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—— Abstract

Large software systems are usually divided into multiple components that interact with each other.
How to verify interacting components in a modular way is one of the major problems in formal
verification. In many cases, interaction between components can be modeled asynchronously, where
events are sent without requiring a response in order to continue with execution of the component.
In this paper, we propose a lightweight, event-based framework for verification of components with
asynchronous interaction. We define event monads and event systems, and a Hoare logic-style
calculus for reasoning about them. The framework is implemented in Isabelle and applied to several
case studies, including models for distributed computing, cache-coherence protocols, and verification
of partition scheduling in a real-time operating system.
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1 Introduction

In the verification of large-scale computer programs and systems, a major challenge is modular
verification: how to verify components of a system independently, and then compose results
from verification of each component into an overall correctness result for the entire system.
Sometimes, only part of the system is available or needs to be verified, and the question
arises of how to properly model the interaction points between the parts to be verified and
the rest of the system.
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Interaction between components of a computer system comes in many types. The simplest
is when one component of the system makes function calls to another component. In this case,
if the callee is completely verified, or at least if an abstraction of its behavior is available, then
the caller can be verified in terms of the verified or assumed behavior of the callee. Somewhat
more complicated is the situation where two or more components make function calls on
each other. Verification approaches designed for such situations include assume-guarantee
reasoning [1], where during the verification of each component, we make assumptions on
the behavior of the components it relies on, and prove guarantees of its own behavior under
these assumptions. Correctness of the composed system is then proved by showing that the
guarantees of the components entail all of the assumptions.

Another way to describe interactions between components of a system or with the
environment is via effects and effect handlers. There is a long line of work on the modeling
and verification of effects and effect handlers [4, 24, 30], which will be reviewed in more
detail in Section 6. The main idea is to model each interaction as an uninterpreted event
that returns a result, and provide a continuation for each possible value of the result, hence
modeling the program as an interaction tree [21, 34]. This technique has been applied
successfully to the verification of swap servers [21] and an HTTP Key-Value Server [36].

In many applications, interactions between components are of a special kind, where each
component sends out events without requiring an immediate response in order to continue
with its execution. This can be used, for example, to model asynchronous function calls,
commands to other components to carry out some action, or outputs to the environment.
In such cases, interactions can be modeled by lists of output events, together with handlers
for such events, which can result in change of state in other components as well as possibly
further events. In situations where such a modeling technique is applicable, it provides a
simpler and sometimes more accurate way of modeling interaction between components.
In this paper, we propose a framework for modeling and verifying components with such
asynchronous interactions, by defining event monads and event systems, as well as a Hoare
logic-style calculus for reasoning about them. Using several case studies, we demonstrate
that this framework can be applied to a wide range of situations, allowing verification of
functional properties in a clear and modular way.

The main motivation for the current work comes from a project for verification of partition
scheduling in a commercial real-time operating system implemented following the ARINC 653
standard. The standard requires that the physical resources of the computer are divided into
several partitions, and the operating system enforces strong spatial and temporal separation
between the partitions. To achieve this, scheduling between partitions is strictly deterministic,
based on pre-specified time tables (which however can be switched at run time in response
to specific events). As partition scheduling is critical to ensure temporal separation as well
as real-time properties of the entire system, it is of strong interest to verify its correctness
and precision.

While the scheduling policy based on time tables is itself quite simple, its actual imple-
mentation is complicated due to efficiency considerations and the need to support switching
between time tables. The implementation involves two components, the scheduler and the
watchdog, that interact with each other as well as with other parts of the system. The
scheduler adds new tasks with deadlines to the watchdog, and the watchdog invokes the
dispatch function of the scheduler when the deadline is reached. The scheduler also receives
calls to switch time tables from the environment, and emits calls to change the partition.
Likewise, the watchdog must handle tasks with deadlines from other modules. We show that
the framework based on event monads can be used to model such bi-directional interactions as
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well as interactions with the environment, resulting in the modular verification of correctness
of partition scheduling based on time tables. The verification is at design-level, with parts of
the model closely following the C implementation.

In addition to the application to partition scheduling in real-time operating systems, we
also present two smaller case studies, demonstrating the applicability of the framework to
other situations. First, we verify a model of distributed computing based on MapReduce. In
this model, the client divides a large computing task into several parts, with each part sent
to a different server. Each server asynchronously returns the result of the corresponding task
after some time. The client then obtains the final result of computation by adding up the
answers. Verification of the model requires reasoning about the bi-directional interaction
between the client and the servers. Second, we verify a model of cache-coherence protocol.
The protocol to be verified is first proposed by Steven German, and is widely used as a test
case in parameterized verification (e.g. in the work of Chou et al. [6]). It involves a number of
clients that can obtain either exclusive or shared access to some data, by interacting with the
server through request and invalidate messages. We model such interactions using the event
monad, and prove that the entire system does guarantee exclusive access when required.

1.1 Implementation in Isabelle/HOL

The work described in this paper is implemented® in Isabelle/HOL [29]. We base the
implementation on the AutoCorres library [12], mainly to take advantage of its wp tactic for
verification condition generation. The development of event monads in Isabelle is inspired
by, but does not depend logically on the development of nondeterministic state monads in
AutoCorres [7]. Nor do we make use of its translation facility from C code.

The rest of this paper will make free use of Isabelle notation. We will just review some
frequently-used symbols. ’a x ’b denotes the product of two types, with elements in the
form (a, b). Functions fst and snd return the first and second component of a pair. £ ¢ S
denotes the image of function £ on the set 8. The symbols @ and # denote append and cons
operations on lists, and xs ! i denotes taking the i*" element of a list. We will also make
frequent use of inductive predicates, using the keyword inductive in Isabelle/HOL, or the
version generating sets using inductive__set.

1.2 OQutline of the paper

In Section 2, we motivate the theory in this paper using the example of partition scheduling
based on time tables. In Section 3, we define event monads and its associated Hoare logic.
In Section 4, we describe how to combine different components into a single event system,
and additional rules for reasoning about event systems. In Section 5, we demonstrate the
framework on two smaller examples: MapReduce and cache-coherence protocol, as well as
the main application on partition scheduling. We discuss related work in Section 6 and finally
conclude in Section 7.

2 Motivation: Partition Scheduling

In this section, we describe the motivating example of this paper: scheduling for a partitioned
real-time operating system implementing the ARINC 653 standard.

! Code available at https://www.github.com/bzhan/EventSystem
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ARINC 653 is an international standard for real-time operating systems in the aerospace
industry [2]. The standard specifies that computing resources are divided into several
partitions, with each task running in a single partition. Strong spatial and temporal
separation are enforced between partitions, so that failure in one partition will not propagate
to affect tasks in other partitions. Part of the mechanism for enforcing temporal separation
is a strictly deterministic scheduling policy between partitions based on time tables. A time
table specifies the order and allotted time of partition executions in each major time frame.
Here time is given in units of ticks. For example, the following time table

A,40 B,60 A40 | 020

has a major time frame of 160 ticks and consists of four windows, where partition A executes
for the first 40 ticks, partition B executes for the next 60 ticks, partition A executes again
for the next 40 ticks, and finally partition C executes for the remaining 20 ticks.

A secondary feature of the scheduling module is the support for switching between time
tables. Switching to a new time table can be requested at any time, but is not carried out
immediately. Instead the time when the actual switch occurs depends on the switch mode.
There are three possible modes: next tick, next window, and next frame. Their meanings
are straightforward, and are illustrated in the following diagram.

A,40 B,60 A40 | 020

|
| w next frame
| | |

1
!
!
!
|
|
T
|
|
|

switch request

next tick next window

While the functionality described above is relatively simple, its actual implementation is
more complex. This is mainly due to efficiency considerations. Within the operating system,
there are many modules that require keeping time. It would be costly to invoke each module
that requires time-keeping at every clock tick. Instead, time-keeping is centralized in a single
module called the watchdog. Each module can register tasks on the watchdog, each with a
specified deadline in the number of ticks. The watchdog will then dispatch each task exactly
at its deadline.

Hence, we can consider partition scheduling as an interaction between two components:
the scheduler and the watchdog. At initialization, the scheduler sets the partition to that of
the first window in the time table, and registers a task to the watchdog with the number of
ticks in the first window as deadline. When the task is dispatched, the scheduler sets the
partition to that of the next window, and registers a new task to be dispatched after the
number of ticks in the next window. This pattern continues, rotating to the first window
after reaching the end of the frame. For the time table switch requests, the switch mode
and the ID of the next time table are immediately recorded. The switch mode is checked
at every dispatch, which will correctly handle the next window and next frame requests. A
special check is needed at every clock tick in order to handle the next tick request.

While the scheduler and the watchdog can be viewed as independent modules, there are
interactions between them in both directions: the scheduler sends requests to add tasks to
the watchdog, while the watchdog dispatches functions in the scheduler. Moreover, both the
scheduler and the watchdog interact with other parts of the system: the scheduler receives
switch requests, and invokes change of partition. The watchdog receives clock ticks, and may
dispatch tasks for other modules. These are illustrated in the following diagram.
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partition change dispatch sched. clock tick
— e - - -
Scheduler Watchdog
-] N
switch request add task dispatch other

All these interactions are of asynchronous nature: they do not require an immediate response
in order to continue with the execution. Instead, we can accurately model the system as
emitting all interaction events at the end of each function.

As illustration, we give the definition of events in this case study. First, we define some
basic datatypes:

type__synonym partition = nat

type__synonym ttbl_id = nat

type__synonym task_id = nat

datatype switch_mode = NO_SWITCH | NEXT_TICK | NEXT_WINDOW | NEXT_FRAME | ONGOING

The datatype of events is given by

datatype event =
TICK | DISPATCH nat | SWITCH ttbl_id switch_mode | PARTITION partition |
WATCHDOG_ADD task_id X nat | WATCHDOG_TICK | WATCHDOG_REMOVE task_id

Here TICK is the global tick operation, which calls on WATCHDOG_TICK as well as checks
whether the current switching mode is next tick. DISPATCH i dispatches the task with index ¢
on the watchdog. We assume this dispatches the scheduler task if 4 = 0. SWITCH tid mode
requests a switch to time table tid under switch mode mode. PARTITION p denotes change
of partition to p. The events WATCHDOG_ADD, WATCHDOG_TICK and WATCHDOG_REMOVE corresponds
to adding a task, time increment, and removing a task on the watchdog, respectively. The
scheduling component handles events DISPATCH 0 and SWITCH, and outputs events PARTITION
and WATCHDOG_ADD. The watchdog component handles events WATCHDOG_ADD, WATCHDOG_TICK
and WATCHDOG_REMOVE, and sends DISPATCH events. The environment provides implementation

of the TICK events, which may output WATCHDOG_TICK, WATCHDOG_REMOVE, and DISPATCH events.

The overall approach is a compositional verification of the system. First, implementations
of the scheduler and the watchdog are specified independently, and we verify their properties
(as refinements of functional specifications, including the trace of interaction events). Then,
the combined system is specified, and its property (a refinement of an overall functional
specification) is verified using results proved about the two components.

3 Event Monad

3.1 Definitions of Event Monads

First, we review the concept of (nondeterministic) state monads, as formalized in Isabelle by
Cock et al. in [7]. A state monad over a state of type ’s and returning a value of type ’a
is given by the type ’s = (’a x ’s) set X bool. Given an input state s, it returns a pair
(rs,b), where rs is a set of possible pairs of return value and output state, and b is a failure

flag indicating whether it is possible for the computation to fail (including non-termination).
The bind operation f>= g executes f first, then executes g applied to the return value of f.

It can fail if either f or g can fail.

The event monad is an extension of the state monad, where we also record a trace of
events produced by the program. The formalism is parameterized over a type ’s of states
and a type ’e of events. Then the event monad with return type ’a is defined as follows.

33:5
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type_synonym (’s,’e,’a) event_monad = ’s = (’ax’sXx’e list) set X bool

Given an input state s, the function returns a pair (rs,b), where rs is now a set of triples
of return value, output state, and trace of interaction events. The meaning of the second
component b is the same as before.

We begin by defining some basic event monads: skip does nothing, return returns the
given value, and signal raises the given event:

return a = (As. ({(a, s, [1)}, False))
(As. ({(O, s, [e]l)}, False))

skip = return ()

signal e

The behavior of bind f>= g is similar to that of usual state monads, except the trace of
events produced by g is appended to the trace produced by f to give the overall trace of
events. The formal definition is as follows. As preparation, we define prepend_event for
prepending onto the event trace, and bind_cont for applying monad g to an intermediate
result of computation:

prepend_event el (b, s2, e2) = (b, s2, el @ e2)
bind_cont g (a, sl, el) = (let (rs2, £2) = g a sl in (prepend_event el ¢ rs2, £2))

Then we define:

f > g = (As. let (rs1l, f1) = f s in

let rss2 = bind_cont g ¢ rsl in

(I (fst © rss2), f1 V True € (snd ‘ rss2)))

Next, we define event monads for retrieving the state, setting the state to s, and modifying
the state using a function f. They are similar to the analogous definitions for state monads.

get = (As. ({(s, s, [1)}, False))
put s = (A_. ({(O, s, [1D}, False))
modify f = (As. put (£ s))

The while loop is defined similarly as in the state monad. Given a loop condition C of type
’r = ’s = bool, and a loop body of type ’r = (’s,’e,’r) event_monad, the expression
whileLoop C B has type ’r = (’s,’e,’r) event_monad. Given an initial value r of type ’r
and state s, it repeatedly executes the loop body B until the condition C' becomes false,
using the return value of B to reset the value of r after each iteration. In addition, the traces
of events produced by C' at every iteration are appended in sequence to give the overall trace
of events.

Finally, we give the definition of non-deterministic choice between two monads:

fUg= (As. let (rsil, f1) = £f s; (rs2, f2) = g s in (rsl U rs2, f1 V £2))

3.2 Hoare Logic for Event Monads

We now present a Hoare logic for reasoning about event monads. It will turn out that the defin-
ition of Hoare triples as well as the Hoare rules are very similar to that for nondeterministic
state monads in [7]. For reference, we repeat these definitions here.

{P} £ {Q} = (Vs. P s — (V(r,s’) € fst (f s). Q r s?))

no_fail P f = (Vs t. P s t — —(snd (f s)))
{P} £ {Q}' +— {P} £ {Q} A no_fail P £
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For the extension to event monads, the main decision that needs to be made is where to
include the dependence on the trace of events. We choose to allow both the precondition and
postcondition to depend on traces. The definition for partial correctness in event monads is
as follows, and the definition for total correctness is the same as before.

{P} £ {Q} = (Vs esl. P s es1 — (V(r,s’,es2) € fst (f s). Q r s’ (esl @ es2)))

In words, given an initial state s and trace es1 satisfying precondition P, if the execution
of f gives return value r, final state s’ and trace es2, then the triple r, s’ and es1 @ es2
satisfies the postcondition ). In a sense the trace is viewed as part of the state, with each
signal operation appending onto it. The Hoare logic rules have mostly the same form as
before. The only new rule is that for signal:

{As es. P () s (es @ [el)]} signal e {P}!

As another example, we show the total correctness Hoare triple for the while loop. Note
the invariant is a function of the state s and the value r of variables modified at each iteration
of the loop, as well as the current trace es, while the loop condition cannot depend on the
current trace. Here wf R means R is a well-founded relation.

(As es. Pses = Irses) =
(Ar0 s0. { As es. Ir0O s es ACr0Os As=s0]} Br0
{ Ar’ s” es’. I r’ s’ es’” A ((x’, s’), (x0, s0) € R }!) =
wf R — (/\r ses. Irses AN Crs— Qrses) —
{P} whileLoop C B R {Q}!

What distinguishes event monads and its Hoare logic from simply recording the trace
within the state is a frame rule, which reflects the fact that the trace of events can only be
appended onto, not removed or modified. This rule allows us to show for each function only
the Hoare triple where the precondition requires the trace to be empty, using the frame rule
to cover other cases when necessary.

First, we define the nil and chop assertions on events:

nile

= (les. es = [1)
P Q=

(Mes. Jesl es2. P esl A Q es2 A es = esl @ es2)

The frame rule is then as follows.

{As es. P s A nilces} c {Adr ses. PP r s A Q s es}
{As es. Ps AResfc {drses. PPrs A R " Qs) es}

An alternative form of the frame rule, more convenient when the list of output events is
a function of the initial state, is given as follows.

{ds es. s=s0Aes=[l1} c{Arst. Qr s Aes =g s0}

{As es. s =s0O A es =esO}f c {Adr ses. Qr es A es = esO @ g sO}

The form of definitions of nil and chop, and the naming of the frame rule will remind the
reader of separation logic [31]. However, there are some essential differences: compared to
separating conjunction, the chop operator represents joining in the temporal rather than the
spatial dimension. It should also be noted that the chop operator is not commutative. In
fact our setting is closer to that of interval temporal logic [15] and duration calculus [5].
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» Remark 1. Another possible choice is to always assume the trace to be empty in the
precondition, and allow only the postcondition to depend on the trace, perhaps also separating
it into two assertions, on the state and trace respectively. However, with this choice, the
Hoare rules will no longer be in weakest precondition form, making verification condition
generation more difficult. We also note that our approach allows postconditions to state
relationships between the final state and the trace (e.g. there exists n such that the value of
variable x is n and the additional trace contains exactly n events).

4 Event System

With event monads, we can specify and verify properties of programs that produce a trace of
events. However, what makes events truly useful is in combination with event handlers. In
this section, we define the concept of event system as a model of reactive system consisting
of event monads, and a Hoare logic-style calculus for reasoning about event systems.

4.1 Definition of Event System

An event system models a reactive system as a partial mapping from events to their handlers,
which take the form of event monads with the same event type, and no return value:

type__synonym (’e,’s) event_system = ’e = (’s,’e,unit) event_monad option

We now define the execution of an event e in event system sys. The intuitive idea is as
follows. If e is not handled by sys, then it is simply output to the environment. Otherwise,
the event monad handling e is executed. Suppose the resulting trace of events is es, then
each event in es is recursively executed in sequence.

The formal definition is given by two inductive predicates defined by mutual recursion. The
predicate reachable sys e s (s’, es’) means starting from state s, executing event e can
reach state s’ and output event trace es’ to the environment. The predicate reachable_list
sys es s (s’, es’) is similar, except es is a list of events to be executed in sequence. Note
the output trace es’ does not include events that are handled within the system.

reachable_None: sys e = None = reachable sys e s (s, [e])
reachable_Some: [sys e = Some p; (r, s’, es) € fst (p s); —snd (p s);
reachable_list sys es s’ (s’’, es’)] = reachable sys e s (s’’, es’)

reachable_list_Nil: reachable_list sys [] s (s, [1)
reachable_list_Cons: [reachable sys e s (s’, esl); reachable_list sys es s’ (s’’, es2)]
—> reachable_list sys (e # es) s (s’’, esl Q@ es2)

We also define (by a similar induction) the concept of guaranteed termination when
executing an event e or a sequence of events es starting from state s. These are written as

terminates sys e s and terminates_list sys es s.

terminates_None: sys e = None — terminates sys e s
terminates_Some: sys e = Some p =—> —snd (p s) —
(V(r,s’,es’) € fst (p s). terminates_list sys es’ s’) = terminates sys e s

terminates_list_Nil: terminates_list sys [] s

terminates_list_Cons: terminates sys e s —
(Vs’ es’. reachable sys e s (s’, es’) — terminates_list sys es s’) —
terminates_list sys (e # es) s
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4.2 Hoare Logic for Event Systems

Based on the Hoare logic for event monads, we present a Hoare logic-style calculus for
reasoning about event systems. Since handlers for events are assumed to have no return

values, both pre- and post-conditions are predicates on the pair of state and event trace only.

We define partial and total correctness of an event system for a single event and a sequence
of events as follows.

sValid sys P e Q =

(Vs esl s’ es2. P s esl — reachable sys e s (s’, es2) — Q s’ (esl @ es2))
sNo_fail sys P e = (Vs es. P s es —> terminates sys e s)
sValidNF sys P e Q <— sValid sys P e Q A sNo_fail sys P e

sValid_list sys P es Q =

(Vs esl s’ es2. P s esl —> reachable_list sys es s(s’, es2) — Q s’ (esl @ es2))
sNo_fail_list sys P es = (Vs es’. P s es’ —> terminates_list sys es s)
sValidNF_list sys P es Q <— sValid_list sys P es Q A sNo_fail_list sys P es

We now state rules for deriving Hoare triples for event systems. The rules are stated for
total correctness only, with the partial correctness case being similar. First, if an event e is
not handled by the system, it just appends to the trace:

sys e = None
sValidNF sys (As t. P s (t @ [e])) e P

SYS-NONE

The central rule concerns the case where e is handled by the system. It makes use of
the Hoare triple for the corresponding event monad c. To show the overall postcondition
R, we need to show for each intermediate state s and event trace es that is allowed by the
postcondition of ¢, that R is satisfied after executing es starting from s. This is expressed in
the following:

sys e = Some c
{Xs es. P s A nil. es} ¢ {Ar s es. Q s es]!
/\s es.Q s es = sValidNF_list sys (As’ es’. s’ = s A nil, es’)esR

sValidNF sys (As es. P s A nile es) e R

SYS-SOME

This rule only considers the case where the initial trace is empty. The frame rule (to be
described below) is then used for the general case.
The two rules for event lists are mostly straightforward:

sValidNF_list sys P [] P SYS-NIL

sValidNF sys P e Q sValidNF_list sys Q es R

SYS-CONS
sValidNF_list sys P (e # es) R

We can then prove Hoare triples for general lists of events using induction rules in Isabelle.

For example, the following rule is proved by induction on the length of es, for the case where
none of the events in es is handled by the system:

VeE€set es. sys e = None

SYS-ALL-NONE

sValidNF_list sys (As t. P s (t @ es)) es P

Another useful rule concerns append of event lists, stated simply as follows:

sValidNF_list sys P esl Q sValidNF_list sys Q es2 R

SYS-APPEND
sValidNF_list sys P (esl @ es2) R

33:9
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In addition to the above rules, there are also the usual rules for weakening the precondition,
strengthening the postcondition, and dealing with the logical operations. We omit the details
here.

Both partial and total correctness Hoare triples for event systems satisfy frame rules. Here
we give the rules for total correctness and a single event. The rules for partial correctness
and for a sequence of events are similar.

sValidNF sys (As t. P s A nilet) e (As t. P’ s A Q s t)
sValidNF sys (As t. Ps ARt) e (Ast. PP s A (R " Q 8) t)

To verify properties of an event system, we first prove appropriate Hoare triples for each
event handler as event monads. Then, these results are composed together using the above
rules. Often, there is a logical order among events handled by the system, so that for each
event handler, any output event that is handled occurs earlier in the order. In this case,
the sValid and sValidNF statements can be proved in sequence following this logical order.
This will be demonstrated in Section 5.3.2 (where the order is WATCHDOG_ADD, DISPATCH O,
WATCHDOG_TICK). In more general cases induction techniques would be needed to show several
sValid and sValidNF statements at the same time.

4.3 Composition of Event Systems

Usually, event systems are composed of multiple subsystems, with most of the events acting
on some of the subsystems only. In the case studies in Section 5, we will compose subsystems
by pairing, as well as using parameterized array of subsystems. We provide support for this
by defining functions that automatically transform monads acting on subsystems to monads
acting on the entire state, as well as Hoare rules for dealing with monads defined in this way.

First, we consider composition of subsystems by pairing. Given two subsystems with
state ’s and ’t respectively, we can form a new system with state ’s x ’t. Monads acting
on ’s and ’t can be transformed into monads acting on the global system using the following
functions:

apply_fst_st t (r, s, es) = (r, (s, t), es)
apply_fst ¢ (s, t) = (let (rs, f) = ¢ s in ((apply_fst_st t) ¢ rs, £))

ot

, es) = (r, (s, t), es)
(let (rs, f) = ¢ t in ((apply_snd_st s) ¢ rs, f))

apply_snd_st s (r,
apply_snd c (s, t)

Given a Hoare triple for program c, we automatically get a Hoare triple for program
apply_fst c or apply_snd c, using the following Hoare rules (the rules for apply_snd and for
total correctness are similar).

{Xs es. P s es} c {Ar ses. Q rs es}
{Xp es. P (fstp) es A R (sndp)|} apply_fst ¢ {A\r p es. Q r (fstp) es A R (sndp)|}

Another common way of composing systems is via parameterized array. This is used in
both case studies on MapReduce and cache-coherence protocols. We begin by defining a
function to transform a monad to apply on the i*" index of an array:

apply_idx_st slist i (r, s, es) = (r, slist[i := s], es)
apply_idx c¢ i slist=(let (rs, f)=c (slist ! i) in ((apply_idx_st slist i) ¢ rs, f))
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For reasoning rules about apply_idx c i, we provide two versions. The first version is
well-suited to the case where the behavior of ¢ is deterministic, giving by some function f.
Then the behavior of apply_idx c is simply applying f to the i*? index of the array:

/\SO. {As es. s =s0O Aes =[]} c {A\_ s es. s =f s0O A es =g sO}

{\s es. s = slist A es = [1} apply_idx c i
{\_ p es. s = slist[i := £ (slist ! i)] A es = g (slist ! i)}

The second version is better suited to the case where c is characterized by properties on
the initial and final states, and there is a certain uniformity between properties satisfied by s
I i for each index i. This is used, for example, in the verification of MapReduce, where each
server satisfies some uniform property parameterized by the data it contains.

/\i. i<N= {As es. Pis  Anilc tfc{Arses. Qirses} j<N

{As es. length s=N A (Vi. i <N — P i (s ! i)) A nil. es} apply_idx c j
{A\r s es. length s=N A (Vi. i <N — —-i=j — P i (s!'i) AQ jr (s!j) es}

5 Case Study

In this section, we present three case studies applying the above framework to different
scenarios. Two smaller case studies concern distributed computing based on MapReduce,
and a cache-coherence protocol proposed by Steven German. The main case study concerns
partition scheduling using time tables in a real-time operating system. In all of the case
studies, we show that the use of event monads allow us to separately specify and verify each
component of the system. The specifications can then be composed together to form an
overall correctness result.

5.1 MapReduce

MapReduce is a method of distributed computing proposed by Dean and Ghemawat in [8].
The idea is to divide a large computation task into several smaller portions, each portion
consisting of applying some function f (the map stage). The results are then combined
together by applying another function g onto the initial value and each returned result
in sequence (the reduce stage). We demonstrate the verification of MapReduce using a
simple example, which nevertheless contains the main ingredients, including asynchronous
communication and nondeterminism in the time when each machine returns its result.

Given a number N and a list of lists of numbers data of length N, we need to compute the
total sum of numbers in data. This is done using N servers, where each server i computes
the sum of data ! i. The results are then collected together in a client.

The state of each server is as follows:

record server =

input :: nat list
index :: nat
cursum :: nat
returned :: bool

Here input is the list of numbers whose sum is to be computed. index indicates the current
progress of computation, and cursum records the sum of numbers between 0 and index - 1.
Finally, returned indicates whether the computation is complete, with sum already returned
to the client.

ITP 2022
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The state of the (unique) client is as follows:

record client =
num_received :: nat
acc :: nat
alldone :: bool

Here num_received indicates the number of returned results received from the servers. acc is
the accumulated value of the sum, and alldone indicates whether the entire computation has
finished. Note the client does not record which servers it has received results from (hence it
does not know the sum of which lists the value acc corresponds to), which presents additional
challenges to verifying correctness of the system.

The events of the system are defined using the following datatype.

datatype event = QUERY nat X nat list | RESPOND nat | TICK | INIT

Handlers of the events are as follows. QUERY is handled by the server, and initializes its
state:

query_impl xs = (put ((input = xs, index = O, cursum = O, returned = False|))

The event TICK applies the following monad to each server node. As long as the node has
not returned its answer, it nondeterministically chooses to perform a step, which amounts to
either progress the computation by one index, or returning the result when reaching the end.

tick_node_impl = (get >= (As.
(if —returned s then
if index s = length (input s) then
signal (RESPOND (cursum s)) >= (A_. put (s(returned := True|))
else put (s(index := index s + 1, cursum := cursum s + input s ! (index s)|)
else skip) U skip))

tick_impl N = (whileLoop (Ai _. i < N)
(Ai. apply_fst (apply_idx tick_node_impl i) >= (A_. return (Suc i))) 0) >=
(\_. return ())

Response is handled by the client, and applies the following monad. It updates the number
of received answers and the currently accumulated sum. Moreover, if the number of received
answers reaches N, it sets the alldone flag.

respond_impl N a = (get >= (As.
put (s(acc := acc s + a, num_received := num_received s + 1)) >= ()\_.
get >= (As. if num_received s = N then put (s(alldone := True))) else skip)))

The handler for INIT uses a while loop to send data to all server nodes:

init_impl N data = (whileLoop (Ai _. i < N)
(Ai. signal (QUERY (i, data ! i)) >= (A_. return (Suc i))) 0) >= (A_. return ()

Finally, we define the event system with global state given by server list X client as
follows:

fun system :: nat=nat list list= (event, server listXxclient) event_system where
system N data (QUERY (i, xs)) = Some (apply_fst (apply_idx (query_impl xs) 1i))

| system N data (RESPOND a) = Some (apply_snd (respond_impl N a))

| system N data TICK = Some (tick_impl N)

| system N data INIT = Some (apply_snd (init_impl N data))
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The condition on the initial state is:

init_state N (ss, c) <+—
length ss = N A ¢ = (num_received = 0, acc = 0, alldone = False|

We prove the correctness result that starting from the state satisfying init_state, after
performing one INIT and any number of TICK events, if the client has set the alldone flag,
then the value of acc in the client must be the total sum of data. This is stated formally as
follows:

N > 0 = sValidNF_list (system N data)
(Ap es. init_state N p A nil. es)
(INIT # replicate n TICK)
(Ap es. (alldone (snd p) — acc (snd p) = sum (Ai. sum_list (data!i)) {0 ..< N})
A nil, es)

Since whether a step is performed is nondeterministic according to the definition of
tick_node_impl, it is impossible to predict how many TICKs are needed for the alldone flag to
be set. The same property would hold if a more detailed specification about when to perform
a step is used. The main idea of the proof is to verify that TICK preserves an invariant of
the system, stating that each server node has either returned or is in progress of computing
the sum, and the values of num_received and acc in the client correctly keeps track of the
number and total sum of the returned answers. The proof makes key use of the second rule
for apply_idx given in Section 4.3, lifting the property for each server to a property for the
collection of servers.

5.2 Cache-Coherence Protocol

Our second example concerns a cache-coherence protocol proposed by Steven German, which
has been widely used as a test case for parameterized verification [6]. The protocol consists
of one server and multiple client nodes, and is intended to enforce either exclusive or shared
access to some data. If a client node requires exclusive (resp. shared) access, it sends a
ReqE (resp. RegS) message to the server. On receiving a ReqE message, the server sends

invalidation messages Inv to all client nodes that currently have exclusive or shared access.

On receiving an invalidation message, the client sets its own state to Invalid and returns
an InvAck message back to the server. On receiving InvAck messages from all clients with

access, the server sends an SendE message to the client node that initially requested access.

On receiving an SendE message, the client knows that it now has exclusive access, and sets
its own state to Exclusive. The handling of ReqS is similar, except there is no need to send
invalidation messages if no node has exclusive access, and the server sends SendS message to
the client that initially requested access, who then sets its own state to Shared.

Hence, the interaction is mediated by six types of events, defined as follows:

datatype event = ReqS nat | ReqE nat | Inv nat | InvAck nat | SendS nat | SendE nat
The state of the server is modeled as follows:

record server =

invset :: bool list
shrset :: bool list
curptr :: nat option

grantE :: bool

33:13
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Here invset records which client nodes the server is waiting for InvAck from. shrset indicates
which client nodes currently have exclusive or shared access. curptr stores the currently
requesting client node, and grantE indicates whether the requested access is exclusive. The
state of the client is simply record client = st :: state, where st is one of Invalid, Shared,
or Exclusive.

In this model, Inv, InvAck, SendS, and SendE are all generated by event handlers in either
server or clients, whereas ReqS and ReqE can be seen as events coming from the environment.
Correctness of the system can be stated as an invariant that is preserved by the ReqS and
ReqE events, and which implies exclusive access when required. This can be stated for Reqs
in the following theorem (the one for ReqE is similar).

i < N = sValidNF (system N)
(Ap es. system_inv N p A nil, es)
(RegS i)
(Ap es. system_inv N p A nil. es)

where system_inv contains a number of conditions, including the following:

Vi<N. (st (clist ! i) = Shared V st (clist ! i) = Exclusive) —>
(shrset s ! i V invset s ! i)
Vi<N. —invset sO ! i
grantE s0 — (Vi j. i <N — j < N — i#j — —shrset sO ! i V —shrset s0 ! j)

Together, they state that a client node can be in shared or exclusive state only if the
corresponding bit in the shrset or invset array is turned on. However, before and after
each ReqE and ReqS event, none of the invset is turned on, while in the case when grantE
equals true, at most one shrset is turned on. Hence in this case at most one client node has
exclusive access.

5.3 Partition Scheduling

We now describe the application of our framework to verify partition scheduling using time
tables. We perform two versions of verification: with and without allowing switching between
time tables. The version without switching already contains interaction between the scheduler
and watchdog in both directions, hence illustrates the main ideas of the framework. The
version with switching shows scalability to examples of moderate complexity. Verification of
the watchdog is shared between the two versions, and will be described first below.

5.3.1 Watchdog

The watchdog module maintains a set of tasks, each with its own deadline. Tasks are indexed
by elements of type task_id. Abstractly, the state of a watchdog can be represented by a
partial mapping from task ID to deadline (in the number of clock ticks):

type__synonym astate_watchdog = task_id = nat option

Concretely, a watchdog is implemented as a doubly-linked list (the watchdog chain),
where each node represents a task, consisting of task ID and deadline relative to the previous
task in the chain. The deadline at the first node of the chain is the actual deadline. The
advantage of recording relative deadline is that at each tick, only the deadline at the head
of the chain needs to be updated. In this paper, we model the watchdog chain as an array,
which preserves most of the logical complexity, without requiring reasoning about linked lists.
Hence, the type of concrete watchdog is given by
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type__synonym watchdog_chain = (task_id X nat) list

For example, the watchdog chain (1,10), (2,5), (4,0), (3,2) means the task with ID 1 is due
in 10 ticks, Two tasks with IDs 2 and 4 are due in 15 ticks, and a task with ID 3 is due in 17
ticks.

We define rel_w as the refinement relation between abstract and concrete watchdog
representations as follows:

valid_watchdog es <—
(length es > 0 — snd (es ! 0) > 0) A (Vevt_id. occurs_atmost_one es evt_id)
event_time [] i = None
event_time (e # es) i =
(if fst e = i then Some (snd e)
else case event_time es i of None = None | Some k = Some (k + snd e))
rel_w aw cw <— valid_watchdog cw A aw = event_time cw

Here event_time cw i returns None if i is not in the watchdog chain cw, and Some k if it is in
the chain with actual deadline k. The condition valid_watchdog contains the invariant that
the first deadline in the chain is always positive, and each task appears at most once in the
chain.

The concrete watchdog operations are implemented as follows. Adding a new task requires
traversing the chain, inserting the task at the correct location, and decrement the deadline
of the next node accordingly. The tick operation first decrements the deadline at the head of
the chain by 1, then removes all tasks from the head that have zero deadlines, and emitting
their dispatch events. The remove operation first locates the task to be removed in the chain,
removes it, then increments the deadline of the next node accordingly.

It is nontrivial to verify the correctness of the watchdog module (see the statistics in Sec-
tion 5.4). This is stated in terms of refinement between abstract and concrete specifications, in-
cluding correctness of the list of DISPATCH events emitted when handling WATCHDOG_TICK, as well
as correct update of the watchdog chain when handling WATCHDOG_ADD and WATCHDOG_REMOVE.

5.3.2 Scheduler with No Switching

We now describe the verification of scheduler without considering switching between time
tables. The abstract state of the scheduler consists of the time table (which stays unchanged),
and the ID of the current window:

record astate_scheduler =
as_ttbl :: time_table
window_id :: nat

Dispatch increments window_id by one (modulo the total number of windows) and produces
two output events: change of partition (which is output to the environment in the combined
system) and adding to the watchdog (which is handled by the watchdog module).

The concrete state, which corresponds more closely to the actual implementation in C,
maintains in addition the length of the current window (window_time) and the amount of
time passed in the current frame (cur_frame_time). The variable window_id in the abstract
state is renamed to cur_window:

record cstate_scheduler =
cs_ttbl :: time_table

window_time :: nat
cur_window :: nat
cur_frame_time :: nat

33:15
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The invariant to be maintained is that window_time is the length of the window with index
cur_window, and cur_frame_time is the total length up to (but not including) cur_window.
During dispatch, first increment cur_frame_time by window_time; if the result equals the
length of the major frame, then cur_window and cur_frame_time are reset to zero, otherwise
cur_window is incremented by one; finally window_time is updated, and the events PARTITION
and WATCHDOG_ADD are emitted. Again, correctness of the scheduler is stated and proved as
refinement between the abstract and concrete specifications. The refinement relation rel_s
requires that window_id in the abstract state equals cur_window in the concrete state, and
the invariant to be maintained held for the concrete state.

5.3.3 Combined System

The state of the combined system is the product of concrete states for the scheduler and the
watchdog. The event handlers are defined in terms of handlers in the two subsystems:
sys (DISPATCH 0) = Some (apply_fst dispatch_impl)

sys (WATCHDOG_ADD (ev, n)) = Some (apply_snd (wadd_impl (ev, n)))
sys WATCHDOG_TICK = Some (apply_snd wtick_impl)

The refinement relation in the product system is the product of the refinement relations
on the two sides:

rel_total (as, aw) p <— rel_s as (fst p) A rel_w aw (snd p)

We then verify the overall system specifications stated as Hoare triples in the event
system, following the method described at the end of Section 4.2. We briefly describe the
proved specifications. WATCHDOG_ADD adds a new task with given deadline to the watchdog
chain, without producing additional events. DISPATCH 0 outputs a PARTITION event to indicate
change of partition, as well as adding task 0 with a new deadline back to the watchdog chain.
The input event WATCHDOG_TICK is the main entry point of the system. Its handler produces a
list of DISPATCH i events for all tasks ¢ # 0 that should be dispatched at the current step, as
well as performing the action of DISPATCH 0 if task O should be dispatched.

5.3.4 Top-Level Refinement

Based on the results proved in the previous section, it is possible to prove a more abstract
specification of the combined system, stating that the scheduling follows the time table
precisely. For this, we first define an overall abstract state as follows.

record astate =

a_ttbl :: time_table
frame_time :: nat

wchain :: astate_watchdog

The state contains the constant time table (a_ttbl), the number of ticks spent in
the current frame (frame_time), and the watchdog mapping excluding the scheduler task
(wchain). The functional specifications spec_atick and spec_atick_ev (omitted here) state
that frame_time increments by 1 at each tick (modulo frame length), change of partition is
emitted only at window boundaries, and the usual dispatch events for other tasks are emitted
at appropriate times. Then the theorem stating the top-level refinement is:

sValidNF sys
(Ap es. arel_full a p A nil. es)
WATCHDOG_TICK
(Ap es. arel_full (spec_atick a) p A distinct es A set es = spec_atick_ev a)
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Table 1 Statistics of the implementation and examples.

Description Files Number of lines
Foundations EventSpecWhile, EventSystem 1131
MapReduce MapReduce 726
Cache-coherence Cache 1261
Time table TimeTable 270
Watchdog Watchdog, EventSystemWatchdog 2572
Scheduler (no switch) EventSystemScheduler 723
Scheduler (switch) EventSystemSwitchS.cheduler 866

EventSystemSwitch 1399
Total 8948

Here arel_full is the refinement relation between astate and the pair of abstract states
(as, aw) in the previous section. The theorem is proved directly from the previous result for
WATCHDOG_TICK, by proving the refinement between the specification in the previous section
and the specifications spec_atick and spec_atick_ev.

5.3.5 Scheduler with Switching

We also verified a version of the scheduler allowing switching between time tables, which
forms a more substantial example showing the scalability of our framework. For reason of
space, we only sketch the main additional features:

There is an additional input event SWITCH n mode, which requests switching to a new time
table with identifier n, with switch mode given by mode.

The dispatch function in the scheduler tests for two of the switch modes: next window
and next frame, and performs switching at the appropriate time.

There is an event for overall clock tick which handles the next tick switch mode. If
next tick is active, the handler sets the mode to next window, then emits three events:
remove the scheduler task from watchdog chain, perform watchdog tick, and dispatch the
scheduler. Otherwise, it simply emits the event to perform watchdog tick.

As with the case with no switching, we combined correctness of the scheduler and the
watchdog to form correctness result of the overall system. It states that scheduling proceeds
precisely according to the time table, and whenever a switch event arrives, the switch to

a new time table will be performed at the appropriate time according to the switch mode.

The correctness theorem is again stated in the form of a refinement between the concrete
behavior of the system and an abstract functional specification.

5.4 Statistics

Statistics from the implementation of the framework and the examples are given in Table 1.
Defining the event monad and event system, then setting up the Hoare logic take around
1000 lines in total. Verifying the watchdog is surprisingly complex, so it is a good thing
that under the framework, it only need to be done once for verifying the two versions of the
scheduler.
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6 Related work

There is a large body of work on effects and effect handlers [4, 24, 30], game semantics [20],
and verification methods using interaction trees [21, 34, 36], which study how to model and
verify interacting systems where interactions are synchronous, and a response is needed
immediately in order to proceed with execution of the program. Hence, programs are modeled
using interaction trees which branch at every continuation in response to an event. Compared
to these works, we consider a different model, which may be simpler or more accurate in
some settings, where sending events is asynchronous. Closely related is the work of Ahman et
al. on asynchronous effects [3]. However, they focused mostly on type checking of programs
with asynchronous effects, rather than verification of functional correctness.

Zhao et al. [39] proposed a framework for rely-guarantee reasoning about reactive systems
defined by events. In this work (and many earlier works that specify systems using events),
each event has a guard, and is triggered whenever the guard is satisfied. The semantics in our
case is quite different, where events are triggered explicitly, either by the environment or by
other event handlers. In this respect, our semantics is closer to that of I/O automata [26, 27],
but with sequential rather than concurrent execution.

There is a large number of frameworks for program verification in Isabelle and other
proof assistants, many of which based on monads and/or refinement. We will only give
some examples in Isabelle here. Our work builds upon the state monads of Cock et al. [7],
which are used extensively in the seL4 project [19]. Lammich et al. developed the Isabelle
Refinement Framework [23, 22], which was most recently used by Haslbeck and Lammich
for verification of functional correctness and worst-case complexity of algorithms at the
LLVM level [16]. Tuong et al. developed Clean [32], which implements a state-exception
monad in Isabelle, and is used to verify a number of small programs. Foster et al. developed
Isabelle/UTP [11], implementing Hoare and He’s Unifying Theories of Programming [17],
and applied it to the verification of reactive and hybrid systems [10, 9].

There have been many existing work on verifying operating systems or its components [13,
18, 19, 35, 37]. This includes much work on the specification and verification of separation
kernels [40]. Zhao et al. [38] specified channel-based communication according to the ARINC
653 standard, and provided formal proofs about its information flow security. Verbeek
et al. [33] formalized the API specification for PikeOS, and proved security properties as
required by the MILS architecture. Murray et al. also extended the verification of the sel.4
microkernel to prove information flow enforcement properties [28]. More recently, there have
been focus on verification of the scheduling in real-time operating systems. In particular, the
work of Guo et al. [14] and Liu et al. [25] verified the correctness of scheduling in a real-time
version of CertiKOS. They verify both the correct implementation of a scheduling policy as
well as schedulability under that policy.

7 Conclusion

In this paper, we introduced a framework for modular verification of interacting components
using event monads. Procedures in each component are modeled by event monads which
can produce a trace of events. Each event can then be handled by procedures in other
components in the event system. We applied the framework to the verification of three
examples, including partition scheduling based on time tables in a real-time operating system.
These indicate that the framework is applicable in a wide range of scenarios.
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While the current paper focuses on verification of distributed systems and operating

system components, it appears likely that verification using event monads and event systems

can also be applied in other contexts, such as network communication. Exploring these other

applications is a goal of future work.
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