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Abstract
We consider the problem of listing all avoidable vertices in a given n vertex graph. A vertex is
avoidable if every pair of its neighbors is connected by a path whose internal vertices are not
neighbors of the vertex or the vertex itself. Recently, Papadopolous and Zisis showed that one can
list all avoidable vertices in O(nω+1) time, where ω < 2.373 is the square matrix multiplication
exponent, and conjectured that a faster algorithm is not possible.

In this paper we show that under the 3-OV Hypothesis, and thus the Strong Exponential Time
Hypothesis, n3−o(1) time is needed to list all avoidable vertices, and thus the current best algorithm
is conditionally optimal if ω = 2. We then show that if ω > 2, one can obtain an improved algorithm
that for the current value of ω runs in O(n3.32) time. We also show that our conditional lower bound
is actually higher and supercubic, under a natural High Dimensional 3-OV hypothesis, implying that
for our current knowledge of rectangular matrix multiplication, the avoidable vertex listing problem
likely requires Ω(n3.25) time. We obtain further algorithmic improvements for sparse graphs and
bounded degree graphs.
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1 Introduction

The notion of an “avoidable” vertex in a graph has been studied since the 1970s in the
context of minimal elimination orderings for Gaussian elimination [24, 26], though the name
“avoidable” was first used by Beisegel et al. [9]. A vertex is avoidable if and only if a minimal
elimination ordering can start from it.

In Gaussian elimination of sparse matrices, one iteratively selects a pivot, and then
eliminates its row from the rest of the matrix, potentially creating new nonzero entries: i.e.
fill-in. One seeks to find a good elimination ordering to minimize the fill-in, as the fill-in
determines both the running time and the necessary storage. An iterative approach from the
1970s by [24, 26] was to pick an avoidable vertex (in a graph corresponding to the current
sparse matrix), use it as a pivot, and repeat.

A single avoidable vertex always exists and can be found in linear time in the size of the
matrix as shown by Beisegel, Chudnovsky, Gurvich, Milanic and Servatius [9]. By repeating
n times (for an n × n matrix), one can complete the Gaussian elimination in O(n3) time;
cubic time can be necessary, as the fill-in can make an originally sparse matrix into a dense
one very quickly (though for some matrices this approach can still work well).

A natural question is, can one still use the minimal elimination orderings approach from
the 1970s to find a minimal elimination ordering and hopefully perform Gaussian elimination
in truly subcubic time O(n3−ε) for ε > 0, without using the heavy Strassen-like techniques
that achieve the fastest matrix multiplication algorithms nowadays [28, 12, 6]?
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41:2 New Lower Bounds and Upper Bounds for Listing Avoidable Vertices

The hope here is that instead of iteratively finding a new pivot n times, we can compute
several pivots in batch faster and then use them in the Gaussian elimination process. As a
first step, one would ask whether one can find all the (at most n) possible avoidable vertices
in an n-node graph in truly subcubic time? Finding n avoidable vertices as the matrix graph
changes due to fill-in, can intuitively be more complicated.

This motivates studying the problem of listing all avoidable vertices in a graph. Beisegel
et al. [9] present further motivations for studying avoidable vertices, including faster clique
algorithms in certain classes of graphs. Beisegel et al. [9] showed that every graph on at
least two vertices contains at least two avoidable vertices that are at distance the diameter
of the graph, and that two avoidable vertices can be found in linear time. They provided
extensions for avoidable edges, and also used their results for avoidable vertices to provide
fast algorithms for maximum weight clique detection in special classes of graphs.

While the algorithm of [9] can find an avoidable vertex in linear time, the authors only
mention a very slow algorithm for finding the set of all avoidable vertices of a graph. Recently,
Papadopolous and Zisis [25] provide algorithms for computing all avoidable vertices of an n

vertex, m edge graph, running in time O(min{nω+1, n2 + m2}), where ω < 2.37286 is the
exponent of square matrix multiplication [6].

A simpler definition than the one based on minimal elimination orderings is that v is
avoidable if every two neighbors of v, are connected by a path that has no internal vertices
that are v or neighbors of v. As [9] put it, if vertices represent people, then any two neighbors
of an avoidable person v can communicate a secret without any direct acquaintances of v

learning the secret.
A special case of avoidable vertices are simplicial vertices. A vertex is simplicial if its

neighborhood is a clique. Simplicial vertices are very well studied in graph theory. For
example, in the 1960s Dirac [17] showed that every chordal graph contains a simplicial vertex.

Kloks, Kratsch and Müller [20] showed how to list all simplicial vertices in an n-node
graph in O(nω) time. It has been open for over 20 years whether a faster algorithm exists.
(Spinrad [27] explicitly states finding such an algorithm as an open problem.) In the
preliminaries we give a simple proof that the O(nω) time algorithm of [20] is optimal for
listing all simplicial vertices, unless triangles can be found faster. It still remains open
whether finding a single simplicial vertex can be done faster.

Papadopoulos and Zisis [25] state that they do not believe that the running times of
their algorithms for listing avoidable vertices can be improved without resolving the open
problem for simplicial vertices. In this paper we show that it is actually possible to improve
the avoidable vertex listing running time slightly, and further provide fine-grained hardness
reductions that point to concrete hurdles that need to be overcome to further improve the
running time.

1.1 Our results
We provide new algorithms and fine-grained lower bounds for listing all avoidable vertices.

1.1.1 Fine-grained lower bounds
In Section 3, we provide a tight connection between Avoidable Vertex Listing and one of the
central problems in fine-grained complexity, 3-Orthogonal Vectors.

In the k-Orthogonal Vectors problem (k-OV), one is given k sets of n Boolean Vectors
each S1, . . . , Sk ⊆ {0, 1}d in d dimensions, and one wants to determine whether there exist
a1 ∈ S1, . . . , ak ∈ Sk so that

∑d
c=1

∏k
i=1 ai[c] = 0, i.e. that a1, . . . , ak are orthogonal.
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The k-OV Hypothesis of Fine-Grained Complexity (see e.g. [31]) states that there is no
O(nk−ε) time algorithm with ε > 0 that solves size n instances of k-OV when d = poly log(n),
in the word-RAM model of computation with O(log n) bit words.

For any integer k ≥ 2, the k-OV Hypothesis follows from the popular Strong Exponential
Time Hypothesis (SETH) as shown by Williams [33]. The k-OV Hypothesis is even more
believable than SETH, as even if SETH fails, the k-OV Hypothesis might still be true. SETH
and the k-OV Hypothesis have been shown to imply a large variety of tight conditional lower
bounds (see the survey [31] for some results). 3-OV in particular implies such bounds for
graph diameter approximation [8, 23, 16, 14], various dynamic problems [1] and more.

Our first theorem is:

▶ Theorem 1. Under the 3-OV Hypothesis, listing all avoidable vertices in an n vertex graph
requires n3−o(1) time in the word-RAM model of computation with O(log n) bit words.

One can think of this as a negative result. It gives a concrete limitation to using
minimal elimination orderings to obtain a general truly subcubic time algorithm for Gaussian
elimination.

The O(nω+1) time algorithm of [25] would run in O(n3) time if ω = 2 (as some believe).
Thus, if ω = 2, their algorithm would be optimal, under SETH and the 3-OV Hypothesis.

Nevertheless, ω might not be 2. Indeed, there has been quite a bit of work (e.g. [7, 10, 5, 4])
that shows that the known techniques for matrix multiplication cannot achieve ω = 2. Can
we have a conditional lower bound in terms of ω?

Here, we notice that the reduction used to prove Theorem 1 can also be used to tightly
reduce to Avoidable Vertex Listing the 3-OV problem for vectors of dimension n, rather than
polylogarithmic in n, which the standard 3-OV Hypothesis is about.

While 3-OV in polylogarithmic dimensions has a simple n3+o(1) time algorithm (compute
the inner product of every triple of vectors), the fastest known algorithm for 3-OV in n

dimensions is essentially the same as that for 4-clique [18]. It runs in O(nω(1,2,1)) time where
ω(1, 2, 1) is the exponent of multiplying an n by n2 matrix by an n2 by n matrix (see the
preliminaries). The current best bound on this exponent is ω(1, 2, 1) < 3.251640 [22].

We formulate the High Dimensional 3-OV Hypothesis that states that 3-OV for n vectors
in n dimensions requires nω(1,2,1)−o(1) time on the word RAM with O(log n) bit words. This
Hypothesis is the natural extension of the High Dimensional 2-OV Hypothesis used in prior
work (e.g. [13]).

We then extend Theorem 1:

▶ Corollary 2. Under the High Dimensional 3-OV Hypothesis, listing all avoidable vertices
in an n vertex graph requires nω(1,2,1)−o(1) time on the word RAM with O(log n) bit words.

Thus, with the current bounds on ω and ω(1, 2, 1), the algorithm of [25] runs in O(n3.373),
while our conditional lower bound is n3.251−o(1). This gap motivates the question:

In the case when ω > 2, is there an algorithm for listing all avoidable vertices that runs
faster than O(nω+1)? Can one achieve a running time closer to O(nω(1,2,1))?

1.1.2 Faster Algorithms
Utilizing rectangular matrix multiplication techniques, in Section 4-7 we develop a method for
listing all avoidable vertices with a running time strictly between O(nω+1) and O(nω(1,2,1)).

▶ Theorem 3. All avoidable vertices in an m-edge, n-vertex graph can be listed in time

O
(

min{m1.7n0.2 + mn1+o(1), m0.977n1.4+o(1), n3.32}
)

.
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In particular, in dense graphs the above running time is O(n3.32) which is faster than
O(nω+1) for the current value of ω < 2.373. In fact, for any value of ω greater than 2, our
algorithm would run faster than in O(nω+1) time, as rectangular matrix multiplication can
always give us some savings. Our algorithm runs even faster in sparse graphs. Finally, we
also address the case of bounded degree graphs in Appendix B and obtain improved running
times for that case as well.

2 Preliminaries

Let G = (VG, EG) be an undirected, unweighted graph. For a vertex v ∈ V , we use NG(v) to
denote the neighborhood of v. For X ⊂ VG, we define G(X) to be the induced subgraph of
X, namely the graph with vertex set X and edge set {uv|u, v ∈ X} ∩ EG, and define G\X

to be G(VG\X). We call u, v connected in a graph if there is a path connecting them. The
connected components of a graph V are the maximal subsets of VG such that any two vertices
in the subset are connected. When G is clear from the context, we omit G as a subscript.

Avoidable Vertex Listing
Input: G = (VG, EG)
Task: Call a vertex v ∈ VG avoidable if for any a ̸= b ∈ NG(v), there exists a path from
a to b not containing v and any other neighbor of v (“avoiding” v and neighbors). Find
all avoidable vertices.

Throughout the paper, unless otherwise noted, we denote n = |VG| and m = |EG|, where
G is the current graph.

There is an alternative definition which defines v as avoidable if and only if for any
x ≠ y ∈ N(v), there exists T ⊆ VG where {v, x, y} ⊆ T and G(T ) is a single simple cycle
(e.g. [9]). We can see both definitions are equivalent by taking T as the shortest valid path
from a to b in the first definition.

A vertex v in G is simplicial if for every pair of vertices x, y ∈ N(v), (x, y) is an edge.

▶ Proposition 4 ([20]). All simplicial vertices of an n node graph can be listed in O(nω)
time.

Proof. The following simple O(nω) time algorithm lists all simplicial vertices of G: Define A

as the n × n adjacency matrix of G, where A[i, j] = 1 if (i, j) is an edge of G, and A[i, j] = 0
otherwise. Let B be the n × n matrix with B[i, j] = 1 if i ̸= j and (i, j) is not an edge of
G; let B[i, j] = 0 otherwise. Compute the matrix product C = ABA in O(nω) time. For a
vertex i, C[i, i] is nonzero iff there exist distinct neighbors j, k of i for which (j, k) is not
an edge. Thus C[i, i] = 0 if and only if i is a simplicial vertex. Thus by going through the
diagonal of C, we can in additional O(n) time list all simplicial vertices of G. ◀

It is not hard to show that listing all simplicial vertices is at least as hard as Triangle
detection. This means that the problem probably needs nω−o(1) time, unless one can detect
triangles faster. Moreover via [32], we get that there is a truly subcubic time combinatorial
fine-grained reduction from Boolean Matrix Multiplication to listing all simplicial vertices.
Thus any subcubic algorithm for the problem likely requires matrix multiplication.

▶ Proposition 5. If one can list all simplicial vertices of a graph in T (n) time, then one can
detect a triangle in an n node graph in O(T (n)) time.
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Proof. Let G = (V, E) be a graph in which we want to find a triangle. Create a new graph
G′ as follows. Every v ∈ V has two copies v1 and v2 in G′. Let V1 and V2 be the sets of
vertices with the corresponding subscripts. For every edge (u, v) of G, add edges (u1, v2) and
(u2, v1) in G′. Finally, for every non-edge (x, y) of G where x ̸= y, add an edge (x2, y2) to G′.

Suppose v1 is a simplicial vertex of G′. All neighbors of v1 are in V2, and the only way
for v1 to be simplicial is if in G no pair of its neighbors has an edge between them, i.e. v1
does not appear in a triangle. On the other hand, any vertex that is not simplicial must have
a pair of neighbors in G that are connected by an edge. Thus, if we can list all simplicial
vertices, we can determine if a vertex of V1 is not in the list, and that will tell us whether G

has a triangle. ◀

The 3-OV problem (see e.g. [31]) is defined as follows1.

3-OV
Input: Three sets of Boolean vectors A, B, C ⊆ {0, 1}d where |A| = |B| = |C| = n

Task: decide whether there are a ∈ A, b ∈ B, c ∈ C so that their generalized inner
product is 0, i.e.

∑d
i=1 aibici = 0.

The 3-OV Hypothesis (see e.g. [31]), states that in the word-RAM model with O(log n)
bit words, 3-OV requires n3−o(1) even if d is polylogarithmic.

A now well-known result that follows from the seminal work of Williams [33] is that
the 3-OV Hypothesis follows from the Strong Exponential Time Hypothesis (SETH) of
Impagliazzo, Paturi, Zane and Calabro [11, 19].

In the high dimensional version of 3-OV, when the dimension d can be large, the fastest
algorithm for the problem is no longer cubic. In particular, when d = O(n), the fastest
known algorithm runs in O(nω(1,2,1)) ≤ O(n3.252) time. The running time O(nω(1,2,1)) is a
bit faster than O(nω+1) as long as ω > 2, and is O(n3) if ω = 2.

We give the folklore algorithm here for completeness.

▶ Proposition 6 (Folklore). 3-OV on vectors of dimension d = O(n) can be solved in
O(nω(1,2,1)) time.

Proof. Let A and B be the given sets of d-dimensional vectors. Without loss of generality,
assume that d = n. Create an n2 × n matrix Boolean D such that for a ∈ A, b ∈ B, i ∈ [n],
we have D[(a, b), i] = 1 if and only if ai = bi = 1. Let C ′ be the n × n matrix which for
i ∈ [n], c ∈ C, C ′[i, c] = 1 if and only if ci = 1. Then DC ′[(a, b), c] contains a 0 if and only if
the generalized inner product of a, b, c is 0. ◀

Prior work (see e.g. [13, 3]) conjectured that the high dimensional variant (when d = O(n))
of 2-OV requires nω−o(1) time. A natural extension of this assumption is that the matrix
multiplication based running time for 3-OV is best possible.

▶ Definition 7. The High Dimensional 3-OV Hypothesis states that in the word-RAM model
with O(log n) bit words, 3-OV in n dimensions requires nω(1,2,1)−o(1) time.

Our hypothesis above is also related to a popular hypothesis (e.g. [15, 31]) that the best
known running time for 4-Clique is best possible. The best known algorithm for 4-Clique
by [20] is analogous to the best known algorithm for high-dimensional 3-OV above, and it
is natural to conjecture that if this algorithm is best for 4-Clique, it could also be best for
3-OV.

1 An equivalent definition has as an input a single set of vectors and we want to find a triple of orthogonal
vectors in the set.
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C ′
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coordinates [d]
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edge (c′′′, xi)

iff ci = 0

Figure 1 A depiction of the construction from 3-OV to Avoidable Vertex Listing.

3 Conditional Lower Bound

In this section, we derive a conditional lower bound for the problem based on 3-OV-hardness.
We show that an instance of 3-OV of size n can be reduced to the Avoidable Vertex Listing
problem in a graph of O(n) vertices. Therefore Avoidable Vertex Listing requires Ω(n3−o(1))
time, under the 3-OV Hypothesis and the Strong Exponential Time Hypothesis.

Construction

Let an instance A, B, C ⊆ {0, 1}d of 3-OV be given. We create a graph G from it as follows.
The construction is depicted in figure 1.

For every vector a ∈ A, we create a node a′ in G. Denote by A′ the set of nodes formed
by all such a′s. Similarly, for every vector b ∈ B, we create a node b′ in G, forming a set of
nodes B′, and for every vector c ∈ C, we create a node c′, forming a set of nodes C ′.

We make each of A′, B′, C ′ into a clique by adding an edge between every pair of nodes
in it. Also, we add edges between each node of C ′ and every node in A′ ∪ B′.

We add d “coordinate nodes” x1, . . . , xd, corresponding to each coordinate. For each
a ∈ A and i ∈ [d], add an edge (a′, xi) if ai = 1. Similarly, for each b ∈ B and i ∈ [d], add an
edge (b′, xi) if bi = 1. For each c ∈ C and i ∈ [d], we add an edge (c′, xi) if ci = 0. Notice we
treat C differently from A and B: we add edges for C if the corresponding bit is not set but
we add edges for A, B if the bit is set.

For each c ∈ C, we add two more new nodes c′′ and c′′′, forming sets C ′′ and C ′′′

respectively. We add edges from each c′′ to all of A′, and edges from each c′′′ to all of B′.
We add edges from both c′′ and c′′′ to all xi for which ci = 0. For every p ≠ q ∈ C, we
add edges (p′, q′), (p′, q′′), (p′, q′′′), (p′′, q′′), (p′′, q′′′), (p′′′, q′′′). In other words, we connect all
pairs of nodes in C ′ ∪ C ′′ ∪ C ′′′ corresponding to different vectors in C.
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Proof of Correctness
We now prove the correctness of our construction. Specifically, for every c′ ∈ C ′ corresponding
to vector c ∈ C, we will show that c′ is not avoidable in G if and only if there exists
a ∈ A, b ∈ B such that a · b · c = 0.

Take some c′ ∈ C ′. Let Xc be the set of coordinate nodes xi for which ci = 0.
First, consider a pair of the neighbors of c′ that is not in A′ × B′. We’ll show such a pair

is connected without visiting c′ and other neighbors of c′. Since a neighbor of c′ can either
fall in A′, B′, Xc or C ′ ∪ C ′′ ∪ C ′′′, there are several cases:

If the pair contains a vertex a′ ∈ A′, let it be (a′, t). When t ∈ A′ ∪ C ′ ∪ C ′′, there is a
direct edge between t and a′. When t ∈ C ′′′, we must have t = e′′′ with e ≠ c. Thus
there is a path from a′ to c′′ (which is not a neighbor of c′) to t. When t ∈ Xc, there is
also a path from a′ to c′′ (which is not a neighbor of c′) to t.
Similarly, if the pair of neighbors contains a vertex b′ ∈ B′, the pair is also connected.
If the pair of neighbors (e, f) are in Xc ∪ C ′ ∪ C ′′ ∪ C ′′′, then these nodes are not copies
of c′, so they have a path through c′′ ∈ C ′′.

Thus every pair of neighbors of c′ except for those in A′ × B′ has either an edge between
them or a path through non-neighbors of c′.

Consider now some a′ ∈ A′, b′ ∈ B′. If there is a path from a′ to b′ through non-neighbors
of c′, then this path can only go through xi such that ci = 1. The path cannot go through
c′′ or c′′′ as those nodes only have neighbors that are also neighbors of c′. Hence the only
possible paths from a′ to b′ through non-neighbors of c′ are of the form a′ to xi to b′ where
ai = bi = 1 = ci. Thus, there is a neighbor pair of c′ that is not connected when c′ and its
neighbors are removed if and only if there are a ∈ A, b ∈ B so that a · b · c = 0.

Proof of Theorem 1, Corollary 2. Any algorithm for Avoidable Vertex Listing can solve
High Dimensional 3-OV in roughly the same time: we convert the given instance to the
aforementioned graph (which takes O(n2 + nd) time), run Avoidable Vertex Listing on
the graph, and check if there is any non-avoidable c′. The converted graph has O(n + d)
vertices. Thus, if avoidable vertices for n-node graphs could be listed in O(nα) time, so does
n dimensional 3-OV. ◀

4 Basic Algorithm

In this section, we present a basic algorithm for Avoidable Vertex Listing, which performs
a series of Boolean matrix multiplications. The approach is similar to the method of
Papadopolous and Zisis [25].

Let G = (V, E) be a given graph, an instance of Avoidable Vertex Listing.
For each v ∈ G, we check if v is avoidable in two steps. We first find all the connected

components C(v) in G\{v}\NG(v). Then for every x ̸= y ∈ N(v), we check if there exists
a ∈ N(x), b ∈ N(y) such that a, b are in the same connected component in G\{v}\NG(v).

The first step takes O(nm) time via e.g., breadth-first search. For the second step, we
can set a matrix A with entries labeled N(v) × C(v), where A[i, j] = 1 iff N(i) ∩ j ̸= ∅. Then
it suffices to check if A × AT (where × corresponds to Boolean matrix multiplication) has a
zero outside of its diagonal. Calculating matrix multiplication directly takes O(nω) time per
vertex, thus we can solve the problem in O(nω+1) time.

With a more careful analysis, we can show the above algorithm is in fact of O(mnω−1) time.
For each vertex v, we need to do a matrix multiplication of size (deg v, n) × (n, deg v), which
can be done in O((deg v)ω(n/ deg v)) = O(n(deg v)ω−1) time. Notice that

∑
v∈V deg v =

2m, by convexity of function xω−1, the total time complexity O(
∑

v∈V n(deg v)ω−1) ≤
O((m/n)nω) = O(mnω−1) - minimized when 2m/n vertices each have degree n.

MFCS 2022
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For sparse graphs, we can do even better. Notice that every entry in A corresponds
to an edge in G, so there are only O(m) non-zero entries in A. We can use sparse matrix
multiplication [34] to perform the multiplication, taking Õ((deg v)1.2m0.7 + (n deg v)1+o(1))
time2. By convexity, the function is maximized when deg v ∈ {0, n}, so Õ(

∑
v((deg v)1.2m0.7+

(n deg v)1+o(1))) = Õ((m/n)(n1.2m0.7 + (n2)1+o(1))) = Õ(m1.7n0.2 + mn1+o(1)), which works
better when m is small.

5 Algorithm for Dense Graphs and High Degree Vertices

We first show how to handle dense graphs and high degree vertices. We achieve this by
dividing paths into short and long paths, and utilizing rectangular matrix multiplication.

Let the set of vertices we consider be Vh ⊆ V . For every v ∈ Vh and p, q ∈ N(v), we
call a path from p to q passing no other neighbours of v short if its length ≤ ℓ where ℓ is a
parameter to be set, or long if its length > ℓ. We treat short paths and long paths separately.

5.1 Short paths
On short paths, for every l ≤ ℓ, we want to compute for every v ∈ Vh, p, q ∈ V , if there is a
path from p to q in G that has at most l edges and does not use any internal nodes that are
neighbors of v or v itself. Let X l

v(p, q) = 1 if so and X l
v(p, q) = 0 otherwise. Notice here we

do not require p, q ∈ N(v).
We compute this matrix incrementally. Let A be the adjacency matrix of G and suppose

we have calculated X l−1
v . For some X l

v(p, q) = 1, consider the last node r in the corresponding
path from p to q, we must have X l−1

v (p, r) = 1, A(r, q) = 1, r ̸∈ N(v) ∪ {v}, and vice versa.
Therefore, we can construct a (n · |Vh|) × n matrix C where

C[(v, p), r] = 1 if X l−1
v (p, r) = 1 and r ̸∈ N(v) ∪ {v}, and C[(v, p), r] = 0 otherwise,

then X l
v(p, q) = 1 if and only if (C × A)[(v, p), q] ̸= 0.

Thus X l
v can be computed from X l−1

v in O(M(n|Vh|, n, n))3 time with rectangular
matrix multiplication (e.g. [22]). The computation of Xℓ

v would thus take overall time
O(ℓM(n|Vh|, n, n)).

5.2 Long paths
For p, q ∈ V and v ∈ Vh, suppose that there is a path from p to q with at least ℓ edges that
does not use internal vertices that are v or neighbors of v. Let Pv(p, q) be such a path.

We randomly sample a set of vertices S ⊆ V of size 10n/ℓ log n. We claim that S “splits”
every Pv(p, q) into pieces of length ≤ ℓ with high probability. (This lemma is well-known
and widely used. We include it for completeness.)

▶ Lemma 8. Suppose the path is of nodes t0, t1, · · · , tm where t0 = p, tm = q, m ≥ ℓ. For
every i, call ti, ti+1, · · · , ti+ℓ−1 an ℓ-length segment. For a randomly sampled S ⊆ V where
|S| = ⌈10n/ℓ log n⌉, every ℓ-length segment of the path contains an element from S with
probability ≥ 1 − n−9.

2 Õ hides logarithmic factors. Our matrix multiplication is rectangular with size (deg v, n, deg v), but the
original proof also holds for this case.

3 M(a, b, c) is the time complexity of multiplying (possibly rectangular) matrices of size a × b and b × c.



M. Deng, V. Vassilevska Williams, and Z. Zhong 41:9

Proof. For any ℓ elements, the probability that none of them lies in S is
(

n−ℓ
|S|

)
/
(

n
|S|

)
=∏|S|−1

i=0
n−ℓ−i

n−i ≤ (1 − ℓ
n )|S| ≤ (1 − ℓ

n )n/ℓ·10 log n ≤ n−10. The result then follows from a union
bound. ◀

By the lemma, with high probability S splits each Pv(p, q) into consecutive pieces of
length at most ℓ: the first is from p to some s1 ∈ S, then a piece from s1 to some s2 ∈ S,
. . ., a piece from some st−1 ∈ S to st ∈ S, and finally a piece from st to q. Since we have
computed for every pair of vertices whether there is a path of length at most ℓ between them
not using neighbors of v, we can use this information to compute the full paths as follows.

For every v ∈ Vh, we build a graph Gv whose vertices are the nodes S′ of S that are not
v or neighbors of v, and there is an edge in Gv between a and b if Xℓ

v(a, b) = 1 (i.e. there is
a path of length at most ℓ avoiding the neighbors of v and v). We compute the transitive
closure of Gv. Since Gv is undirected, this can be done in time Õ(n2/ℓ2) for each v.

Let Tv be the transitive closure matrix, compute Yv = Xℓ
v[·, S′] × Tv × Xℓ

v[S′, ·] which
accounts for the first and the final piece in the path. By the above argument, this will tell us
for every pair of nodes if there is a path between them avoiding the neighbors of v with high
probability.

The running time of this over all v is Õ(|Vh| · M(n, n/ℓ, n)), where M(r, s, t) is the time
to multiply an r × s by an s × t matrix.

5.3 Overall runtime on dense graphs
Combining the two algorithms, the final running time would be

Õ(ℓM(n|Vh|, n, n) + |Vh| · M(n, n/ℓ, n)).

Take Vh = V , we immediately get an algorithm for dense graphs. Let ℓ = na,

Õ(ℓM(n|Vh|, n, n) + |Vh| · M(n, n/ℓ, n)) = Õ(nmax(ω(1,2,1)+a,1+ω(1,1,1−a)))

Using bounds from [22], let a = 0.0682157, we have ω(1, 1, 1 − a) < 2.319856,
max(ω(1, 2, 1) + a, 1 + ω(1, 1, 1 − a)) < 3.319856, so the running time exponent of our
algorithm is < 3.320, slightly better than ω + 1 ≈ 3.373. As long as ω > 2, this algorithm
will benefit from rectangular matrix multiplication and have a complexity of O(nω−ε) for
some ε > 0.

6 Algorithm for Low Degree Vertices

The result in the previous section works well for dense graphs or high degree vertices. One
simple improvement is to combine the previous algorithm with sparse matrix multiplication
as in Section 4. In the following, we show we can actually do a bit better by a carefully
designed counting method.

We call a vertex “low-degree” if it has degree ≤ d. Let the set of low-degree vertices be
Vl ⊆ V . Again for every v ∈ Vl and p, q ∈ N(v), we call a path from p to q passing no other
neighbours of v or v short or long depending on whether its length is ≤ L.

For long paths, we calculate connected components of Gv = G\{v}\NG(v) for each v ∈ Vl

and perform the matrix multiplication as in Section 4, but here we can keep only connected
components with size ≥ L, since otherwise the shortest path will have length ≤ L and a short
path could instead be considered. As there are at most n/L such components, we only need to
perform matrix multiplications of size (deg(v), n/L, deg(v)), in time M(deg(v), n/L, deg(v)).

MFCS 2022
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Now we show how to handle the short paths. We count the number of short avoiding
paths (not necessarily simple) modulo some random prime p and check if it equals to zero.
Since the number of paths of a given length < n is ≤ nn, it has no more than n different
prime factors ≥ n. We randomly sample p as a prime in (n5, n6), by prime number theorem
there are Ω(n5.99) primes within the range, so with probability ≥ 1−O(n−4.99), if the number
of paths is non-zero, it would remain non-zero modulo p. Since we need to check whether the
number of paths is zero at most n3 times, by union bound, all the checks would be correct
with high probability.

For each i ∈ [1, L] and each u, v ∈ G, we compute the number of paths (not necessar-
ily simple) from u to v using exactly i steps, modulo p. This could be done by matrix
multiplication in time Õ(Lnω).

For a vertex v with neighbors v1, v2, · · · , vs, let v0 = v. Construct the following matrices
Fi where

Fi[x, y] = number of paths from vx to vy with length i without visiting other v’s (mod p)

To compute F , let Gi be the matrix where

Gi[x, y] = the number of paths from vx to vy with length i (mod p)

G’s can be directly retrieved from the computed matrices. For an invalid path that visits
neighbors of v or v midways (which are the paths counted in G but not in F ), we consider
the number of steps j took before the first such visit, and the contribution will be FjGi−j .
Therefore we have Fi ≡ Gi −

∑
1≤j<i FjGi−j (mod p).

To compute F1, F2, · · · , FL from G1, G2, · · · , GL, we can use the standard divide-and-
conquer technique (see e.g. [30]). To compute Fl, Fl+1, · · · , Fr, let m = ⌊(l + r)/2⌋, we first
recursively compute Fl, Fl+1, · · · , Fm, then calculate the contribution of Fl, Fl+1, · · · , Fm to
Fm+1, Fm+2, · · · , Fr, then recursively compute Fm+1, Fm+2, · · · , Fr.

To calculate the contribution, for every i ∈ [m + 1, r], we need to calculate
∑m

j=l FjGi−j .
By introducing variable x, the problem can be formulated as a polynomial multiplication:

m∑
j=l

FjGi−j =
m−l∑
j=0

Fj+lGi−l−j

= [xi−l]

m−l∑
j=0

Fj+lx
j

 r−l∑
j=0

Gjxj


4

Therefore we can let F ′ =
∑m−l

j=0 Fj+lx
j , G′ =

∑r−l
j=0 Gjxj , compute their matrix product

modulo p, extract coefficients of x to get the contributions. Entries in these matrices are
polynomials in Fp[x] with degree O(r − l), and operations on such polynomials can be done
in Õ(r − l) time via Fast Fourier Transform (e.g. [2]). Each divide-and-conquer process takes
Õ((r − l)sω) time and computing F1, F2, · · · , FL takes Õ(Lsω) time in total.

Combining the algorithm for short and long paths, we now have an algorithm that takes
Õ(Lnω) time for pre-computation and spends Õ(M(deg(v), n/L, deg(v)) + L deg(v)ω) time
for each vertex v ∈ VL.

3 [xc] extracts coefficient of xc in a polynomial p(x).
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7 Final Algorithm

Finally, we combine the ideas in Section 5 and Section 6. We set a parameter d, use the
algorithm in Section 5 to treat vertices with degree > d and use the algorithm in Section 6
to treat vertices with degree ≤ d.

The number of vertices with degree > d is O(m/d), so the combined complexity would be

Õ(ℓM(nm/d, n, n)+(m/d) ·M(n, n/ℓ, n)+Lnω +
∑

deg(v)≤d

(M(deg(v), n/L, deg(v)) + L deg(v)ω)).

By convexity, it would be maximized when deg(v) ∈ {0, d} for low-degree vertices. The final
complexity would then be

Õ(ℓM(nm/d, n, n) + Lnω + (m/d)(M(n, n/ℓ, n) + M(d, n/L, d) + Ldω)).

Optimizing with respect to d, ℓ, L, we find the complexity to be O(m0.977n1.4+o(1))
(Appendix A).

Combining the algorithms discussed in Section 4, Section 5, Section 7, we arrive at the
following theorem.

▶ Theorem 9. Avoidable Vertex Listing can be solved in time

O(min{m1.7n0.2 + mn1+o(1), m0.977n1.4+o(1), n3.32}).

8 Conclusion

In this paper, we present a new fine-grained reduction from 3OV to Avoidable Vertex Listing,
providing essentially cubic and even supercubic (if ω > 2) conditional hardness for the
problem. We also present new improved algorithms for the problem, combining techniques
such as rectangular matrix multiplication, sparse matrix multiplication, the principle of
inclusion-exclusion and counting.

As analyzed in Section 4, the algorithm by Papadopoulos and Zisis [25] solves Avoidable
Vertex Listing in O(mnω−1) time, and our algorithm improves upon this bound when ω > 2.
When ω = 2, that algorithm runs in O(mn) time, and by our 3OV lower bound, this running
time is conditionally optimal when m = Ω(n2). An interesting problem would be, when
m = o(n2) and ω = 2, can we do better than Ω(nm)? While we can break this bound in
regular or random graphs4 (Appendix B), it remains open for more general graphs.
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A Missing Calculation in Section 7

Suppose m = nα (α ∈ [1, 2]), let
d = n0.015122α2−0.07237α+1.056742

ℓ = n−0.0364α2+0.17612α−0.138437

L = ℓ0.180156.

When t ∈ [1, 2], ω(1, 1, t) < 0.0625t2 + 0.697t + 1.614 (this can be verified by bounds in [22],
[21] and convexity). Let f(t) = 0.0625t2 + 0.697t + 1.614.
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ℓM(nm/d, n, n) = n−0.0364α2+0.17612α−0.138437M(n−0.015122α2+1.07237α−0.056742, n, n)

= O(n−0.0364α2+0.17612α−0.138437+ω(1,1,−0.015122α2+1.07237α−0.056742))

= O(n−0.0364α2+0.17612α−0.138437+f(−0.015122α2+1.07237α−0.056742))
= O(n0.977α+1.4)

The last step can be proved by calculating the extrema of the function −0.0364α2+0.17612α−
0.138437 + f(−0.015122α2 + 1.07237α − 0.056742) − (0.977α + 1.4), which stays negative
in [1, 2].

Similarly we can verify the following by computing the extrema of functions:

Lnω = n0.180156(−0.0364α2+0.17612α−0.138437)+ω = O(n0.977α+1.4)

(m/d)M(n, n/ℓ, n) =O(nα−logn d+ω(1,1,logn(n/ℓ)))

=O(nα−logn d+f(1−logn ℓ))
=O(n0.977α+1.4)

(m/d)M(d, n/L, d) =O(nα−logn d+logn d·ω(1,1,logn(n/L)/ logn d))

=O(nα−logn d+logn d·f((1−logn L)/ logn d))
=O(n0.977α+1.4)

(m/d)Ldω = O(nα−logn d+logn L+ω logn d) = O(n0.977α+1.4)

Thus the whole complexity is bounded by O(n0.977α+1.4) = O(m0.977n1.4+o(1)).

B An Õ(nd3) Time Algorithm for Bounded Degree Graphs

Suppose every vertex in the graph G has degree not exceeding d, we provide a simple
algorithm listing all avoidable vertices of G in Õ(nd3) time.

We maintain a fully-dynamic graph connectivity oracle X supporting addition and removal
of edges [29]. In the beginning, we add all edges in G to X.

For each vertex v, to judge if v is avoidable, we remove all edges adjacent to v or neighbors
of v in X. Then we enumerate every two neighbors of v: p and q. Assume p and q is not
directly connected, we add all edges adjacent to p and q, but not to v or neighbors of v, to
X, and in X check if p and q is now connected. After checking we remove these edges and
consider the next pair. After considering each vertex v we add back initially removed edges.

In this way, for each vertex O(d3) edge modifications (enumerating neighboring pairs and
their adjacent edges) to X will be performed, thus taking Õ(nd3) time in total.
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