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Abstract
Hybrid logic is a widely-studied extension of basic modal logic, which corresponds to the bounded
fragment of first-order logic. We study it from two novel perspectives: (1) We apply the recently
introduced paradigm of comonadic semantics, which provides a new set of tools drawing on ideas
from categorical semantics which can be applied to finite model theory, descriptive complexity and
combinatorics. (2) We give a novel semantic characterization of hybrid logic in terms of invariance
under disjoint extensions, a minimal form of locality. A notable feature of this result is that we give
a uniform proof, valid for both the finite and infinite cases.
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1 Introduction

Hybrid logic (see e.g. [8, 7]) has been widely studied as an expressive extension of basic modal
logic. It is semantically natural, e.g. in the analysis of temporal reasoning [10], and since it
allows an internalisation of relational semantics, it has a very well-behaved proof theory [11],
without needing to resort to explicit labelling of proofs or tableaux. The corresponding
fragment of first-order logic under modal translation is the bounded fragment, in which
quantification is relativized to atomic formulas from the relational vocabulary. This fragment
is important in set theory [19], and has been studied in general proof- and model-theoretic
terms in [16, 15].

In the present paper we study hybrid logic with inverse modalities, which we shall refer
to as hybrid temporal logic, from two novel perspectives:

Firstly, we apply the recently introduced paradigm of comonadic semantics [1, 5], which
gives a uniform description of a wide range of logic fragments indexed by resource
parameters. These fragments play a key role in finite model theory and descriptive
complexity. Examples include the Ehrenfeucht-Fraïssé comonads Ek, which capture
the quantifier-rank fragments; the pebbling comonads Pk, which capture the finite
variable fragments; and the modal comonads Mk, which capture the modal fragments of
bounded modal depth. In each case, the comonads induce a number of resource-indexed
equivalences on structures, which can be shown to capture the equivalences induced by
the corresponding logic fragments. Moreover, the coalgebras for these comonads can be
shown to characterise important combinatorial invariants of structures. For example, in
the case of Pk, the corresponding invariant is tree-width [5, 1].
The common structure exhibited by this wide range of examples has been axiomatised in
a very general setting in terms of arboreal categories [4]. This provides a new set of tools
drawing on ideas from categorical semantics which can be applied to finite model theory,
descriptive complexity and combinatorics. Early examples of the use of these ideas can
be found in [25, 13, 2, 14], and further results are emerging rapidly, see e.g. [22, 12].
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7:2 Comonadic semantics for hybrid logic

In the present paper, we extend the program of comonadic semantics to hybrid logic. The
comonad which captures hybrid logic is a natural restriction of a pointed version of the
Ehrenfeucht-Fraïssé comonad previously introduced in [5]. This comonadic analysis nicely
reveals, in a clear and conceptual way, the way in which hybrid logic sits between basic
modal logic and first-order logic. We characterise the coalgebras for this comonad as tree
covers of a relational structure with additional locality constraints. This enables a uniform
treatment of logical equivalences, bisimulation games, and combinatorial parameters,
within the axiomatic framework recently given in [4].
Secondly, we give a novel semantic characterization of the version of hybrid logic we study,
in terms of invariance under disjoint extensions (and various equivalent formulations).
This is a minimal form of locality relative to a given base-point, and shows that hybrid
logic is the maximal fragment of first-order logic retaining a local character. A notable
feature of this result is that we give a uniform proof, valid for both the finite and infinite
cases. In particular, we make no use of the compactness theorem, and instead use
game-theoretic constructions, specifically a result we call the Workspace Lemma.
Apart from the interest of the results pertaining to hybrid logic in themselves, we see our
work here as fitting into and refining a larger picture, of an emerging landscape in which
the tractability of various logic fragments is mirrored in the structural properties of the
corresponding comonads. In particular, hybrid logic is undecidable, but still retains a
local character. A salient property which the modal and guarded fragments have, and
hybrid logic lacks, is the bisimilar companion property. This property plays a key role
in the uniform proofs of the van Benthem-Rosen Theorem for these fragments [24, 3].
We mitigate the failure of this property for hybrid logic by the use of game-theoretic
arguments. All of this will be explained in detail in Section 6.

After some preliminaries in Section 2, we shall introduce the hybrid comonad in Section 3,
and study the coalgebras for this comonad in Section 4. In Section 5, we characterize
the equivalence on structures induced by hybrid logic in terms of spans of open pathwise
embeddings for this comonad, following the pattern established in [5] and axiomatised in [4].
Then we develop the results on the semantic characterisation of hybrid logic in Section 6.

2 Preliminaries

We shall need a few notions on posets. Given x, y ∈ P for a poset (P,≤), we write x↑y
if x and y are comparable in the order, i.e. x ≤ y or y ≤ x. We will use finite sequences
extensively; these are partially ordered by prefix, with notation s ⊑ t indicating that list s is
a prefix of list t.

A relational vocabulary σ is a set of relation symbols R, each with a specified positive
integer arity. A σ-structure A is given by a set A, the universe of the structure, and for
each R in σ with arity n, a relation RA ⊆ An. A homomorphism h : A→ B is a function
h : A → B such that, for each relation symbol R of arity n in σ, for all a1, . . . , an in A:
RA(a1, . . . , an) ⇒ RB(h(a1), . . . , h(an)). We write Struct(σ) for the category of σ-structures
and homomorphisms.

Since evaluation in modal logics is relative to a given world, we shall also use the pointed
category Struct⋆(σ). Objects are pairs (A, a), where A is a σ-structure, and a ∈ A. Morphisms
h : (A, a)→ (B, b) are homomorphisms h : A→ B such that h(a) = b.

A modal vocabulary has only relation symbols of arity ≤ 2: a set of unary predicate
symbols P , which will correspond to modal propositional atoms; and a binary relation symbol
E, which we think of as a transition relation (more traditionally referred to as an accessibility
relation).
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2.1 Hybrid Temporal Logic
The main system we shall study is Hybrid Temporal Logic (HTL). HTL formulas are built
from propositional atoms p and world variables x, with the following syntax:

φ ::= p | x | ¬φ | φ ∧ φ′ | φ ∨ φ′ | □φ | ♢φ | □−φ | ♢−φ | ↓x. φ | @xφ.

We use a redundant syntax to make it more convenient to discuss fragments. The new features
compared with basic modal logic, augmented with backwards modalities as is standard in
temporal logic, are the world variables, which can be bound with ↓, and used to force
evaluation at a given world with @. Hybrid formulae are graded by their hybrid modal
depth. This is the usual notion of modal depth, with the adjustment that sub-formulae of
the form ♢x or ♢−x , for some world variable x, are deemed to have zero depth.

The semantics of hybrid temporal logic is given by translation into first-order logic with
equality over a unary modal vocabulary, with a unary predicate P for each proposition atom
p, and a single transition relation E. World variables are treated as ordinary first-order
variables. The translation is parameterised on a variable, corresponding to the world at
which the formula is to be evaluated. We write ψ[x/y] for the result of substituting x for the
free occurrences of y in ψ.

STx(p) = P (x)
STx(x′) = x = x′

STx(¬φ) = ¬STx(φ)
STx(φ ∧ φ′) = STx(φ) ∧ STx(φ′)
STx(φ ∨ φ′) = STx(φ) ∨ STx(φ′)

STx(□φ) = ∀y.[E(x, y)→ STy(φ)]
STx(♢φ) = ∃y.[E(x, y) ∧ STy(φ)]

STx(□−φ) = ∀y.[E(y, x)→ STy(φ)]
STx(♢−φ) = ∃y.[E(y, x) ∧ STy(φ)]

STx(↓x′.φ) = STx(φ)[x/x′]
STx(@x′φ) = STx(φ)[x′/x]

The obvious stipulations about renaming bound variables to avoid variable capture apply.
The target of this translation is the bounded fragment of first-order logic with equality, with

quantifiers restricted to those of the form ∃y.[E(x, y)∧φ], ∀y.[E(x, y)→ φ], ∃y.[E(y, x)∧φ],
∀y.[E(y, x) → φ], with x ̸= y. Hybrid temporal logic is in fact equiexpressive with this
fragment [7].

Note that STx(♢y) is logically equivalent to E(x, y), and similarly STx(♢−y) is logically
equivalent to E(y, x) . Thus these formulas test for the presence of a transition between
worlds which have already been reached, justifying our assignment of modal depth 0.

3 The hybrid comonad

We shall now introduce the hybrid comonad on Struct⋆(σ) for modal vocabularies σ, motiv-
ating it as combining features of the Ehrenfeucht-Fraïssé and modal comonads from [5].

1. We recall firstly the Ehrenfeucht-Fraïssé comonad Ek on Struct(σ) for an arbitrary
vocabulary σ. Given a structure A, the universe of EkA is the set of non-empty sequences
of elements of A of length ≤ k. We think of these sequences as plays in the Ehrenfeucht-
Fraïssé game on A. We define the map εA : EkA → A which sends a sequence to
its last element, which we think of as the current move or focus of the play. For a
relation R of arity n, we define REkA(s1, . . . , sn) to hold iff si↑sj for all 1 ≤ i, j ≤ n, and
RA(εA(s1), . . . , εA(sn)). Explicitly, for unary predicates P , PEkA(s) iff PA(εA(s)), and
for a binary relation R, REkA(s, t) iff s↑t and RA(εA(s), εA(t)). Thus the relations hold
along plays as one extends another, but not between different (i.e. incomparable) plays.

MFCS 2022



7:4 Comonadic semantics for hybrid logic

2. This construction lifts to the pointed category Struct⋆(σ). We define the universe of
Ek(A, a) to comprise the non-empty sequences of length ≤ k + 1 which start with a.
The distinguished element is ⟨a⟩. The relations are lifted in exactly the same way as
previously.

3. The modal comonad Mk over a modal vocabulary with unary predicates P corresponding
to propositional atoms, and a single transition relation E, restricts the sequences in
Ek(A, a) to those of the form ⟨a0, . . . aj⟩, a0 = a, such that for all i with 0 ≤ i < j,
EA(ai, ai+1). Thus we can only extend a sequence with an element which the previous
element “sees”. Moreover, the transition relation E is lifted in a correspondingly local
fashion, so that a sequence is only related to its immediate extensions: EMk(A,a)(s, t) iff
t = s⟨a′⟩ and EA(εA(s), εA(t)). This is the familiar unravelling construction for modal
structures [9].

4. The hybrid comonad Hk is again defined on the pointed category Struct⋆(σ). Hk(A, a)
has as universe the subset of Ek(A, a) of those sequences ⟨a0, a1, . . . , al⟩ such that a0 = a,
and for all j with 0 < j ≤ l, for some i, 0 ≤ i < j, EA(ai, aj) or EA(aj , ai) . Thus we
relax the locality condition of Mk to the condition that a sequence can only be extended
with an element if it is related to some element which has been played previously. The
σ-relations on Hk(A, a) are defined exactly as for Ek(A, a), and the distinguished element
is ⟨a⟩, so Hk(A, a) is the induced substructure of Ek(A, a) given by this restriction of the
universe. In this sense, Hk is closer to Ek than to Mk.

To complete the specification of Hk, we define the coKleisli extension: given a morphism
h : Hk(A, a)→ (B, b), we define h∗ : Hk(A, a)→ Hk(B, b) by

h∗(⟨a, a1, . . . , ai⟩) = ⟨h(⟨a⟩), h(⟨a, a1⟩), . . . , h(⟨a, a1, . . . , ai⟩)⟩.

We can verify that for each structure A, εA : HkA→ A is a morphism; that for each morphism
h : Hk(A, a) → (B, b), h∗ : Hk(A, a) → Hk(B, b) is a morphism; and that the following
equations are satisfied, for all morphisms h : Hk(A, a)→ (B, b), g : Hk(B, b)→ (C, c):

εA ◦ h∗ = h, ε∗
A = idHkA, (g ◦ h∗)∗ = g∗ ◦ h∗,

This establishes the following result.

▶ Proposition 1. The triple (Hk, ε, (·)∗) is a comonad in Kleisli form [21].

It is then standard [21] that Hk extends to a functor by Hkf = (f ◦ ϵ)∗; that ε is a natural
transformation; and that if we define the comultiplication δ : Hk ⇒ H2

k by δA = id∗
HkA

, then
(Hk, ε, δ) is a comonad.

3.1 I-morphisms and equality
Like the Ehrenfeucht-Fraïssé comonad Ek, and unlike the modal comonad Mk, equality
is important for Hk, as we might expect from its appearance in the translation of hybrid
temporal logic into first-order logic. We shall follow the procedure introduced in [5, Section
4] to ensure that equality is properly handled in Ek.

The issue is that elements of A may be repeated in the plays in Hk(A, a). In particular,
this happens when there are cycles in the graph (A,EA) which are reachable from a. We wish
to view coKleisli morphisms f : Hk(A, a) → (B, b) as winning strategies for Duplicator in
the one-sided (or existential) Spoiler-Duplicator game from (A, a) to (B, b), in which Spoiler
plays in A and Duplicator in B [18]. In order to fulfil the partial homomorphism winning
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condition, f must map repeated occurrences of an element a′ ∈ A in a play s in Hk(A, a) to
the same element of B. The same issue will recur when we deal with back-and-forth games
in section 5. We seek a systematic means of enforcing this requirement.

Given a relational vocabulary σ, we produce a new one σ+ = σ ∪ {I}, where I is a binary
relation symbol not in σ. If we interpret I(A,a) and I(B,b) as the identity relations on A

and B, then, following the general prescription for relation lifting in Ek(A, a), and hence
also in Hk(A, a) as an induced substructure of Ek(A, a), we have I(HkA,a)(s, t) iff s↑t and
εA(s) = εA(t). Thus a σ-morphism f : (HkA, a)→ (B, b) satisfies the required condition iff
it is a σ+-morphism.

As it stands, this is an ad hoc condition: it relies on a special interpretation of the I-
relation. We want our objects to live in Struct⋆(σ), but our morphisms to live in Struct⋆(σ+).
To accomplish this, we use a simple special case of the notion of relative comonad [6]. We
can take advantage of the fact that Ek, and hence Hk as a sub-comonad of Ek, is defined
uniformly in the vocabulary. Given a vocabulary σ, there is a full and faithful embedding
J : Struct⋆(σ) → Struct⋆(σ+) such that IJ(A,a) is the identity on A. Moreover, we have a
comonad EI

k, which is the Ek construction applied to Struct⋆(σ+). Note that this treats I
like any other binary relation in the vocabulary.

We correspondingly obtain HI
k(A, a) as the substructure of EI

k(A, a) induced by restricting
the universe to that of Hk(A, a). It is important to note that only the transition relation E

is used to restrict the universe.
We use this data to obtain the J-relative comonad H+

k = HI
k◦J on Struct⋆(σ). The objects

of the coKleisli category for this relative comonad are those of Struct⋆(σ). CoKleisli morphisms
have the form HI

kJ(A, a)→ J(B, b). The counit and coextension are the restrictions of those
for HI

k to the image of J .

3.2 CoKleisli maps, existential games, and the existential positive
fragment

The standard k-round existential Ehrenfeucht-Fraïssé game from A to B [18, 5] is defined as
follows. In each round i, Spoiler moves by choosing an element ai from A, and Duplicator
responds by choosing an element bi from B. The winning condition for Duplicator is that
the correspondence ai 7→ bi is a partial homomorphism from A to B.

The k-round existential hybrid game from (A, a) to (B, b) is defined in exactly the same
way, with two additional provisos:

At round 0, Spoiler must play a0 = a, and Duplicator must respond with b0 = b.
At round j > 0, Spoiler must play a move aj such that, for some i < j, EA(ai, aj)
or EA(aj , ai).

▶ Proposition 2. There is a bijective correspondence between
Winning strategies for Duplicator in the k-round existential hybrid game from (A, a) to
(B, b)
CoKleisli morphisms h : H+

k (A, a)→ J(B, b).
The existential positive fragment HTL♢ of hybrid temporal logic is defined by omitting

negation and both □ and □− from the syntax for hybrid logic given in section 2.1. HTL♢
k is

the fragment of HTL♢ comprising formulas of hybrid modal depth ≤ k.
This fragment induces a preorder on pointed structures. Define (A, a) ⇛HTL

k (B, b) as:

∀φ ∈ HTL♢
k . [(A, a) |= φ ⇒ (B, b) |= φ].

Here by (A, a) |= φ we mean (A, a) |= ψ(x), where ψ(x) = STx(φ).

MFCS 2022



7:6 Comonadic semantics for hybrid logic

The following is a variation on standard results (see e.g. [9, 5]).

▶ Proposition 3. There is a winning strategy for Duplicator in the k-round existential hybrid
game from (A, a) to (B, b) iff (A, a) ⇛HTL

k (B, b).

We define another preorder on pointed structures: (A, a)→H
k (B, b) iff there is a coKleisli

morphism h : H+
k (A, a) → J(B, b). The following is then an immediate consequence of

Propositions 2 and 3.

▶ Theorem 4. Let σ be a finite modal vocabulary. For all (A, a), (B, b) in Struct⋆(σ):

(A, a) ⇛HTL
k (B, b) ⇐⇒ (A, a)→H

k (B, b).

4 Coalgebras

We now study coalgebras for the hybrid comonad. These will yield a natural combinatorial
invariant associated with hybrid logic, and also provide a basis for the semantic characteriz-
ation of the equivalence on structures induced by hybrid logic, which will be given in the
following section.

A coalgebra for a comonad (G, ε, δ) is a morphism α : A→ GA such that εA ◦ α = idA

and δA ◦ α = G(α) ◦ α. Given G-coalgebras α : A → GA and β : B → GB, a coalgebra
morphism from α to β is a morphism h : A→ B such that β ◦ h = G(h) ◦ α. This gives a
category of coalgebras and coalgebra morphisms, denoted by EM(G), the Eilenberg-Moore
category of G.

We will now analyze EM(Hk), the category of coalgebras for the hybrid comonad on a
unimodal vocabulary σ. This will lead to a natural combinatorial parameter associated with
hybrid temporal logic, which is a refinement of tree-depth [23]. It will also provide a basis for
a comonadic characterisation of bisimulation and the equivalence on structures induced by
the full hybrid temporal logic, as we will see in the next section.

We will need a few more notions on posets. A chain in a poset (P,≤) is a subset C ⊆ P
such that, for all x, y ∈ C, x↑y. A forest is a poset (F,≤) such that, for all x ∈ F , the set
of predecessors ↓(x) := {y ∈ F | y ≤ x} is a finite chain. The height ht(F ) of a forest F is
supC |C|, where C ranges over chains in F . Note that the height is either finite or ω. A tree
is a forest with a least element (the root). We write the covering relation for a poset as ≺;
thus x ≺ y iff x ≤ y, x ̸= y, and for all z, x ≤ z ≤ y implies z = x or z = y. Morphisms of
trees are monotone maps preserving the root and the covering relation.

Given a σ-structure A, the Gaifman graph G(A) is (A,⌢), where a ⌢ a′ (a is adjacent
to a′) if they are distinct elements of A which both occur in a tuple of some relation RA, R
in σ.

A tree cover of a pointed σ-structure (A, a) is a tree order (A,≤) on A with least element
a, and such that if a ⌢ a′, then a↑a′. Thus adjacent elements in the Gaifman graph must
appear in the same branch of the tree. The tree cover is generated if for all a′ ∈ A with
a′ ̸= a, for some a′′ ∈ A, a′′ < a′ and a′ ⌢ a′′. Tree covers of a pointed structure are neither
unique, nor guaranteed to exist.

▶ Theorem 5. For any pointed σ-structure (A, a), and k > 0, there is a bijective correspond-
ence between:

Hk-coalgebras α : (A, a)→ Hk(A, a).
Generated tree covers of (A, a) of height ≤ k + 1.
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We define the generated tree depth of (A, a) to be the minimum height of any generated
tree cover of (A, a). This can be seen as a refinement of the standard notion of tree depth [23].

We define the hybrid coalgebra number of (A, a) to be the least k such that there is an
Hk-coalgebra α : (A, a)→ Hk(A, a). If there is no coalgebra for any k, the hybrid coalgebra
number is ω. The following is an immediate consequence of Theorem 5.

▶ Theorem 6. The generated tree depth of a structure (A, a) coincides with its hybrid
coalgebra number.

We define a category Tree(σ) with objects (A, a,≤), where (A, a) is a pointed σ-structure,
and ≤ is a generated tree cover of (A, a). Morphisms h : (A, a,≤)→ (B, b,≤′) are morphisms
of pointed σ-structures which are also tree morphisms. That is, they preserve the covering
relation ≺ in the tree order, and the root element. For each k > 0, there is a full subcategory
Tree(σ)k determined by those objects whose covers have height ≤ k.

▶ Theorem 7. For each k > 0, Tree(σ)k is isomorphic to EM(Hk).

There is an evident forgetful functor Uk : Tree(σ)k → Struct⋆(σ) which sends (A, a,≤)
to (A, a). The following is now an immediate consequence of Theorem 7.

▶ Theorem 8. For each k > 0, Uk has a right adjoint Rk : Struct⋆(σ)→ Tree(σ)k given by
Rk(A, a) = (Hk(A, a),⊑). The comonad induced by this adjunction is Hk. The adjunction is
comonadic.

5 Paths, open maps, and back-and-forth equivalence

The coalgebra category EM(Hk) has a richer structure than Struct⋆(σ), articulated as
Tree(σ)k by Theorem 7. In fact, Tree(σ)k is an arboreal category as defined in [4]. The
axiomatic structure of an arboreal category allows us to define notions of bisimulation
and games on this category, which can then be transferred to Struct⋆(σ) via the adjunction
Uk ⊣ Rk, following the general pattern laid out in [5]. This leads to a semantic characterisation
of the equivalence on structures induced by hybrid logic.

To accommodate I-morphisms, as discussed in section 3.1, we work with the J-relative
version of this adjunction, using R+

k = RI
kJ , where RI

k is the instance of the adjunction for
Struct⋆(σ+).

5.1 Embeddings, paths and pathwise embeddings

A morphism e in Tree(σ)k is an embedding if Uk(e) is an embedding of relational structures.
We write e : T ↣ U to indicate that e is an embedding.

A path in Tree(σ)k is an object P such that the associated tree cover is a finite linear
order, so it comprises a single branch; moreover, IP is the identity relation. We say that
e : P ↣ T is a path embedding if P is a path. A morphism f : T → U in Tree(σ)k is a
pathwise embedding if for any path embedding e : P ↣ T , f ◦ e is a path embedding.

5.2 Open maps

A morphism f : T → U in Tree(σ)k is open if, whenever we have a commuting diagram such
as 1, where P and Q are paths, there is an embedding Q↣ T such that 2 commutes.

MFCS 2022



7:8 Comonadic semantics for hybrid logic

P Q

T U
f

(1)
P Q

T U
f

(2)

This is often referred to as the path-lifting property. If we think of f as witnessing a simulation
of T by U , path-lifting means that if we extend a given behaviour in U (expressed by extending
the path P to Q), then we can find a matching behaviour in T to “cover” this extension.
Thus it expresses an abstract form of the notion of “p-morphism” from modal logic [9], or of
functional bisimulation.

5.3 Bisimulation
We can now define the back-and-forth equivalence (A, a) ↔H

k (B, b) between structures
in Struct⋆(σ). This holds if there is a span of open pathwise embeddings in Tree(σ)k

R+
k (A, a)← T → R+

k (B, b). Note that we are using the arboreal category Tree(σ)k to define
an equivalence on the “extensional category” Struct⋆(σ).

5.4 Games
We shall now define a back-and-forth game Gk((A, a), (B, b)) played between (A, a) and (B, b),
using the comonad Hk. Positions of the game are pairs (s, t) ∈ Hk(A, a) × Hk(B, b). The
initial position is (⟨a⟩, ⟨b⟩).

We define a relation W((A, a), (B, b)) on positions as follows. A pair (s, t) is in
W((A, a), (B, b)) iff for some path P , path embeddings e1 : P ↣ Hk(A, a) and e2 : P ↣
Hk(B, b), and p ∈ P , s = e1(p) and t = e2(p). The intention is that W((A, a), (B, b)) picks
out the winning positions for Duplicator.

At the start of each round of the game, the position is specified by (s, t) ∈ Hk(A, a)×
Hk(B, b). The round proceeds as follows. Either Spoiler chooses some s′ ≻ s, and Duplicator
must respond with t′ ≻ t, resulting in a new position (s′, t′); or Spoiler chooses some t′′ ≻ t
and Duplicator must respond with s′′ ≻ s, resulting in (s′′, t′′). Duplicator wins the round if
they are able to respond, and the new position is in W((A, a), (B, b)).

5.5 Results
▶ Theorem 9. Given (A, a), (B, b) in Struct⋆(σ), then (A, a)↔H

k (B, b) iff Duplicator has a
winning strategy for Gk((A, a), (B, b)).

Proof. The proof is a minor variation of that for [5, Theorem 10.1], the corresponding result
for Ek. Alternatively, this is an instance of the very general [4, Theorem 6.9]. ◀

The standard k-round Ehrenfeucht-Fraïssé game between A and B [20] is defined as
follows. In each round i, Spoiler moves by either

choosing an ai ∈ A, to which Duplicator responds by choosing a bi ∈ B; or
choosing a bi ∈ B, to which Duplicator responds by choosing an ai ∈ A.

The winning condition for Duplicator is that the correspondence ai 7→ bi is a partial
isomorphism from A to B.

The k-round back-and-forth hybrid game between (A, a) and (B, b) is defined in exactly
the same way, with two additional provisos:
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At round 0, Spoiler must either play a0 = a, to which Duplicator must respond with
b0 = b; or b0 = b, to which Duplicator must respond with a0 = a

At round j > 0, if Spoiler plays a move aj ∈ A then, for some i < j, EA(ai, aj) or
EA(aj , ai); while if Spoiler plays a move bj ∈ B then, for some i < j, EB(bi, bj) or
EB(bj , bi).

The partial isomorphism winning condition ensures that Duplicator is subject to the same
constraints.

We write HTLk for the set of hybrid formulas of modal depth k. We define an equivalence
relation on pointed structures (A, a) ≡HTL

k (B, b) as ∀φ ∈ HTLk. [(A, a) |= φ⇐⇒ (B, b) |= φ].

▶ Theorem 10. Let σ be a finite unimodal vocabulary. For all (A, a), (B, b) in Struct⋆(σ),
the following are equivalent:
1. (A, a)↔H

k (B, b).
2. Duplicator has a winning strategy for the k-round back-and-forth hybrid game between

(A, a) and (B, b).
3. (A, a) ≡HTL

k (B, b).

6 Semantic characterization of hybrid temporal logic

We shall now prove a semantic characterisation of hybrid temporal logic in terms of invariance
under disjoint extensions. A related result is already known [16, 7], however there are several
novel features in our account:

The previous results are for general (possibly infinite) structures, using tools from infinite
model theory. We will give a uniform proof, which applies both to general structures, and
to the finite case, which, as for the van Benthem-Rosen characterisation of basic modal
logic in terms of bisimulation invariance [27, 26], is an independent result.
Our proof follows similar lines to the uniform proof by Otto of the van Benthem-Rosen
Theorem [24]. In particular, we use constructive arguments based on model comparison
games, rather than model-theoretic constructions involving compactness. However, a key
property used in his proof no longer holds for the hybrid fragment, so the argument has
to take a different path.
We also identify a key combinatorial lemma, implicit in [24], which we call the Workspace
Lemma.
One of the equivalent conditions in our characterization, invariance under disjoint ex-
tensions, appears to be new in this context. We can regard invariance under disjoint
extensions as a minimal form of locality relative to a given basepoint. Thus this charac-
terization shows that hybrid temporal logic defines the maximal fragment of first-order
logic which retains a local character in this sense.

6.1 Comonadic aspects
Comonadic semantics have now been given for a number of important fragments of first-order
logic: the quantifier rank fragments, the finite variable fragments, the modal fragment,
and guarded fragments. In the landscape emerging from these constructions, some salient
properties have come to the fore. These are properties which a comonad, arising from an
arboreal cover in the sense of [4], may or may not have:

The comonad may be idempotent, meaning that the comultiplication is a natural iso-
morphism. Idempotent comonads correspond to coreflective subcategories, which form the
Eilenberg-Moore categories of these comonads. The modal comonads Mk are idempotent.
The corresponding coreflective subcategories are of those modal structures which are
tree-models to depth k [5].

MFCS 2022
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The comonad C may satisfy the following property: for each structure A, CA ↔C A,
where ↔C is the back-and-forth equivalence associated with C. We shall call this the
bisimilar companion property. Note that an idempotent comonad, such as Mk, will
automatically have this property. The guarded comonads Gk from [2] are not idempotent,
but have the bisimilar companion property, which is thus strictly weaker.
Finally, the comonads Ek and Pk have neither of the above properties. Unlike the modal
and guarded fragments, the quantifier rank and finite variable fragments cover the whole
of first-order logic, so we call these comonads expressive.

Thus we have a strict hierarchy of comonads in the arboreal categories framework:

idempotent ⇒ bisimilar companions ⇒ arboreal.

This hierarchy is correlated with tractability: the modal and guarded fragments are decidable,
and have the tree-model property [28, 17], while the expressive fragments do not. We can
regard these observations as a small first step towards using structural properties of comonadic
semantics to classify logic fragments and their expressive power. In [3], idempotence is used
to give simple, general proofs of homomorphism preservation theorems for counting quantifier
fragments, with an application to graded modal logic; while the bisimilar companion property
is used to give a general, uniform Otto-style proof of van Benthem-Rosen theorems.

As we have already remarked, the hybrid comonads are closer to the Ehrenfeucht-Fraïssé
comonads Ek than to the modal comonads Mk. Indeed, the Hk comonads are neither
idempotent, nor have the bisimilar companion property. On the tractability side, they are
not decidable [7]. At the same time, they are not fully expressive for first-order logic, thus
refining the above hierarchy.

Otto’s proof of the van Benthem-Rosen theorem in [24] uses the bisimilar companion
property. This is made explicit in the account given in [3]. Because Hk does not have this
property, we shall use a different comonad in our invariance proof for the hybrid fragment.

Given a structure A, we can define a metric on A valued in the extended natural numbers
N ∪ {∞}, given by the path distance in the Gaifman graph G(A) [20]. We set d(a, b) =∞ if
there is no path between a and b. We write A[a; k] for the closed ball, centred on a, also
referred to as the k-neighbourhood of a. Given (A, a), we define Sk(A, a) to be (A[a; k], a),
where A[a; k] is the substructure of A induced by A[a; k]. This defines a comonad on
Struct⋆(σ). The counit is the inclusion map, while coextension is the identity operation
on morphisms, h∗ = h. The fact that h is a σ-homomorphism implies that paths are
preserved, so this is well defined. It is easily verified that Sk is an idempotent comonad.
The corresponding coreflective subcategory of Struct⋆(σ) is the full subcategory of structures
which are k-reachable from the initial elements. We can also define an idempotent comonad
S, where S(A, a) :=

⋃
k∈N Sk(A, a).

We can use this comonad to state the invariance property of interest. We say that a first-
order formula φ(x) is invariant under generated substructures if for all (A, a) in Struct⋆(σ):
(A, a) |= φ ⇐⇒ S(A, a) |= φ. It is invariant under k-generated substructures if for all
(A, a) in Struct⋆(σ): (A, a) |= φ ⇐⇒ Sk(A, a) |= φ. We use the standard disjoint union of
structures, A + B. This is the coproduct in Struct(σ). We say that a sentence φ is invariant
under disjoint extensions if for all (A, a), B: (A, a) |= φ ⇐⇒ (A + B, a) |= φ.

We can now state our main result.

▶ Theorem 11 (Characterisation Theorem). For any first-order formula φ(x) with quantifier
rank q, the following are equivalent:
1. φ is invariant under generated substructures.
2. φ is invariant under q2q-generated substructures.
3. φ is invariant under disjoint extensions.
4. φ is equivalent to a sentence ψ of hybrid temporal logic with modal depth ≤ q2q.
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Note that this theorem has two versions, depending on the ambient category C relative to
which equivalence is defined: ∀(A, a) ∈ C. (A, a) |= φ ⇐⇒ (A, a) |= ψ. The first version, for
general models, takes C = Struct⋆(σ). The second, for finite models, takes C = Structf

⋆(σ),
the full subcategory of finite structures. Neither of these two versions implies the other.
Following Otto [24], we aim to give a uniform proof, valid for both versions.

6.2 Proof of the Characterisation Theorem
Firstly, since any sentence can only use a finite vocabulary, we can assume without loss of
generality in what follows that σ is finite. This implies that up to logical equivalence, the
fragment HTLk is finite.

Given a formula φ, we write Mod(φ) := {(A, a) | (A, a) |= φ}. We shall use the following
variation of a standard result.

▶ Lemma 12 (Definability Lemma). For each k > 0 and structure (A, a), there is a sentence
θ

(k)
(A,⃗a) ∈ HTLk such that, for all (B, b), (A, a) ≡HTL

k (B, b⃗) ⇐⇒ (B, b) |= θ
(k)
(A,⃗a).

This says that [(A, a)]≡HTL
k

= Mod(θ(k)
(A,⃗a)). Since ≡HTL

k has finite index, this implies that if
Mod(φ) is saturated under ≡HTL

k , φ is equivalent to a finite disjunction
∨n

i=1 θ
(k)
(Ai ,⃗ai), and

hence to a formula in HTLk.

The Workspace Lemma
A key step in the argument is a general result we call the Workspace Lemma. A special case
of this is implicit in [24]. Note that ≡q is elementary equivalence up to quantifier rank q.

▶ Lemma 13 (Workspace Lemma). Given (A, a) and q > 0, there is a structure B such that
(A + B, a) ≡q (A[a; k] + B, a), where k = 2q. Moreover, |B| ≤ 2q|A|. Hence if A is finite, so
is B.

The intuition for the workspace lemma is that the structure B, the workspace, contains
enough disjoint copies of A and A[a; k] that Spoiler cannot tell the composite structures
apart in q rounds of the Ehrenfeucht-Fraïssé game. The idea of Duplicator’s strategy is
that if Spoiler plays a move that is close to a previous position, in terms of distance in the
Gaifman graph, Duplicator responds in the corresponding component of the other structure.
If on the other hand Spoiler chooses a position that is “far away” from previously chosen
positions, Duplicator responds in a fresh component of the appropriate type. The number of
copies of both structures in the workspace, and the distances involved, are chosen so that
everything is kept sufficiently far apart that Spoiler cannot see the difference between A + B

and A[a; k] + B. The formal argument is a delicate induction, which can be carried out at
the level of generality of metric spaces.

We shall also require a few additional lemmas in our proof of the characterisation theorem.
The following is immediate from the definitions.

▶ Proposition 14. For each structure (A, a) in Struct⋆(σ), we have SkS(A, a) = Sk(A, a).

The following lemma allows us to restrict our attention to generated substructures when
considering HTL equivalence.

▶ Lemma 15. For all k,m > 0, if (A, a) ≡HTL
m (B, b) then Sk(A, a) ≡HTL

m Sk(B, b).

MFCS 2022
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We also need the following result to strengthen HTL equivalence to first-order equivalence.
We do so by lifting a Duplicator strategy for the hybrid game to one for the Ehrenfeucht-
Fraïssé game, at the expense of some logical resources needed to traverse the structures
step-by-step in the hybrid game.

▶ Lemma 16. For all k, q > 0, if Sk(A, a) ≡HTL
kq Sk(B, b) then Sk(A, a) ≡q Sk(B, b).

Proof of the characterisation theorem
Proof of Theorem 11.

(2) ⇒ (1). Assume that φ is Sk-invariant. Using Proposition 14, (A, a) |= φ iff Sk(A, a) |= φ

iff SkS(A, a) |= φ iff S(A, a) |= φ.

(1) ⇒ (3). This follows immediately from the fact that S(A + B, a) = S(A, a).

(3) ⇒ (4). Suppose that φ is invariant under disjoint extensions (abbreviated as IDE). Let
k = 2q. We shall use Lemma 12. Suppose that (i) (A, a) |= φ, and (ii) (A, a) ≡HTL

kq (B, b).
We must show that (B, b) |= φ. Applying the Workspace Lemma twice, let C, D be such
that (iii) (A + C, a) ≡q (A[a; k] + C, a) and (iv) (B + D, b) ≡q (B[b; k] + D, b). From (ii),
applying lemmas 15 and 16, we have (v) Sk(A, a) ≡q Sk(B, b). Now

(A, a) |= φ ⇒ (A + C, a) |= φ IDE
⇒ (A[a; k] + C, a) |= φ (iii)
⇒ Sk(A, a) |= φ IDE
⇒ Sk(B, b) |= φ (v)
⇒ (B[b; k] + D, b) |= φ IDE
⇒ (B + D, b) |= φ (iv)
⇒ (B, b) |= φ IDE

(4) ⇒ (2). We must show that if ψ is a formula in HTLk, then it is invariant under
k-generated substructures. This follows by a straightforward induction on syntax. ◀

▶ Question 1. In his proof of the van Benthem-Rosen Theorem, Otto establishes an exponen-
tial succinctness gap between first-order logic and basic modal logic. A bisimulation-invariant
first order formula of quantifier rank q has a modal equivalent of modal depth ≤ 2q. He shows
that this is optimal. In our case, we have a gap of q2q. Is this optimal for hybrid temporal
logic?

7 Further Directions

Everything which has been done for hybrid temporal logic in the present paper can be
extended to the bounded fragment of first-order logic. This generalises the hybrid comonad,
allowing both arbitrary relational vocabularies and constant symbols. Allowing for constants
c1, . . . , cm involves working with the m-pointed category Structm(σ). This has objects (A, a⃗),
where a⃗ = ⟨a1, . . . , am⟩ ∈ Am. Morphisms h : (A, a⃗) → (B, b⃗) must preserve these tuples.
The intention is that ai = cAi . Note that Struct⋆(σ) = Struct1(σ). The comonad constructions
can be adapted smoothly to this setting, and the corresponding results go through without
any problems.
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Another variation is to consider hybrid logic without the backwards modalities □−,
♢−. The semantic significance of this is that directed rather than undirected reachability
becomes the salient notion. The comonadic constructions can be adapted to this setting
straightforwardly, but the semantic characterization results cannot be transferred directly.
We leave the resolution of this issue to future work.
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