
Oracle with P = NP ∩ coNP, but No Many-One
Completeness in UP, DisjNP, and DisjCoNP
Anton Ehrmanntraut #

Julius-Maximilians-Universität Würzburg, Germany

Fabian Egidy #

Julius-Maximilians-Universität Würzburg, Germany

Christian Glaßer #

Julius-Maximilians-Universität Würzburg, Germany

Abstract
We construct an oracle relative to which P = NP ∩ coNP, but there are no many-one complete sets
in UP, no many-one complete disjoint NP-pairs, and no many-one complete disjoint coNP-pairs.

This contributes to a research program initiated by Pudlák [33], which studies incompleteness
in the finite domain and which mentions the construction of such oracles as open problem. The
oracle shows that NP ∩ coNP is indispensable in the list of hypotheses studied by Pudlák. Hence
one should consider stronger hypotheses, in order to find a universal one.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Theory of computation → Oracles and decision trees; Theory of computation → Proof complexity

Keywords and phrases computational complexity, promise classes, proof complexity, complete sets,
oracle construction

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.45

Related Version Full Version: https://arxiv.org/abs/2203.11079

1 Introduction

Questions of the existence of complete sets in promise classes have a long history. They
turned out to be difficult and remained open. Consider the following examples, where the
questions are expressed as hypotheses.

NP ∩ coNP :NP ∩ coNP does not contain many-one complete sets [23]
UP :UP does not contain many-one complete sets [22]

CON :p-optimal proof systems for TAUT do not exist [26]
SAT :p-optimal proof systems for SAT do not exist [15]

TFNP :TFNP does not contain many-one complete problems [27]
DisjNP :DisjNP does not contain many-one complete pairs [34]

DisjCoNP :DisjCoNP does not contain many-one complete pairs [28, 32]

So far, the following implications are known: DisjNP ⇒ CON [34], UP ⇒ CON [25],
DisjCoNP ⇒ TFNP [33], TFNP ⇒ SAT [5, 33], and NP ∩ coNP ⇒ CON ∨ SAT [25]. This
raises the question of whether further implications are provable with the currently available
means. Thanks to a work by Pudlák [33], this question recently gained momentum. In fact,
Pudlák’s interest goes beyond: He initiated a research program to find a general principle
from which the remaining hypotheses follow as special cases. This is motivated by the
study of incompleteness in the finite domain, since these hypotheses can either be expressed
as the non-existence of complete elements in promise classes or as statements about the
unprovability of sentences of some specific form in weak theories.

© Anton Ehrmanntraut, Fabian Egidy, and Christian Glaßer;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 45; pp. 45:1–45:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:anton.ehrmanntraut@uni-wuerzburg.de
https://orcid.org/0000-0001-6677-586X
mailto:fabian.egidy@uni-wuerzburg.de
https://orcid.org/0000-0001-8370-9717
mailto:christian.glasser@uni-wuerzburg.de
https://doi.org/10.4230/LIPIcs.MFCS.2022.45
https://arxiv.org/abs/2203.11079
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

Pudlák [33] states as open problem to construct oracles that show that the relativized
conjectures are different or show that they are equivalent. Such oracles have been constructed
by Verbitskii [38], Glaßer et al. [18], Khaniki [24], Dose [10, 11, 9], and Dose and Glaßer [12].
The restriction to relativizable proofs arises from the following idea: We consider the
mentioned hypotheses as conjectures, hence we expect that they are equivalent. In this
situation we are not primarily concerned with the question of whether two hypotheses are
equivalent, but rather whether their equivalence can be recognized with the currently available
means. An accepted formalization of this is the notion of relativizable proofs.

Our Contribution. We construct an oracle relative to which the following holds: UP, DisjNP,
DisjCoNP, but P = NP ∩ coNP, which implies ¬NP ∩ coNP. Hence there is no relativizable
proof for NP∩coNP, even if we simultaneously assume all remaining hypotheses we mentioned
so far. This demonstrates that NP ∩ coNP is indispensable in the list of currently viewed
hypotheses and suggests to broaden the focus and include stronger statements.

Pudlák [33] ranks NP ∩ coNP as a plausible conjecture that is apparently incomparable
with CON and TFNP. Our oracle supports this estimation, as it rules out relativizable proofs
for “CON ⇒ NP ∩ coNP” and “TFNP ⇒ NP ∩ coNP.” By Dose [10, 11], the same holds for
the converse implications. Overall, we recognize a strong independence between NP ∩ coNP
and all remaining hypotheses:

(i) There does not exist a relativizable proof for NP ∩ coNP, even if we simultaneously
assume all remaining hypotheses.

(ii) There exists a relativizable proof for the implication NP ∩ coNP ⇒ CON ∨ SAT [25].
But there does not exist a relativizable proof showing that NP ∩ coNP implies one of
the remaining hypotheses [10, 11].

Our oracle combines several separations with the collapse P = NP ∩ coNP. This leads to
conclusions on the independence of the statement P ̸= NP ∩ coNP from typical assumptions.
For instance, the oracle shows that P ̸= NP ∩ coNP cannot be proved by relativizing means,
even under the strong but likely assumption UP ∧ DisjNP ∧ DisjCoNP.

Further characteristics of our oracle are, for example, NE ̸= coNE, NPMV ̸⊆c NPSV,
and the shrinking and separation properties do not hold for NP and coNP. Corollary 10
presents a list of additional properties.

Open Questions. Currently, for almost every pair A, B of hypotheses, we either know a
relativizable proof for the implication A ⇒ B, or we know an oracle relative to which A ∧ ¬B.
Only three cases are left: (1) UP ?⇒ DisjNP, (2) TFNP ?⇒ DisjCoNP, and (3) SAT ?⇒ TFNP.
This leads to the following task for future research: Prove these implications or construct
oracles relative to which they do not hold.

Background on Connections Between Promise Classes and Proof Systems. Informally,
promise classes are complexity classes that are characterized by machines that satisfy certain
properties. Usually, these properties are hard or even impossible to validate. Thus, when
working with an element of a promise class, one has to trust the promise that the respective
machine has said property. We are mainly interested in the following well-studied promise
classes: The class of disjoint NP-pairs DisjNP = {(A, B) | A, B ∈ NP, A∩B = ∅} [35, 21], the
class of disjoint coNP-pairs DisjCoNP [14, 15] (defined respectively), the class of sets accepted
by nondeterministic polynomial-time machines with at most one accepting computation path
UP [37], the class NP ∩ coNP [13], and the class of all total polynomial search problems
TFNP [27]. As an example, the machines characterizing UP promise that on every input,

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:3

P ̸= NP

CON ∨ SAT

CON SAT

DisjNP DisjCoNP

TFNPNP∩coNP
UP

DisjNP ∧ NP∩coNP

DisjNP ∧ UP ∧ NP∩coNP

DisjNP ∧ UP ∧ DisjCoNP

[11][1
2]

[10] [24]

Thm. 9

[18]

[9]

Figure 1 Solid arrows mean implications. All implications occurring in the figure have relativizable
proofs. (The only nontrivial ones are DisjNP ⇒ CON [34], UP ⇒ CON [25, Cor. 4.1], DisjCoNP ⇒
TFNP ⇒ SAT [33, Prop. 5.6][5, Thm. 25][33, Prop. 5.10].) Implications between the conjectures
originally considered by Pudlák (i.e., not the conjunctions) are highlighted bold. A dashed arrow
from one conjecture A to another conjecture B means that there is an oracle X against the implication
A ⇒ B, meaning that A ∧ ¬B holds relative to X.

they either reject on all computation paths, or accept on exactly one computation path.
Furthermore, we are interested in proof systems defined by Cook and Reckhow [8], especially
optimal and p-optimal proof systems for the set of satisfiable formulas SAT, for the set of
tautologies TAUT.

The connections between propositional proof systems and promise classes have been
studied intensively. Krajícek and Pudlák [26] linked propositional proof systems (and thus
the hypothesis CON) to standard complexity classes by proving that NE = coNE implies
the existence of optimal propositional proof systems and E = NE implies the existence of
p-optimal propositional proof systems. These results were subsequently improved by Köbler,
Messner, and Torán [25].

Glaßer, Selman, and Sengupta [17] give several characterizations of DisjNP. Some
characterizations use different notions of reducibility while others use the existence of ≤p

m-
complete functions in NPSV and the uniform enumerability of disjoint NP-pairs. Glaßer,
Selman, and Zhang [19, 20] connect propositional proof systems to disjoint NP-pairs. They
prove that the degree structure of DisjNP and of all canonical disjoint pairs of propositional
proof systems is the same. Beyersdorff [1, 2, 3, 4] and Beyersdorff and Sadowkski [6]
investigate further connections between disjoint NP-pairs and propositional proof systems.

Pudlák [30, 31, 33] draws connections between the finite consistency problem, proof
systems, and promise classes like DisjNP and TFNP. Moreover, he asks for oracles that
separate hypotheses regarding proof systems and promise classes. Several oracles have been
constructed since Pudlák formulated his research questions. Concerning the listed hypotheses,
Figure 1 summarizes all known (relativizing) implications and implications that do not hold
relative to some oracle.

MFCS 2022

45:4 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

The paper is organized as follows: Section 2 defines the complexity classes mentioned
above and presents our notations. Section 3 contains the oracle construction: the first part
defines the construction, the second part proves that it is well-defined, and the last part
shows the claimed properties.

2 Preliminaries

Basic Notation. Throughout this paper, let Σ be the alphabet {0, 1}. The set Σ∗ denotes
the set of finite words over Σ. The set Σω denotes the set of ω-infinite words, i.e., the
ω-infinite sequences of characters from Σ. Let Σ≤n := {w ∈ Σ∗ | |w| ≤ n}. For a word
w ∈ Σ∗ ∪Σω, we denote with w(i) the i-th character of w for 0 ≤ i < |w| ≤ ω. We write v ⊑ w

when v is a prefix of w, that is, |v| ≤ |w| and v(i) = w(i) for all 0 ≤ i < |v|. Accordingly,
v ⊑p w when v ⊑ w and v ̸= w. The empty word is denoted by ε. For a finite set A ⊆ Σ∗, we
define ℓ(A) :=

∑
w∈A |w|.

Let N denote the set of non-negative integers, and N+ the set of positive integers. We
say that two sets X and Y agree on set Z when X ∩ Z = Y ∩ Z.

The finite words Σ∗ can be linearly ordered by their quasi-lexicographic (i.e., “shortlex”)
order ≺lex, uniquely defined by requiring 0 ≺lex 1. Under this definition, there is a unique
order-isomorphism between (Σ∗, ≺lex) and (N, <), which induces a polynomial-time comput-
able, polynomial-time invertible bijection between Σ∗ and N. Hence, we can transfer the
notations, relations, and operations for Σ∗ to N and vice versa. In particular, |n| denotes
the length of the word represented by n ∈ N. By definition of ≺lex, whenever a ≤ b, then
|a| ≤ |b|. We eliminate the ambiguity of the expressions 0i and 1i by always interpreting
them over Σi. Moreover, < denotes both the less-than relation for natural numbers and the
quasi-lexicographic order ≺lex for finite words. Similarly for ≤ and ⪯lex. From the properties
of order-isomorphism, this is compatible with the above identification of words and numbers.

Complexity Classes. We understand P (resp., NP) as the usual complexity class of languages
decidable by a deterministic (resp., nondeterministic) polynomial-time Turing machine. The
class FP refers to the class of total functions that can be computed by a deterministic
polynomial-time Turing transducer [29]. Valiant [37] defined UP as the set of all languages
that can be recognized by a nondeterministic polynomial-time machine that, on every
input, accepts on at most one computation path. For a complexity class C we define
coC := {A | A ∈ C} as the complementary complexity class of C. Between sets of words, we
employ the usual polynomial-time many-one reducibility: A ≤p

m B if there exists an f ∈ FP
such that x ∈ A ⇔ f(x) ∈ B. The usual notion of ≤p

m-completeness and -hardness follows.
A disjoint NP-pair is a pair (A, B) of disjoint sets in NP. Selman [35] and Grollmann

and Selman [21] defined the class DisjNP as the set of disjoint NP-pairs. The classes
DisjCoNP [14, 15], DisjUP, and DisjCoUP are defined similarly. Between two pairs, we
employ the following related notion of reducibility [34, 18]: Let (A, B) and (C, D) be two
disjoint pairs. We say that (A, B) is polynomial-time many-one reducible to (C, D), denoted
by (A, B) ≤pp

m (C, D), if there is a function h ∈ FP such that h(A) ⊆ C and h(B) ⊆ D. The
terms ≤pp

m -completeness and -hardness also follow directly from this definition of reduction.

Proof Systems. We use the notion of proof systems for sets by Cook and Reckhow [8]:
A function f ∈ FP is called a proof system for img(f). Specifically, a proof system f for
TAUT is a propositional proof system. We say that a proof system g is (p-)simulated by a
proof system f , denoted by f ≤ g (resp., f ≤p g), if there exists a total function π (resp.,

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:5

π ∈ FP) and a polynomial p such that |π(x)| ≤ p(|x|) and f(π(x)) = g(x) for all x. We call
a proof system f (p-)optimal for the set img(f), if g ≤ f (resp., g ≤p f) for all g ∈ FP with
img(g) = img(f).

Relativizations. We can relativize each complexity and function class to some oracle O, by
equipping all machines corresponding to the respective class with oracle access to O. That is,
e.g., UPO := {L(MO) | M is a nondeterministic polynomial-time oracle Turing machine, and
for all inputs x, MO(x) accepts on at most one path }. The classes PO, NPO and so on are
defined similarly. We can also relativize our notions of reducibility by using functions from
FPO instead of FP. In other words, we allow the reduction functions to access the oracle
in relativized instances. This results in polynomial-time many-one reducibilities relative to
an oracle O, which we denote as ≤p,O

m for sets and ≤pp,O
m for pairs of disjoint sets. In the

same way, we can relativize (p-)simulation of proof systems to some oracle O, and denote the
relativized simulation as ≤O resp. ≤p,O. When it is clear from context that some statements
refer to the relativized ones relative to some fixed oracle O, we sometimes omit the indication
of O in the superscripts.

We define pi(n) := ni + i. Let {Mi}i∈N and {Fi}i∈N be, respectively, standard enu-
merations of nondeterministic polynomial-time (oracle) Turing machines resp. determin-
istic polynomial-time (oracle) Turing transducers, having the property that runtime of
Mi, Fi is bounded by pi relative to any oracle. Note that {L(MO

i) | i ∈ N} = NPO,
{F O

i | i ∈ N} = FPO.

Specific Notation Used in our Oracle Construction. We now take on the notations
proposed by Dose and Glaßer [12] designed for the construction of oracles. The do-
main of definition, image, and support for partial function t : A → N are defined as
dom(t) := {x ∈ A | t(x) defined}, img(t) := {t(x) | x ∈ A, t(x) defined}, supp(t) := {x ∈ A |
t(x) defined and t(x) > 0}. We say that t is injective on its support if, for any a, b ∈ supp(t),
t(a) = t(b) implies a = b. If t is not defined at point x, then t∪{x 7→ y} denotes the extension
t′ of t that at x has value y and satisfies dom(t′) = dom(t) ∪ {x}.

For a set A, we denote with A(x) the characteristic function at point x, i.e., A(x) is 1
if x ∈ A, and 0 otherwise. We can identify an oracle A ⊆ N with its characteristic ω-word
A(0)A(1)A(2) · · · over Σω. In this way, A(i) denotes both the characteristic function at point
i and the i-th character of its characteristic word. Similarly, for a finite word w ∈ Σ∗, we
also understand w as the set {i | w(i) = 1} and, e.g., we write A = w ∪ B where A and B are
sets. (However, we understand |w| as the length of the word w, and not the cardinality of set
{i | w(i) = 1}.) Thus, a finite word w describes an oracle which is partially defined, i.e., only
defined for natural numbers (or equivalently words) x < |w|. Being able to interpret a word
w as a set and partial oracle is very useful for the oracle construction. In most construction
steps we decide the membership of the smallest undefined word of a partial oracle w, which
is simply |w|. This gives access to very concise notation.

In particular, for oracle machines M , the notation Mw(x) refers to M{i|w(i)=1}(x) (that
is, oracle queries that w is not defined for are negatively answered). This also allows us to
define the following notion: we say that Mw(x) is definite if all queries on all computation
paths are < |w| (or equivalently: w(q) is defined for all queries q on all computation paths);
we say that Mw(x) definitely accepts (resp., definitely rejects) if Mw(x) is definite and accepts
(resp., rejects). Intuitively, the term definite describes computations that do not change when
extending the respective oracle, because the queries are too short. This allows the following
observation:

MFCS 2022

45:6 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

▶ Observation 1.
(i) When Mw(x) is a definite computation, and v ⊒ w, then Mv(x) is definite. Computation

Mv(x) accepts if and only if Mw(x) accepts.
(ii) When w is defined for all words of length pi(|x|), then Mw

i (x) is definite.
(iii) When Mw(x) accepts on some computation path with set of oracle queries Q, and w, v

agree on Q, then Mv(x) accepts on the same computation path and with the same set
of oracle queries Q.

For an oracle w, a transducer F , and a machine M , we occasionally understand the
notation Mw(F w(x)) as the single computation of the machine M ◦ F on input x relative
to w. Consequently, we say that Mw(F w(x)) definitely accepts (resp., rejects) when M ◦ F

definitely accepts (resp., rejects) input x relative to w.
In our oracle construction, we want to injectively reserve and assign countably infinitely

many levels n, that are, words of same length n, for a countably infinite family of witness
languages, with increasingly large gaps. For this, let e(0) := 2, e(i) := 2e(i−1). There is
a polynomial-time computable, polynomial-time invertible injective function f , mapping
(m, h) ∈ N × N to N. Now define Hm := {e(f(m, h)) | h ∈ N} as the set of levels reserved for
witness language m. This definition ensures

▶ Observation 2.
(i) The set Hm is countably infinite, a subset of the even numbers, and all H0, H1, . . . are

pairwise disjoint.
(ii) The sequence min H0, min H1, . . . is unbounded.
(iii) When n ∈ Hm, then n < n′ < 2n implies n′ ̸∈ H0, H1,
(iv) Every set Hm ∈ P for all m ∈ N.

3 Oracle Construction

We are primarily interested in an oracle O with the property that relative to that oracle, UP,
DisjNP, DisjCoNP, and ¬NP ∩ coNP hold, but our construction yields the following slightly
stronger statements:

(i) NP ∩ coNP = P (implying ¬NP ∩ coNP).
(ii) DisjNP does not contain ≤pp

m -hard pairs for DisjUP (implying DisjNP).
(iii) UP does not contain ≤p

m-complete languages (i.e., UP).
(iv) DisjCoNP does not contain ≤pp

m -hard pairs for DisjCoUP (implying DisjCoNP).
Given a (possibly partial) oracle O and m ∈ N, we define the following witness languages:

AO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O and x ends with 0}

BO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O and x ends with 1}

CO
m := {0n | n ∈ Hm, there exists x ∈ Σn such that x ∈ O}

DO
m := {0n | n ∈ Hm, for all x ∈ Σn, x ∈ O → x ends with 0}

EO
m := {0n | n ∈ Hm, for all x ∈ Σn, x ∈ O → x ends with 1}

Their purpose is to be a “witness” that an element of DisjNP (resp., UP, DisjCoNP) is
not complete by admitting no reduction to this element. This only works if the witness
languages themselves belong to the respective classes. The following observation shows how
the membership of the witness languages to the respective classes depends on the oracle.

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:7

▶ Observation 3.
(i) If for all n ∈ Hm, |O ∩ Σn| ≤ 1, then (AO

m, BO
m) is in DisjUPO, and CO

m is in UPO.
(ii) If for all n ∈ Hm, O ∩ Σn contains at least one word but not two words with the same

parity, (i.e., there exists α ∈ Σn−10, β ∈ Σn−11 such that the set O ∩ Σn is equal to
{α} or {β} or {α, β}), then (DO

m, EO
m) is in DisjCoUPO.

Preview of the Construction. The construction is quite technical, since the oracle has to
satisfy several properties which simultaneously demand structure (i.e., property (i)) and
freedom (i.e., properties (ii), (iii) and (iv)) during the construction. This leads to several
dependencies and special cases that need to be addressed, mostly by combinatorial arguments
and various extensions of the oracle constructed so far. To keep track of the progress of the
construction, it is divided into tasks corresponding to the desired properties (i)–(iv). Each
task contributes to the goal of satisfying its corresponding property.

1. Work towards P = NP ∩ coNP: For all a ̸= b, the construction tries to achieve that
Ma, Mb do not accept complementary. (Accepting complementary should mean that for
each input x, precisely one of Ma(x), Mb(x) accepts and the other rejects.) If this is
not possible, (Ma, Mb) inherently accept complementary, and thus L(Ma) ∈ NP ∩ coNP.
Then, we start to encode into the oracle, whether Ma accepts some inputs or not. Thus,
the final oracle will contain the encodings for almost all inputs, thus allowing to recover
the accepting behavior of Ma and hence to decide L(Mi) in P using oracle queries.

2. Work towards (ii), which implies DisjNP: For all i ̸= j, the construction tries to achieve
that Mi, Mj both accept some input x, hence x ∈ L(Mi) ∩ L(Mj) and (L(Mi), L(Mj)) ̸∈
DisjNP. If this is not possible, (Mi, Mj) inherently is a disjoint NP-pair. In this case, we
fix some m, make sure that (Am, Bm) is a disjoint UP-pair and diagonalize against every
transducer Fr, so that Fr does not realize the reduction (Am, Bm) ≤pp

m (L(Mi), L(Mj)).
This is achieved by, (i) for all n ∈ Hm, insert at most one word of length n into O (and
thus (Am, Bm) ∈ DisjUP), and (ii) for every r there is an n ∈ Hm such that 0n ∈ Am

but Mi(Fr(0n)) rejects (or analogously 0n ∈ Bm but Mj(Fr(0n)) rejects).
3. Work towards (iii), i.e., UP: Try to make Mi accept on two separate paths. If this is not

possible, then L(Mi) inherently is a UP-language. In this case, we fix some m, make sure
that Cm is a language in UP and diagonalize against every transducer Fr so that Fr does
not realize the reduction Cm ≤p

m L(Mi). This is achieved by, (i) for all n ∈ Hm, insert at
most one word of length n into O (and thus Cm ∈ UP), and (ii) for every r there is an
n ∈ Hm such that 0n ∈ Cm if and only if Mi(Fr(0n)) rejects.

4. Work towards (iv), which implies DisjCoNP: Try to achieve that Mi, Mj both reject some
input x, hence x ∈ L(Mi) ∩ L(Mj) and (L(Mi), L(Mj)) ̸∈ DisjNP. If this is not possible,
(Mi, Mj) inherently is a disjoint coNP-pair. In this case, we fix some m, make sure that
(Dm, Em) is a disjoint coUP-pair and diagonalize against every transducer Fr, so that
Fr does not realize the reduction (Dm, Em) ≤pp

m (L(Mi), L(Mj)). This is achieved by, (i)
for all n ∈ Hm, insert at least one word of length n into O but not two words with same
parity (and thus (Dm, Em) ∈ DisjCoUP), and (ii) for every r there is an n ∈ Hm such
that 0n ∈ Dm but Mi(Fr(0n)) accepts (or analogously 0n ∈ Em but Mj(Fr(0n)) accepts).

To these requirements, we assign the following symbols representing tasks: τ1
a,b, τ2

i,j , τ2
i,j,r,

τ3
i , τ3

i,r, τ4
i,j , τ4

i,j,r for all a, b, i, j, r ∈ N, i ̸= j, a ̸= b. The symbol τ1
a,b represents the coding or

the destruction of NP ∩ coNP-pairs. The symbol τ2
i,j represents the destruction of a disjoint

NP-pair, τ2
i,j,r the diagonalization of that pair against transducer Fr. Analogously for UP

and τ3
i , τ3

i,r. Analogously for DisjCoNP and τ4
i,j , τ4

i,j,r.

MFCS 2022

45:8 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

For the coding, we injectively define the code word c(a, b, x) := 0a10b10l10p1x with
p = pa(|x|) + pb(|x|), l ∈ N minimal such that l ≥ 7/8|c(a, b, x)| and c(a, b, x) has odd length.
By this, a code word contains the word x as information and is padded to sufficient length.
We call any word of the form c(·, ·, ·) a code word. This ensures the following properties:

▷ Claim 4. For all a, b ∈ N, x ∈ Σ∗, the following holds:
(i) |c(a, b, x)| ̸∈ Hm for any m.
(ii) For fixed a, b, the function x 7→ c(a, b, x) is polynomial-time computable, and polynomial-

time invertible with respect to |x|.
(iii) Relative to any oracle, the running times of Ma(x) and Mb(x) are both bounded by

< |c(a, b, x)|/8.
(iv) For every partial oracle w ∈ Σ∗, if c(a, b, x) ≤ |w|, then Mw

a (x) and Mw
b (x) are definite.

During the construction we successively add requirements that we maintain. To keep
track of these requirements, we use a partial function t belonging to some set T , which we
define below. In particular, the partial function t maps some of the above task symbols to
N. In fact, these requirements determine to a large extent how tasks are treated and are
mainly responsible that the oracle satisfies the desired properties. To add a requirement in
the construction, we can extend the function t.

Define T as the set of all partial functions t mapping τ1
a,b, τ2

i,j , τ3
i , τ4

i,j , i ̸= j, a ≠ b to N,
and dom(t) is finite, and t is injective on its support.

To now link the maintenance of the requirements with the oracle construction, we
introduce the notion of validity. A partial oracle w ∈ Σ∗ is called t-valid for t ∈ T if it
satisfies the following properties:
V1 If t(τ1

a,b) = 0, then there exists an x such that Mw
a (x), Mw

b (x) both definitely accept or
both definitely reject.
(Meaning: if t(τ1

a,b) = 0, then for every extension of the oracle, Ma, Mb do not accept
complementary.)

V2 If 0 < t(τ1
a,b) ≤ c(a, b, x) < |w|, then Mw

a (x) is definite. Additionally, the computation
Mw

a (x) accepts when c(a, b, x) ∈ w, and rejects when c(a, b, x) ̸∈ w. When the above
conditions are met by c(a, b, x) we sometimes refer to these code words as mandatory
code words with respect to some t-valid partial oracle w. Note that when the previous
conditions are not met (τ1

a,b ̸∈ dom(t) or t(τ1
a,b) = 0 or t(τ1

a,b) > c(a, b, x)) then the code
word c(a, b, x) may be a member of oracle w, independent of Ma, Mb.
(Meaning: if t(τ1

a,b) > 0, then from t(τ1
a,b) on, we encode L(Ma) into the oracle. That is,

L(MO
a) = ({x | c(a, b, x) ∈ O} ∪ some finite set) ∈ PO.)

V3 If t(τ2
i,j) = 0, then there exists an x such that Mw

i (x), Mw
j (x) both definitely accept.

(Meaning: if t(τ2
i,j) = 0, then for every extension of the oracle, (L(Mi), L(Mj)) ̸∈ DisjNP.)

V4 If t(τ2
i,j) = m > 0, then for every n ∈ Hm it holds that |Σn ∩ w| ≤ 1.

(Meaning: if t(τ2
i,j) = m > 0, then ensure that (Am, Bm) ∈ DisjUP relative to the final

oracle.)
V5 If t(τ3

i) = 0, then there exists an x such that Mw
i (x) is definite and accepts on two

different paths.
(Meaning: if t(τ3

i) = 0, then for every extension of the oracle, L(Mi) ̸∈ UP.)
V6 If t(τ3

i) = m > 0, then for every n ∈ Hm it holds that |Σn ∩ w| ≤ 1.
(Meaning: if t(τ3

i) = m > 0, then ensure that Cm ∈ UP relative to the final oracle.)
V7 If t(τ4

i,j) = 0, then there exists an x such that Mw
i (x), Mw

j (x) both definitely reject.
(Meaning: if t(τ4

i,j) = 0, then for every extension of the oracle, (L(Mi), L(Mj)) ̸∈
DisjCoNP.)

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:9

V8 If t(τ4
i,j) = m > 0, then for every n ∈ Hm it holds that all words in Σn ∩ w have pairwise

different parity. If additionally w is defined for all words of length n, then |Σn ∩ w| > 0.
(Meaning: if t(τ4

i,j) = m > 0, then ensure that (Dm, Em) ∈ DisjCoUP relative to the final
oracle.)

Intuitively, a t-valid oracle is a possibly partial oracle which has the desired properties
(i)–(iv) “partially satisfied”. This notion of validness helps in the oracle construction, since
our oracle is defined inductively, the induction step deals with a partial oracle and therefore
t-validity fits great as part of an induction hypothesis which states that the partial oracle is
constructed properly so far. Observe that V4, V6, V8 do not (pairwise) contradict each other,
since t is injective on its support and all H1, H2, . . . are pairwise disjoint, by Observation 2(i).
Also observe that V2 and V4 (resp., V2 and V6, V2 and V8) do not contradict each other,
as c(·, ·, ·) has odd length, but all n in all Hm are even by Observation 2(i).

Oracle Construction. Let T be a countable enumeration of

{τ1
a,b | a, b ∈ N, a ̸= b} ∪ {τ2

i,j | i, j ∈ N, i ̸= j} ∪ {τ2
i,j,r | i, j, r ∈ N, i ̸= j}

∪ {τ3
i | i ∈ N} ∪ {τ3

i,r | i, r ∈ N}
∪ {τ4

i,j | i, j ∈ N, i ̸= j} ∪ {τ4
i,j,r | i, j, r ∈ N, i ̸= j}

with the property that τ2
i,j appears earlier than τ2

i,j,r, τ3
i appears earlier than τ3

i,r, τ4
i,j earlier

than τ4
i,j,r.

We inductively define an infinite sequence {(ws, ts)}s∈N, where the s-th term of the
sequence is a pair (ws, ts) of a partial oracle and a function in T . We call the s-th term the
stage s. We ensure that for all s ∈ N, ws is a ts-valid partial oracle.

In each stage, we treat the smallest task in the order specified by T , and after treating a
task we remove it and possibly other higher tasks from T . In the next stage, we continue
with the next task not already removed from T . (In every stage, there always exists a task
not already removed, as we never remove all remaining tasks from T in any stage.)

We start with the nowhere defined function t0 ∈ T and the t0-valid oracle w0 := ε as 0-th
stage. Then we begin treating the tasks.

Thus, for stage s > 0, we have that w0, w1, . . . , ws−1 and t0, t1, . . . , ts−1 are defined.
With this, we define the s-th stage (ws, ts) such that (a) ws−1 ⊑p ws, and ts ∈ T is a (not
necessarily strict) extension of ts−1, and (b) ws is ts-valid, and (c) the earliest task τ still in
T is treated and removed in some way.

So for each task we strictly extend the oracle and are allowed to add more requirements,
by extending the valid function, that have to be maintained in the further construction.
Finally, we choose O :=

⋃
i∈N wi. (Note that O is totally defined since in each step we strictly

extend the oracle.) Also, every task in T is assigned some stage s where it was treated (or
removed from T).

We now define stage s > 0, which starts with some ts−1 ∈ T and a ts−1-valid oracle ws−1
and treats the first task that still is in T choosing an extension ts ∈ T of ts−1 and a ts-valid
ws ⊒p ws−1. Let us recall that each task is immediately deleted from T after it is treated.
There are seven cases depending on the form of the task that is treated in stage s:

Task τ1
a,b: Let t′ := ts−1 ∪ {τ1

a,b 7→ 0}. If there exists a t′-valid v ⊒p ws−1, then assign
ts := t′ and let ws := v.
Otherwise, let ts := ts−1 ∪ {τ1

a,b 7→ n} with n ∈ N+ sufficiently large such that n >

|ws|, max img(ts−1). Thus ts is injective on its support, and ws−1 is ts-valid. Let
ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid. Lemma 5 shows that such y does
indeed exist.

MFCS 2022

45:10 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

(Meaning: try to ensure that Ma, Mb do not accept complementary, cf. V1. If that is
impossible, require that from now on the computations of Ma are encoded into the oracle,
cf. V2.)
Task τ2

i,j : Let t′ := ts−1 ∪ {τ2
i,j 7→ 0}. If there exists t′-valid v ⊒p ws−1, then assign ts := t′

and ws := v. Besides task τ2
i,j , also remove all tasks τ2

i,j,0, τ2
i,j,1, . . . from T .

Otherwise, let ts := ts−1 ∪ {τ2
i,j 7→ m} with m ∈ N+ sufficiently large such that m ̸∈

img(ts−1) and that ws−1 defines no word of length min Hm. Thus ts is injective on its
support, and ws−1 is ts-valid. Let ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid.
Again, Lemma 5 shows that such y does indeed exist.
(Meaning: try to ensure that Mi, Mj do not accept disjointly, cf. V3. If that is im-
possible, choose a sufficiently large “fresh” m and require for the further construction that
(Am, Bm) ∈ DisjUP (cf. V4). The treatment of the tasks τ2

i,j,0, τ2
i,j,1, . . . defined below

makes sure that (Am, Bm) cannot be reduced to (L(Mi), L(Mj)).)
Task τ3

i : Defined symmetrically to task τ2
i,j . Let t′ := ts−1 ∪ {τ3

i 7→ 0}. If there exists
t′-valid v ⊒p ws−1, then assign ts := t′ and ws := v. Besides task τ3

i , also remove all tasks
τ3

i,0, τ3
i,1, . . . from T .

Otherwise, let ts := ts−1 ∪ {τ3
i 7→ m} with m ∈ N+ sufficiently large such that m ̸∈

img(ts−1) and that ws−1 defines no word of length min Hm. Thus ts is injective on its
support, and ws−1 is ts-valid. Let ws := ws−1y with y ∈ {0, 1} such that ws is ts-valid.
Again, Lemma 5 shows that such y does indeed exist.
(Meaning: try to ensure that Mi does accept on two different paths, cf. V5. If that is
impossible, choose a sufficiently large “fresh” m and require for the further construction
that Cm ∈ UP (cf. V6). The treatment of the tasks τ3

i,0, τ3
i,1, . . . defined below makes

sure that Cm cannot be reduced to L(Mi).)
Task τ4

i,j : Defined symmetrically to task τ2
i,j . (Meaning: try to ensure that Mi, Mj do

not reject disjointly, cf. V7. If that is impossible, choose a sufficiently large “fresh” m and
require for the further construction that (Dm, Em) ∈ DisjCoUP (cf. V8). The treatment
of the tasks τ4

i,j,0, τ4
i,j,1, . . . defined below makes sure that (Dm, Em) cannot be reduced

to (L(Mi), L(Mj)).)
Task τ2

i,j,r: We have ts−1(τ2
i,j) = m ∈ N+. Let ts := ts−1 and choose a ts-valid ws ⊒p ws−1

such that there is some n ∈ N and at least one of the following holds:
0n ∈ Av

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely rejects.
0n ∈ Bv

m for all v ⊒ ws and Mws
j (F ws

r (0n)) definitely rejects.
In Theorem 6 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce (Am, Bm) to (L(Mi), L(Mj)).)
Task τ3

i,r: We have ts−1(τ3
i) = m ∈ N+. Let ts := ts−1 and choose a ts-valid ws ⊒p ws−1

such that there is some n ∈ N and at least one of the following holds:
0n ∈ Cv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely rejects.
0n ̸∈ Cv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely accepts.
In Theorem 7 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce Cm to L(Mi).)
Task τ4

i,j,r: Defined symmetrically to τ2
i,j,r. Choose a ts-valid ws ⊒p ws−1 such that for

some n ∈ N, one of the two holds:
0n ∈ Dv

m for all v ⊒ ws and Mws
i (F ws

r (0n)) definitely accepts.
0n ∈ Ev

m for all v ⊒ ws and Mws
j (F ws

r (0n)) definitely accepts.
In Theorem 8 we show that such ws does exist.
(Meaning: ensure that Fr does not reduce (Dm, Em) to (L(Mi), L(Mj)).)

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:11

Observe that ts is always defined to be in T . Remember that the treated task is
immediately deleted from T . This completes the definition of stage s, and thus, the entire
sequence {(ws, ts)}s∈N. We now show that this construction is indeed possible. The proofs
of the theorems/lemma announced in the definition are either roughly sketched or omitted.
For detailed proofs, we refer to the full version of the paper. It is not difficult to see that a
valid oracle can be extended by one bit such that it remains valid:

▶ Lemma 5. Let s ∈ N, (w0, t0), . . . , (ws, ts) defined, and let w ∈ Σ∗ be a ts-valid oracle
with w ⊒ ws, and z := |w|. (Think of z as the next word we need to decide its membership
to the oracle, i.e., z ̸∈ w0 or z ∈ w1.) Then there exists y ∈ {0, 1} such that wy is ts-valid.
Specifically:

(i) If z = c(a, b, x) and 0 < ts(τ1
a,b) ≤ z, then w1 is ts-valid if Mw

a (x) accepts (or when
Mw

b (x) rejects), and w0 is ts-valid if Mw
a (x) rejects (or when Mw

b (x) accepts).
(Meaning: if we are at a position of some mandatory code word, add the word as
appropriate for the NP ∩ coNP-pair.)

(ii) If there exists τ = τ2
i,j or τ = τ3

i with m = ts(τ) > 0 and n ∈ Hm such that |z| = n,
w ∩ Σn ̸= ∅, then w0 is ts-valid.
(Meaning: if we are on a level n belonging to a DisjUP-pair or a UP-language, ensure
that there is no more than one word on that level.)

(iii) If there exists τ4
i,j, m = ts(τ4

i,j) > 0 and n ∈ Hm such that |z| = n and there is some
other word x ∈ w ∩ Σn with same parity as z, then w0 is ts-valid. (Meaning: if we are
on a level n belonging to a DisjCoUP-pair, ensure that on that level, there are no two
words with the same parity.)

(iv) If there exists τ4
i,j, m = ts(τ4

i,j) > 0 and n ∈ Hm such that |z| = n, |z + 1| > n,
w ∩ Σn = ∅, then w1 is ts-valid.
(Meaning: if we finalize level n belonging to a DisjCoUP witness pair, ensure that there
is at least one word on that level.)

(v) In all other cases, w0 and w1 are ts-valid.

Lemma 5 shows that the construction is possible for the tasks τ1
a,b, τ2

i,j , τ3
i and τ4

i,j . Now
we show that the construction is possible for τ2

i,j,r, τ3
i,r and τ4

i,j,r, respectively. We first
consider task τ2

i,j,r.

▶ Theorem 6. Let s ∈ N+, (w0, t0), . . . , (ws−1, ts−1) defined. Consider task τ2
i,j,r.

Suppose that ts = ts−1, ts(τ2
i,j) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and

n ∈ N such that one of the two holds:
(i) 0n ∈ Av

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely rejects.
(ii) 0n ∈ Bv

m for all v ⊒ w and Mw
j (F w

r (0n)) definitely rejects.

Proof sketch. We prove the Theorem by contradiction. Let ŝ < s be the stage that treated
τ2

i,j with tŝ = tŝ−1 ∪ {τ2
i,j 7→ m} and m > 0. We construct a suitable alternative oracle

u′ ⊒p wŝ−1, which is valid with respect to t′ := tŝ−1 ∪ {τ2
i,j 7→ 0}. Then, by definition,

we obtain that u′ is one possible t′-valid extension of wŝ−1 in stage ŝ, hence tŝ = t′ and
tŝ(τ2

i,j) = 0, contradicting ts(τ2
i,j) = m > 0 in the hypothesis of this Theorem 6.

Assume that (i) and (ii) do not hold. Fix some sufficiently large n ∈ Hm. This is some
level that belongs to the witness NP-pair (Am, Bm). For every ξ ∈ Σn, one can provisionally
keep extending ws−1 bitwise with Lemma 5 while inserting precisely the word ξ into level
n. Continue extending until a sufficiently long but fixed length n′ such that Mi(Fr(0n))
and Mj(Fr(0n)) are definite (relative to any oracle), and call the resulting oracle uξ. By
construction, this oracle is ts-valid. By assumption, when α ∈ Σn−10, then Mi(Fr(0n))
accepts relative to uα, and when β ∈ Σn−11, then Mj(Fr(0n)) accepts relative to uβ .

MFCS 2022

45:12 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

We want to maintain these accepting computations relative to an oracle containing,
in level n, exactly one α ∈ Σn−10 and one β ∈ Σn−11. The accepting behavior for any
such computation, say Mi(Fr(0n)) relative to uα, depends on the oracle queries posed on
that path. However, this computation might also query certain mandatory code words
c(a, b, x), whose memberships depend on further, shorter queries of computations Ma(x),
Mb(x). Continuing this recursively, we obtain a set of queries Q+

α the original computation
Mi(Fr(0n)) transitively depends on.

Similarly, for each β ∈ Σn−11 we can define a set of queries Q+
β an accepting path of the

computation Mj(Fr(0n)) relative to uβ depends on. One can verify that Q+
α and Q+

β only
have polynomially many elements.

The crucial idea that completes the proof is to find suitable α ∈ Σn−10 and β ∈ Σn−11
such that uα and uβ agree on the set Q+

α ∩ Q+
β . Such a pair of words α and β exists; we

skip here the combinatorial argument, but intuitively this assertion holds from the fact that
there are exponentially many choices for α, β but for each choice, Q+

α and Q+
β create only

polynomially many dependencies. With this property, it is possible to construct a tŝ−1-valid
oracle u′ ⊒p ws−1 such that α, β ∈ u′ holds, u′ and uα agree on Q+

α , and symmetric u′ and
uβ agree on Q+

β . By assumption and Observation 1(iii), this means that both Mi(Fr(0n))
and Mj(Fr(0n)) definitely accept relative to u′. Thus u′ is also t′-valid, as desired. ◀

With only slight modifications, one can give the same Theorem concerning tasks τ3
i,r. We

omit the specific details.

▶ Theorem 7. Let s ∈ N+, (w0, t0), . . . , (ws−1, ts−1) defined. Consider task τ3
i,r.

Suppose that ts = ts−1, ts(τ3
i) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and n ∈ N

such that one of the following holds:
(i) 0n ∈ Cv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely rejects.
(ii) 0n ̸∈ Cv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely accepts.

Lastly, handling task τ4
i,j,r is also possible. For this we use techniques similar to previous

theorems. In this setting, it is in fact possible to explicitly construct a suitable extension
for the task. Due to many additional technical details required, we omit the proof of this
theorem and refer to the full version of the paper.

▶ Theorem 8. Let s ∈ N+, (ws−1, ts−1) defined. Consider task τ4
i,j,r.

Suppose that ts = ts−1, ts(τ4
i,j) = m > 0. Then there exists a ts-valid w ⊒p ws−1 and

n ∈ N such that one of the following holds:
(i) 0n ∈ Dv

m for all v ⊒ w and Mw
i (F w

r (0n)) definitely accepts.
(ii) 0n ∈ Ev

m for all v ⊒ w and Mw
j (F w

r (0n)) definitely accepts.

We have now completed the proofs showing that the oracle construction can be performed
as desired. The following theorem confirms the desired properties of O :=

⋃
i∈N wi. Remember

that |w0| < |w1| < . . . is unbounded, hence for any z there is a sufficiently large s such
that |ws| > z. Also remember that ws is ts-valid for all s ∈ N. Using these facts and the
properties V1–V8 of ts-valid oracles, one can easily state the following result for the final
oracle.

▶ Theorem 9. Relative to O =
⋃

i∈N wi, the following holds:
(i) NP ∩ coNP = P, which implies ¬NP ∩ coNP.
(ii) No pair in DisjNP is ≤pp

m -hard for DisjUP, which implies DisjNP.
(iii) No language in UP is ≤p

m-complete for UP, i.e., UP.
(iv) No pair in DisjCoNP is ≤pp

m -hard for DisjCoUP, which implies DisjCoNP.

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:13

From Theorem 9 and known relativizable results, we obtain the following additional
properties that hold relative to the oracle. See, e.g., the work of Fenner et al. [15] for a
definition of the mentioned function classes NPSV, NPbV, NPkV, NPMV and their total
variants NPSVt, NPbVt, NPkVt, NPMVt. Here, NEE means NTIME

(
2O(2n)).

▶ Corollary 10. The following holds relative to the oracle O constructed in this section.
(i) P = NP ∩ coNP ⊊ UP ⊊ NP
(ii) UP, NP, NE, and NEE are not closed under complement.
(iii) UP ̸⊆ coNP
(iv) NEE ∩ TALLY ̸⊆ coNEE
(v) NPSVt ⊆ PF
(vi) NPbVt ̸⊆c NPSVt
(vii) NPkVt ̸⊆c NPSVt for all k ≥ 2
(viii) NPMVt ̸⊆c NPSVt
(ix) NPMV ̸⊆c NPSV
(x) TFNP ̸⊆c PF
(xi) NP ∩ coNP has ≤p

m-complete sets, i.e., ¬NP ∩ coNP.
(xii) UP has no ≤p

m-complete sets, i.e., UP.
(xiii) DisjNP has no ≤pp

m -complete pairs, i.e., DisjNP.
(xiv) DisjCoNP has no ≤pp

m -complete pairs, i.e., DisjCoNP.
(xv) No pair in DisjNP is ≤pp

m -hard for DisjUP.
(xvi) No pair in DisjCoNP is ≤pp

m -hard for DisjCoUP.
(xvii) There are no p-optimal proof systems for TAUT, i.e., CON.
(xviii) There are no optimal proof systems for TAUT.
(xix) There are no p-optimal proof systems for SAT, i.e., SAT.
(xx) TFNP has no ≤p

m-complete problems, i.e., TFNP.
(xxi) NPMVt has no ≤p

m-complete functions.
(xxii) NP and coNP do not have the shrinking property. [7, 16]
(xxiii) NP and coNP do not have the separation property. [16]
(xxiv) DisjNP and DisjCoNP contain P-inseparable pairs.

References
1 O. Beyersdorff. Representable disjoint NP-pairs. In Proceedings 24th International Con-

ference on Foundations of Software Technology and Theoretical Computer Science, volume
3328 of Lecture Notes in Computer Science, pages 122–134. Springer, 2004. doi:10.1007/
978-3-540-30538-5_11.

2 O. Beyersdorff. Disjoint NP-pairs from propositional proof systems. In Proceedings of Third
International Conference on Theory and Applications of Models of Computation, volume 3959
of Lecture Notes in Computer Science, pages 236–247. Springer, 2006. doi:10.18452/15520.

3 O. Beyersdorff. Classes of representable disjoint NP-pairs. Theoretical Computer Science,
377(1-3):93–109, 2007. doi:10.1016/j.tcs.2007.02.005.

4 O. Beyersdorff. The deduction theorem for strong propositional proof systems. Theory of
Computing Systems, 47(1):162–178, 2010. doi:10.1007/s00224-008-9146-6.

5 O. Beyersdorff, J. Köbler, and J. Messner. Nondeterministic functions and the existence
of optimal proof systems. Theoretical Computer Science, 410(38-40):3839–3855, 2009. doi:
10.1016/j.tcs.2009.05.021.

6 O. Beyersdorff and Z. Sadowski. Do there exist complete sets for promise classes? Mathematical
Logic Quarterly, 57(6):535–550, 2011. doi:10.1002/malq.201010021.

7 A. Blass and Y. Gurevich. Equivalence relations, invariants, and normal forms. SIAM Journal
on Computing, 13(4):682–689, 1984. doi:10.1137/0213042.

MFCS 2022

https://doi.org/10.1007/978-3-540-30538-5_11
https://doi.org/10.1007/978-3-540-30538-5_11
https://doi.org/10.18452/15520
https://doi.org/10.1016/j.tcs.2007.02.005
https://doi.org/10.1007/s00224-008-9146-6
https://doi.org/10.1016/j.tcs.2009.05.021
https://doi.org/10.1016/j.tcs.2009.05.021
https://doi.org/10.1002/malq.201010021
https://doi.org/10.1137/0213042

45:14 Oracle with P = NP∩coNP but No Completeness in UP, DisjNP, DisjCoNP

8 S. Cook and R. Reckhow. The relative efficiency of propositional proof systems. Journal of
Symbolic Logic, 44:36–50, 1979. doi:10.2307/2273702.

9 T. Dose. Balance Problems for Integer Circuits and Separations of Relativized Conjectures
on Incompleteness in Promise Classes. PhD thesis, Fakultät für Mathematik und Informatik,
Universität Würzburg, 2020. doi:10.25972/OPUS-22220.

10 T. Dose. Further oracles separating conjectures about incompleteness in the finite domain.
Theoretical Computer Science, 847:76–94, 2020. doi:10.1016/j.tcs.2020.09.040.

11 T. Dose. An oracle separating conjectures about incompleteness in the finite domain. Theoretical
Computer Science, 809:466–481, 2020. doi:10.1016/j.tcs.2020.01.003.

12 T. Dose and C. Glaßer. NP-completeness, proof systems, and disjoint NP-pairs. In C. Paul
and M. Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer
Science, STACS 2020, March 10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages
9:1–9:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
STACS.2020.9.

13 J. Edmonds. Minimum partition of a matroid into independent subsets. Journal of Research
of the National Bureau of Standards, 69B:67–72, 1965. doi:10.6028/JRES.069B.004.

14 S. Fenner, L. Fortnow, A. Naik, and J. Rogers. On inverting onto functions. In Proceedings
11th Conference on Computational Complexity, pages 213–223. IEEE Computer Society Press,
1996.

15 S. A. Fenner, L. Fortnow, A. V. Naik, and J. D. Rogers. Inverting onto functions. Information
and Computation, 186(1):90–103, 2003. doi:10.1016/S0890-5401(03)00119-6.

16 C. Glaßer, C. Reitwießner, and V. L. Selivanov. The shrinking property for NP and coNP.
Theoretical Computer Science, 412(8-10):853–864, 2011. doi:10.1016/j.tcs.2010.11.035.

17 C. Glaßer, A. L. Selman, and S. Sengupta. Reductions between disjoint NP-pairs. Information
and Computation, 200:247–267, 2005. doi:10.1016/j.ic.2005.03.003.

18 C. Glaßer, A. L. Selman, S. Sengupta, and L. Zhang. Disjoint NP-pairs. SIAM Journal on
Computing, 33(6):1369–1416, 2004. doi:10.1137/S0097539703425848.

19 C. Glaßer, A. L. Selman, and L. Zhang. Canonical disjoint NP-pairs of propositional proof
systems. Theoretical Computer Science, 370:60–73, 2007. doi:10.1007/11549345_35.

20 C. Glaßer, A. L. Selman, and L. Zhang. The informational content of canonical disjoint
NP-pairs. International Journal of Foundations of Computer Science, 20(3):501–522, 2009.
doi:10.1007/978-3-540-73545-8_31.

21 J. Grollmann and A. L. Selman. Complexity measures for public-key cryptosystems. SIAM
Journal on Computing, 17(2):309–335, 1988. doi:10.1137/0217018.

22 J. Hartmanis and L. A. Hemachandra. Complexity classes without machines: On complete lan-
guages for UP. Theoretical Computer Science, 58:129–142, 1988. doi:10.1016/0304-3975(88)
90022-9.

23 Kannan, 1979. Sipser [36] cites an unpublished work by Kannan for asking if there is a set
complete for NP ∩ coNP.

24 E. Khaniki. New relations and separations of conjectures about incompleteness in the finite
domain. ArXiv preprint, 2019. arXiv:1904.01362.

25 J. Köbler, J. Messner, and J. Torán. Optimal proof systems imply complete sets for promise
classes. Information and Computation, 184(1):71–92, 2003. doi:10.1016/S0890-5401(03)
00058-0.

26 J. Krajícek and P. Pudlák. Propositional proof systems, the consistency of first order theories
and the complexity of computations. Journal of Symbolic Logic, 54:1063–1079, 1989. doi:
10.2307/2274765.

27 N. Megiddo and C. H. Papadimitriou. On total functions, existence theorems and computational
complexity. Theoretical Computer Science, 81(2):317–324, 1991. doi:10.1016/0304-3975(91)
90200-L.

28 J. Messner. On the Simulation Order of Proof Systems. PhD thesis, Universität Ulm, 2000.

https://doi.org/10.2307/2273702
https://doi.org/10.25972/OPUS-22220
https://doi.org/10.1016/j.tcs.2020.09.040
https://doi.org/10.1016/j.tcs.2020.01.003
https://doi.org/10.4230/LIPIcs.STACS.2020.9
https://doi.org/10.4230/LIPIcs.STACS.2020.9
https://doi.org/10.6028/JRES.069B.004
https://doi.org/10.1016/S0890-5401(03)00119-6
https://doi.org/10.1016/j.tcs.2010.11.035
https://doi.org/10.1016/j.ic.2005.03.003
https://doi.org/10.1137/S0097539703425848
https://doi.org/10.1007/11549345_35
https://doi.org/10.1007/978-3-540-73545-8_31
https://doi.org/10.1137/0217018
https://doi.org/10.1016/0304-3975(88)90022-9
https://doi.org/10.1016/0304-3975(88)90022-9
http://arxiv.org/abs/1904.01362
https://doi.org/10.1016/S0890-5401(03)00058-0
https://doi.org/10.1016/S0890-5401(03)00058-0
https://doi.org/10.2307/2274765
https://doi.org/10.2307/2274765
https://doi.org/10.1016/0304-3975(91)90200-L
https://doi.org/10.1016/0304-3975(91)90200-L

A. Ehrmanntraut, F. Egidy, and C. Glaßer 45:15

29 C. H. Papadimitriou. On the complexity of integer programming. Journal of the ACM,
28(4):765–768, 1981. doi:10.1145/322276.322287.

30 P. Pudlák. On the lengths of proofs of consistency. In Collegium Logicum, pages 65–86.
Springer Vienna, 1996. doi:10.1016/S0049-237X(08)70462-2.

31 P. Pudlák. On reducibility and symmetry of disjoint NP pairs. Theoretical Computer Science,
295:323–339, 2003. doi:10.1016/S0304-3975(02)00411-5.

32 P. Pudlák. On some problems in proof complexity. In O. Beyersdorff, E. A. Hirsch, J. Krajícek,
and R. Santhanam, editors, Optimal algorithms and proofs (Dagstuhl Seminar 14421), volume 4,
pages 63–63, Dagstuhl, Germany, 2014. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/DagRep.4.10.51.

33 P. Pudlák. Incompleteness in the finite domain. The Bulletin of Symbolic Logic, 23(4):405–441,
2017. doi:10.1017/bsl.2017.32.

34 A. Razborov. On provably disjoint NP-pairs. BRICS Report Series, 36, 1994. doi:10.7146/
brics.v1i36.21607.

35 A. L. Selman. Promise problems complete for complexity classes. Information and Computation,
78:87–98, 1988. doi:10.1016/0890-5401(88)90030-2.

36 M. Sipser. On relativization and the existence of complete sets. In Proceedings 9th ICALP,
volume 140 of Lecture Notes in Computer Science, pages 523–531. Springer Verlag, 1982.
doi:10.1007/BFb0012797.

37 L. G. Valiant. Relative complexity of checking and evaluation. Information Processing Letters,
5:20–23, 1976. doi:10.1016/0020-0190(76)90097-1.

38 O. V. Verbitskii. Optimal algorithms for coNP-sets and the EXP=?NEXP problem.
Mathematical notes of the Academy of Sciences of the USSR, 50(2):796–801, 1991. doi:
10.1007/BF01157564.

MFCS 2022

https://doi.org/10.1145/322276.322287
https://doi.org/10.1016/S0049-237X(08)70462-2
https://doi.org/10.1016/S0304-3975(02)00411-5
https://doi.org/10.4230/DagRep.4.10.51
https://doi.org/10.1017/bsl.2017.32
https://doi.org/10.7146/brics.v1i36.21607
https://doi.org/10.7146/brics.v1i36.21607
https://doi.org/10.1016/0890-5401(88)90030-2
https://doi.org/10.1007/BFb0012797
https://doi.org/10.1016/0020-0190(76)90097-1
https://doi.org/10.1007/BF01157564
https://doi.org/10.1007/BF01157564

	1 Introduction
	2 Preliminaries
	3 Oracle Construction

