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Abstract
We introduce the LOv-calculus, a graphical language for reasoning about linear optical quantum
circuits with so-called vacuum state auxiliary inputs. We present the axiomatics of the language
and prove its soundness and completeness: two LOv-circuits represent the same quantum process if
and only if one can be transformed into the other with the rules of the LOv-calculus. We give a
confluent and terminating rewrite system to rewrite any polarisation-preserving LOv-circuit into a
unique triangular normal form, inspired by the universal decomposition of Reck et al. (1994) for
linear optical quantum circuits.
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1 Introduction

Quantum computing and information processing promise a variety of advantages over their
classical analogues, from the potential for computational speedups (e.g. [33, 51]) to enhanced
security and communication (e.g. [7, 28]). By encoding information into the states of physical
systems that are quantum rather than classical, one can then process that information by
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evolving and manipulating the systems according to the laws of quantum mechanics. This
opens up the possibility of exploiting non-classical behaviours available to quantum systems
in order to process information in radically new and potentially advantageous ways.

The development of quantum technologies has proceeded at pace over the past number of
years, with a variety of different physical supports for quantum information being pursued.
These include matter-based systems like superconducting circuits, cold atoms, and trapped
ions, as well as light-based systems, in which information is encoded in photons. Among
these, photons have a privileged role in the sense that regardless of hardware choice it will
eventually be necessary to network quantum processors, and (as the only sensible support
for communicating quantum information) some quantum information will need to be treated
photonically. Yet, in their own right, photons also offer viable approaches to quantum
computation in the noisy intermediate-scale [40] and large-scale fault-tolerant [6] regimes.

The standard unit of quantum information is the quantum bit or qubit, and photons allow
for a rich variety of ways to encode qubits. However it is also interesting to note that treating
photons as informational units in their own right can be advantageous. A good example is
BosonSampling, originally proposed by Aaronson and Arkhipov [1], a computational task that
is #P -hard but which can be efficiently solved by interacting photons in an idealised generic
linear-optical circuit in which no qubit encoding need be imposed. At present, along with
Random Circuit Sampling [2, 9], this provides one of the two main routes to experimental
demonstrations of quantum computational advantage [3, 55, 53, 54], in which quantum
devices have been claimed to outperform classical capabilities for specific tasks.

The usual semantics for quantum computation stemming from quantum mechanics is
based on unitary matrices (or unitary operators in general) over Hilbert spaces. Although
this faithfully models the extensional behaviour of a computation, it fails to address several
key aspects that are of interest when considering the design and implementation of quantum
algorithms. A first limitation is the intensional description of the computation: an algorithm
or quantum computation in general consists of modular components that are composed and
combined in specific way, and one wants to keep track of this information. One therefore
needs a language for coding these. The other important aspect is the need to specify and
verify the said code. Indeed, classically simulating a quantum process is a task that is
exponentially costly in the size of the system, while running code on physical devices is
expensive. If some limited testing techniques are available on quantum systems [29, 43], it is
however highly desirable to be able to reason and prove the desired properties of the code
upstream, and rely on formal methods. If text-based high-level languages oriented towards
formal methods have successfully been proposed in the literature [32, 8, 37], we aim in this
paper to explore a lower-level, graphical language, making contact with photonic hardware.

Graphical languages for quantum computation have a long history: since Feyman dia-
grams [30], graphical languages for representing (low-level) quantum processes have been
considered as an answer to the limitations of plain unitary matrices. Quantum circuits
– the quantum equivalent to classical, boolean circuits – are an obvious candidate for a
graphical language, and indeed, several lines of research took them as their main object of
study [32, 22, 46, 13]. Quantum circuits in particular form a natural medium for describing
the execution flow of a computation. The main problem with the model of quantum circuits
is the lack of a satisfactory equational presentation. If several attempts have been made for
various subsets [20, 19, 36, 45], none of them provides a complete presentation.

A recent proposal responding to the shortfalls of quantum circuits as a model is the
ZX-calculus [21], which, along with its variants [11, 4, 12], have proved to be particularly
useful for reasoning about qubit quantum mechanics, for applications such as quantum circuit
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optimisation [25, 5], verification [26, 31, 35] and representation e.g. for MBQC patterns [27]
or error-correction [27, 23]. However, while ZX-calculus is versatile and provides a welcomed
formal semantics for quantum computation, it remains at an abstract level.

There is therefore a clear interest in developing a graphical language for quantum
photonic processes, especially linear quantum optics, which is closer to photonic hardware
and laboratory operations that are easily implementable in bulk optics, fibres, or in integrated
photonic circuits. This would provide a more formal counterpart to software frameworks
that have been proposed for defining and classically simulating such processes to the extent
that it is tractable [39, 34]. The need for such a formal language is also evidenced, for
example, by the appeal to diagrams to concisely illustrate equivalent unitaries in recent
work in the physics literature [48]. Following on the trend for graphical quantum languages,
the PBS-calculus [16, 10, 17] has been proposed as a first step towards an alternative to
ZX dedicated to linear quantum optical computation (LOQC). The PBS-calculus makes
it possible to reason on a small subset of linear optical components only acting on the
polarisation of a photon. While it is enough to describe and analyse non causally-ordered
computations, it falls short at expressing other aspects of LOQC typically considered in the
physics community, such as the phase. Note that a recent, independent work1 establishes
some connections between the ZX-calculus and the photon preserving fragment of linear
optics with multiple photons [24].

Our goal here is to take a more bottom-up approach and to propose a new language which
formalises the kinds of diagrammatics that are currently in use in the physics community. In
practice this can find many uses including for the design, optimisation, verification, error-
correction, and systematic study of linear optical quantum circuits for quantum information.

Contributions. Our main contributions are the following.
A graphical language for LOQC featuring most of the physical apparatuses used in the
physics literature. The language comes equipped with an equational theory that is sound
and complete with respect to the standard semantics of LOQC.
A strongly normalising and globally confluent rewrite system and normal form for the
polarisation-preserving fragment, for which we recover the Reck et al. [49] decomposition
as normal form (modulo 0-angled beam splitters and 0-angled phase shifters) with a novel
proof of its uniqueness.

Finally, and maybe more importantly, our language makes it possible to formalise and reason
within a common framework on various presentations of LOQC stemming from parallel
research paths. Our semantics not only allow us to recover, extend and improve on some key
results in LOQC such as the universal decompositions of Reck et al. [49] and Clements et al.
[18], but it also gives a unifying language for the different formalisms from the literature.
Furthermore, this result paves the way towards the design of complete equational theories
for quantum circuits [14].

Plan of the paper. The article is structured as follows. In Section 2, we present the syntax
and the semantics of the LOv-calculus. The equational theory and its soundness are given in
Section 3. In Section 4 we present the strongly normalising and globally confluent rewrite
system. This allows us to prove the completeness of the LOv-calculus in Section 5. Finally,
we conclude in Section 6. More complete proofs can be found in the appendix of the technical
report [15].

1 The preprint version of [24] has been upladed to arXiv a few days after the one of the present paper [15].
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(a) Triangular form [49].
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(b) Rectangular form [18].

Figure 1 Triangular and rectangular forms for polarisation-preserving circuits.

2 Linear Optical Quantum Circuits

A linear optical quantum computation [42, 41] (LOQC) consists of spatial modes through
which photons pass – which may be physically instantiated by optical fibers, waveguides in
integrated circuits, or simply by paths in free space (bulk optics) – and operations that act
on the spatial and polarisation degrees of freedom of the photons, including in particular
beam splitters ( θ ), polarising beam splitters ( ), phase shifters ( φ ), wave plates
(

θ
), pola-negations ( ¬ ) and finally the vacuum state sources and detectors ( 0 and

0 ). Their action and the semantics are described in Section 2.2.

2.1 Syntax
In order to formalise linear optical quantum circuits, we use the formalism of PROPs [44]. A
PRO is a strict monoidal category whose monoid of objects is freely generated by a single
X: the objects are all of the form X ⊕ ... ⊕ X,2 and simply denoted by n, the number
of occurrences of X. PROs are typically represented graphically as circuits: each copy of
X is represented by a wire and morphisms by boxes on wires, so that ⊕ is represented
vertically and morphism composition “◦” is represented horizontally. For instance, D1 and
D2 represented as D1 and D2 can be horizontally composed as D2 ◦D1, represented

by D2D1 , and vertically composed as D1 ⊕ D2, represented by D1

D2

. A PROP is

the symmetric monoidal analogue of PRO, so it is equipped with a swap .

▶ Definition 1. LOv is the PROP of LOv-circuits generated by

0 : 0 → 1 0 : 1 → 0 φ : 1 → 1
θ

: 1 → 1

θ : 2 → 2 : 2 → 2

where θ, φ ∈ R. When the parameters θ and φ are omitted we take them to be equal to
π/4. We write ¬ as a shortcut notation for π

2
− π

2 . The tensor of the monoidal

structure is denoted with ⊕, and the identity, swap and empty circuit (unit of ⊕) are denoted
as follows: : 1 → 1, : 2 → 2, : 0 → 0.

▶ Example 2. An example of a linear optical quantum circuit using all of the connectives
presented in Definition 1 is shown in Figure 2.

2 Here we denote the monoidal product as ⊕ rather than ⊗ in order to better correspond to the semantics
of LOv-circuits (see Section 2.2).
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Figure 2 LOv-circuit implementing a variational quantum eigensolver [47], an algorithm with
applications including calculation of ground-state energies in quantum chemistry.
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0
θ

Figure 3 Two equivalent representations of the same LOv-circuit.

▶ Remark 3. The axioms of PROPs guarantee that linear optical quantum circuits are defined
up to deformations: Figure 3 shows two equivalent circuits under the equations of PROPs.

Among the generators, the beam splitters and phase shifters are known to preserve the
polarisation of the photons, as a consequence, we define a polarisation-preserving sub-PRO
of LOv as follows.

▶ Definition 4. LOPP is the PRO of polarisation-preserving circuits generated by beam
splitters θ and phase shifters φ .

Notice that we define polarisation-preserving circuits as a PRO rather than a PROP, thus
they do not include swaps.

2.2 Single-Photon Semantics
We will characterise photons by their spatial and polarisation modes. Spatial modes refer
to position, and polarisation can be horizontal (H) or vertical (V). Note that the quantum
formalism admits (normalised complex) superpositions of both spatial and polarisation
modes. For any n ∈ N, let Mn = {V, H} × [n], where [n] = {0, . . . n − 1}, be the set of states
(spatial and polarisation modes). The elements of Mn are denoted cp with c ∈ {V, H} and
p ∈ [n]. The state space of a single photon is CMn = span(|Vi⟩, |Hi⟩ | i ∈ [n]). Notice that
CM0 = C∅ = {0} is the Hilbert space of dimension 0. For instance, on 2 spatial modes (i.e. 2
wires), there are four possible basis states: H0, H1, V0, V1. Indeed, a photon can be on one
of the two wires, while in the horizontal or vertical polarisation. The state space is then a
4-dimensional Hilbert space. The semantics of a LOv-circuit is defined as follows.

▶ Definition 5. For any LOv-circuit D : n → m, let JDK : CMn → CMm be the linear map
inductively defined by Table 13, and by JD2 ◦ D1K = JD2K ◦ JD1K, JD1 ⊕ D2K = JD1K ⊕ JD2K,
where for all f ∈ CMn → CMm and g ∈ CMn′ → CMm′ , (f ⊕ g)(|ck⟩) = f(|ck⟩) if k < n and
Sm,m′(g(|ck−n⟩)) if k ≥ n, with Sm,m′ : CMm′ → CMm+m′ = |ck⟩ 7→ |ck+m⟩ a shift of the
positions by m.

3 There are many possible conventions for beam splitters. We have chosen this one as it is a symmetric

MFCS 2022
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Table 1 Semantics of LOv-circuits.

r
0

z
= 0

r
0

z
= 0 J K = 0

r
θ

z
= |cp⟩ 7→ cos(θ)|cp⟩ + i sin(θ)|c1−p⟩

r

θ

z
=

{
|V0⟩ 7→ cos(θ)|V0⟩ + i sin(θ)|H0⟩
|H0⟩ 7→ cos(θ)|H0⟩ + i sin(θ)|V0⟩

r
φ

z
= |c0⟩ 7→ eiφ|c0⟩

r z
=

{
|Vp⟩ 7→ |Vp⟩
|Hp⟩ 7→ |H1−p⟩

r z
= |cp⟩ 7→ |c1−p⟩

J K = |c0⟩ 7→ |c0⟩

▶ Example 6. The negation inverts polarisation: J ¬ K : |V0⟩ 7→ |H0⟩ and |H0⟩ 7→ |V0⟩.

▶ Remark 7. The semantics of the circuits is sound with respect to the axioms of PROPs. In
other words two circuits that are equal up to deformation have the same semantics. More
formally, J.K : LOv → (Hilb, ⊕, 0) is a monoidal functor where Hilb is the category of state
spaces CMn and linear maps.

▶ Remark 8. All the generators of the LOv-circuits are photon preserving, even the vacuum
state sources ( 0 ) and detectors ( 0 ). Indeed the vacuum state source produces no photons,
whereas the semantics of the detector corresponds to a postselection on the case where no
photons are detected.

▶ Definition 9. For any LOPP-circuit D : n → n, we define JDKpp : Cn → Cn as the unique
linear map such that J.K ◦ ι = ι ◦ J.Kpp where ι : Cn → CMn = |k⟩ 7→ |Hk⟩.

For instance
q

θ
y

pp =
(

cos(θ) i sin(θ)
i sin(θ) cos(θ)

)
.

Polarisation-preserving circuits are universal for unitary transformations, this is a direct
consequence of the result of Reck et al. [49]. Unitary transformations can actually be uniquely
represented by LOPP-circuits, as illustrated by the following two cases on 2 and 3 modes,
the general case being proved in Section 4.

▶ Lemma 10. For any unitary 2 × 2 matrix U , there exist unique β1, α1 ∈ [0, π) and

β2, β3 ∈ [0, 2π) such that
t

β1 α1 β2

β3

|

pp

= U , and α1 ∈ {0, π
2 } ⇒ β1 = 0.

Proof. The proof is given in [15]. ◀

▶ Lemma 11. For any unitary 3×3 matrix U , there exist unique angles α1, α2, α3, β1, β2, β3 ∈

[0, π) and β4, β5, β6 ∈ [0, 2π) such that

u

ww
v α1

α2

α3

β2

β1 β3

β4

β5

β6

}

��
~

pp

= U where

∀i ∈ {1, 2, 3}, αi ∈ {0, π
2 } ⇒ βi = 0, and where α2 = 0 ⇒ α1 = 0.

Proof. The existence of such a canonical form is shown in [49]. The uniqueness can then be
derived by analysing the possible cases (See [15]). ◀

operation with good composition properties. The convention for the wave plate has been chosen for
similar reasons.
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LOv-circuits are more expressive than LOPP-ones, they not only act on the polarisation
but the use of detectors and sources allow the representation of non-unitary evolutions: For
any LOv-circuit D : n → m, JDK is sub-unitary4. LOv-circuits are actually universal for
sub-unitary transformations:

▶ Theorem 12 (Universality of LOv). For every sub-unitary map U : CMn → CMm (i.e. such
that U†U ⊑ I) there exists a diagram D : n → m s.t. JDK = U .

Proof. The proof given in [15] relies on the normal forms developed in Section 5. ◀

3 Equational Theory

Two distinct LOv-circuits may represent the same quantum evolution: for instance, composing
two negations is equivalent to the identity. In order to characterise equivalences of LOv-
circuits, we introduce a set of equations, shown in Figure 4. They capture basic properties
of LOv-circuits, such as: detectors and sources essentially absorbing the other generators
(Equations (9) to (12)); parameters forming a monoid (Equations (1) and (2)); and various
commutation properties (Equations (15), (16)). Notice that there are two equations acting
on 3 modes: Equation (6) and Equation (18). Equation (6) is a variant of the Yang-Baxter
Equation [38], whereas Equation (18) is a property of decompositions into Euler angles.
Indeed, in 3-dimensional space, the two sides of this equation correspond to two distinct
decompositions in elementary rotations.

▶ Definition 13 (LOv-calculus). Two LOv-circuits D1, D2 are equivalent according to the
rules of the LOv-calculus, denoted LOv ⊢ D1 = D2, if one can transform D1 into D2 using
the equations given in Figure 4. More precisely, LOv ⊢ · = · is defined as the smallest
congruence which satisfies the equations of Figure 4 in addition to the axioms of PROP.

▶ Proposition 14 (Soundness). For any two LOv-circuits D1 and D2, if LOv ⊢ D1 = D2
then JD1K = JD2K.

Proof. Since semantic equality is a congruence it suffices to check that for every equation
of Figure 4 both sides have the same semantics, which follows from Definition 5 and
Lemma 11. ◀

▶ Proposition 15. The rules of the LOv-calculus imply that the parameters are 2π-periodic,
i.e. for any θ, φ ∈ R:

LOv ⊢ θ = θ+2π LOv ⊢ φ = φ+2π LOv ⊢
θ

=
θ+2π

Proof. The proof is given in [15]. ◀

We now state one of our main results: the completeness of the LOv-calculus.

▶ Theorem 16 (Completeness). For any two LOv-circuits D1 and D2, if JD1K = JD2K then
LOv ⊢ D1 = D2.

The proof of Theorem 16 is given in Section 5. As a step towards proving the theorem,
we first consider the fragment of the LOPP-circuits.

4 U is sub-unitary (see for instance [50]) iff U†U ⊑ I, where ⊑ is the Löwner partial order, i.e. I − U†U
is a positive semi-definite.

MFCS 2022
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Figure 4 Axioms of the LOv-calculus. The equations are valid for arbitrary parameters
φ,φi, θ, θi ∈ R. In Equation (18), the angles on the left-hand side can take any value while
the right-hand side is given by Lemma 11 (where U is the J.Kpp-semantics of the left-hand side of
the equation).

4 Polarisation-Preserving Circuits

This section gives a universal normal form for any LOPP-circuit. We prove the uniqueness
of that form by introducing a strongly normalising and confluent polarisation-preserving
rewrite system: PPRS.

▶ Definition 17. The rewrite system PPRS is defined on LOPP-circuits with the rules of
Figure 5.

▶ Lemma 18. If D1 rewrites to D2 using the PPRS rewrite system then LOv ⊢ D1 = D2.

Proof. The proof is given in [15]. ◀

▶ Theorem 19. The rewrite system PPRS is strongly normalising.

Proof. The proof is done by defining a lexicographic order on six distinct values: numbers
of beam splitters of various angle ranges, count of specific patterns, numbers and positions
of phase shifters. The order is shown to be decreasing with respect to the rewrite rules of
PPRS. The complete proof is given in [15]. ◀
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ψ → ψ mod 2π (28)

ψ
→

ψ mod 2π
(29)

φ2φ1 → φ1+φ2 (30)

0 → (31)

0 → (32)

θ

φ
→ θ

−φ φ

φ
(33)

π
2

φ

→
π
2

φ
(34)

θ0
φ0

→
π−θ0

φ0−π

π
(35)

θ4 →
θ4−π π

π
(36)

θ1

θ2

θ3

φ1

φ2

∗

∗

→ α1

α2

α3

β2

β1 β3

β4

β5

β6

(37)

θ1
φ1 θ2

∗

→
β1 α1 β2

β3

(38)

Figure 5 Rewriting rules of PPRS. ψ ∈ R \ [0, 2π), φ,φ1, φ2 ∈ (0, 2π), φ0, θ4 ∈ [π, 2π),

θ, θ0, θ1, θ2, θ3 ∈ (0, π), and θ0 ̸= π
2 . φ

∗
denotes either φ or . In Rules (37)

and (38), the angles on the left-hand side can take any value while the right-hand side is given by
Lemma 11 and Lemma 10 respectively.

As PPRS is terminating, we can therefore derive the existence of normal forms. The next
step is to show that these normal forms are unique: this is derived from Theorem 20.

▶ Theorem 20. PPRS is globally confluent.

Proof. PPRS is locally confluent. Indeed, one can show by case analysis that the non-trivial
peaks all use at most three wires. Each peak can be closed since for any polarisation-
preserving LOv-circuit of size n ∈ {1, 2, 3}, PPRS terminates to a specific unique normal
form: when n = 1, a simple phase-shift; when n = 2, the form shown in Lemma 10; when
n = 3, the form shown in Lemma 11. See [15] for details. Finally, using Theorem 19, global
confluence is deduced from Newman’s lemma [52]. ◀

▶ Definition 21. A PPRS triangular normal form is a circuit with a triangular shape similar
to Figure 1a, but with all 0-angled generators replaced with identities and with additional
conditions on the angles, as described in Figure 6.

Figure 7 shows an example: the figure on the left is the “full” circuit with 0-angled beam
splitters while on the right is the corresponding PPRS triangular normal form.

▶ Lemma 22. Any irreducible LOPP-circuit is a PPRS triangular normal form.

MFCS 2022
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Figure 6 General scheme of a PPRS triangular normal form. The stars mean that any phase
shifter or beam splitter with angle 0 is replaced by the identity. The conditions on the angles are the
following: αi,j , βi,j ∈ [0, π); γi ∈ [0, 2π); αi,j = 0 ⇒ ∀j′ > j, αi,j′ = 0; αi,j ∈ {0, π

2 } ⇒ βi,j = 0.
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Figure 7 An example of a PPRS triangular normal form. In the figure on the left, the beam
splitters and phase shifters with angle 0 in the corresponding triangular form are shown in red. In
the figure on the right, they are replaced with identities.

Proof. This property can be proven by induction. First, we lay out the properties of any
irreducible circuit that can be directly deduced from the PPRS rules of Figure 5. Then, we
give two more properties characterising the PPRS triangular normal forms. By induction,
we prove that any irreducible circuit respects those two properties, so that any irreducible
circuit is a PPRS triangular normal form. See [15] for more details. ◀

▶ Theorem 23. Any LOPP-circuit, with the rules of PPRS, converges to a unique PPRS
triangular normal form.

Proof. PPRS is globally confluent and terminating: normal forms are unique. From
Lemma 22, PPRS triangular normal forms are the only irreducible forms. Therefore, any
polarisation-preserving circuit terminates to such a unique normal form. ◀

▶ Remark 24. In particular by using Equation (18) and by adding 0-angled beam splitters
if necessary, one can turn any circuit in PPRS triangular normal form into a circuit in the
rectangular form of [18] shown in Figure 1b. A schematic example of such a transformation
is shown in [15].

We can now prove the completeness of the polarisation-preserving fragment.

▶ Theorem 25. For any LOPP-circuits C1,C2 such that JC1Kpp = JC2Kpp, their normal
forms are equal, i.e. N1 = N2, where N1 (resp. N2) is the unique normal form of C1 (resp.
C2) given by Theorem 23.

Proof. As the rewrite system preserves the semantics, it is sufficient to prove that JN1Kpp =
JN2Kpp ⇒ N1 = N2. First, we can show by induction that JNKpp = JInKpp ⇒ N = In.
Indeed, to have the semantics as the identity, we can show the upper beam splitter and
phase shifters are necessarily 0-angled. The proof follows from induction, details are given
in [15]. Let P be an inverse circuit of N1 and N2, that is, a polarisation-preserving circuit
such that JP Kpp = JN1K

−1
pp . The existence of such a circuit follows from [49]. As JN1P Kpp =

JPN2Kpp = JInKpp, the term N1PN2 can both be reduced to N1 (by reducing PN2 first) and
N2 (by reducing N1P first). By Theorem 23, N1 = N2. ◀
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Figure 8 Shape of a circuit in normal form as of Definition 27.

▶ Proposition 26 (Universality and uniqueness in the polarisation-preserving fragment). For
any unitary U : Cn → Cn, there exists a unique circuit T in PPRS triangular normal form
such that JT Kpp = U .

Proof. This follows directly from [49], Theorems 23 and 25 and the fact that all PPRS
triangular normal forms are irreducible. ◀

5 Completeness of the LOv-Calculus

To prove the completeness of the LOv-Calculus (Theorem 16), we introduce the following
notion of normal form.

▶ Definition 27 (Normal form). A circuit in normal form N : n → m is a circuit of the
form shown in Figure 8, where T is a PPRS triangular normal form (Definition 21). If
n′ = m′ = 0, then N is said to be in pure normal form.

▶ Lemma 28 (Uniqueness of the pure normal form). If two circuits N1 and N2 in pure normal
form are such that JN1K = JN2K, then N1 = N2.

Proof. Let T1 (resp. T2) be the LOPP-circuit associated with N1 (resp N2) as in Figure 8.
Notice that JTiKpp ◦ µ = µ ◦ JNiK where µ : CMn → C2n is the isomorphism |Vk⟩ 7→ |2k⟩ and
|Hk⟩ 7→ |2k + 1⟩. Thus JN1K = JN2K implies JT1Kpp = JT2Kpp so that the result follows from
Theorem 23. ◀

▶ Lemma 29. For any circuit D without vacuum state sources or detectors there exists a
circuit in pure normal form N such that LOv ⊢ D = N .

Proof. The proof is given in [15]. ◀

Completeness for circuits without vacuum state sources or detectors follows directly from
Lemmas 28 and 29:

▶ Proposition 30. Given any two circuits D1 and D2 without any 0 or 0 , if
JD1K = JD2K then LOv ⊢ D1 = D2.

Proof. By Lemma 29, there exist two circuits in pure normal form N1 and N2 such that
LOv ⊢ D1 = N1 and LOv ⊢ D2 = N2. By Proposition 14, one has JN1K = JD1K = JD2K =
JN2K, so that by Lemma 28, N1 = N2. The result follows by transitivity. ◀
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Proof of Theorem 16

We now have the required material to to finish the proof of Theorem 16. Let D1, D2 : n → m

be any two LOv-circuits such that JD1K = JD2K. By deformation, we can write them as

}
m′0

0
n′

{
0

0

D′
1

}
mn

{
and }

m′′0

0
n′′

{
0

0

D′
2

}
mn

{

where D′
1, D′

2 do not contain 0 or 0 . Up to using Equation (8), we can assume that
n′′ = n′. Since circuits without vacuum state sources and detectors necessarily have the
same number of input wires as of output wires, this implies that m′′ = m′. By Lemma 29,
we can put D′

1 and D′
2 in pure normal form. Then by using Equations (9)–(14), we get two

circuits in normal form

DNF
1 = }

m′0

0
n′

{
0

0

T1

}
mn

{
¬0

¬0

¬ 0

¬ 0

and DNF
2 = }

m′0

0
n′

{
0

0

T2

}
mn

{
¬0

¬0

¬ 0

¬ 0

with T1 and T2 in PPRS triangular normal form.
JD1K = JD2K implies that π ◦ JT1Kpp ◦ ι = π ◦ JT2Kpp ◦ ι where ι : C2n → C2n+n′ is the

injection |k⟩ 7→ |k⟩ and π : C2m+m′ → C2m is the projector s.t. π|k⟩ = |k⟩ when k < 2m and
π|k⟩ = 0 otherwise. Thus there exists two unitaries Q, Q′ s.t. JT2Kpp = (I⊕Q′)◦JT1Kpp◦(I⊕Q)
(see [15]).

By Proposition 26, there exist two circuits Tin and Tout in PPRS triangular normal form
such that JTinKpp = Q and JToutKpp = Q′. Using the equational theory we can then make Tin
and Tout appear, turning DNF

1 into

Tin

}
m′

0

0
n′

{
0

0

T1

mn

 ¬0

¬0

¬ 0

¬ 0

Tout

.

Since by construction, the middle part has the same single-photon semantics as T2, by
Proposition 30 we can transform it into T2 using the axioms of the LOv-calculus, which
means transforming DNF

1 into DNF
2 . The result follows by transitivity. ◀

6 Conclusion

In this paper, we presented the LOv-calculus, a graphical language for LOQC capturing
most of the components typically considered in the physics community for linear optical
quantum circuits. The language comes equipped with a sound and complete semantics, and
we discussed how it provides a unifying framework for many of the existing approaches in the
literature. We explained how several existing results can be ported in the LOv framework.

An obvious direction for future work is to extend the language to allow for sources and
detectors of a non-zero number of photons. A more exploratory research avenue is to add
support for features such as squeezed states or continuous variables.
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