (undirected) graph G = (V, E) consists of a set of vertices V and a set of edges E ⊆
{{u, v} | u ∈ V, v ∈ V, u ̸= v}. For vertex sets S ⊆ V and T ⊆ V we denote with EG(S, T) :=
{{s, t} ∈ E | s ∈ S, t ∈ T} the edges between S and T . Moreover, we define G[S] :=
(S, EG(S, S)) as the subgraph of G induced by S. For a vertex v ∈ V , we denote with NG(v) :=
{w ∈ V | {v, w} ∈ E} the open neighborhood of v in G and with NG[v] := {v} ∪ NG(v) the
closed neighborhood of v in G. Analogously, for a vertex set S ⊆ V , we define NG[S] :=⋃

v∈S NG[v] and NG(S) :=
⋃

v∈S NG(v) \ S. If G is clear from the context, we may omit the
subscript.

A vertex set S ⊆ V is an independent set in G if there is no edge between any pair of
vertices of S in G and a clique in G if there is an edge between each pair of vertices of S

in G. A vertex set S ⊆ V is a dominating set in G if for each vertex v of G, at least one
vertex of N [v] is contained in S.

The two main problems considered here are now defined as follows.

Weighted Independent Set
Input: A graph G = (V, E) and a vertex-weight function ω : V → N.
Output: An independent set in G of maximum total weight.

Weighted Dominating Set
Input: A graph G = (V, E) and a vertex-weight function ω : V → N.
Output: A dominating set in G of minimum total weight.

An optimization problem L consists of a set DL of instances, for each instance I ∈ DL,
a set of feasible solutions SL(I) for I, an objective function valL which assigns a non-
negative rational number to each pair (I, s), and is specified to be either a minimization
or a maximization problem. An optimization problem L is an NP-optimization problem if
the encoding length of each solution s ∈ SL(I) of I is polynomially bounded by |I|, one
can determine in polynomial time for each pair (I, s) whether s ∈ SL(I), and the objective
function can be evaluated in polynomial time.

1 Our proof gives a degree bound of 3140.

MFCS 2022

66:4 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

Let I be an instance and of an optimization problem L and let s and s′ be feasible solutions
for I. We say that s is better than s′ if a) L is a maximization problem and valL(I, s) >

valL(I, s′) or b) L is a minimization problem and valL(I, s) < valL(I, s′).

▶ Definition 2.1. An NP-optimization problem L is a subset-weight optimization problem
if it consists of

a polynomial-time computable function U that maps each instance I of L to a universe U(I)
and each feasible solution of I is a subset of U(I),
a polynomial-time computable function f which checks for an instance I of L and a
set S ⊆ U(I) if S is a feasible solution for I,
a polynomial-time computable function g which computes for an instance I of L some
feasible solution for I, and
a polynomial-time computable weight function ω which assigns a non-negative rational
weight to each pair (I, u), where I is an instance of L and u is an element of U(I)

and one wants to find a feasible solution S for I of either minimal or maximal weight, where
the weight of S is defined as ω(I, S) :=

∑
u∈S ω(I, u).

If one wants to find a feasible solution of maximal weight, L is a subset-weight maximization
problem; otherwise, L is a subset-weight minimization problem.

Weighted Independent Set is a subset-weight maximization problem: the feasible
solutions are the independent sets of G, these are all subsets of the vertex set V (the universe),
one can check in polynomial time if a vertex set S is an independent set, and the total
weight of S is defined as the sum of the weights of the vertices of S. Similarly, Weighted
Dominating Set is a subset-weight minimization problem.

Let L be a subset-weight optimization problem, let I be an instance of L, and let S ⊆ U(I)
be a feasible solution for I. A k-swap, for k ∈ N, is a subset W ⊆ U(I) of size at most k.
We say that W is valid for S in I if S ⊕ W is also a feasible solution for I. We say
that two feasible solutions S and S′ for I are k-neighbors in I if W := S ⊕ S′ has size at
most k. Additionally, we say that S′ is an improving k-neighbor of S in I and that W

is an improving k-swap if the total weight of S′ is better than the total weight of S. If
there is no improving k-neighbor of S in I, S is k-optimal in I. Let S be a subset of U(I)
and let k, kin, and kout be natural numbers such that kin + kout ≤ k. A k-swap W is
a (kin, kout)-swap for S in G, if |W \ S| ≤ kin and if |W ∩ S| ≤ kout. Similar to k-swaps,
we also define the notions of valid (kin, kout)-swaps, improving (kin, kout)-swaps, (kin, kout)-
neighbors, improving (kin, kout)-neighbors, and (kin, kout)-optimal.

A partition of a graph G = (V, E) is a pair (A, B), where A ∪ B = V and A ∩ B = ∅.
The cut of a partition (A, B) is the edge set EG(A, B), that is, the set of edges having
one endpoint in A and one endpoint in B. Let ω : E → N be an edge-weight function.
A flip of a vertex v ∈ V in a partition (A, B) is the partition (A′, B′), where A′ := A ⊕ {v}
and B′ := B ⊕ {v}. Moreover, we say that (A′, B′) is improving over (A, B) if the total
weight of cut EG(A′, B′) is larger than the total weight of the cut EG(A, B), that is,
if ω(EG(A′, B′)) > ω(EG(A, B)). Furthermore, we say that a partition (A, B) is flip-optimal
if there is no vertex v ∈ V such that the flip (A′, B′) of v in (A, B) is improving over (A, B).

In the corresponding minimization problem one wants to find a cut of maximal weight.

Max Cut
Input: A graph G = (V, E) and an edge-weight function ω : E → N.
Output: A partition (A, B) of G such that EG(A, B) has maximum total weight.

C. Komusiewicz and N. Morawietz 66:5

A local search problem (L, N) consists of
an optimization problem L and
a neighborhood structure N for L that maps for each instance I of L, each valid solution S

of I to a set N (I, S) ⊆ SL(I) of valid solutions for I, the neighbors of S with respect
to N .

The goal of (L, N) is to find for a given instance I of L a locally optimal solution S with
respect to N , that is, a feasible solution for I such that no solution in N (I, S) is better
than S. We may write a local search problem (L, N) as L/N . An example for a local search
problem is Weighted Independent Set/k-swap, where the neighbors of an independent
set S are the valid k-swap neighbors of S.

A local search problem (L, N) is in the complexity class PLS, if
there is an algorithm which computes in polynomial time some feasible solution S for a
given instance I of L and
there is an algorithm which in polynomial time determines whether a given solution S

is locally optimal with respect to N for an instance I of L and, if this is not the case,
outputs a better neighbor for S.

Note that for each constant k, Weighted Independent Set/k-swap is contained in PLS.
Let (L1, N1) and (L2, N2) be local search problems. We say that (L1, N1) is PLS-

reducible to (L2, N2) if for each instance I1 of L1, one can compute in polynomial time
an instance I2 of L2 and a solution mapper f , that is, a polynomial-time computable
function f that maps each solution S2 of I2 to a solution f(S2) of I1 such that if S2 is
locally optimal for I2 with respect to N2, then f(S2) is locally optimal for I1 with respect
to N1. A local search problem (L, N) is PLS-hard if for each local search problem (L′, N ′)
of PLS, there is a PLS-reduction from (L′, N ′) to (L, N). Due to the transitivity of PLS-
reductions, this can be done by proving a PLS-reduction from any PLS-hard local search
problem (L′, N ′). Moreover, (L, N) is PLS-complete if (L, N) is contained in PLS and PLS-
hard. An example for a PLS-complete local search problem is Max Cut/flip, where the
neighbors of a partition (A, B) are the improving partitions of (A, B) one can obtain by
flipping some vertex of G [13]. This is the case even on graphs of degree at most 5 [4].

3 Hardness of Finding 7-optimal Independent Sets

To obtain the PLS-completeness of Weighted Independent Set/3-swap on graphs of con-
stant maximum degree, we first show PLS-completeness for Weighted Independent Set/7-
swap and use the obtained graph as starting point in a subsequent reduction to Weighted
Independent Set/3-swap.

▶ Theorem 3.1. Weighted Independent Set/7-swap is PLS-complete on graphs of
maximum degree 6.

As mentioned above, Weighted Independent Set/k-swap is contained in PLS for each
constant value of k. Hence, we only have to show that Weighted Independent Set/7-swap
is PLS-hard.

Construction. We present a PLS-reduction from Max Cut/flip to Weighted Indepen-
dent Set/7-swap. Let I = (G = (V, E), ω) be an instance of Max Cut/flip where G

has a maximum degree of five. For these instances Max Cut/flip is known to be PLS-
complete [4]. We describe how to obtain in polynomial time an instance I ′ = (G′ =
(V ′, E′), ω′) of Weighted Independent Set/7-swap and a polynomial-time computable
solution-mapper f for I and I ′ such that if an independent set S is 7-optimal in I ′, then f(S)
is flip-optimal in I.

MFCS 2022

66:6 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

vB

vA

uB

uA

wB

wA
x(u,v)

x(v,u)

x(w,v)

x(v,w)

Figure 1 An example for the vertices and edges added to G′ for a vertex v ∈ V with two
neighbors u and w in G in the reduction from Max Cut/flip to Weighted Independent Set/7-
swap.

We start with an empty graph G′ and add, for each vertex v ∈ V , two new adjacent
vertices vA and vB to G′. Next, for each edge {u, v} ∈ E, we add two new vertices x(u,v)
and x(v,u) to G′ and make x(u,v) adjacent to uB and vA and x(v,u) adjacent to uA and vB.
This completes the construction of G′. Figure 1 shows an example for the vertices and edges
added to G′ for a vertex v ∈ V with two neighbors u and w in G. Note that G′ has a
maximum degree of six. In the following, let VA := {vA | v ∈ V } and VB := {vB | v ∈ V }.

Next, we define the weight function ω′ : V ′ → N. Let Z :=
∑

e∈E ω(e) denote the total
weight of all edges. We set for each vertex v ∈ V , ω′(vA) := ω′(vB) := 16 · Z and for each
edge {u, v} ∈ E, we set ω′(x(u,v)) := ω′(x(v,u)) := 8 · ω({u, v}). In principle, the factors of
8 can be omitted but they will come in handy later when we present the PLS-reduction
to Weighted Independent Set/3-swap.

This completes the construction of I ′. It remains to define the solution-mapper f . For an
independent set S, we define f(S) to be the partition (A, B) of G where A := {v ∈ V | vA ∈ S}
and B := V \ A. Recall that for vertex v ∈ V , the vertices vA and vB are adjacent in G′.

Correctness. To show the correctness of the reduction, we first analyze the structure
of 7-optimal independent sets in G′. To this end, we define a notion of nice independent
sets in G′ and show that all 7-optimal independent sets in G′ are nice. Recall that if some
vertex v of V is contained in A for f(S) = (A, B), then vB is not contained in S.

▶ Definition 3.2. Let S be an independent set in G′ and let A := {v ∈ V | vA ∈ S} and
let B := {v ∈ V | vB ∈ S}. We call S nice if (A, B) is a partition of G and for each
edge {u, v} ∈ E with (u, v) ∈ A × B, x(u,v) ∈ S.

▶ Lemma 3.3 (*). If an independent set S in G is not nice, then S is not 7-optimal in G′.

Hence, we only have to consider nice independent sets in G′ when considering 7-optimal
independent sets in G′. Now, to prove Theorem 3.1 it remains to show the following.

▶ Lemma 3.4. Let S be a nice independent set in G′. If f(S) is not flip-optimal in G,
then S is not 7-optimal in G′.

Proof. Let (A, B) := f(S). By definition of f and the fact that S is nice, A = {v ∈ V | vA ∈
S} and B = {v ∈ V | vB ∈ S}. Suppose that (A, B) is not flip-optimal in G. Then, there is
some vertex v ∈ V where the total weight of the edges that are incident with v and that are in
the cut EG(A, B) is less than the total weight of the edges that are incident with v and that
are not in the cut EG(A, B). That is, either a) v ∈ A and ω(EG({v}, A)) > ω(EG({v}, B))
or b) v ∈ B and ω(EG({v}, B)) > ω(EG({v}, A)).

Without loss of generality we may assume that v ∈ A and ω(EG({v}, A)) > ω(EG({v}, B)).
Let XA := NG(v) ∩ A denote the neighbors of v in A and let XB := NG(v) ∩ B denote the
neighbors of v in B. Since S is nice, we know that x(v,u) ∈ S for each u ∈ XB. Moreover,

C. Komusiewicz and N. Morawietz 66:7

vB vA

x(a,v)x(v,a) x(b,v)x(v,b) x(c,v)x(v,c) x(d,v)x(v,d) x(e,v)x(v,e)

Figure 2 An example of an improving 7-swap W for a nice independent set S in G′ that simulates
the flip of a vertex v ∈ V from A to B in G, where NG(v) = {a, b, c, d, e} and NG(v) ∩ B = {b, d, e}.
The black vertices are the vertices of S and all vertices of W are highlighted by the blue shape.

for each w ∈ XA, x(v,w) /∈ S since wA ∈ S and x(w,v) /∈ S since vA ∈ S. We show that the
swap W := {vA, vB} ∪ {x(v,u) | u ∈ XB} ∪ {x(w,v) | w ∈ XA} is a valid improving 7-swap
for S in G′. An example of the swap W is illustrated in Figure 2. First of all, note that W

has size at most 7 since G has a maximum degree of 5 and thus |XA ∪ XB | ≤ 5. Moreover,
by the fact that ω′(x(y,z)) := ω′(x(z,y)) := 8 · ω({y, z}) for each edge {y, z} ∈ E,

ω′({x(w,v) | w ∈ XA}) = 8 · ω({{v, w} | w ∈ XA})
> 8 · ω({{v, u} | u ∈ XB}) = ω′({x(v,u) | u ∈ XB}).

Hence, W is improving, since ω′(vA) = ω′(vB). It remains to show that W is valid. Since W

removes all adjacent vertices of vB from S, S ⊕ W does not contain any neighbor of vB.
Moreover, since vA ∈ W and for each w ∈ XA, wA ∈ S ⊕ W and thus wB /∈ S ⊕ W , no
vertex x(w,v) is adjacent to any vertex in S ⊕ W . As a consequence, W is valid and thus S is
not 7-optimal. ◀

4 Hardness of Finding 3-optimal Independent Sets

The main result of this section is the following.

▶ Theorem 4.1. Weighted Independent Set/3-swap is PLS-complete on graphs of
constant maximum degree.

Construction. To show this, we extend the graph G′ by additional gadgets to simu-
late 7-swaps by a sequence of 3-swaps. We describe how to obtain in polynomial time
an instance I ′′ = (G′′ = (V ′′, E′′), ω′′) of Weighted Independent Set/3-swap and a
polynomial-time computable solution-mapper f for I and I ′′ such that if an independent
set S is 3-optimal in I ′′, then f(S) is flip-optimal in I. As described above, we extend the
graph G′ and the weight function ω′ of the instance I ′ = (G′ = (V ′, E′), ω′) of Weighted
Independent Set/7-swap described above. As above, let VA := {vA | v ∈ V } and
let VB := {vB | v ∈ V }. Moreover, we set for each v ∈ V , Xv := {x(v,w), x(w,v) | w ∈ N(v)},
that is, Xv is the set of vertices in G′ that were introduced for the incident edges of v in G.
We write NG(v) and NG[v] when considering the neighborhood of a vertex v of V in G

and N(v) or N [v] when considering the neighborhood of a vertex v of V ′′ in G′′.
Initially, we add edges such that for each vertex v ∈ V , u ∈ NG(v), and w ∈ NG(V), the

vertices x(u,v) and x(v,w) are adjacent in G′′. Note that this includes edges between x(u,v)
and x(v,u) in G′′ for each edge {u, v} ∈ E. The idea is that in an independent set S in G′′,
for each vertex v ∈ V , there is no vertex x(u,v) ∈ S if S already contains a vertex x(v,w).
Hence, for each vertex v of G, at most one of vA and vB has neighbors in Xv ∩ S.

MFCS 2022

66:8 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

vB vA

x(a,v)x(v,a) x(b,v)x(v,b) x(c,v)x(v,c) x(d,v)x(v,d) x(e,v)x(v,e)

upA,2
v,P

upA,1
v,P

turnA
v,P

downA,1
v,P

Figure 3 A sequence (W1, W2, W3, W4, W5) of improving 3-swaps (from left to right highlighted
alternating by either a blue or a red shape) for a nice independent set S in G′′ that simulates the
flip of a vertex v ∈ V from A to B in G, where NG(v) = {a, b, c, d, e} and P = NG(v) ∩ B = {b, d, e}
with P (1) = b, P (2) = d, and P (3) = e. The black vertices are the vertices of S. Note that not all
edges of this subgraph are shown but only the important ones for the sequence of improving 3-swaps.

Next, we add gadgets to allow us to simulate 7-swaps in G′ by a sequence of 3-swaps in G′′.
To this end, we first compute for each vertex v ∈ V the collection Pv of subsets P ⊆ NG(v)
fulfilling ω(EG({v}, P)) < ω(EG({v}, NG(v) \ P)). Intuitively, if in a partition (A, B) of G,
flipping a vertex v from A to B is improving, then the set NG(v) ∩ B is contained in Pv and
vice versa. Note that ∅ ∈ Pv and NG(v) /∈ Pv for each v ∈ V . Next, we add, for each P ∈ Pv

with P ̸= ∅, a set of |NG(v)| − 1 new vertices to G′′. Let Q := NG(v) \ P . Now, fix an
ordering on both P and Q and let P (i) denote the ith element of P and let Q(j) denote
the jth element of Q where i ∈ [1, |P |] and j ∈ [1, |Q|].

These vertices are of three types: up, turn, and down. To simulate a flip of v from A

to B, we have to remove the neighbors of vB from S, add vB to S and add the vertices
representing edges of (A ∩ NG(v)) × {v} to S. Intuitively, the up-vertices allow us – with
a sequence of improving 3-swaps – to remove all neighbors of vB from S except vA and
the up-vertex of highest level. Afterwards, the turn-vertex allows us – with two improving 3-
swaps – to remove vA from S and add vB and the down-vertex of highest level to S. Finally,
the down-vertices allow us – with a sequence of improving 3-swaps – to add the vertices
representing edges of (A ∩ NG(v)) × {v} to S such that at the end, none of these auxiliary
vertices remains in S. In total, this allows us to simulate improving 7-swaps in I ′ and thus
improving flips in I by a sequence of improving 3-swaps in I ′′. An example for a sequence of
improving 3-swaps in G′′ to simulate a flip in G is illustrated in Figure 3. This figure shows
only the edges that are important for the sequence of improving 3-swaps and not all edges of
this subgraph.

First, we add for each i ∈ [1, |P |−1], a new vertex upA,i
v,P to G such that the neighborhood

of upA,i
v,P is exactly Xv minus the vertices {x(v,P (j)) | j < i}. Hence, upA,1

v,P is adjacent to all
vertices of Xv. Furthermore, we add an edge between upA,i

v,P and each vertex of {wA | w ∈
P} ∪ {wB | w ∈ Q} and an edge between upA,i

v,P and vB . Moreover, we set

ω′′(upA,i
v,P) := 4 − i + 8 ·

|P |∑
j=i

ω({v, P (j)}) = 4 − i +
|P |∑
j=i

ω′′(x(v,P (j))).

Intuitively, one can obtain an improving 3-neighbor for S in G as follows:
1. if wA /∈ S for any neighbor w ∈ NG(v) in P and uB /∈ S for any neighbor u ∈ NG(v)

in P , then we remove x(v,P (|P |−1)) and x(v,P (|P |)) and add upA,|P |−1
v,P , and

2. if upA,j
v,P ∈ S, where j ∈ [2, |P | − 1], then we remove upA,j

v,P and x(v,P (j)) and add upA,j−1
v,P .

C. Komusiewicz and N. Morawietz 66:9

Hence, during the simulation of an improving flip of a vertex v in a partition (A, B) from A

to B in G, we can replace all vertices of Xv by the vertex upA,1
v,P with a sequence of

improving 3-swaps, where P = NG(v) ∩ B.
Second, we add a vertex turnA

v,P to G′′ which is adjacent to all vertices of Xv, {vA, vB},
and to the vertices of {wA | w ∈ P} ∪ {wB | w ∈ Q}. Recall that ω′′(vA) = ω′′(vB) = 16 · Z

where Z =
∑

e∈E ω(e). We set

ω′′(turnA
v,P) := 4 + ω′′(vA) + 8 ·

∑
w∈P

ω({v, w}) = 4 + 16 · Z +
∑
w∈P

ω′′(x(v,w)).

Intuitively, one can obtain an improving 3-neighbor for S in G if upA,1
v,P is contained in S, by

removing both upA,1
v,P and vA from S and adding turnA

v,P to S.
Third, we add, similar to upA,i

v,P , for each i ∈ [1, |Q| − 1] a new vertex downA,i
v,P to G

such that the neighborhood of downA,i
v,P is exactly Xv \ {x(Q(j),v) | j < i}. Hence, downA,1

v,P

is adjacent to all vertices of Xv. Furthermore, we add an edge between downA,i
v,P and each

vertex of {wA | w ∈ P} ∪ {wB | w ∈ Q} and we also an edge between downA,i
v,P and vA.

Moreover, we set

ω′′(downA,i
v,P) := i − 4 + 8 ·

|Q|∑
j=i

ω({v, Q(j)}) = i − 4 +
|Q|∑
j=i

ω′′(x(v,Q(j))).

Note that ω′′(downA,i
v,P) > 0 since Q ̸= ∅ and the images of ω are positive numbers. Intuitively,

one can obtain an improving 3-neighbor for S in G as follows:
1. if turnA

v,P ∈ S, then we remove turnA
v,P and add downA,1

v,P and vB ,
2. if downA,j

v,P ∈ S for some j < |Q| − 1, then we remove downA,j
v,P and add downA,j+1

v,P

and x(Q(j),v), and
3. if downA,|Q|−1

v,P ∈ S, then we remove downA,|Q|−1
v,P and add x(Q(|Q|−1),v) and x(Q(|Q|),v).

With the current graph, it is possible to simulate a flip of a vertex v from A to B. To
also simulate a flip of vertex v from B to A, we add symmetric vertices to G′′, that is, for
each vertex upA,j

v,P , we add a vertex upB,j
v,P , for each vertex turnA

v,P , we add a vertex turnB
v,P ,

and for each vertex downA,j
v,P , we add a vertex downB,j

v,P .
The formal definition of these symmetric vertices is deferred to the full version.
Note that we did not add any vertices for P = ∅ ∈ Pv to the graph G′′. In the correctness

proof, we show that a single improving 3-swap for S is sufficient to simulate the flip of a
vertex v of G if no edge incident with v is currently in the cut.

For each vertex v ∈ V , let Vv denote the set of the additional vertices associated with v:

Vv :=
⋃

P ∈Pv,P ̸=∅,C∈{A,B}

({upC,i
v,P | i < |P |} ∪ {turnC

v,P } ∪ {downC,i
v,P | i < |NG(v) \ P |}).

To complete the construction, for each v ∈ V , we make the set
⋃

w∈NG[v] Vw a clique in G′′.

▶ Lemma 4.2 (*). The graph G′′ has maximum degree at most 3140.

It remains to define the solution-mapper f . Analogously to the solution-mapper of the
presented PLS-reduction for Weighted Independent Set/7-swap, for an independent
set S, we define f(S) to be the partition (A, B) of G where A := {v ∈ V | vA ∈ S}
and B := V \ A.

MFCS 2022

66:10 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

Correctness. To show the correctness of the PLS-reduction, we first analyze the structure
of 3-optimal independent sets in G′′. To this end, we show in the auxiliary Lemmas 4.3 –
4.5 that we can assume that each 3-optimal independent set in G′′ contains for each v ∈ V

either the vertex vA or the vertex vB . Recall that for vertex v ∈ V , the vertices vA and vB

are adjacent in G′′. As a consequence, this then implies that for f(S) = (A, B), B is exactly
the set {v ∈ V | vB ∈ S}. Finally, in Lemma 4.6, we then show that such an independent
set S is not 3-optimal in I ′′ if f(S) is not flip-optimal in G.

▶ Lemma 4.3. Let S be an independent set in G′′. If S contains a vertex upC,i
v,P for C ∈

{A, B}, then S is not 3-optimal.

Proof. First, we show the statement for i = 1. By construction, the closed neighbor-
hood N [turnC

v,P] is exactly N [upC,1
v,P] ∪ {vC} and ω′′(turnC

v,P) = 1 + ω′′(upC,1
v,P) + ω′′(vC).

Hence, S is not 3-optimal in G′′ since S′ := (S ∪ {turnC
v,P }) \ {upC,1

v,P , vC} is an improving 3-
neighbor of S in G′′. This holds even if vC is not in S.

Second, we show the statement for i > 1. Let r := x(v,P (i−1)) if C = A and r :=
x(P (i−1),v) if C = B. Note that by construction, the closed neighborhood N [upC,i−1

v,P] is
exactly N [upC,i

v,P] ∪ {r} and ω′′(upC,i−1
v,P) = 1 + ω′′(upC,i

v,P) + ω′′(r). Hence, if an independent
set S contains upC,i

v,P with i > 1, then S is not 3-optimal in G′′ since (S∪{upC,i−1
v,P })\{upC,i

v,P , r}
is an improving 3-neighbor of S in G′′. This holds even if r is not in S. ◀

▶ Lemma 4.4 (*). Let S be an independent set in G′′. If there is a vertex v ∈ V such that S

avoids vA, vB, and Tv := {turnA
v,P , turnB

v,P | P ∈ Pv, P ̸= ∅}, then S is not 3-optimal.

Hence, we can assume that each 3-optimal independent set S in G′′ contains for each
vertex v ∈ V either vA, vB , or exactly one vertex of Tv := {turnA

v,P , turnB
v,P | P ∈ Pv, P ≠ ∅},

and no vertex of {upA,i
v,P , upB,i

v,P | P ∈ Pv, P ̸= ∅, i < |P |}. In the following, we call
an independent set S of G′′ nice if S ⊆ V ′ = VA ∪ VB ∪

⋃
v∈V Xv and if S is a nice

independent set for the instance I ′ of Weighted Independent Set/7-swap. That is, if
for A := {v ∈ V | vA ∈ S} and B := {v ∈ V | vB ∈ S}, (A, B) is a partition of G and for
each edge {u, v} ∈ E with (u, v) ∈ A × B, the vertex x(u,v) is contained in S. Next, we show
similar to Lemma 3.4, that an independent set S in G′′ is not 3-optimal if S is not nice.

▶ Lemma 4.5. Let S be an independent set in G′′. If S is not nice, then S is not 3-optimal.

Proof. Let S be an independent set in G′′ which is not nice. Due to Lemma 4.3, we know
that S is not 3-optimal if some vertex upC,i

v,P for C ∈ A, B is contained in S. Hence, in
the following, we assume that none of these vertices is contained in S. Moreover, due
to Lemma 4.4, we also know that S is not 3-optimal if there is some vertex v ∈ V such
that S does not contain vA, vB , and no vertex of {turnA

v,P , turnB
v,P | P ∈ Pv, P ̸= ∅}. Hence,

in the following we further assume that S contains one of these vertices for some v ∈ V .
In a first step, we show that if for some v ∈ V , S contains some vertex of {turnA

v,P , turnB
v,P |

P ∈ Pv, P ̸= ∅}, then S is not 3-optimal. Assume without loss of generality that turnA
v,P ∈ S

and let Q := NG(v) \ P . Recall that
⋃

w∈NG[v] Vw is a clique in G′′ which implies that for
each w ∈ NG(v), S contains no vertex of {turnA

w,P ′ , turnB
w,P ′ | P ′ ∈ Pw, P ′ ̸= ∅} ⊆ Vw. Hence,

due to Lemma 4.4, to for each w ∈ NG(v), S contains either wA or wB . Moreover, turnA
v,P is

adjacent to all vertices of Xv, all vertices of {wA | w ∈ P}, and all vertices of {wB | w ∈ Q}.
As a consequence, for each w ∈ P , wB ∈ S, and wA /∈ S, and for each u ∈ Q, uA ∈ S

and uB /∈ S. Furthermore, S contains no other neighbor of vA or vB . Recall that P ̸= NG(v)
which implies Q = ∅. In the following, it suffices to distinguish between |Q| = 1 and |Q| > 1.

C. Komusiewicz and N. Morawietz 66:11

First, suppose that |Q| = 1 and let w denote the unique vertex of Q. We show that S′ :=
(S ∪ {vB , x(w,v)}) \ {turnA

v,P } is an improving 3-neighbor of S in G′′. By construction, vB

and x(w,v) are non-adjacent in G′′ and

ω′′(vB) + ω′′(x(w,v)) = 16 · Z + 8 · ω({v, w}) = 16 · Z + 8 ·
∑
u∈Q

ω({v, u})

> 16 · Z + 4 + 8 ·
∑
u∈P

ω({v, u}) = ω′′(turnA
v,P)

since the images of ω are positive numbers and P ∈ Pv which implies
∑

u∈Q ω({v, u}) >∑
u∈P ω({v, u}). Hence, it remains to show that S is an independent set. Since by defini-

tion, N [vB] ⊆ N [turnA
v,P], we only have to show that there is no other neighbor of x(w,v)

in S besides turnA
v,P . By construction, the neighborhood of x(w,v) in G′′ is a subset

of {vA, wB} ∪ Vv ∪ Vw ∪ Xv ∪ Xw. Now, turnA
v,P is adjacent to all vertices of this set

except for some vertices of Xw. Hence, we only have to consider the neighbors of x(w,v)
in Xw. By construction, these are the vertices x(u,w) where u ∈ NG(w). Since wA is contained
in S and each of these vertices x(u,w) is adjacent to wA in G′′, x(w,v) has no neighbor in S

besides turnA
v,P . As a consequence, S′ is an improving 3-neighbor of S.

Second, suppose that |Q| > 1. Then, the vertex downA,1
v,P exists. We show that S′ :=

(S ∪ {vB , downA,1
v,P }) \ {turnA

v,P } is an improving 3-neighbor of S in G′′. By construction,
vB and downA,1

v,P are non-adjacent in G′′ and

ω′′(vB) + ω′′(downA,1
v,P) = 16 · Z − 3 + 8 ·

∑
w∈Q

ω({v, w})

> 16 · Z + 4 + 8 ·
∑
u∈P

ω({v, u}) = ω′′(turnA
v,P)

since the images of ω are positive numbers and P ∈ Pv which implies
∑

u∈Q ω({v, u}) >∑
u∈P ω({v, u}). Hence, it remains to show that S is an independent set. By defini-

tion, N [vB] ⊆ N [turnA
v,P] and N [downA,1

v,P] ⊆ N [turnA
v,P], which implies that turnA

v,P is the
unique neighbor of both vB and turnA

v,P in S. As a consequence, S′ is an independent set
and thus an improving 3-neighbor of S. Hence, in the following, we can also assume that for
each v ∈ V , S contains either vA or vB .

Next, we show that if for some v ∈ V , there is some vertex r ∈ Vv contained in S, then S is
not 3-optimal. Note that we already showed that this is the case if r is upA,i

v,P , upB,i
v,P , turnA

v,P ,
or turnB

v,P . Hence, it remains to show the claim for r being downA,i
v,P or downB,i

v,P . Assume
without loss of generality that there is a nonempty set P ∈ Pv and some i < |Q| with Q :=
NG(v) \ P such that downA,i

v,P is contained in S. The proof of the fact that in this case S is
not 3-optimal is deferred to the full version.

Summarizing, we can assume in the following that S ⊆ V ′ = VA ∪ VB ∪
⋃

v∈V Xv and
that (A, B) is a partition of G, where A := {v ∈ V | vA ∈ S} and B := {v ∈ V | vB ∈ S}.
Note that for each edge {v, w} ∈ E with (v, w) /∈ A × B, the vertex x(v,w) is not contained
in S since vB ∈ S or wA ∈ S, and both these vertices are adjacent to x(v,w). Hence, it
remains to show that if there is some edge {v, w} ∈ E with (v, w) ∈ A × B such that x(v,w)
is not contained in S, then S is not 3-optimal in G′′. To this end, we show that S ∪ {x(v,w)}
is an independent set in G′′. By construction, x(v,w) is adjacent to vB, wA, some vertices
of Vv ∪ Vw, and the vertices {x(u,v) | u ∈ NG(v)} ∪ {x(w,u) | u ∈ NG(w)}. Recall that S

contains no vertex of Vv ∪ Vw. Moreover, since (v, w) ∈ A × B, vA and wB are contained

MFCS 2022

66:12 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

in S which implies that vB and wA are not contained in S. Furthermore, since all vertices
of {x(u,v) | u ∈ NG(v)} are adjacent to vA, all vertices of {x(w,u) | u ∈ NG(w)} are adjacent
to wB , and vA and wB are contained in S, S ∪ {x(v,w)} is an independent set in G′′.

We conclude that if S is not nice in G′′, then S is not 3-optimal. ◀

Now the following implies the correctness of the PLS-reduction.

▶ Lemma 4.6 (*). Let S be a nice independent set in G′′ and let A := {v ∈ V | vA ∈ S}
and B := {v ∈ V | vB ∈ S}. If (A, B) is not flip-optimal in G, then S is not 3-optimal.

Next, we obtain similar results for Weighted Dominating Set.

▶ Theorem 4.7 (*). Let k ≥ 3. There is a PLS-reduction from Weighted Independent
Set/k-swap to Weighted Dominating Set/k-swap where the maximum degree of the
output graph is at most two times the maximum degree of the input graph.

Hence, we obtain the following due to Theorem 4.7, Theorem 3.1, and Theorem 4.1.

▶ Corollary 4.8. Weighted Dominating Set/7-swap is PLS-complete on graphs of
maximum degree at most 12 and Weighted Dominating Set/3-swap is PLS-complete on
graphs of constant maximum degree.

5 Finding Locally Optimal Solutions for Restricted 3-Swaps

We now show that we can find locally optimal solutions in polynomial time for Weighted
Independent Set and Weighted Dominating Set if we restrict the allowed 3-swaps as
follows: we either only allow swaps that add at most one vertex to the current solution or
we allow only swaps that remove at most one vertex from the solution. These are exactly
the (1, 2)-swaps and (2, 1)-swaps, respectively, since a 3-swap that removes three vertices
from the current solution or that adds three vertices to the solution is either not improving,
or the solution is not 1-optimal.

Recall that a (kin, kout)-swap W for a set S is a k-swap with kin + kout ≤ k such
that |W \ S| ≤ kin and |W ∩ S| ≤ kout.

First, we show that we can compute in O(n · log(n)+m) time a (1, 2)-optimal independent
set S. More precisely, we show that S is even (1, k)-optimal for every k ∈ N.

▶ Theorem 5.1 (*). One can compute in O(n · log(n) + m) time an independent set which
is (1, k)-optimal for every k ∈ N.

Second, we show that we can also compute in O(n · log(n) + m) time a (2, 1)-optimal
dominating set S. More precisely, we show that S is even (k, 1)-optimal for every k ∈ N.

▶ Theorem 5.2 (*). One can compute in O(n · log(n) + m) time a dominating set which
is (k, 1)-optimal for every k ∈ N.

▶ Theorem 5.3. Let L be a subset-weight maximization problem, let I be an instance of L,
and let k ∈ O(1). One can compute in polynomial time a (k, 1)-optimal solution S for I.

Proof. Recall that since L is a subset-weight maximization problem, L consists of func-
tions U , f , g, and ω, where for each instance I of L, U(I) is the universe of I, f(I, S) checks
if S is a solution for I, g(I) computes some feasible solution for I, and ω(I, u) assigns a weight
to each u ∈ U(I). Moreover, the functions U , f , g, and ω are polynomial-time computable.

C. Komusiewicz and N. Morawietz 66:13

Let I be an instance of L and let k ≥ 0. Note that we can compute some feasible
solution S0 := g(I) in polynomial time. Since U(I) can be computed in polynomial time, U(I)
has polynomial size. Let n := |U(I)|. Since f and ω can be computed in polynomial time,
we can check for a given solution S in nO(k) time if there is an improving (k + 1)-swap W

such that W is a (k, 1)-swap for S by considering all subsets of size at most k + 1 of U(I).
Note that this is polynomial time since k is a constant. Hence, we can determine whether
a solution S is (k, 1)-optimal and, if this is not the case, replace S by a (k, 1)-neighbor,
both in polynomial time. Let Sx be a (k, 1)-optimal feasible solution in I which can be
obtained by a sequence (S0, S1, . . . , Sx) of consecutive improving (k, 1)-neighbors in I starting
from g(I) = S0. We show that x ∈ O(n3), which implies that a (k, 1)-optimal feasible solution
for I can be computed in polynomial time. Let ℓ ∈ [1, x]. To this end, we first show that Sℓ

is never smaller than Sℓ−1. Assume towards a contradiction that |Sℓ| < |Sℓ−1|. Then
there is some u ∈ Sℓ−1 such that Sℓ = Sℓ−1 \ {u} since Sℓ is a (k, 1)-neighbor of Sℓ−1 in I.
Since the weight of Sℓ is defined as the sum of weights of the elements of Sℓ and each
element u ∈ U(I) has a positive weight ω(I, u), the total weight of Sℓ is not larger than the
total weight of Sℓ−1, a contradiction. As a consequence, there are at most y ≤ |U(I)| distinct
indices ℓ1, . . . , ℓy such that Sℓi

is larger than Sℓi−1. To prove that x ∈ O(n3), we now show
that for each ℓ ∈ [1, x − n2], there is some z ∈ [ℓ, ℓ + n2] where Sz is larger than Sℓ−1. In
other words, after at most n2 improving swaps that do not increase the size of the solution,
the next improving swap increases the size of the solution.

Let ℓ ∈ [1, x − U(I)2], let σ = (u1, . . . , un) be a fixed increasing order of the elements
of U(I) according to their weight, and let for each j ∈ [ℓ, ℓ+n2], qj :=

∑
ui∈Sj

i denote the sum
of the indices of Sj in σ. Note that if Sj and Sj−1 have same size, Sj = (Sj−1 ∪ {u2}) \ {u1}
for two elements u1 ∈ U(I) and u2 ∈ U(I) where the weight of u2 is larger than the weight
of u1. Hence, qj is larger than qj−1 if Sj and Sj−1 have same size. Since the value qj can
never exceed n2, there is some z ∈ [ℓ, ℓ + n2] where the size of Sz is larger than the size
of Sℓ−1. We conclude that x ∈ O(n3) which implies that we can compute in polynomial time
a feasible solution S of I such that S is (k, 1)-optimal in I. ◀

▶ Corollary 5.4 (*). Let L be a subset-weight minimization problem, let I be an instance
of L and let k ∈ O(1). One can compute in polynomial time a (1, k)-optimal solution S for I.

By the fact that for a maximization problem there is no improving swap that only removes
elements from the solution and for a minimization problem there is no improving swap that
only adds elements to the solution, Theorem 5.3 and Corollary 5.4 imply that one can find
for each subset weight optimization problem L, a 2-optimal solution in polynomial time.

Since Weighted Independent Set is a subset-weight maximization problem and
since Weighted Dominating Set is a subset-weight minimization problem, we conclude
the following.

▶ Corollary 5.5. Let k be a constant. One can compute in polynomial time a (k, 1)-optimal
independent set and one can compute in polynomial time a (1, k)-optimal dominating set.

Consequently, if we allow only (1, 2)-swaps or only (2, 1)-swaps, we can find locally optimal
solutions for Weighted Independent Set and Weighted Dominating Set in polynomial
time. In contrast, if we allow (1, 2)-swaps and (2, 1)-swaps, then we allow all 3-swaps and
both problems become PLS-complete even on graphs of constant maximum degree.

MFCS 2022

66:14 Finding 3-Swap-Optimal Independent Sets and Dominating Sets Is Hard

6 Conclusion

From a theoretical point of view, the most important open topic is to determine the
precise degree bounds that separate the polynomial-time solvable and PLS-complete cases
for Weighted Independent Set and Weighted Dominating Set for k-swaps with
small constant k-values. From a practical point of view, our findings motivate, for both
problems, the use of gap-variants of local search where we are searching for solutions that
improve the objective value by at least some threshold d, the hope being that this decreases
the number of necessary iterations while preserving solution quality.

References
1 Diogo Vieira Andrade, Mauricio G. C. Resende, and Renato Fonseca F. Werneck. Fast local

search for the maximum independent set problem. Journal of Heuristics, 18(4):525–547, 2012.
2 Shaowei Cai, Kaile Su, Chuan Luo, and Abdul Sattar. NuMVC: An efficient local search

algorithm for minimum vertex cover. Journal of Artificial Intelligence Research, 46:687–716,
2013.

3 Jakob Dahlum, Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F.
Werneck. Accelerating local search for the maximum independent set problem. In Proceedings
of the 15th International Symposium on Experimental Algorithms (SEA ’16), volume 9685 of
Lecture Notes in Computer Science, pages 118–133. Springer, 2016.

4 Robert Elsässer and Tobias Tscheuschner. Settling the complexity of local max-cut (almost)
completely. In Proceedings of the 38th International Colloquium on Automata, Languages
and Programming (ICALP ’11), volume 6755 of Lecture Notes in Computer Science, pages
171–182. Springer, 2011. doi:10.1007/978-3-642-22006-7_15.

5 David S. Johnson, Christos H. Papadimitriou, and Mihalis Yannakakis. How easy is local
search? Journal of Computer and System Sciences, 37(1):79–100, 1988.

6 Maximilian Katzmann and Christian Komusiewicz. Systematic exploration of larger local
search neighborhoods for the minimum vertex cover problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, (AAAI ’17), pages 846–852. AAAI Press, 2017.

7 Brian W. Kernighan and Shen Lin. An efficient heuristic procedure for partitioning graphs.
Bell System Technical Journal, 49(2):291–307, 1970.

8 Hartmut Klauck. On the hardness of global and local approximation. In Proceedings of the
5th Scandinavian Workshop on Algorithm Theory (SWAT ’96), volume 1097 of Lecture Notes
in Computer Science, pages 88–99. Springer, 1996.

9 Sebastian Lamm, Peter Sanders, Christian Schulz, Darren Strash, and Renato F. Werneck.
Finding near-optimal independent sets at scale. Journal of Heuristics, 23(4):207–229, 2017.

10 Ruizhi Li, Shuli Hu, Shaowei Cai, Jian Gao, Yiyuan Wang, and Minghao Yin. NuMWVC: A
novel local search for minimum weighted vertex cover problem. Journal of the Operational
Research Society, 71(9):1498–1509, 2020.

11 Wil Michiels, Emile H. L. Aarts, and Jan H. M. Korst. Theoretical aspects of local search.
Monographs in Theoretical Computer Science. An EATCS Series. Springer, 2007.

12 Svatopluk Poljak. Integer linear programs and local search for max-cut. SIAM Journal on
Computing, 24(4):822–839, 1995.

13 Alejandro A. Schäffer and Mihalis Yannakakis. Simple local search problems that are hard to
solve. SIAM Journal on Computing, 20(1):56–87, 1991.

14 Shinichi Shimozono. Finding optimal subgraphs by local search. Theoretical Computer Science,
172(1-2):265–271, 1997.

https://doi.org/10.1007/978-3-642-22006-7_15

	1 Introduction
	2 Preliminaries
	3 Hardness of Finding 7-optimal Independent Sets
	4 Hardness of Finding 3-optimal Independent Sets
	5 Finding Locally Optimal Solutions for Restricted 3-Swaps
	6 Conclusion

