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Abstract
Coalition formation considers the question of how to partition a set of agents into coalitions with
respect to their preferences. Additively separable hedonic games (ASHGs) are a dominant model
where cardinal single-agent values are aggregated into preferences by taking sums. Output partitions
are typically measured by means of stability, and we follow this approach by considering stability
based on single-agent movements (to join other coalitions), where a coalition is defined as stable
if there exists no beneficial single-agent deviation. Permissible deviations should always lead to
an improvement for the deviator, but they may also be constrained by demanding the consent of
agents involved in the deviations, i.e., by agents in the abandoned or welcoming coalition. Most
of the existing research focuses on the unanimous consent of one or both of these coalitions, but
more recent research relaxes this to majority-based consent. Our contribution is twofold. First, we
settle the computational complexity of the existence of contractually Nash-stable partitions, where
deviations are constrained by the unanimous consent of the abandoned coalition. This resolves the
complexity of the last classical stability notion for ASHGs. Second, we identify clear boundaries to
the tractability of stable partitions under majority-based stability concepts by proving elaborate
hardness results for restricted classes of ASHGs. Slight further restrictions lead to positive results.
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1 Introduction

Coalition formation is a vibrant topic in multi-agent systems at the intersection of theoretical
computer science and economic theory. Given a set of agents, e.g., humans or machines, the
central concern is to determine a coalition structure, or partition, of the agents into subsets,
or so-called coalitions. Agents have preferences over coalition structures, and therefore
coalition formation naturally generalizes the matching problem under preferences [22]. As in
the special case of matchings, a common assumption is that externalities outside one’s own
coalition play no role, i.e., agents are only concerned about the coalition they are part of.
This assumption leads to the popular framework of hedonic games [18].

In contrast to matchings, the number of coalitions an agent can be part of is not
polynomially bounded in coalition formation, and therefore, a lot of effort has been put into
identifying reasonable and succinct classes of hedonic games (see, e.g., [2, 5, 8, 20]). In many
such classes, agents extract cardinal preferences from a weighted and possibly directed graph
by some aggregation method. Probably the most natural and thoroughly researched way to
aggregate preferences is by taking the sum of the weights of edges towards agents in one’s
own coalition. This leads to the concept of additively separable hedonic games (ASHGs) [8].
This paper continues to investigate this class of hedonic games.

© Martin Bullinger;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bullinge@in.tum.de
https://doi.org/10.4230/LIPIcs.MFCS.2022.26
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Boundaries to Single-Agent Stability in Additively Separable Hedonic Games

The desirability of an output, i.e., of a coalition structure, is frequently measured with
respect to stability, which captures the prospect of agents maintaining their coalitions. A
coalition structure is stable if no single agent or group of agents has an incentive to deviate
by leaving their coalitions and joining other coalitions or forming new coalitions. Depending
on the requirements that deviators need to meet, one can define various specific stability
notions. In this paper, we focus on stability based on single-agent deviations. This means
that a deviation consists of a single agent that abandons her current coalition to join another
existing coalition or to form a new coalition of her own.

In this case, a reasonable minimum requirement is that a deviating agent should improve
her coalition. If no such deviation is possible, then a coalition structure is said to be Nash-
stable. However, this leads to an immensely strong stability concept because the deviation
is only constrained weakly. As a consequence, Nash-stable outcomes hardly ever exist. For
instance, consider a game with two agents x and y where x prefers to form a coalition with
y over staying alone, whereas y prefers to stay alone. Then, x always has an incentive to
join y whenever she is in a coalition of her own, whereas y would always leave x. Such
run-and-chase situations occur in most classes of hedonic games.1

Therefore, various weakenings of Nash stability have been proposed. These restrict the
possible deviations by adding further requirements on other agents involved in the deviation.
Typically, two types of constraints are considered, namely the demanding of some kind of
consent from the abandoned or the welcoming coalition. Most of the research has focused
on the unanimous consent of these coalitions. This leads to the concepts of contractual
Nash stability and individual stability where all agents in the abandoned or welcoming
coalition have to approve the deviation. Still, unanimous consent of involved coalitions is a
strong requirement. Hence, a reasonable compromise is to merely demand partial consent.
Therefore, we also study stability where deviations are constrained by the approval of a
majority vote of the abandoned or welcoming coalition.

1.1 Contribution
Our contribution is twofold. First, we settle the complexity of the existence problem of
contractually Nash-stable coalition structures. Despite knowing for quite long that No-
instances, i.e., additively separable hedonic games which do not admit a contractually
Nash-stable coalition structure, exist [28], detailed computational investigations of single-
agent stability during the last decade have left this problem open [10, 29]. Hence, we complete
the picture of the complexity of unanimity-based single-agent stability concepts in ASHGs.

Second, we investigate majority-based stability concepts. We will show that, even under
significant weight restrictions, stable coalition structures need not exist and we can leverage
No-instances to obtain computational intractabilities. This complements very recent results
by Brandt et al. [10] and resolves problems left open by this work. In particular, we completely
pinpoint the complexity of majority-based stability notions in friends-and-enemies games
and appreciation-of-friends games.

These results are in line with the repeatedly observed theme in hedonic games research
that the existence of counterexamples is the key to computational intractabilities (see, e.g.,
[3, 10, 11, 16, 29]).2 On the other hand, we demonstrate that the observed intractabilities
lie at the computational boundary by carving out further weak restrictions that lead to the
existence and efficient computability of stable states.

1 Notably, Nash-stable coalition structures always exist in ASHGs if the input graph is symmetric [8],
and in a generalization of this class of games called subset-neutral hedonic games [27].

2 A notable exception is provided by Bullinger and Kober [13] who identify a class of hedonic games
where partitions in the core always exist, but are still hard to compute.
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1.2 Related Work
The study of hedonic games was initiated by Drèze and Greenberg [18] but was only
popularized two decades later by Banerjee et al. [6], Cechlárová and Romero-Medina [15], and
Bogomolnaia and Jackson [8]. Aziz and Savani [4] review many important concepts in their
survey. Two important research questions concern the design of reasonable computationally
manageable subclasses of hedonic games and the detailed investigation of their computational
properties. The former has led to a broad landscape of game representations. Some of these
representations [5, 20] are ordinal and fully expressive, i.e., they can, in principle, express
every preference relation over coalitions. Still, representing certain preference relations
requires exponential space. These representations are contrasted by cardinal representations
based on weighted graphs [2, 8, 26], which are not fully expressive but only require polynomial
space (except when weights are artificially large). Apart from the already discussed additively
separable hedonic games, important aggregation methods consider the average of weights
leading to the classes fractional hedonic games [2] and modified fractional hedonic games [26].
Additively separable hedonic games have important subclasses where the focus lies in
distinguishing friends and enemies, and therefore only two different weights are present in
the underlying graph [16].

The computational properties of hedonic games have been extensively studied and we
focus on literature related to additively separable hedonic games. Various versions of stability
have been investigated [1, 3, 10, 16, 29, 21]. The closest to our work are the detailed studies of
single-agent stability by Sung and Dimitrov [29] and Brandt et al. [10]. Gairing and Savani [21]
settle the complexity of single-agent stability for symmetric input graphs. Majority-based
stability has only received little attention thus far [10, 21]. Apart from stability, other
desirable axioms concern efficiency and fairness. Aziz et al. [3] cover a wide range of axioms,
whereas Elkind et al. [19] and Bullinger [12] focus on Pareto optimality, and Brandt and
Bullinger [9] investigate popularity, an axiom combining ideas from stability and efficiency
which is also related to certain majority-based stability notions [10]. Finally, a recent trend
in the research on coalition formation is to complement the static view of existence problems
by considering dynamics based on stability concepts (see, e.g., [7, 10, 11, 14, 23]).

2 Preliminaries

In this section, we formally introduce hedonic games and our considered stability concepts.

2.1 Hedonic Games
Let N = [n] be a set of n ∈ N agents, where we define [n] = {1, . . . , n}. The output of a
coalition formation problem is a coalition structure, that is, a partition of the agents into
different disjoint coalitions according to their preferences. A partition of N is a subset π ⊆ 2N

such that
⋃

C∈π C = N , and for every pair C, D ∈ π, it holds that C = D or C ∩ D = ∅.
An element of a partition is called a coalition and, given a partition π, the unique coalition
containing agent i is denoted by π(i). We refer to the partition π given by π(i) = {i} for
every agent i ∈ N as the singleton partition, and to π = {N} as the grand coalition.

Let Ni denote all possible coalitions containing agent i, i.e., Ni = {C ⊆ N : i ∈ C}. A
hedonic game is a tuple (N,≿), where N is an agent set and ≿ = (≿i)i∈N is a tuple of weak
orders ≿i over Ni representing the preferences of the respective agent i. Hence, as mentioned
before, agents express preferences only over the coalitions of which they are part without
considering externalities. The strict part of an order ≿i is denoted by ≻i, i.e., C ≻i D if and
only if C ≿i D and not D ≿i C.

MFCS 2022
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Additively separable hedonic games assume that every agent is equipped with a cardinal
utility function that is aggregated by taking the sum of single-agent values. Formally,
following [8], an additively separable hedonic game (ASHG) (N, v) consists of an agent set
N and a tuple v = (vi)i∈N of utility functions vi : N → R such that π ≿i π′ if and only if∑

j∈π(i) vi(j) ≥
∑

j∈π′(i) vi(j). Clearly, ASHGs are a subclass of hedonic games. When we
specify ASHG utilities, we neglect, without loss of generality, vi(i) because the preferences
do not depend on it and we implicitly assume that it is set to an appropriate constant if an
ASHG has to fit into a certain subclass of games.

Every ASHG can be naturally represented by a complete directed graph G = (N, E)
with weight vi(j) on arc (i, j). There are various subclasses of ASHGs that allow a natural
interpretation in terms of friends and enemies. An agent j ∈ N is called a friend (or enemy)
of agent i ∈ N if vi(j) > 0 (or vi(j) < 0). An ASHG is called a friends-and-enemies game
(FEG) if vi(j) ∈ {−1, 1} for every pair of agents i, j ∈ N [10]. Further, following [16], an
ASHG is called an appreciation-of-friends game (AFG) (or an aversion-to-enemies game
(AEG)) if vi(j) ∈ {−1, n} (or vi(j) ∈ {−n, 1}). In such games, agents seek to maximize
their number of friends while minimizing their number of enemies, where these goals have a
different priority in each case. Based on the friendship of agents, we define the friendship
relation (or enemy relation) as the subset R ⊆ N × N where (i, j) ∈ R if and only if vi(j) > 0
(or vi(j) < 0).

2.2 Single-Agent Stability
We want to study stability under single agents’ incentives to perform deviations. A single-
agent deviation performed by agent i transforms a partition π into a partition π′ where
π(i) ̸= π′(i) and, for all agents j ̸= i,

π′(j) =


π(j) \ {i} if j ∈ π(i),
π(j) ∪ {i} if j ∈ π′(i), and
π(j) otherwise.

We write π
i−→ π′ to denote a single-agent deviation performed by agent i transforming

partition π to partition π′.
We consider myopic agents whose rationale is to only engage in a deviation if it immediately

makes them better off. A Nash deviation is a single-agent deviation performed by agent i

making her better off, i.e., π′(i) ≻i π(i). Any partition in which no Nash deviation is possible
is said to be Nash-stable (NS).

Following [10], we introduce consent-based stability concepts via favor sets. Let C ⊆ N

be a coalition and i ∈ N an agent. The favor-in set of C with respect to i is the set of
agents in C (excluding i) that strictly favor having i inside C rather than outside, i.e.,
Fin(C, i) = {j ∈ C \ {i} : C ∪ {i} ≻j C \ {i}}. The favor-out set of C with respect to i is the
set of agents in C (excluding i) that strictly favor having i outside C rather than inside, i.e.,
Fout(C, i) = {j ∈ C \ {i} : C \ {i} ≻j C ∪ {i}}.

An individual deviation (or contractual deviation) is a Nash deviation π
i−→ π′ such that

Fout(π′(i), i) = ∅ (or Fin(π(i), i) = ∅). Then, a partition is said to be individually stable (IS)
or contractually Nash-stable (CNS) if it allows for no individual or contractual deviation,
respectively. A related weakening of both stability concepts is contractual individual stability
(CIS), based on deviations that are both individual and contractual deviations [8, 17].

Finally, we define hybrid stability concepts according to [10] where the consent of the
abandoned or welcoming coalition is decided by a majority vote. A Nash deviation π

i−→ π′ is
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Nash Stability

Majority-Out Stability

Majority-In Stability

Contractual Nash Stability

Individual Stability

Contractual Individual Stability

Figure 1 Logical relationships between stability notions. An arrow from concept S to concept
S′ indicates that if a partition satisfies S, it also satisfies S′. Conversely, this means that every S′

deviation is also an S deviation.

called a majority-in deviation (or majority-out deviation) if |Fin(π′(i), i)| ≥ |Fout(π′(i), i)|
(or |Fout(π(i), i)| ≥ |Fin(π(i), i)|). Similar to before, a partition is said to be majority-in
stable (MIS) or majority-out stable (MOS) if it allows for no majority-in or majority-out
deviation, respectively. The concepts MIS and MOS are special cases of the voting-based
stability notions by Gairing and Savani [21] for a threshold of 1/2. Brandt et al. [10] also
consider stability concepts that require voting-based consent by both the abandoned and
welcoming coalition, similar to CIS.

For a stability concept S ∈ {NS, IS, CNS, MIS, MOS}, we denote the deviation corre-
sponding to S as S deviation, e.g., CNS deviation for a contractual deviation. A taxonomy
of our related solution concepts is provided in Figure 1.

3 Contractual Nash Stability

Our first result settles the computational complexity of contractual Nash stability in ASHGs.
All of our reductions in this and the subsequent sections are from the NP-complete problem
Exact3Cover (E3C) [25]. An instance of E3C consists of a tuple (R, S), where R is a
ground set together with a set S of 3-element subsets of R. A Yes-instance is an instance
such that there exists a subset S′ ⊆ S that partitions R.

Before giving the complete proof, we briefly describe the key ideas. Given an instance
(R, S) of E3C, the reduced instance consists of three types of gadgets. First, every element in
R is represented by a subgame that does not contain a CNS partition. In principle, any such
game can be used for a reduction, and we use the game identified by Sung and Dimitrov [28].
Moreover, we have further auxiliary gadgets that also consist of the same No-instance. The
number of these auxiliary gadgets is equal to the number of sets in S that would remain after
removing an exact cover of R, i.e., there are |S| − |R|/3 such gadgets. By design, the agents
in the subgames corresponding to No-instances have to form coalitions with agents outside
of their subgame in every CNS partition. The only agents that can achieve this are agents in
gadgets corresponding to elements in S. A gadget corresponding to an element s ∈ S can
either prevent non-stability caused by exactly one auxiliary gadget, or by the three gadgets
corresponding to the elements r ∈ R with r ∈ s. Hence, the only possibility to deal with all
No-instances simultaneously is if there exists an exact cover of R by sets in S. Then, the
gadgets corresponding to elements in R can be dealt with by the cover and there are just
enough elements in S to additionally deal with the other auxiliary gadgets.

▶ Theorem 1. Deciding whether an ASHG contains a CNS partition is NP-complete.

Proof. We provide a reduction from E3C. Let (R, S) be an instance of E3C and set a =
|S|− |R|/3 (this is the number of additional sets in S if removing some exact cover). Without

MFCS 2022
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Figure 2 Schematic of the reduction from the proof of Theorem 1. We depict the reduced instance
for the instance (R, S) of E3C where R = {a, b, c, d, e, f}, and S = {s, t, u}, with s = {a, b, c},
t = {b, c, d}, and u = {d, e, f}. Fully drawn edges mean a positive utility, which is usually 1 except
between agents of the types s̄r and sr, where vs̄r (sr) = 3. Dashed edges represent a utility of 0. For
agents in N̄S , only the single positive utility is displayed. Other omitted edges represent a negative
utility of −4.

loss of generality, a ≥ 0. We define an ASHG (N, v) as follows. Let N = NR ∪ NS ∪ N̄S ∪ NA

where
NR = ∪r∈RNr with Nr = {ri : i ∈ [4]} for r ∈ R,
NS = ∪s∈SNs with Ns = {sr : r ∈ s} for s ∈ S,
N̄S = ∪s∈SN̄s with N̄s = {s̄r : r ∈ s} for s ∈ S, and
NA = ∪1≤j≤aN j with N j = {xj

i : i ∈ [4]} for 1 ≤ j ≤ a.

We define valuations v as follows:
For each r ∈ R, i ∈ [3]: vri

(r4) = 1.
For each r ∈ R, (i, j) ∈ (1, 2), (2, 3), (3, 1): vri(rj) = 0.
For each 1 ≤ j ≤ a, i ∈ [3]: vxj

i
(xj

4) = 1.

For each 1 ≤ j ≤ a, (i, k) ∈ (1, 2), (2, 3), (3, 1): vxj
i
(xj

k) = 0.
For each s ∈ S, r ∈ s: vsr (r4) = 1.
For each s ∈ S, r ∈ s, 1 ≤ j ≤ a: vsr

(xj
4) = vxj

4
(sr) = 0.

For each s ∈ S, r, r′ ∈ s: vsr
(sr′) = 0.

For each s ∈ S, r, r′ ∈ s, r ̸= r′, z ∈ (NS ∪ NA) \ Ns: vs̄r (sr) = 3, vs̄r (sr′) = −2, and
vs̄r

(z) = 0.
All other valuations are −4.

An illustration of the game is given in Figure 2. The agents in NR in the reduced instance
form gadgets consisting of a subgame without CNS partition for every element in R. The
agents in NA constitute further such gadgets. The agents in NS consist of triangles for every
set in S and are the only agents who can bind agents in the gadgets in any CNS partition.
Finally, agents in N̄S avoid having agents in NS in separate coalitions to bind agents in NA.
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We claim that (R, S) is a Yes-instance if and only if (N, v) contains a CNS partition.
Suppose first that S′ ⊆ S partitions R. Consider any bijection ϕ : S \ S′ → [a]. Define a
partition π by taking the union of the following coalitions:

For every r ∈ R, i ∈ [3], form {ri}.
For s ∈ S′, r ∈ s, form {sr, r4}.
For s ∈ S \ S′, form {sr : r ∈ s} ∪ {x

ϕ(s)
4 }.

For s ∈ S, r ∈ s, form {s̄r}.
For 1 ≤ j ≤ a, i ∈ [3], form {xj

i }.

We claim that π is CNS. We will show that no agent can perform a deviation.
For r ∈ R, i ∈ [3], it holds that vri

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vri(π(r4) ∪ {ri}) = −3.
For r ∈ R, r4 is not allowed to leave her coalition.
For s ∈ S′, r ∈ s, it holds that vsr

(π) = 1 and joining any other coalition results in a
negative utility. The agent sr is in a most preferred coalition.
For s ∈ S \ S′, r ∈ s, it holds that vsr

(π) = 0 and joining any other coalition results in a
negative utility. In particular, vsr

(π(r4) ∪ {sr}) = −3.
For s ∈ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other coalition.
In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For s ∈ S \ S′, r ∈ s, the agent s̄r obtains a non-positive utility by joining any other
coalition. In particular, vs̄r (π(sr) ∪ {s̄r}) = −1.
For 1 ≤ j ≤ a, i ∈ [3], it holds that vxj

i
(π) = 0 and joining any other coalition results in

a negative utility. In particular, vxj
i
(π(xj

4) ∪ {xj
i }) = −11.

For 1 ≤ j ≤ a, xj
4 is in a best possible coalition (achieving utility 0).

Conversely, assume that (N, v) contains a CNS partition π. Define S′ = {s ∈ S : π(sr) ∩
NR ̸= ∅ for some r ∈ s}. We will show first that S′ covers all elements in R and then show
that |S′| = |R|/3.

Let r ∈ R. Then, for all i ∈ [3], π(ri) ⊆ Nr. This follows because there is no agent who
favors ri in her coalition. Therefore, she would leave any coalition with an agent outside Nr

to receive non-negative utility in a singleton coalition. Further, if there is no s ∈ S with r ∈ s

such that r4 ∈ π(rs), then π(r4) ⊆ Nr. Indeed, if r4 forms any coalition except a singleton
coalition, she will receive negative utility, and then there must exist an agent who favors her
in the coalition. Consequently, if r4 /∈ π(rs) for all s ∈ S with r ∈ s, then r4 is in a singleton
coalition, or there exists i ∈ [3] with r4 ∈ π(ri), for which we already know that π(ri) ⊆ Nr.

Assume now that π(r4) ⊆ Nr. For i, i′ ∈ [3], ri /∈ π(ri′) because then one of them would
receive a negative utility and could perform a CNS deviation to form a singleton coalition.
If {r4} ∈ π, then r1 would deviate to join her. Hence, there exists exactly one i ∈ [3] with
{ri, r4} ∈ π. Suppose without loss of generality that {r1, r4} ∈ π. But then, r3 would
perform a CNS deviation to join them, a contradiction. We can conclude that there exists
s ∈ S with r ∈ s such that r4 ∈ π(rs). Hence, s ∈ S′ and we have shown that S′ covers R.

To bound the cardinality of S′, we will show that, for every 1 ≤ j ≤ a, there exists
s ∈ S \ S′ with Ns ⊆ π(xj

4). Let therefore 1 ≤ j ≤ a and let C = π(xj
4). Similar to the

considerations about agents in Nr, we know that π(xj
i ) ⊆ Xj for i ∈ [3], and that it cannot

happen that C ⊆ Xj , and therefore C ∩ Xj = {xj
4}. In particular, there must be an agent

y ∈ N \ Xj with y ∈ C. Since no agent in C favors xj
4 to be in her coalition, we know

that vxj
4
(π) ≥ 0 and therefore C ⊆ {xj

4} ∪ NS . Let s ∈ S and r ∈ s with sr ∈ C. As we
already know that s̄r /∈ C, it must hold that Ns ⊆ C to prevent her from joining. It follows
that s /∈ S′. Since π(xj

4) ∩ π(xj′

4 ) = ∅ for 1 ≤ j′ ≤ a with j′ ≠ j, we find an injective

MFCS 2022
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mapping ϕ : [a] → S \ S′ such that, for every 1 ≤ j ≤ a, Nϕ(j) ⊆ π(xj
4). Consequently,

|S′| ≤ |S| − |ϕ([a])| ≤ |S| − a = |R|/3. Hence, S′ covers all elements from R with (at most)
|R|/3 sets and therefore is an exact cover. ◀

The reduction in the previous proof only uses a very limited number of different weights,
namely the weights in the set {1, 0, −2, −4}, where the weight −4 may be replaced by an
arbitrary smaller weight. By contrast, CNS partitions always exist if the utility functions
of an ASHG assume at most one nonpositive value, and can be computed efficiently in this
case [10, Theorem 4]. This encompasses for instance FEGs, AFGs, and AEGs. Hence, the
hardness result is close to the boundary of computational feasibility.

4 Appreciation-of-Friends Games

In this section, we consider appreciation-of-friends games. Typically, these games behave well
with respect to stability. In particular, IS, CNS, and MIS partitions always exist and can be
computed efficiently, while it is only known that NS leads to non-existence and computational
hardness among single-agent stability concepts [10, 16]. By contrast, we show in our next
result that MOS partitions need not exist in AFGs. In other words, despite their conceptual
complementarity, the stability concepts MOS and MIS lead to very different behavior in a
natural class of ASHGs. The constructed game has a sparse friendship relation in the sense
that almost all agents only have a single friend. After discussing the counterexample, we
show how requiring slightly more sparsity yields a positive result. Due to space restrictions,
some proofs are omitted or sketched.

▶ Proposition 2. There exists an AFG without an MOS partition.

Proof. We define the game formally. An illustration is given in Figure 3. Let N =
{z} ∪

⋃
x∈{a,b,c} Nx, where Nx = {xi : i ∈ [5]} for x ∈ {a, b, c}. In the whole proof, we

read indices modulo 5, mapping to the respective representative in [5]. The utilities are
given as:

For all i ∈ [5], x ∈ {a, b, c} : vxi(xi+1) = n.
For all x ∈ {a, b, c} : vx1(z) = n.
All other valuations are −1.

The AFG consists of 3 cycles with 5 agents each, together with a special agent that is liked
by a fixed agent of each cycle and has no friends herself. The key insight to understanding why
there exists no MOS partition is that agents of type x1 where x ∈ {a, b, c} have conflicting
candidate coalitions in a potential MOS partition. Either, they want to be with z (a coalition
that has to be small because z prefers to stay alone) or they want to be with x2 which
requires a rather large coalition containing their cycle.

Before going through the proof that this game has no MOS partition, it is instructional
to verify that, for cycles of 5 agents, the unique MOS partition is the grand coalition, i.e.,
the unique MOS partition of the game restricted to Nx is {Nx}, where x ∈ {a, b, c}. This is
a key idea of the construction and is implicitly shown in Case 2 of the proof for x = b.

Assume for contradiction that the defined AFG admits an MOS partition π. To derive a
contradiction, we perform a case distinction over the coalition sizes of z.

Case 1. |π(z)| = 1.
In this case, it holds that π(z) = {z}. Then, π(a1) ∈ {{a1, a2}, {a1, a5}}. Indeed, if

π(a1) ̸= {a1, a2}, then a1 has an NS deviation to join z, and is allowed to perform it
unless π(a1) = {a1, a5}. We may therefore assume that {ai, ai+1} ∈ π for some i ∈ {1, 5}.
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z

a2 a5

a3 a4

b2 b5

b3 b4

c2 c5

c3 c4

b1
a1 c1

Figure 3 AFG without an MOS partition. The depicted (directed) edges represent friends, i.e., a
utility of n, whereas missing edges represent a utility of −1.

Then, π(ai−1) = {ai−1, ai−2} =: C. Otherwise, ai−1 can perform an MOS deviation to join
{ai, ai+1}. But then ai+2 can perform an MOS deviation to join C. This is a contradiction
and concludes the case that |π(z)| = 1.

Case 2. |π(z)| > 1.
Let F := {a1, b1, c1}, i.e., the set of agents that have z as a friend. Note that z can

perform an NS deviation to be a singleton. Hence, as π is MOS, |F ∩ π(v)| ≥ |π(z)|/2. In
particular, there exists an x ∈ {a, b, c} with π(z) ∩ Nx = {x1}. We may assume without
loss of generality that π(z) ∩ Na = {a1}. Then, π(a5) = {a4, a5}. Otherwise, a5 has an
MOS deviation to join π(z). Similarly, π(a3) = {a2, a3} (because of the potential deviation
of a3 who would like to join {a4, a5}). Now, note that va1({a1, a2, a3}) = n − 1. We can
conclude that |π(z)| ≤ 3 as a1 would join {a2, a3} by an MOS deviation, otherwise. Hence,
we find x ∈ {b, c} with Nx ∩ π(z) = ∅. Assume without loss of generality that x = b has this
property.

Assume first that π(b1) = {b1, b5}. Then, π(b4) = {b3, b4}. Otherwise, b4 has an MOS
deviation to join {b1, b5}. But then b2 has an MOS deviation to join {b3, b4}, a contradiction.
Hence, π(b1) ̸= {b1, b5}. Note that we have now excluded the only case where b1 is not
allowed to perform an NS deviation. In all other cases, no majority of agents prefers her to
stay in the coalition. We can conclude that b2 ∈ π(b1) because otherwise, b1 can perform
an MOS deviation to join π(z). If b5 /∈ π(b1), then π(b5) = {b4, b5} (to prevent a potential
deviation by b5). But then b3 has an MOS deviation to join them. Hence, b5 ∈ π(b1).
Similarly, if b4 /∈ π(b1), then π(b4) = {b3, b4} and b2 has an MOS deviation to join {b3, b4}
(which is permissible because b5 ∈ π(b1)). Hence {b1, b2, b4, b5} ⊆ π(b1), and therefore even
Nb ⊆ π(b1). Hence, b1 has an MOS deviation to join π(v) (recall that |π(v)| ≤ 3). This is
the final contradiction, and we can conclude that π is not MOS. ◀

Note that most agents in the previous example have at most 1 friend (only three agents
have 2 friends). By contrast, if every agent has at most one friend, MOS partitions are
guaranteed to exist. This is interesting because it covers in particular directed cycles, which
cause problems for Nash stability. The constructive proof of the following proposition can be
directly converted into a polynomial-time algorithm.

▶ Proposition 3. Every AFG where every agent has at most one friend admits an MOS
partition.

Proof. We prove the statement by induction over n. Clearly, the grand coalition is MOS for
n = 1. Now, assume that (N, v) is an AFG with n ≥ 2 such that every agent has at most
one friend. Consider the underlying directed graph G = (N, A) where (x, y) ∈ A if and only
if vx(y) > 0, i.e., y is a friend of x. By assumption, G has a maximum out-degree of 1, hence
it can be decomposed into directed cycles and a directed acyclic graph.
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Assume first that there exists C ⊆ N such that C induces a directed cycle in G. We call
an agent y reachable by agent x if there exists a directed path in G from x to y. Let c ∈ C

and define R = {x ∈ N : c reachable by x}. Note that C ⊆ R and that R is identical to the
set of agents that can reach any agent in C. By induction, there exists an MOS partition π′

of the subgame of (N, v) induced by N \ R that is MOS. Define π = π′ ∪ {R}. We claim
that π is MOS. Let x ∈ N \ R. By our assumptions on π′, there exists no MOS deviation of
x to join π(y) for y ∈ N \ R. In particular, if x is allowed to perform a deviation, then x

must have a non-negative utility (otherwise, she can form a singleton coalition contradicting
that π′ is MOS). So her only potential deviations are to a coalition where she has a friend.
Note that x has no friend in R. Indeed, if y was a friend of x in R, then c is reachable for x

in G through the concatenation of (x, y) and the path from y to c. Hence, x has no MOS
deviation. Now, let x ∈ R. Then, vx(π) > 0 because she forms a coalition with her unique
friend. By assumption, x has no friend in any other coalition. Therefore, x has no MOS
deviation either.

We may therefore assume that G is a directed acyclic graph. Hence, there exists an
agent x ∈ N with in-degree 0. If x has no friend, let T = {x}. If x has a friend y, we
claim that there exists an agent w such that (i) w is the friend of at least one agent and
(ii) every agent that has w as a friend has in-degree 0, i.e., such agents are not the friend
of any agent. We provide a simple linear-time algorithm that finds such an agent. We will
maintain a tentative agent w that will continuously fulfill (i) and update w until this agent
also fulfills (ii). Start with w = y. Note that this agent w fulfills (i) because y is a friend of x.
If w is the friend of some agent z that is herself the friend of some other agent, update w = z.
For the finiteness (and efficient computability) of this procedure, consider a topological order
σ of the agents N in the directed acyclic graph G [24], i.e., a function σ : N → [n] such that
σ(a) < σ(b) whenever (a, b) ∈ A. Note that if w is replaced by the agent z in the procedure,
then σ(z) < σ(w). Hence, w is replaced at most n times, and our procedure finds the desired
agent w after a linear number of steps. Now, define T = {a ∈ N : w reachable by a}, i.e., T

contains precisely w and all agents that have w as a friend.
We are ready to find the MOS partition. By induction, we find a partition π′ that is

MOS for the subgame induced by N \ T . Consider π = π′ ∪ {T}. Then, a ∈ T \ {w} has no
incentive to deviate, because she has no friend in any other coalition and has w as a friend.
Also, w is not allowed to perform a deviation, because the non-empty set of agents T \ {w}
unanimously prevents that. Possible deviations by agents in N \ T can be excluded as in the
first part of the proof because these agents have no friend in T . Together, we have completed
the induction step and found an MOS partition. ◀

On the other hand, it is NP-complete to decide whether an AFG contains an MOS
partition. For a proof, we use the game constructed in Proposition 2 as a gadget in a greater
game. The difficulty is to preserve bad properties about the existence of MOS partitions
because the larger game might allow for new possibilities to create coalitions with the agents
in the counterexample.

▶ Theorem 4. Deciding whether an AFG contains an MOS partition is NP-complete.

5 Friends-and-Enemies Games

Friends-and-enemies games always contain efficiently computable stable coalition structures
with respect to the unanimity-based stability concepts IS and CNS [10]. In this section, we
will see that the transition to majority-based consent crosses the boundary of tractability.
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a0a1a2a3a4

b0b1b2b3b4

c0c1c2c3c4

d0d1d2d3d4

z1

z2

z3

Figure 4 FEG without an MOS partition. The depicted (directed) edges represent friends. The
double arrow means that every agent to the left of the tail of the arrow has every agent below the
arrow as a friend.

The closeness to this boundary is also emphasized by the fact that it is surprisingly difficult
to even construct No-instances for MOS and MIS, i.e., FEGs which do not contain an MOS
or MIS partition, respectively. Indeed, the smallest such games that we can construct are
games with 23 and 183 agents, respectively. We will start by considering MOS.

▶ Proposition 5. There exists an FEG without an MOS partition.

Proof sketch. We only give a brief overview of the instance by means of the illustration in
Figure 4. The FEG consists of a triangle of agents together with 4 sets of agents whose
friendship relation is complete and transitive, together with one additional agent each that
gives a temptation for the agent of the transitive substructures with the most friends.

An important reason for the non-existence of MOS partitions is that there is a high
incentive for the transitive structures to form coalitions. This gives incentive to agents zi

to join them. If z1, z2, and z3 are in disjoint coalitions, then they would chase each other
according to their cyclic structure. If they are all in the same coalition, then agents x0 for
x ∈ {a, b, c, d} prevent the complete transitive structures to be part of this coalition and
other transitive structures are more attractive. ◀

In the previous proof, it is particularly useful to establish disjoint coalitions of groups of
agents who dislike each other. On the other hand, if we make the further assumption that one
agent from every pair of agents likes the other agent, then this does not work anymore and
the grand coalition is MOS. This condition essentially means completeness of the friendship
relation.3 Note that this proposition is not true for other stability concepts such as NS or
even IS.

▶ Proposition 6. The grand coalition is MOS in every FEG with complete friendship relation.

Proof. Let (N, v) be an FEG with complete friendship relation, and let π be the grand
coalition. We claim that π is MOS. Suppose that there is an agent x ∈ N who can perform
an NS deviation to form a singleton.

3 Technically, the friendship relation may not be reflexive, but we can set vi(i) = 1 for all i ∈ N in an
FEG to formally achieve completeness.
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Figure 5 FEG without an MIS partition. The depicted edges represent friends. Undirected edges
represent mutual friendship. For i ∈ [5], some of the edges of agents in Ai are omitted. In fact, these
agents form cliques. Also, each Ki represents a clique of 11 agents.

Then, vx(N) < 0 and therefore |{y ∈ N \ {x} : vx(y) = −1}| > {y ∈ N \ {x} : vx(y) = 1}|.
Hence,

|Fin(N, x)| ≥ |{y ∈ N \ {x} : vx(y) = −1}|
> |{y ∈ N \ {x} : vx(y) = 1}|
≥ |Fout(N, x)|.

In the first inequality, we use that x is a friend of all of her enemies. In the final inequality,
we use that x can only be an enemy of her friends. Hence, x is not allowed to perform an
MOS deviation. ◀

Still, the non-existence of MOS partitions in FEGs shown in Proposition 5 can be leveraged
to prove an intractability result. Interestingly, in contrast to the proofs of Theorem 1 and
Theorem 4, the next theorem merely uses the existence of an FEG without an MOS partition
to design a gadget and does not exploit the specific structure of a known counterexample.

▶ Theorem 7. Deciding whether an FEG contains an MOS partition is NP-complete.

In our next result, we construct an FEG without an MIS partition. Despite a lot of
structure, the game is quite large encompassing 183 agents.

▶ Proposition 8. There exists an FEG without an MIS partition.

Proof sketch. We illustrate the example with the aid of Figure 5 and briefly discuss some
key features. Again, the central element is a directed cycle of three agents. These agents are
connected to five copies of the same gadget. This gadget consists of a main clique {a0

i , . . . , a9
i }

of 10 mutual friends and further cliques that cause certain temptations for agents in the
main clique. Cliques are linked by agents that have an incentive to be part of two cliques,
which are part of disjoint coalitions. Since it is possible to balance all diametric temptations,
the instance does not admit an MIS partition. ◀
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Similar to Proposition 6, it is easy to see that the singleton partition is MIS in every
FEG with complete enemy relation. Indeed, then an agent either has no incentive to join
another agent, or the other agent will deny her consent. Hence, MIS can also prevent typical
run-and-chase games which do not admit NS partitions. We are ready to prove hardness of
deciding on the existence of MIS partitions in FEGs.

▶ Theorem 9. Deciding whether an FEG contains an MIS partition is NP-complete.

6 Discussion and Conclusion

We have investigated single-agent stability in additively separable hedonic games. Our main
results determine strong boundaries to the efficient computability of stable partitions. Table 1
provides a complete picture of the computational complexity of all considered stability notions
and subclasses of ASHGs, where our results close all remaining open problems. First, we
resolve the computational complexity of computing CNS partitions, which considers the last
open unanimity-based stability notion in unrestricted ASHGs. The derived hardness result
stands in contrast to positive results when considering appropriate subclasses such as FEGs,
AEGs, or AFGs [10]. Second, our intractability concerning AFGs stands in contrast to known
positive results for all other consent-based stability notions, and can also be circumvented
by considering AFGs with a sparse friendship relation. Finally, we provide sophisticated
hardness proofs for majority-based stability concepts in FEGs. These turn into computational
feasibilities when transitioning to unanimity-based stability, or under further assumptions to
the structure of the friendship graph.

A key step of all hardness results in restricted classes of ASHGs was to construct the first
No-instances, that is, games that do not admit stable partitions for the respective stability
notion. This is no trivial task as can be seen from the complexity of the constructed games.
Once No-instances are found, we can leverage them as gadgets of hardness reductions, which
is a typical approach for complexity results about hedonic games. We have provided both
reductions where the explicit structure of the determined No-instances is used as well as
reductions where the mere existence of No-instances is sufficient and used as a black box.

Our results complete the picture of the computational complexity for all considered
stability notions and game classes. Still, majority-based stability notions deserve further
attention because they offer a natural degree of consent to perform deviations. Their thorough
investigation in other classes of hedonic games might lead to intriguing discoveries.

Table 1 Overview of the computational complexity of single-agent stability concepts in different
classes of ASHGs. The NP-completeness results concern deciding on the existence of a stable partition.
Membership in Function-P means that the search problem of constructing a stable partition can be
solved in polynomial time.

ASHG Unrestricted Friends-and-enemies games Appreciation-of-friends games
NS NP-complete [29] NP-complete [10] NP-complete [10]
IS NP-complete [29] Function-P [10] Function-P [16]
CNS NP-complete (Th. 1) Function-P [10] Function-P [10]
MIS NP-complete [10] NP-complete (Th. 9) Function-P [10]
MOS NP-complete [10] NP-complete (Th. 7) NP-complete (Th. 4)
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