
RAC Drawings of Graphs with Low Degree
Patrizio Angelini !

John Cabot University, Rome, Italy

Michael A. Bekos !

Department of Mathematics, University of Ioannina, Ioannina, Greece

Julia Katheder !

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany

Michael Kaufmann !

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany

Maximilian Pfister !

Wilhelm-Schickard-Institut für Informatik, Universität Tübingen, Tübingen, Germany

Abstract
Motivated by cognitive experiments providing evidence that large crossing-angles do not impair the
readability of a graph drawing, RAC (Right Angle Crossing) drawings were introduced to address
the problem of producing readable representations of non-planar graphs by supporting the optimal
case in which all crossings form 90◦ angles.

In this work, we make progress on the problem of finding RAC drawings of graphs of low degree.
In this context, a long-standing open question asks whether all degree-3 graphs admit straight-line
RAC drawings. This question has been positively answered for the Hamiltonian degree-3 graphs.
We improve on this result by extending to the class of 3-edge-colorable degree-3 graphs. When
each edge is allowed to have one bend, we prove that degree-4 graphs admit such RAC drawings, a
result which was previously known only for degree-3 graphs. Finally, we show that 7-edge-colorable
degree-7 graphs admit RAC drawings with two bends per edge. This improves over the previous
result on degree-6 graphs.

2012 ACM Subject Classification Theory of computation → Computational geometry; Mathematics
of computing → Graph algorithms

Keywords and phrases Graph Drawing, RAC graphs, Straight-line and bent drawings

Digital Object Identifier 10.4230/LIPIcs.MFCS.2022.11

Related Version Full Version: https://arxiv.org/abs/2206.14909

1 Introduction

In the literature, there is a wealth of approaches to draw planar graphs. Early results date
back to Fáry’s theorem [22], which guarantees the existence of a planar straight-line drawing
for every planar graph; see also [9, 30, 31, 33, 34]. Over the years, several breakthrough
results have been proposed, e.g., de Fraysseix, Pach and Pollack [11] in the late 80’s devised
a linear-time algorithm [10] that additionally guarantees the obtained drawings to be on an
integer grid of quadratic size (thus making high-precision arithmetics of previous approaches
unnecessary). Planar graph drawings have also been extensively studied in the presence of
bends. Here, a fundamental result is by Tamassia [32] in the context of orthogonal graph
drawings, i.e., drawings in which edges are axis-aligned polylines. In his seminal paper,
Tamassia suggested an approach, called topology-shape-metrics, to minimize the number of
bends of degree-4 plane graphs using flows. For a complete introduction, see [12].

When the input graph is non-planar, however, the available approaches that yield
aesthetically pleasing drawings are significantly fewer. The main obstacle here is that the
presence of edge-crossings negatively affects the drawing’s quality [28] and, on the other hand,

© Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian Pfister;
licensed under Creative Commons License CC-BY 4.0

47th International Symposium on Mathematical Foundations of Computer Science (MFCS 2022).
Editors: Stefan Szeider, Robert Ganian, and Alexandra Silva; Article No. 11; pp. 11:1–11:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pangelini@johncabot.edu
https://orcid.org/0000-0002-7602-1524
mailto:bekos@uoi.gr
https://orcid.org/0000-0002-3414-7444
mailto:julia.katheder@uni-tuebingen.de
https://orcid.org/0000-0002-7545-0730
mailto:mk@informatik.uni-tuebingen.de
https://orcid.org/0000-0001-9186-3538
mailto:maximilian.pfister@uni-tuebingen.de
https://orcid.org/0000-0002-7203-0669
https://doi.org/10.4230/LIPIcs.MFCS.2022.11
https://arxiv.org/abs/2206.14909
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


11:2 RAC Drawings of Graphs with Low Degree

their minimization turns out to be a computationally difficult problem [23]. In an attempt to
overcome these issues, a decade ago, Huang et al. [26] made a crucial observation that gave
rise to a new line of research (currently recognized under the term “beyond planarity” [25]):
edge crossings do not negatively affect the quality of the drawing too much (and hence the
human’s ability to read and interpret it), if the angles formed at the crossing points are large.
Thus, the focus moved naturally to non-planar graphs and their properties, when different
restrictions on the type of edge-crossings are imposed; see [19] for an overview.

Among the many different classes of graphs studied as part of this emerging line of
research, one of the most studied ones is the class of right-angle-crossing graphs (or RAC
graphs, for short); see [14] for a survey. These graphs were introduced by Didimo, Eades
and Liotta [15, 17] back in 2009 as those admitting straight-line drawings in which the
angles formed at the crossings are all 90◦. Most notably, these graphs are optimal in terms
of the crossing angles, which makes them more readable according to the observation by
Huang et al. [26]; moreover, RAC drawings form a natural generalization of orthogonal graph
drawings [32], as any crossing between two axis-aligned polylines trivially yields 90◦ angles.

In the same work [15, 17], Didimo, Eades and Liotta proved that every n-vertex RAC
graph is sparse, as it can contain at most 4n − 10 edges, while in a follow-up work [16] they
observed that not all degree-4 graphs are RAC. This gives rise to the following question which
has also been independently posed in several subsequent works (see e.g., [3], [18, Problem 6],
[14, Problem 9.5], [19, Problem 8]) and arguably forms the most intriguing open problem in
the area, as it remains unanswered since more than one decade.

▶ Question 1. Does every graph with degree at most 3 admit a straight-line RAC drawing?

The most relevant result that is known stems from the related problem of simultaneously
embedding two or more graphs on the Euclidean plane, such that the crossings between
different graphs form 90◦ angles. In this setting, Argyriou et al. [4] showed that a cycle and
a matching always admit such an embedding, which implies that every Hamiltonian degree-3
graph is RAC.

Finally, note that recognizing RAC graphs is hard in the existential theory of the reals [29],
which also implies that RAC drawings may require double-exponential area, in contrast to
the quadratic area requirement for planar graphs [11].

RAC graphs have also been studied by relaxing the requirement that the edges are
straight-line segments, giving rise to the class of k-bend RAC graphs (see, e.g, [1, 6, 7, 8, 13]),
i.e., those admitting drawings with at most k bends per edge and crossings at 90◦ angles.
It is known that every degree-3 graph is 1-bend RAC and every degree-6 graph is 2-bend
RAC [3]. While the flexibility guaranteed by the presence of one or two bends on each edge
is not enough to obtain a RAC drawing for every graph (in fact, 1- and 2-bend RAC graphs
with n vertices have at most 5.5n − O(1) and 72n − O(1) edges, respectively [1, 6]), it is
known that every graph is 3-bend RAC [13] and fits on a grid of cubic size [21].

Our contribution. We provide several improvements to the state of the art concerning RAC
graphs with low degree. In particular, we make an important step towards answering Ques-
tion 1 by proving that 3-edge-colorable degree-3 graphs are RAC (Theorem 3). This result
applies to Hamiltonian 3-regular graphs, to bipartite 3-regular graphs and, with some minor
modifications to our approach, to all Hamiltonian degree-3 graphs, thus extending the result
in [4]. As a further step towards answering Question 1, we prove that bridgeless 3-regular
graphs with oddness at most 2 are RAC (Theorem 8). If their oddness is k, we provide an
algorithm to construct a 1-bend RAC drawing where at most k edges have a bend(Theorem 9).



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:3

We then focus on RAC drawings with one or two bends per edge. Namely, we prove that
all degree-4 graphs admit 1-bend RAC drawings and all 7-edge-colorable degree-7 graphs
admit 2-bend RAC drawings (Theorems 10 and 12), which form non-trivial improvements
over the state of the art, as the existence of such drawings was previously known only for
degree-3 and degree-6 graphs [3]. Due to space constraints, proofs of statements marked
with (∗) can be found in [2].

2 Preliminaries

Let G = (V, E) be a graph. W.l.o.g. we assume that G is connected, as otherwise we
apply our drawing algorithms to each component of G separately. G is called degree-k if the
maximum degree of G is k. G is called k-regular if the degree of each vertex of G is exactly
k. A 2-factor of an undirected graph G = (V, E) is a spanning subgraph of G consisting of
vertex disjoint cycles. Let F be a 2-factor of G and let ≺ be a total order of the vertices such
that the vertices of each cycle C ∈ F appear consecutive in ≺ according to some traversal of
C. In other words, every two vertices that are adjacent in C are consecutive in ≺ except for
two particular vertices, which are the first and the last vertices of C in ≺. We call the edge
between these two vertices the closing edge of C. By definition, ≺ also induces a total order
of the cycles of F . Let {u, v} be an edge in E \ F and let C and C ′ be the cycles of F that
contain u and v, respectively. If C = C ′, then {u, v} is a chord of C. Otherwise, C ̸= C ′. If
u ≺ v, {u, v} is called a forward edge of u and a backward edge of v. The following theorem
provides a tool to partition the edges of a bounded degree graph into 2-factors [27].

▶ Theorem 2 (Eades, Symvonis, Whitesides [20]). Let G = (V, E) be an n-vertex undirected
graph of degree ∆ and let d = ⌈∆/2⌉. Then, there exists a directed multi-graph G′ = (V, E′)
with the following properties:
1. each vertex of G′ has indegree d and outdegree d;
2. G is a subgraph of the underlying undirected graph of G′; and
3. the edges of G′ can be partitioned into d edge-disjoint directed 2-factors.

Furthermore, the directed graph G′ and the d 2-factors can be computed in O(∆2n) time.

Let Γ be a polyline drawing of G such that the vertices and edge-bends lie on grid points.
The area of Γ is determined by the smallest enclosing rectangle. Let {u, v} be an edge in Γ.
We say that {u, v} is using an orthogonal port at u if the edge-segment su of {u, v} that is
incident to u is either horizontal or vertical; otherwise it is using an oblique port at u. We
denote the orthogonal ports at u by N , E, S and W , if su is above, to the right, below or to
the left of u, respectively. If no edge is using a specific orthogonal port, we say that this port
is free.

3 RAC drawings of 3-edge-colorable degree-3 graphs

In this section, we prove that 3-edge-colorable degree-3 graphs admit RAC drawings of
quadratic area, which can be computed in linear time assuming that the edge coloring is
given (testing the existence of such a coloring is NP-complete even for 3-regular graphs [24]).

▶ Theorem 3. Given a 3-edge-colorable degree-3 graph G with n vertices and a 3-edge-coloring
of G, it is possible to compute in O(n) time a RAC drawing of G with O(n2) area.

We assume w.l.o.g. that G does not contain degree-1 vertices, as otherwise we can replace
each such vertex with a 3-cycle while maintaining the 3-edge-colorability of the graph and
without asymptotically increasing the size of the graph. Since G is 3-edge-colorable, it can be

MFCS 2022



11:4 RAC Drawings of Graphs with Low Degree

(a) G

c5

c4

c1

c3

c2

(b) c1, . . . , c5

c1 c4 c5

c2 c3

(c) H

Figure 1 (a) A non-planar, non-Hamiltonian, 3-edge-colorable degree-3 example graph G. The
matching M1 is drawn with blue dashed lines, M2 with red solid lines and M3 with green dotted
lines. (b) The components c1, c2 and c3 of the subgraph Hy induced by M1 ∪ M2 (shaded in blue)
and the components c4 and c5 of Hx induced by M2 ∪ M3 (shaded in green). (c) The auxiliary graph
H in which the components of Hy and Hx sharing at least one vertex are connected by an edge. In
this example, the BFS traversal of the components of H is c1, c2, c3, c4, c5.

decomposed into three matchings M1, M2 and M3. In the produced RAC drawing, the edges
in M1 will be drawn horizontal, those in M3 vertical, while those in M2 will be crossing-free,
not maintaining a particular slope. Let Hy and Hx be two subgraphs of G induced by
M1 ∪ M2 and M2 ∪ M3, respectively. Since every vertex of G has at least two incident edges,
which belong to different matchings, each of Hy and Hx spans all vertices of G. Further, any
connected component in Hy or Hx is either a path or an even-length cycle, as both Hy and
Hx are degree-2 graphs alternating between edges of different matchings.

We define an auxiliary bipartite graph H, whose first (second) part has a vertex for each
connected component in Hy (Hx), and there is an edge between two vertices if and only if
the corresponding components share at least one vertex; see Fig. 1.

▶ Property 4. The auxiliary graph H is connected.

Proof. Suppose for a contradiction that H is not connected. Let vc and vc′ be two vertices of
H that are in different connected components of H. By definition of H, vc and vc′ correspond
to connected components c and c′, respectively, of Hy or Hx. W.l.o.g. assume that c belongs
to Hy. Let u0 and uk be two vertices of G that belong to c and c′, respectively. Since G is
connected, there is a path P = (u0, u1, u2, . . . uk) between u0 and uk in G, such that no two
consecutive edges in P belong to the same matching. Let (ui, ui+1) be the first edge of P

from u0 to uk that belongs to M3, which exists since c ≠ c′. By construction, this implies
that ui belongs to c and to another component c∗ of Hx. By definition of H, vc and vc∗ are
connected in H, where vc∗ is the corresponding vertex of c∗ in H. Repeating this argument
until uk is reached yields a path in H from vc to vc′ , a contradiction. ◀

We now define two total orders ≺y and ≺x of the vertices of G, which will then be used
to assign their y- and x-coordinates, respectively, in the final RAC drawing of G. Since we
seek to draw the edges of M1 (M3) horizontal (vertical), we require that the endvertices of
any edge in M1 (M3) are consecutive in ≺y (≺x, respectively). Moreover, for the edges of
M2, we guarantee some properties that will allow us to draw them without crossings.

To construct ≺y and ≺x, we process the components of Hy and Hx according to a certain
BFS traversal of H and for each visited component of Hy (Hx), we append all its vertices to
≺y (≺x) in a certain order.

To select the first vertex of the BFS traversal of H, we consider a vertex u of G belonging
to two components c and c′ of Hy and Hx, respectively, such that u is the endpoint of c if c

is a path; if c is a cycle, we do not impose any constraints on the choice of u. We refer to



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:5

vertex u as the origin vertex of G. Also, let vc and vc′ be the vertices of H corresponding to
c and c′, respectively. By definition of H, vc and vc′ are adjacent in H. We start our BFS
traversal of H at vc and then we move to vc′ in the second step (note that this choice is not
needed for the definition of ≺y and ≺x, but it guarantees a structural property that will be
useful later). From this point on, we continue the BFS traversal to the remaining vertices of
H without further restrictions. In the following, we describe how to process the components
of Hy and Hx in order to guarantee an important property (see Property 5)

Let c be the component of Hy or Hx corresponding to the currently visited vertex in the
traversal of H. Since H is bipartite, no other component of Hy (Hx) shares a vertex with c,
if c belongs to Hy (Hx). Hence, no vertex of c already appears in ≺y (≺x).

If c is a path, then we append the vertices of c to ≺y or ≺x in the natural order defined
by a walk from one of its endvertices to the other. Note that if c is the first component in
the BFS traversal of H, one of these endvertices is by definition the origin vertex of G, which
we choose to start the walk. Hence, in the following we focus on the case that c is a cycle. In
this case, the vertices of c will also be appended to ≺y or ≺x in the natural order defined by
some specific walk of c, such that the so-called closing edge connecting the first and the last
vertex of c in this order belongs to M2. Note that an edge might be closing in both orders
≺y and ≺x.

Suppose first that c ∈ Hy. If c is the first component in the BFS traversal of H, then we
append the vertices of c to ≺y in the order that they appear in the cyclic walk of c starting
from the origin vertex of G and following the edge of M1 incident to it. Otherwise, let v be
the first vertex of c in ≺x, which is well defined since there is at least one vertex of c that is
part of ≺x, namely, the one that is shared with its parent. We append the vertices of c to
≺y in the order that they appear in the cyclic walk of c starting from v and following the
edge of M1 incident to v. Hence, v is the first vertex of c in both ≺y and ≺x. In both cases,
it follows that the closing edge of c belongs to M2.

Suppose now that c ∈ Hx, which implies that c is not the first component in the BFS
traversal of H. Let v be the first vertex of c in ≺y, which is again well defined since there is
at least one vertex of c that is part of ≺y. We append the vertices of c to ≺x in the inverse
order that they appear in the cyclic walk of c starting from v and following the edge (v, w)
of M3 incident to v (or equivalently, in the order they appear in the cyclic walk of c starting
from the neighbor of v different from w and ending at v). Hence, v is the first vertex of c in
≺y and the last vertex of c in ≺x. Also in this case, the closing edge of c belongs to M2. See
Fig. 2 for an illustration. Note that the closing edge of a component c is contained inside
the parent component of c is the BFS traversal. Moreover, by construction, the following
property holds.

▶ Property 5. The endvertices of any edge in M1 (M3) are consecutive in ≺y (≺x). The
endvertices of any edge in M2 are consecutive in ≺y (≺x) unless this edge is a closing edge
in a component of Hy (of Hx).

Computing the vertex coordinates. We use ≺y and ≺x to specify the y- and the x-
coordinates of the vertices, respectively. To do so, we iterate through ≺y and set the
y-coordinate of its first vertex to 1. Let v be the next vertex in the iteration and let u be its
predecessor in ≺y. Assume that the y-coordinate of u is i. If (u, v) ∈ M1, we set the same
y-coordinate i to v. Otherwise, either u and v belong to two different components of Hy or
(u, v) ∈ M2 and we set the y-coordinate i + 1 to v. Similarly, we iterate through ≺x and set
the x-coordinate of its first vertex to 1. Let v be the next vertex in the iteration and let
u be its predecessor in ≺x. Assume that the x-coordinate of u is i. If (u, v) ∈ M3, we set

MFCS 2022



11:6 RAC Drawings of Graphs with Low Degree

1

2 3

4

5

6

97

810

11

12

13

(a)

8

1

2

3

4

5

6

7

9

10

11

12

13

(b)

1

2
3

4

5

6
7

8

9

10

11

12

13

2

7
10

12

6
5

1
3

9

8

13

4

11

(c)

Figure 2 The total orders (a) ≺y for Hy that consists of the blue and red edges, and (b) ≺x for
Hx that consists of the green and red edges. The final drawing of G is shown in (c).

the x-coordinate of v to i. Otherwise, either u and v belong to two different components of
Hx or (u, v) ∈ M2 and we set the x-coordinate i + 1 to v. Hence, no two vertices share the
same x- and y-coordinates. We next show that the computed vertex coordinates induce a
straight-line RAC drawing Γ of G with the possible exception of the edge of M2 incident to
the origin vertex of G, since this edge would be a closing edge for both c and c′ and hence
by Property 5 its endpoints would be consecutive in neither ≺y nor ≺x. If this edge exists,
we denote it by e∗, while the graph G \ e∗ and its drawing in Γ are denoted by G∗ and Γ∗,
respectively.

▶ Lemma 6. Let e be an edge of G∗. Then, e is drawn horizontally in Γ∗ if e ∈ M1; vertically
in Γ∗ if e ∈ M3 and crossing-free in Γ∗ if e ∈ M2.

Proof. If e ∈ M1 or e ∈ M3, the statement follows from Property 5 and the computed vertex
coordinates. Hence, let e = (u, v) be an edge of M2 and let cy ∈ Hy and cx ∈ Hx be the two
components of H containing e. Suppose to the contrary that there is an edge e′ = (u′, v′)
crossing e. If e′ ∈ M1, then both u′ and v′ belong to the same component c′

y ∈ Hy. If c′
y ̸= cy,

then e′ cannot cross e as the vertices of cy and c′
y span different intervals of y-coordinates,

hence e′ belongs to cy. Similarly, if e′ ∈ M3, then e′ belongs to cx. Finally, if e′ ∈ M2, then u′

and v′ belong to the same component in both Hy and Hx; thus e′ belongs to both cy and cx.

1. Edge e is a closing edge for neither cy nor cx: The vertices u and v are consecutive in
both ≺y and ≺x by Property 5. Hence, both their x- and y-coordinate differ by exactly
one by construction. Since all vertices have integer coordinates, no horizontal or vertical
edge is crossing e, hence e′ ∈ M2. Observe that since the y- (the x-) coordinate of the
vertices in cy (in cx) are non-decreasing along the walk defining its order in ≺y (in ≺x),
no crossing between e and e′ can occur if e′ is not a closing edge of cy or cx, which will
be covered in the next cases (by swapping the roles of e and e′).

2. Edge e is a closing edge for cy but not for cx: Note that cy is not the first component in
the BFS traversal, since the closing edge of this component is e∗. Further, u and v are
consecutive in ≺x, but not in ≺y. We assume that u directly precedes v in ≺x, which
implies that u is the first vertex of cy in ≺y, while v is the last. It follows that their
x-coordinates differ by exactly one, hence e′ cannot belong to M3. If e′ belongs to M1,
then one of u′ or v′, say u′, has x-coordinate smaller or equal to the one of u. Since u

and v are consecutive in ≺x, we have necessarily that u′ precedes u in ≺x, which is a
contradiction to the choice of u since both u′ and v′ belong to cy. In fact, u was chosen
as the starting point of the walk, when considering cy, as the first vertex of cy in ≺x,
hence e′ ∈ M2. Since both endpoints of e′ belong to both cy and cx, then one of u′ or v′,



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:7

say u′, has x-coordinate smaller or equal to the one of u. Since u and v are consecutive
in ≺x, we have necessarily that u′ ≺x u, which is a contradiction to the choice of u since
both u′ and v′ belong to cy.

3. Edge e is a closing edge for cx but not for cy: This case is analogous to the previous one.
4. Edge e is a closing edge for both cy and cx: Observe that neither cy nor cx is the first

component in the BFS traversal of H, since e∗ is the closing edge of this component,
which is not part of G∗. Recall that by definition, the vertices vcy

and vcx
corresponding

to cy and cx in H are adjacent. Assume that cy is visited before cx in the BFS traversal;
the other case is symmetric. By our construction rule, when considering cy, we started
the walk from the vertex u that is the first vertex of cy in ≺x, which means u also belongs
to a component c′

x of Hx. Since cy is a cycle, u is incident to an edge in M2, which then
also belongs to c′

x. Clearly, the edge of M2 incident to u is the closing edge of cy and
contained in c′

x, which implies that the edge does not belong to cx, hence this case does
not occur in G∗. ◀

By the last case of Lemma 6, it follows that if the edge e∗ exists, then it is the only
closing edge of two components, which is summarized in the following corollary.

▶ Corollary 7. There is at most one edge in M2 that is a closing edge for two components.

We now describe how to add the edge e∗ to Γ∗ if such an edge exists to obtain the final
drawing Γ. Let u and v be the endvertices of e∗ with u being the origin vertex of G. By
construction, u and v are in the first two components c and c′ of the BFS traversal of H.
Since u is the first vertex in ≺y, its y-coordinate is 1, i.e., u is the bottommost vertex of
Γ∗. Also, since u is the first vertex of c′ in ≺y, it is incident to the closing edge of c′ and
c by definition, in particular, this edge is e∗. Note that this implies that the x-coordinate
of v is 1, so v is the leftmost vertex of Γ∗ and the first vertex in ≺x. This ensures that v

can be moved to the left and u to the bottom in order to draw the edge e∗ crossing-free. In
particular, moving v by n units to the left and u by n units to the bottom we can guarantee
that e∗ does not intersect the first quadrant R2

+, while by construction any other edge (not
incident to u or v) lies in R2

+. Since e∗ is the only edge of M2 incident to u and v, it remains
to consider the edges of M1 and M3 incident to u or v. Observe that the edge of M1 incident
to v remains horizontal, while the edge of M3 incident to u remains vertical. Finally, the
edge of M1 incident to u is crossing free in Γ∗, since there is no vertex below it, hence it
remains crossing-free after moving u to the bottom. Similarly, the edge of M3 incident to v

is crossing free in Γ∗, since there is not vertex to the left of it, hence it remains crossing-free
after moving v to the left. Together with Lemma 6 we obtain that Γ is a RAC drawing of G.
We complete the proof of Theorem 3 by discussing the time complexity and the required
area. We construct the components of Hy and Hx based on the given edges-coloring using
BFS in O(n) time. To define ≺y and ≺x, we choose the origin vertex u and the components
c and c′ for the start of the BFS of H in linear time. We then traverse every edge of G at
most twice. Hence, this step takes O(n) time in total. Assigning the vertex coordinates, by
first iterating through ≺y and ≺x and then possibly moving the end-vertices of e∗, clearly
takes O(n) time again, hence the drawing can be computed in linear time.

For the area, we observe that the initial x- and y-coordinates for all the vertices range
between 1 and n. Since we possibly move the origin vertex u and its M2 neighbor v by n

units each, the drawing area is at most 2n × 2n.
We conclude this section by mentioning two results that form generalizations of our

approach of Theorem 3. In this regard, we need the notion of oddness of a bridgeless 3-
regular graph, which is defined as the minimum number of odd cycles in any possible 2-factor
of it. Theorem 8 is limited to oddness-2, while Theorem 9 provides an upper bound on the
number of edges requiring one bend that is linear in the oddness; their proofs are in [2].

MFCS 2022



11:8 RAC Drawings of Graphs with Low Degree

▶ Theorem 8. (*) Every bridgeless 3-regular graph with oddness 2 admits a RAC drawing
in quadratic area which can be computed in subquadratic time.

▶ Theorem 9. (*) Every bridgeless 3-regular graph with oddness k ≥ 2 admits a 1-bend
RAC drawing in quadratic area where at most k edges require one bend.

4 1-Bend RAC Drawings of Degree-4 graphs

In this section, we focus on degree-4 graphs and show that they admit 1-bend RAC drawings.

▶ Theorem 10. Given a degree-4 graph G with n vertices, it is possible to compute in O(n)
time a 1-bend RAC drawing of G with O(n2) area.

Proof. By Theorem 2, we augment G into a directed 4-regular multigraph G′ with edge
disjoint 2-factors F1 and F2. Let Gs be the graph obtained from G′ as follows. For each
vertex u of G′ with incident edges (a1, u), (u, b1) ∈ F1 and (a2, u), (u, b2) ∈ F2, we add two
vertices us and ut to Gs that are incident to the following five edges: us is incident to the
two incoming edges of u, namely, (a1, us) and (a2, us), while ut is incident to (ut, b1) and
(ut, b2). Finally, we add the edge (us, ut) to Gs, which we call split-edge.

By construction, Gs is 3-regular and 3-edge colorable, since each vertex of it is incident to
one edge of F1, one edge of F2 and one split-edge. By applying the algorithm of Theorem 3
to Gs, we obtain a RAC drawing Γs of Gs, such that the matching M2 in the algorithm is
the one consisting of all the split-edges. To obtain a 1-bend drawing for G′, it remains to
merge the vertices us and ut for every vertex u in G′. We place u at the position of us in
Γs. We draw each outgoing edge (u, x) of u as a polyline with a bend placed close to the
position of ut in Γs (the specific position will be discussed later), which implies that the two
segments are close to the edges (us, ut) and (ut, x) in Γs, respectively. This guarantees that
any edge has exactly one bend, as any edge is outgoing for exactly one of its endvertices.

We next discuss how we place the bends for the outgoing edges of u. Since each split-edge
belongs to M2, it is drawn in Γs either as the diagonal of a 1 × 1 grid box or as a closing
edge. Also, since the outgoing edges of u are in M1 and M3, they are drawn as horizontal
and vertical line-segments.

Assume first that the split-edge of u is the diagonal of a 1 × 1 grid box; see Fig. 3a. If the
outgoing edge (ut, x) belongs to M1, then we place the bend of (u, x) either half a unit to the
right of ut if x is to the right of ut in Γs, or half a unit to its left otherwise. Symmetrically,
if (ut, x) belongs to M3, we place the bend half a unit either above or below ut.

Assume now that the split-edge of u is a closing edge in exactly one of Hy or Hx, say
w.l.o.g. of a cycle c in Hx, i.e., it spans the whole x-interval of c. By construction, the
outgoing edge of (ut, x) that belongs to M3 is a vertical line-segment attached above u, as
either ut or us are the first vertex of c in ≺y; in the latter case, ut is the second vertex of c

in ≺y by construction. If the edge (ut, x) belongs to M3, we place the bend exactly at the
computed position of ut. If (ut, x) belongs to M1, we place it either half a unit to the right
of ut if x is to the right of ut in Γs, or half a unit to its left otherwise; see Fig. 3b.

Assume last that the split-edge of u is the closing edge e for a Hy and a Hx cycle,
which is unique by Corollary 7. As discussed for the analogous case in Section 3 (see
the discussion following Corollary 7), one of us and ut, say w.l.o.g. us, is the leftmost,
while the other ut is the bottommost vertex in Γs. For the placement of the bends,
we slightly deviate from our approach above. Let (ut, x) and (ut, y) be the two edges
of M1 and M3 incident to ut in Gs. Then, it is not difficult to find two grid points
bx and by sufficiently below the positions of x and y in Γs, such that (u, x) and (u, y)



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:9

us

ut

u

(a)

us u

ut

(b)

Figure 3 Illustration on how to place the bends in the proof of Theorem 10. To merge the vertices
us and ut of a vertex u in G′, u is placed at the position of us. The bends of the outgoing edges at
u are placed close to the position of ut in the drawing depending on their orientation.

drawn by bending at bx and by do not cross. Since no two bends overlap, no new cross-
ings are introduced and the slopes of the segments involved in crossings are not modified,
the obtained drawing Γ′ is a 1-bend RAC drawing for G′ (and thus for G).

Regarding the time complexity, we observe that we can apply Theorem 2 and the split-
operation in O(n) time. The split operation immediately yields a valid 3-coloring of the
edges, hence we can apply the algorithm of Theorem 3 to obtain Γs in O(n) time. Finally,
contracting the edges can clearly be done in O(n) time, as it requires a constant number of
operations per edge. For the area, we observe that in order to place the bends, we have to
introduce new grid-points, but we at most double the number of points in any dimension,
hence we still maintain the asymptotic quadratic area guaranteed by Theorem 3. ◀

The following theorem, whose proof is in [2], provides an alternative construction which
additionally guarantees a linear number of edges drawn as straight-line segments.

▶ Theorem 11. (*) Given a degree-4 graph G with n vertices and m edges, it is possible to
compute in O(n) time a 1-bend RAC drawing of G with O(n2) area where at least m

8 edges
are drawn as straight-line segments.

5 RAC drawings of 7-edge-colorable degree-7 graphs

We prove that 7-edge-colorable degree-7 graphs admit 2-bend RAC drawings by proving the
following slightly stronger statement.

▶ Theorem 12. Given a degree-7 graph G decomposed into a degree-6 graph H and a
matching M , it is possible to compute in O(n) time a 2-bend RAC drawing of G with O(n2)
area.

Since H is a degree-6 graph, it admits a decomposition into three disjoint (directed)
2-factors F1, F2 and F3 after applying Theorem 2 and (possibly) augmenting H to a 6-regular
(multi)-graph. To distinguish between directed and undirected edges, we write {u, v} to
denote an undirected edge between u and v, while (u, v) denotes a directed edge from u

to v. In the following, we will define two total orders ≺x and ≺y, which will define the x-
and y-coordinates of the vertices of G, respectively. We define ≺y such that the vertices
of each cycle in F1 will be consecutive in ≺y. Initially, for any cycle of F1, the specific
internal order of its vertices in ≺y is specified by one of the two traversals of it; however, we
note here that this choice may be refined later in order to guarantee an additional property
(described in Lemma 13). The definition of ≺x is more involved and will also be discussed
later. Theorem 2 guarantees that the edges of F2 (F3) are oriented such that any vertex has
at most one incoming and one outgoing edge in F2 (F3). Once ≺y and ≺x are computed,
each vertex u of G will be mapped to point (8i, 8j) of the Euclidean plane provided that u is
the i-th vertex in ≺x and the j-th vertex in ≺y. Each vertex u is associated with a closed
box B(u) centered at u of size 8 × 8. We aim at computing a drawing of G in which

MFCS 2022



11:10 RAC Drawings of Graphs with Low Degree

(a) (b)

Figure 4 Edge routing in the 8 × 8 box B(u) of a vertex u (a). Red dashed (blue dotted) ports
are reserved for horizontal (vertical) type-2 edges. A 2-bend RAC drawing of K8 is shown in (b). In
this drawing, red dashed edges are horizontal type-2, while the blue dotted one is vertical type-2.

(i) no two boxes overlap, and
(ii) the edges are drawn with two bends each so that only the edge-segments that are

incident to u are contained in the interior of B(u), while all the other edge-segments
are either vertical or horizontal.

This guarantees that the resulting drawing is 2-bend RAC; see Fig. 4b.
In the final drawing, all edges will be drawn with exactly three segments, out of which

either one or two are oblique, i.e., they are neither horizontal nor vertical. It follows from (ii)
that the bend point between an oblique segment and a vertical (horizontal) segment lies on
a horizontal (vertical) side of the box containing the oblique segment. During the algorithm,
we will classify the edges as type-1 or type-2. Type-1 edges will be drawn with one oblique
segment, while type-2 edges with two oblique segments. In particular, for a type-1 edge
(u, v), we further have that the oblique segment is incident to v, which implies that (u, v)
occupies an orthogonal port at u. On the other hand, a type-2 edge (u, v) requires that
B(u) and B(v) are aligned in y (in x), i.e., there exists a horizontal (vertical) line that is
partially contained in both B(u) and B(v), in order to draw the middle segment of (u, v)
horizontally (vertically). By construction, this is equivalent to having u and v consecutive in
≺y (≺x). These alignments guarantee that if we partition the edges of F1 into F̄1 and F̂1
containing the closing and non-closing ones, respectively, then it is possible to draw F̂1 as a
horizontal type-2 edge (independent of the x-coordinate of its endvertices), as its endvertices
are consecutive in ≺y by construction. Thus, we can put our focus on edges in F̄1 ∪ F2 ∪ F3 ,
which we initially classify as type-1 edges (by orienting each edge (u, v) of F̄1 from u to v if
u ≺y v). We refine ≺y using the concept of critical vertices. Namely, for a vertex u of G,
the direct successors of u in F̄1 ∪ F2 ∪ F3 are the critical vertices of u, which are denoted by
c(u). Based on the relative position of u to its critical vertices in ≺y, we label u as (α, β), if
α vertices t1, . . . , tα of c(u) are after u in ≺y and β vertices b1, . . . , bβ before. We refer to
t1, . . . , tα (b1, . . . , bβ) as the upper (lower) critical neighbors of u. An edge connecting u to
an upper (lower) critical neighbor is called upper critical (lower critical, respectively). More
general, the upper and lower critical edges of u are its critical edges.

Note that 2 ≤ α + β ≤ 3 as any vertex has exactly one outgoing edge in F2 and
F3 and at most one in F̄1, that is, the number of upper and lower critical neighbors of
vertex u ranges between 2 and 3. It follows that the label of each vertex of H is in
{(0, 2), (1, 1), (2, 0), (1, 2), (2, 1), (3, 0)}; refer to these labels as the feasible labels of the vertex.



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:11

Observe that a (3, 0)-, (2, 1)- or (1, 2)-label implies that the vertex is incident to a closing
edge of F1 (hence, each cycle in F1 has at most one such vertex, which is its first one in ≺y).
This step will complete the definition of ≺y.

▶ Lemma 13. (*) For each cycle c of F1, there is an internal ordering of its vertices followed
by a possible reorientation of one edge in F2 ∪ F3, such that in the resulting ≺y

(a) every vertex of c has a feasible label,
(b) no vertex of c has label (3, 0), and
(c) if there exists a (1, 2)-labeled vertex in c, then its (only) upper critical neighbor belongs

to c.

Now that ≺y is completely defined, we orient any edge (u, v) ∈ M from u to v if and only
if u ≺y v. In this case, we further add v as a critical vertex of u. This implies that some
vertices can have one more critical upper neighbor, which then gives rise to the new following
labels, which we call tags for distinguishing: {[3, 1], [3, 0], [2, 2], [2, 1], [2, 0], [1, 2], [1, 1], [0, 2]}.
In this context, Lemma 13 guarantees the following property.

▶ Property 14. Any cycle c of F1 has at most one vertex with tag [α, β] such that α + β = 4.

Next, we compute the final drawing satisfying Properties (i) and (ii) by performing two
iterations over the vertices of G in reverse ≺y order. In the first, we specify the final position
of each vertex of G in ≺x and classify its incident edges while maintaining the following
Invariant 15. In the second one, we exploit the computed ≺x to draw all edges of G.

▶ Invariant 15. The endvertices of each vertical type-2 edge are consecutive in ≺x. Further,
any vertex is incident to at most one vertical type-2 edge.

The second part of Invariant 15 implies that the vertical type-2 edges form a set of
independent edges. In this regard, we say that a vertex u is a partner of a vertex v in G if
and only if u and v are connected with an edge in this set.

In the first iteration, we assume that we have processed the first i vertices vn, . . . , vn−i+1
of G in reverse ≺y order and we have added these vertices to ≺x together with a classification
of their incident edges satisfying Invariant 15. We determine the position of vn−i in ≺x based
on the ≺x position of its upper critical neighbors. The incident edges of vn−i are classified
based on a case analysis on its tag [α, β]. Recall that unless otherwise specified, every edge
is a type-1 edge.

1. The tag of vn−i is [3, 1] or [3, 0]: Let a, b and c be the upper critical neighbors of vn−i,
which implies that they were processed before vn−i by the algorithm and are already
part of ≺x. W.l.o.g. assume that a ≺x b ≺x c. By Invariant 15, vertex b is the partner of
at most one already processed vertex b′, which is consecutive with b in ≺x. If b′ exists
and b′ ≺x b, then we add vn−i immediately after b in ≺x. Symmetrically, if b′ exists
and b ≺x b′, then we add vn−i immediately before b in ≺x. Otherwise, we add vn−i

immediately before b in ≺x. This guarantees that vn−i is placed between a and c in ≺x

and that Invariant 15 is satisfied, since none of the upper critical edges incident to vn−i

was classified as a type-2 edge.
2. The tag of vn−i is [2, 1] ,[2, 0], [1, 2], [1, 1] or [0, 2]: By appending vn−i to ≺x, we maintain

Invariant 15, since none of the upper critical edges incident to vn−i was classified as
type-2.

3. The tag of vn−i is [2, 2]: Let a and b be the upper critical neighbors of vn−i, which implies
that they were processed before vn−i by the algorithm and are already part of ≺x. W.l.o.g.

MFCS 2022



11:12 RAC Drawings of Graphs with Low Degree

assume that (vn−i, a) ∈ M . We classify the edge (vn−i, b) as a vertical type-2 edge and
we add vn−i immediately before b in ≺x. To show that Invariant 15 is maintained by this
operation it is sufficient to show that b was not incident to a vertical type-2 edge before.
Suppose for a contradiction that there is a vertex b′ in {vn, . . . , vn−i+1}, such that (b, b′)
or (b′, b) is a type-2 edge. As seen in the previous cases, this implies that b or b′ has tag
[2, 2], respectively. Since in the [2, 2] case the edge classified as type-2 is the one not in
M and since any vertex that has tag [2, 2] has label (1, 2), by Lemma 13 it follows that
vertical type-2 edges are chords of a cycle. Hence, b or b′ would lie in the same cycle as
vn−i, which is a contradiction to Property 14, thus Invariant 15 holds.

Orders ≺x and ≺y define the placement of the vertices. By iterating over the vertices, we
describe how to draw the edges to complete the drawing such that Properties (i) and (ii) are
satisfied. We distinguish cases based on the tag of the current vertex vi.

1. The tag of vi is [3, 1] or [3, 0]: Let {a, b, c} be the upper critical neighbors of vi. The
construction of ≺x ensures that not all of {a, b, c} precede or follow vi in ≺x, w.l.o.g. we
can assume that a ≺x b, vi ≺x c. Then, we assign the W -port at vi to (vi, a), the N -port
at vi to (vi, b) and the E-port at vi to (vi, c). If vi has a lower critical neighbor, we assign
the S-port at vi for the edge connecting vi to it.

2. The tag of vi is [2, 1] or [2, 0]: Let {a, b} be the upper critical neighbors of vi. We assign
the N -port at vi to (vi, a). Note that vi was appended to ≺x during its construction. If
b ≺x vi, we assign the W -port at vi to (vi, b). Otherwise, we assign the E-port at vi to
(vi, b). The S-port is assigned to the lower critical edge of vi, if present.

3. The tag of vi is [1, 2] or [0, 2]: This case is symmetric to the one above by exchanging the
roles of upper and lower critical neighbors and N - and S-ports.

4. The tag of vi is [1, 1]: Let a be the upper critical neighbor and b the lower critical neighbor
of vi. Then we assign the N -port to the edge (vi, a) and the S-port to (vi, b).

5. The tag of vi is [2, 2]: Let {a, b} and {c, d} be the upper and lower critical neighbors of vi.
W.l.o.g. let (vi, a) ∈ M . By Invariant 15 and construction, the edge (vi, b) is a type-2
edge. The N - and S-ports at vi are assigned to the edges (vi, a) and (vi, c). If d ≺x vi,
we assign the W -port at vi to (vi, d). Otherwise, we assign the E-port at vi to (vi, d).

We describe how to place the bends of the edges on each side of the box B(u) of an
arbitrary vertex u based on the type of the edge that is incident to u, refer to Fig. 4a. We
focus on the bottom side of B(u). Let (xu, yu) be the position of u that is defined by ≺x

and ≺y. Recall that the box B(u) has size 8 × 8. Let e = {u, v} be an edge incident to u. If
e is a horizontal type-2 edge, then we place its bend at (xu − 3, yu − 4), if v ≺x u, otherwise
we have u ≺x v and we place the bend at (xu + 3, yu − 4). If e is a type-1 edge that uses the
S-port of u, then segment of e incident to u passes through point (xu, yu − 4). If e is a type-1
edge oriented from v to u such that v ≺y u and e uses either the W -port or the E-port of
v, then we place the bend at (xu + i, yu − 4) with i ∈ {−2, −1, 1, 2}. Since any vertex has
at most four incoming type-1 edges after applying Lemma 13, we can place the bends so
that no two overlap. No other edge crosses the bottom side of B(u). The description for the
other sides can be obtained by rotating this scheme; for the left and the right side the type-2
edges are the vertical ones.

We now describe how to draw each edge e = (u, v) of G based on the relative position
of u and v in ≺x and ≺y and the type of e. Refer to Fig. 4b. Suppose first that e is a
type-2 edge. If e is a horizontal type-2 edge, then u and v are consecutive in ≺y and B(u)
and B(v) are aligned in y-coordinate, in particular, there is a horizontal line that contains
the top side of one box and the bottom side of the other, hence it passes through the two
assigned bend-points, which implies that the middle segment is horizontal. Similarly, if e is a



P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:13

vertical type-2 edge, then u and v are consecutive in ≺x by Invariant 15. Hence, the assigned
points for the bends define a vertical middle segment. Suppose now that e is a type-1 edge.
The case analysis for the second iteration over the vertices guarantees that for any relative
position of v to u, we assigned an appropriate orthogonal port at u which allows to find a
point on the first segment, such that the orthogonal middle-segment of the edge e (that is
perpendicular to the first) can reach the assigned bend point on the boundary of B(v).

We argue that the constructed drawing is indeed 2-bend RAC as follows. By construction,
every edge consists of three segments and no bend overlaps with an edge or with another
bend. Each vertical (horizontal) line either crosses only one box or contains the side of
exactly two boxes, whose corresponding vertices are consecutive in ≺x (≺y). This implies
that if a vertical (horizontal) segment of an edge shares a point with the interior of a box,
then this box correspond to one of its endvertices. Further, any oblique segment is fully
contained inside the box of its endvertex, hence crossings can only happen between a vertical
and a horizontal segment which implies that the drawing is RAC.

To complete the proof of Theorem 12, we discuss the time complexity and the required
area. We apply Theorem 2 to G \ M to obtain F1, F2, F3 in O(n) time. Computing the
labels clearly takes O(n) time. For each cycle of F1, the ordering of its internal vertices in
Lemma 13 can be done in time linear in the size of the cycle by computing for each vertex
the number of forward and backward edges, and of chords. Computing the tags takes O(n)
time. In each of the following two iterations, we perform a constant number of operations
per vertex. Hence we can conclude that the drawing can be computed in O(n) time. For
the area, we can observe that the size of the grid defined by the boxes is 8n × 8n and by
construction, any vertex and any bend point is placed on a point on the grid.

▶ Corollary 16. Given a 7-edge-colorable degree-7 graph with n vertices and a 7-edge-coloring
of it, it is possible to compute in O(n) time a 2-bend RAC drawing of it with O(n2) area.

6 Conclusions and Open Problems

We significantly extended the previous work on RAC drawings for low-degree graphs in all
reasonable settings derived by restricting the number of bends per edge to 0, 1, and 2. The
following open problems are naturally raised by our work.

Are all 4-edge-colorable degree-3 graphs RAC (refer to Question 1)?
Are all degree-5 graphs 1-bend RAC? What about degree-6 graphs?
Is it possible to extend Theorem 12 to all (i.e., not 7-edge-colorable) degree-7 graphs or
even to (subclasses of) graphs of higher degree, e.g. Hamiltonian degree-8 graphs?
While recognizing graphs that admit a (straight-line) RAC drawing is NP-hard [5], the
complexity of the recognition problem in the 1- and 2-bend setting is still unknown.

References
1 Patrizio Angelini, Michael A. Bekos, Henry Förster, and Michael Kaufmann. On RAC

drawings of graphs with one bend per edge. Theor. Comput. Sci., 828-829:42–54, 2020.
doi:10.1016/j.tcs.2020.04.018.

2 Patrizio Angelini, Michael A. Bekos, Julia Katheder, Michael Kaufmann, and Maximilian
Pfister. RAC drawings of graphs with low degree. CoRR, abs/2206.14909, 2022. arXiv:
2206.14909.

3 Patrizio Angelini, Luca Cittadini, Walter Didimo, Fabrizio Frati, Giuseppe Di Battista,
Michael Kaufmann, and Antonios Symvonis. On the perspectives opened by right angle
crossing drawings. J. Graph Algorithms Appl., 15(1):53–78, 2011. doi:10.7155/jgaa.00217.

MFCS 2022

https://doi.org/10.1016/j.tcs.2020.04.018
http://arxiv.org/abs/2206.14909
http://arxiv.org/abs/2206.14909
https://doi.org/10.7155/jgaa.00217


11:14 RAC Drawings of Graphs with Low Degree

4 Evmorfia N. Argyriou, Michael A. Bekos, Michael Kaufmann, and Antonios Symvonis. Geo-
metric RAC simultaneous drawings of graphs. J. Graph Algorithms Appl., 17(1):11–34, 2013.
doi:10.7155/jgaa.00282.

5 Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis. The straight-line RAC
drawing problem is NP-hard. J. Graph Algorithms Appl., 16(2):569–597, 2012. doi:10.7155/
jgaa.00274.

6 Karin Arikushi, Radoslav Fulek, Balázs Keszegh, Filip Moric, and Csaba D. Tóth. Graphs
that admit right angle crossing drawings. Comput. Geom., 45(4):169–177, 2012. doi:10.1016/
j.comgeo.2011.11.008.

7 Michael A. Bekos, Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and Fabrizio Montecchiani.
On RAC drawings of 1-planar graphs. Theor. Comput. Sci., 689:48–57, 2017. doi:10.1016/j.
tcs.2017.05.039.

8 Steven Chaplick, Fabian Lipp, Alexander Wolff, and Johannes Zink. Compact drawings of
1-planar graphs with right-angle crossings and few bends. Comput. Geom., 84:50–68, 2019.
doi:10.1016/j.comgeo.2019.07.006.

9 Norishige Chiba, Kazunori Onoguchi, and Takao Nishizeki. Drawing planar graphs nicely.
Acta Inform., 22:187–201, 1985. doi:10.1007/BF00264230.

10 Marek Chrobak and Thomas H. Payne. A linear-time algorithm for drawing a planar graph
on a grid. Inf. Process. Lett., 54(4):241–246, 1995. doi:10.1016/0020-0190(95)00020-D.

11 Hubert de Fraysseix, János Pach, and Richard Pollack. Small sets supporting Fáry embeddings
of planar graphs. In Janos Simon, editor, Symposium on the Theory of Computing, pages
426–433. ACM, 1988. doi:10.1145/62212.62254.

12 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice-Hall, 1999.

13 Emilio Di Giacomo, Walter Didimo, Giuseppe Liotta, and Henk Meijer. Area, curve complexity,
and crossing resolution of non-planar graph drawings. Theory Comput. Syst., 49(3):565–575,
2011. doi:10.1007/s00224-010-9275-6.

14 Walter Didimo. Right angle crossing drawings of graphs. In Seok-Hee Hong and Takeshi
Tokuyama, editors, Beyond Planar Graphs, pages 149–169. Springer, 2020. doi:10.1007/
978-981-15-6533-5_9.

15 Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings.
In Frank K. H. A. Dehne, Marina L. Gavrilova, Jörg-Rüdiger Sack, and Csaba D. Tóth, editors,
Workshop on Algorithms and Data Structures, volume 5664 of LNCS, pages 206–217. Springer,
2009. doi:10.1007/978-3-642-03367-4_19.

16 Walter Didimo, Peter Eades, and Giuseppe Liotta. A characterization of complete bipartite
RAC graphs. Inf. Process. Lett., 110(16):687–691, 2010. doi:10.1016/j.ipl.2010.05.023.

17 Walter Didimo, Peter Eades, and Giuseppe Liotta. Drawing graphs with right angle crossings.
Theor. Comput. Sci., 412(39):5156–5166, 2011. doi:10.1016/j.tcs.2011.05.025.

18 Walter Didimo and Giuseppe Liotta. The crossing-angle resolution in graph drawing. In János
Pach, editor, Thirty Essays on Geometric Graph Theory, pages 167–184. Springer, 2013.

19 Walter Didimo, Giuseppe Liotta, and Fabrizio Montecchiani. A survey on graph drawing
beyond planarity. ACM Comput. Surv., 52(1):4:1–4:37, 2019. doi:10.1145/3301281.

20 Peter Eades, Antonios Symvonis, and Sue Whitesides. Three-dimensional orthogonal graph
drawing algorithms. Discret. Appl. Math., 103(1-3):55–87, 2000. doi:10.1016/S0166-218X(00)
00172-4.

21 Henry Förster and Michael Kaufmann. On compact RAC drawings. In Fabrizio Grandoni,
Grzegorz Herman, and Peter Sanders, editors, European Symposium on Algorithms, volume
173 of LIPIcs, pages 53:1–53:21. Schloss Dagstuhl, 2020. doi:10.4230/LIPIcs.ESA.2020.53.

22 István Fáry. On straight lines representation of planar graphs. Acta Sci. Math. (Szeged),
11:229–233, 1948.

23 M. R. Garey and D. S. Johnson. Crossing number is NP-complete. SIAM Journal on Algebraic
Discrete Methods, 4(3):312–316, 1983. doi:10.1137/0604033.

https://doi.org/10.7155/jgaa.00282
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.comgeo.2011.11.008
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.comgeo.2019.07.006
https://doi.org/10.1007/BF00264230
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1145/62212.62254
https://doi.org/10.1007/s00224-010-9275-6
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1007/978-981-15-6533-5_9
https://doi.org/10.1007/978-3-642-03367-4_19
https://doi.org/10.1016/j.ipl.2010.05.023
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1145/3301281
https://doi.org/10.1016/S0166-218X(00)00172-4
https://doi.org/10.1016/S0166-218X(00)00172-4
https://doi.org/10.4230/LIPIcs.ESA.2020.53
https://doi.org/10.1137/0604033


P. Angelini, M. A. Bekos, J. Katheder, M. Kaufmann, and M. Pfister 11:15

24 Ian Holyer. The NP-completeness of edge-coloring. SIAM J. Comput., 10(4):718–720, 1981.
doi:10.1137/0210055.

25 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs. Springer, 2020.
doi:10.1007/978-981-15-6533-5.

26 Weidong Huang, Peter Eades, and Seok-Hee Hong. Larger crossing angles make graphs easier
to read. J. Vis. Lang. Comput., 25(4):452–465, 2014. doi:10.1016/j.jvlc.2014.03.001.

27 Julius Petersen. Die Theorie der regulären graphs. Acta Mathematica, 15:193–220, 1891.
doi:10.1007/BF02392606.

28 Helen C. Purchase. Effective information visualisation: a study of graph drawing aesthetics and
algorithms. Interact. Comput., 13(2):147–162, 2000. doi:10.1016/S0953-5438(00)00032-1.

29 Marcus Schaefer. Rac-drawability is ∃ R-Complete. In Helen C. Purchase and Ignaz Rutter,
editors, Graph Drawing and Network Visualization, volume 12868 of LNCS, pages 72–86.
Springer, 2021. doi:10.1007/978-3-030-92931-2_5.

30 Sherman K. Stein. Convex maps. Proc. American Math. Soc., 2(3):464–466, 1951.
31 E. Steinitz and H. Rademacher. Vorlesungen über die Theorie der Polyeder. Julius Springer,

Berlin, Germany, 1934.
32 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.

SIAM J. Comput., 16(3):421–444, 1987. doi:10.1137/0216030.
33 William Thomas Tutte. How to draw a graph. Proc. London Math. Soc., 13:743–768, 1963.
34 Klaus Wagner. Bemerkungen zum Vierfarbenproblem. Jahresbericht der Deutschen

Mathematiker-Vereinigung, 46:26–32, 1936.

MFCS 2022

https://doi.org/10.1137/0210055
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1007/BF02392606
https://doi.org/10.1016/S0953-5438(00)00032-1
https://doi.org/10.1007/978-3-030-92931-2_5
https://doi.org/10.1137/0216030

	1 Introduction
	2 Preliminaries
	3 RAC drawings of 3-edge-colorable degree-3 graphs
	4 1-Bend RAC Drawings of Degree-4 graphs
	5 RAC drawings of 7-edge-colorable degree-7 graphs
	6 Conclusions and Open Problems

